Keystone: A Group Key Management Service*

Chung Kei Wong
HRL Laboratories, LLC
3011 Malibu Canyon Rd

Malibu, CA 90265

Abstract

A major problem area in securing group communi-
cations is group key management. In this paper,
we present the design and architecture of a scalable
group key management system called Keystone. Key-
stone uses a novel key graph technique for scalable
group key management. In Keystone, the authentica-
tion of client identity can be offloaded to one or more
registrars to improve performance. For efficient and
reliable key updates, Keystone uses UDP/IP mul-
ticast delivery with forward error correction (FEC)
to reduce message loss, and provides an efficient re-
synchronization mechanism for clients to reliably up-
date their keys in case of actual message loss. A
prototype of Keystone has been implemented and its
performance results are reported.

1 Introduction

Many emerging network applications (such as tele-
conference and information dissemination services)
are based upon a group communications model. As
a result, securing group communications becomes a
critical networking issue. Recently, Internet Research
Task Force (IRTF) has formed Secure Multicast Re-
search Group (SMuG) [4] to investigate the problem
of securing group communications. One major prob-
lem area is group key management which is concerned
with the secure distribution and refreshment of key-
ing material.

A group key management system establishes and
maintains group keys for groups of clients. A group
key may be an encryption key, a signing key, a secu-
rity association in IPsec, etc. In this paper, we de-
scribe the design and architecture of a scalable group

*This research was performed at the University of Texas at
Austin as part of the doctoral dissertation of Chung Kei Wong.
Research sponsored in part by NSA INFOSEC University Re-
search Program grant no. MDA904-98-C-A901 and National
Science Foundation grant no. ANI-9977267. In Proceedings
International Conference on Telecommunications, Acapulco,
Mexico, May 2000.

Simon S. Lam

Department of Computer Sciences
The University of Texas at Austin

Austin, TX 78712

key management system called Keystone which uses
anovel key graph technique [8] for scalable group key
management.

In Section 2, we illustrate the key graph technique
by a simple example. In Section 3, we describe the ar-
chitecture and operations of Keystone. In Section 4,
we discuss how to efficiently and reliably update keys
in Keystone. Conclusions are in Section 5.

2 Key Graph

Assume there is a trusted and secure key server! re-
sponsible for group access control and key manage-
ment, and the key server uses key graphs [8] for group
key management. A key graph is a directed acyclic
graph with two types of nodes, u-nodes representing
members and k-nodes representing keys. A member
u is given key k if and only if there is a directed path
from u-node u to k-node k in the key graph.

Consider a group of nine members. Assume the
key server uses the key tree (a special key graph) in
Figure 1(a) for the group. In this group, member ug
is given three keys kg, k7s9, and k1_g. Key kg is called
the individual key of ug because it is shared with the
key server only. Key k;_g¢ is the group key which is
shared with every member, and k7gg9 is an auxiliary
key shared with u; and ug.

Assume the key server changes the group key af-
ter each join/leave. For ug to leave, the key server
changes the group key kg9 to k;_g and the auxiliary
key kg9 to krg. To distribute the new keys to the
remaining members using a group-oriented rekeying
strategy [8], the key server constructs the following
rekey message and multicasts it to all members:

{kl—S}klzs’ {k1—8}k456’ {kl—S}km’ {k78}k7’ {k78}ks

where {k'}; denotes key k' encrypted with key k.
Only the remaining members can update their keys
by decrypting appropriate keys in the rekey message.

LA key server may be distributed and/or replicated to en-
hance reliability and performance.

(a) before ug leaves (after ug joins)

O k-nodes
|:| u-nodes

U g joins

|

ug leaves

(b) after ug leaves (before ug joins)

Figure 1: Key trees before and after a leave (join).

Similarly, for ug to join the group of eight members

Pentium II Linux
server

Ultra 1 Solaris
server

in Figure 1(b), the key server constructs the following
rekey message and multicasts it to all members:

{k1-9}k1_s> 1K789 Yrrs

The key graph technique is scalable to large dy-
namic groups because the key server’s average com-
putation and communication costs per join/leave in-
crease linearly with the logarithm of the group size.

3 Keystone Architecture

Client Application

Application
Data

(' DataMulticast
q

Data
Processor

Keystone
System

Control
Manager

Registration

Figure 2: Keystone architecture.

For a key server to exercise access control, i.e., to
grant or deny a request, the identities of clients must
be authenticated. The key server may authenticate
each client using an authentication protocol, such as
SSL 3.0 [2], and then generate and share the client’s
individual key which is used to protect future commu-
nications between them. This process of associating a
client’s identity with its individual key is called client
registration.

Client registration using an authentication proto-
col, such as SSL 3.0, is computationally expensive,

512-bit 1024-bit | 512-bit 1024-bit
512-bit client 7.8 26 36 140
1024-bit client 10 29 42 146

Table 1: Server processing time (ms) for one SSL 3.0
connection using SSLeay.

and a key server becomes a bottleneck when the client
registration rate is high, e.g., during initial group
setup. Table 1 shows the server processing time to au-
thenticate a client using SSL 3.0 from SSLeay (which
is a publicly available implementation of SSL 3.0).
Both the client and server use certificates (512-bit or
1024-bit RSA) to mutually authenticate each other,
and the certificates are signed directly by a Certificate
Authority CA using a 1024-bit RSA key. The SSL
connection is established using RSA key exchange,
triple DES (CBC mode) encryption, and SHA digest
algorithm.

To solve this problem, Keystone uses one or more
registrars to offload client registration from a key
server.?2 Machines running registrars can be added or
removed dynamically. Moreover, different registrars
may use different authentication services to authen-
ticate different sets of clients at the same time.

Figure 2 shows a typical configuration of Keystone.
There are many client control managers (one for
each client), one or more registrars, and only one key
server. The control manager of a client is responsible
for client control functions, e.g., sending requests and
processing rekey messages. Each client also has a data
processor which is not a part of Keystone. A data
processor uses group keys from its control manager to
perform application data functions, e.g., encryption,
decryption, signing, and verification.> A registrar

2 A key server and a registrar may be combined together into
one physical entity (a key server with embedded registrar).

3In the balance of this paper, we use “client” to mean “client
control manager” unless otherwise stated.

authenticates the identities of clients and distributes
an authenticated client’s individual key to the client
and the key server. The key server processes requests
from clients, changes keys, and distributes new keys
to clients using rekey messages. Currently, Keystone
can deliver rekey messages to clients using either uni-
cast or multicast (see Section 4).

In the following, the operations of Keystone are de-
scribed in detail. To be more concrete in the descrip-
tions, we assume the use of SSL 3.0 for two entities
to mutually authenticate and establish a secure com-
munication channel. However, other authentication
protocols can be used.

3.1 Registrar setup

After a key server S has been initialized, one or
more registrars are setup to handle client registra-
tion. Each registrar R makes a TCP connection to
the key server S, and then they mutually authen-
ticate and establish a secure communication channel
over the TCP channel using SSL. The key server gen-
erates a secret key kg and sends the secret key and a
client list to the registrar through the secure channel.
After that, the secure channel is terminated. but the
TCP channel is kept connected. Figure 3 shows this
registrar setup process. We use the notation z & y
to represent the mutual authentication and establish-
ment of a secure channel between z and y, and the
notation z = y : z to denote the sending of message
z from z to y through a secure channel.

(1)
(2)

Rs S
S=R

using SSL
registrar key kg, client list

Figure 3: Registrar setup.

The secret key kg is called registrar key and is used
to encrypt/decrypt future communications between
the registrar and the key server (through the TCP
channel). The client list contains the identities and
ID numbers of clients but does not contain access
control information.

3.2 Client registration

(1) C&R using SSL
(2) R=C ID¢, ke
(3) R— S { IDC, ko }kR

Figure 4: Client registration.

For a new client C to register with a registrar R,
the client makes a TCP connection to the registrar,

and then they mutually authenticate and establish a
secure communication channel over the TCP connec-
tion using SSL. The registrar generates the client’s
individual key k¢ and sends the client its individ-
ual key and ID number through the secure channel.
Then, the registrar encrypts the client’s individual
key and ID number with registrar key kg, and sends
them to the key server. After that, the secure chan-
nel and TCP connection between the client and the
registrar are terminated. Figure 4 shows this client
registration process. We use the notation z — y : z to
denote the sending of message 2z from z to y through
a reliable channel.

3.3 Request and reply

After having registered, a client C' may send requests
to the key server S. The client makes a new TCP
connection to the key server if there is no existing
TCP connection between them. The client encrypts
the request with its individual key, and sends the en-
crypted request to the key server through the TCP
channel.

A request may contain operations to more than one
group (if there are multiple groups). There are three
types of operations: join, leave, and re-synchronize.
A request may have both join and leave operations
or only re-synchronize operations. A client uses re-
synchronize operations to get the keys of currently
joined groups, e.g., after losing some rekey messages
(see Section 4.2).

(1)
(2)

cC—S
S—>C

{ request }i.
{ ack }., { ind. rekey }i.

Figure 5: Request and reply.

After decrypting and processing the request, the
key server encrypts a reply with the client’s individ-
ual key and sends the encrypted reply to the client
through the TCP channel. The reply consists of
an acknowledgment and an individual rekey message.
The acknowledgment contains the result (granted or
denied) of each operation requested and other infor-
mation. The individual rekey message consists of the
keys to be added, deleted, or updated by the request-
ing client. See Figure 5.* After that, the TCP chan-
nel is terminated if the key server does not use the
TCP channel to send rekey messages to the client (see
Section 4); otherwise, the TCP channel is kept con-
nected for the key server to send rekey messages to

4The communications between the client and the key server
are also protected from modification and replay attack by MAC
and sequence number.

Number of original units, s
1 2 3 4 5 6 7 8 9 10
a=0.0 | 0100 0.190 0.271 0.344 0.410 0.469 0.522 0.570 0.613 0.651
a=205 | 0010 0.028 0.009 0.016 0.005 0.008 0.003 0.004 0.001 0.002
a=10 | 0.010 0.004 0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.000
(a) p=0.1
a=200 | 0200 0360 0.488 0.590 0.672 0.738 0.790 0.832 0.866 0.893
a=205| 0040 0.104 0.058 0.099 0.056 0.086 0.050 0.073 0.044 0.061
a=10 | 0.040 0.027 0.017 0.010 0.006 0.004 0.002 0.001 0.001 0.001
(b) p=0.2
Table 2: Message loss probability P, (s,r, p) where r = [a X s].
Number of original units, s
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
For “rs1”,r =2 3 4 4 4 5 5 5 6 6 6 7 7 7 7
For“s2”,r=|4 5 6 6 7 8 8 9 9 10 10 11 11 12 12

Table 3: Number of repair units r for repair schemes “rs1” and “rs2”.

the client. Note that the key server also constructs
and sends rekey messages to other clients.

4 Key Updates

After changing keys in a key graph, a key server dis-
tributes new keys to clients using rekey messages. For
reliable key updates, a key server may use a reliable
delivery mechanism, e.g., TCP or a reliable multicast
protocol [1, 3, 6], to send rekey messages to clients.
Keystone can use TCP to deliver rekey messages by
keeping a TCP connection to each current member.
This approach is clearly not scalable to large groups.
On the other hand, efficient reliable multicast proto-
cols are not available for large scale use.

To provide efficient and reliable key updates, Key-
stone uses UDP over IP multicast for efficient rekey
message delivery and forward error correction (FEC)
technique for message loss reduction. Keystone also
provides an efficient re-synchronization mechanism
for clients to reliably update their keys in case of ac-
tual rekey message loss.

4.1 FEC + UDP/IP multicast

A key server can efficiently send a rekey message to a
large number of clients using UDP over IP multicast.
However, UDP is unreliable and there may be packet
losses. Moreover, if a rekey message is larger than
the maximum transmission unit (MTU), IP fragmen-
tation occurs and the message is broken into several
IP packets. This increases the message loss proba-
bility since a receiver needs to get all IP packets in
order to reconstruct the message.

To reduce message loss probability, Keystone uses
forward error correction (FEC) technique [5]. Each

rekey message is partitioned into one or more 512-
octet units.® Then, a number of repair units (also
called parity units) are computed from the original
units. Fach unit is sent using UDP over IP multicast.
The number of repair units r is a function of the
number of original units s, and the function is called
a repair scheme. Since a receiver can re-construct the
rekey message from any s of the s + r original and
repair units, the rekey message is less likely to be lost.

Assume UDP packet losses are independent and
with probability p for a receiver (which is about 10%-
20% for UDP packets over MBone [9]). Then, the
message loss probability P,,(s,r,p) for the receiver is
given by the following equation.

s+r ; i
P, (s,r,p) = Efi:-{-l(;) pi(1 —p)s-‘rr i

Table 2 shows P, (s,r,p) for the repair scheme
r = [a X s] with three different o values, 0.0, 0.5,
and 1.0.° If no repair packet is used (i.e., a = 0.0),
a larger rekey message is partitioned into more units,
and the message loss probability increases. The prob-
ability P,,(s,7,p) decreases when « increases, i.e.,
more repair units are used.

We can bound the message loss probability by com-
puting the number of repair units needed from the
P, (s,r,p) equation. We use the notations “rsl”
and “rs2” to denote the repair schemes to make
P, (s,r,p) < 0.001 for p = 0.1 and p = 0.2, respec-
tively. See Table 3.

Table 4 shows the average server processing time
per join/leave request for different repair schemes on
a Ultra 1 machine. OQur implementation uses the

5 Although most path MTUs are as large as 1500 octets, an
IP host machine is only required to receive at least a 576-octet
IP datagram.

6In Table 2, a probability less than 0.0005 is denoted by
“0.000” (which is not probability zero).

software erasure coder by Rizzo [7] to generate re-
pair units. We measured the average server process-
ing time for group-oriented rekeying using DES-CBC
encryption, MD5 message digest, and 512-bit RSA
digital signature. The rekey message signing time is
about 46.6 ms. We observe that for group size upto
8192, the use of FEC increases the processing time
by at most 1.1 ms which is about 2% of the total
processing time. In other words, the use of FEC sub-
stantially decreases the message loss probability with
only a slight increase in the processing time.

Group size

256 512 1024 2048 4096 8192

a=00 | 50.7 51.0 51.0 5.2 513 514
a=05|509 513 514 51.5 51.6 51.7
a=10|508 514 514 515 517 520
“rsl” 509 51.5 51.6 51.8 51.9 52.0

“rs2” | 51.2 51.9 521 523 524 525

Table 4: Average server processing time (ms) per

join/leave request.

4.2 Re-synchronization

Since FEC does not provide 100% reliability, rekey
messages may still be lost. One straight-forward way
to deal with lost rekey messages is for a client to re-
quest the lost rekey messages to be re-transmitted.
This approach is inefficient especially when the num-
ber of lost rekey messages is large, e.g., in a long loss
burst that lasts for several seconds or minutes [9].
First, a key server (or a repair entity) needs to store
many rekey messages. Second, most of these recov-
ered rekey messages contain old auxiliary keys that
are no longer needed by the client.

Instead of using message retransmission, Keystone
provides an efficient re-synchronization mechanism
for clients to reliably update their keys in case of
message loss. When a client detected rekey mes-
sage losses, it sends a re-synchronize request to the
key server. After receiving a re-synchronize request,
the key server encrypts the current group and aux-
iliary keys (and possibly some previous group keys
if needed) for each requested group with the client’s
individual key, and sends the encrypted keys back
to the client. Since no expensive digital signa-
ture is needed, the server processing time for a re-
synchronize request is only 2.4 ms to 2.5 ms on a
Ultra 1 for a group with size from 256 to 8192 using
DES-CBC encryption.

5 Conclusions

We have designed and implemented a group key man-
agement system called Keystone which consists of

three components: client control manager, registrar,
and key server. The expensive client registration pro-
cess can be offloaded from a key server to one or more
registrars. Therefore, the client registration rate can
be increased by using more machines to run regis-
trars. Moreover, different registrars can be used to
provide different authentication services for different
sets of clients (at the same time).

For a key server to distribute new keys to a large
group of clients, UDP over IP multicast is efficient
but not reliable (with a loss probability around 10%
to 20% over MBone). To decrease the message loss
probability, Keystone uses forward error correction
(FEC). The use of FEC substantially reduces (by or-
ders of magnitude) the loss probability of rekey mes-
sages with only a slightly increase in the server pro-
cessing time. Moreover, Keystone provides an effi-
cient re-synchronization mechanism for clients to re-
liably update their keys in case of actual message loss.

References

[1] Sally Floyd, Van Jacobson, Ching-Gung Liu, Steven
McCanne, and Lixia Zhang. A Reliable Multicast
Framework for Light-Weight Sessions and Application
Level Framing. In Proceedings of ACM SIGCOMM
795, 1995.

[2] Alan O. Freier, Philip Karlton, and Paul C. Kocher.
The SSL Protocol Version 3.0. Work in progress,
Netscape Communications, November 1996.

[3] Hugh W. Holbrook, Sandeep K. Singhal, and
David R. Cheriton. Log-Based Receiver-Reliable Mul-
ticast for Distributed Interactive Simulation. In Pro-
ceedings of ACM SIGCOMM ’95, 1995.

[4] Internet Research Task Force (IRTF). The
Secure Multicast Research Group (SMuG).
http://www.ipmulticast.com/community /smug/.

[6] J6rg Nonnenmacher, Ernst Biersack, and Don
Towsley. Parity-Based Loss Recovery for Reliable
Multicast Transmission. In Proceedings of ACM SIG-
COMM ’97, 1997.

[6] Sanjoy Paul, Krishan K. Sabnani, John C.H. Lin, and
Supratik Bhattacharyya. Reliable Multicast Trans-
port Protocol (RMTP). IEEE Journal on Selected
Areas in Communications, 15(3), April 1997.

[7] Luigi Rizzo. Effective Erasure Codes for Reli-
able Computer Communication Protocols. Computer
Communication Review, April 1997.

[8] Chung Kei Wong, Mohamed Gouda, and Simon S.
Lam. Secure Group Communications Using Key
Graphs. In Proceedings of ACM SIGCOMM ’98, Van-
couver, B.C., September 1998.

[9] Maya Yajnik, Jim Kurose, and Don Towsley. Packet
Loss Correlation in the MBone Multicast Network. In
IEEE Global Internet Conference, 1996.

