
978-1-4799-1270-4/13/$31.00 c©2013 IEEE

Real-time Verification of Network Properties using

Atomic Predicates

Hongkun Yang and Simon S. Lam

Department of Computer Science, The University of Texas at Austin

{yanghk, lam}@cs.utexas.edu

Abstract—Network management will benefit from automated
tools based upon formal methods. Several such tools have been
published in the literature. We present a new formal method
for a new tool, Atomic Predicates (AP) Verifier, which is much
more time and space efficient than existing tools. Given a set of
predicates representing packet filters, AP Verifier computes a set
of atomic predicates, which is minimum and unique. The use of
atomic predicates dramatically speeds up computation of network
reachability. We evaluated the performance of AP Verifier using
forwarding tables and ACLs from three large real networks.
The atomic predicate sets of these networks were computed very
quickly and their sizes are surprisingly small.

Real networks are subject to dynamic state changes over
time as a result of rule insertion and deletion by protocols and
operators, failure and recovery of links and boxes, etc. In a
software-defined network, the network state can be observed in
real time and thus may be controlled in real time. AP Verifier
includes algorithms to process such events and check compliance
with network policies and properties in real time. We compare
time and space costs of AP Verifier with NetPlumber using
datasets from the real networks.

I. INTRODUCTION

Managing a large packet network is a complex task. The
process of forwarding packets is prone to faults from configura-
tion errors and unexpected protocol interactions. In large packet
networks, forwarding tables in routers/switches are updated
by multiple protocols. Access control lists (ACLs) in routers,
switches, and firewalls are designed and configured by different
people over a long period of time. Links may be physical or
virtual (e.g., VLAN, MPLS). Some middle boxes also modify
packets (e.g., NAT). In a study of large-scale Internet services
[13], operator error was found to be the largest single cause of
failures with configuration errors being the largest category of
operator errors.

Towards more reliable networks, formal analysis methods
and automated tools have been proposed to check reachability
(e.g., “a packet with certain header values cannot reach host y”)
and to verify essential network properties (e.g., “the network
has no routing loop for all packets”). A model for static
reachability analysis of network state in the data plane was first
presented by Xie et al. [16]. They proposed a unified approach
for reasoning about the effects of forwarding and filtering
rules as well as packet transformations on reachability. This
approach motivated subsequent development of algorithms and
automated tools by other researchers [3], [10], [12], [9], [11],
[8]. In these tools, the algorithm for computing reachability is
the core algorithm for verifying essential network properties in
the data plane, such as, loop-freedom, nonexistence of black
holes, network slice isolation, reachability via waypoints, etc.

The network state in the data plane is determined by the
forwarding and ACL rules in the network’s middle boxes.
Forwarding tables and ACLs are packet filters. They can be
parsed and represented by predicates that guard input and
output ports of middle boxes. The variables of such a port
predicate are packet header fields.1 Packets with identical
values in their header fields are considered to be the same
by packet filters. A predicate P specifies the set of packets for
which P evaluates to true. The set of packets that can travel
from port s to port d through a sequence of packet filters can
be obtained by computing the conjunction of predicates in the
sequence or by intersection of the corresponding packet sets.

The intersection and union of packet sets are highly
computation-intensive because they operate on multi-
dimensional sets which could have many allowed intervals
in each dimension and arbitrary overlaps in each dimension
between two packet sets. In the worst case, the computation
time of set intersection/union is O(2n) where n is the number
of bits in the packet header. Efficiency of these operations
determines the efficiency of reachability analysis irrespective
of which formal method is used to compute reachability.

In this paper, we propose a novel idea that enables very
fast computation of reachability. For a given set of predicates,
we present an algorithm to compute a set of atomic predicates,
which is proved to be minimum and unique. Atomic predicates
have the following property: Each given predicate is equal
to the disjunction of a subset of atomic predicates and can
be stored and represented as a set of integers that identify
the atomic predicates. The conjunction (disjunction) of two
predicates can be computed as the intersection (union) of
two sets of integers. Thus, intersection and union of packet
sets can be computed very quickly. Based upon this idea,
we developed a formal analysis method and prototyped an
automated tool, named Atomic Predicates (AP) Verifier, for
computing reachability and checking compliance with network
policies and properties in real time.

We evaluated the performance of AP Verifier using for-
warding tables and ACLs from three real networks downloaded
from Stanford University [1], Purdue University [14], and
Internet2 [2]. Since forwarding rules and ACL rules have
different characteristics and locality properties, AP Verifier
computes two different sets of atomic predicates, one for ACL
predicates and another for forwarding predicates. We found
that the atomic predicate sets of the three networks can be
computed very quickly and their sizes are surprisingly small.

1We will shorten “port predicate” to “predicate” whenever the meaning is
clear from context.

For example, the Stanford network [9] has 71 ACLs with
1,584 rules but we found only 21 atomic predicates for these
ACLs and rules. This outcome is due to the existence of
large amounts of redundancy in the forwarding and ACL rules
of real networks. By encoding the network state in terms of
atomic predicates, such redundancy is eliminated. Therefore,
AP Verifier is much more time and space efficient than other
automated tools for network verification published to date.

Real networks are subject to dynamic state changes over
time as a result of, for examples, rule insertion and deletion
by protocols and operators, failure and recovery of links and
boxes, etc. Recently, two research groups suggested that in
a software-defined network (SDN), the network state can be
observed in real time and thus may also be controlled in real
time [11], [8]. More specifically, if a “verifier” is placed in
the communication path between a SDN’s central controller
and its middle boxes, the verifier can intercept every network
state change message and verify compliance of the state change
with pre-defined network policies and properties. If a state
change is detected in real time to be noncompliant, the verifier
may raise an alarm or block the state change. We have
designed algorithms for AP Verifier to perform such real-time
checks. AP Verifier was found to be especially fast in checking
reachability compliance of a link up/down event. Existing tools
used several seconds of time to verify compliance of a link
up/down event [8], [11]. AP Verifier’s compliance verification
times were 4 to 5 orders of magnitude smaller for a link up
event (median = 50 µs, maximum = 1.5 ms) and a link down
event (median = 1 µs, maximum = 27 µs).

The balance of this paper is organized as follows. In Section
II, we present our models of a network and a middle box. We
describe how port predicates of each box are computed from
rules in its forwarding table and ACLs. In Section III, we define
atomic predicates. Given a set of predicates, we present an
algorithm for computing the set of atomic predicates, which
is proved to be minimum and unique. We present statistics
of three real networks [1], [14], [2] including the sizes of
their atomic predicate sets and their computation times. In
Section IV, we present algorithms for computing reachability
and verifying a number of network properties. We present
computation time and storage costs comparing AP Verifier
with Hassel in C (the fast version used in Header Space and
NetPlumber [9], [8]). In Section V, we present algorithms for
processing network state changes due to rule insertion/deletion
and link up/down events and checking reachability compliance
in real time. We present results comparing the computation
times of AP Verifier and NetPlumber [8]. In Section VI we
discuss related work. We provide answers to questions from
the reviewers in Section VII and conclude in Section VIII.

II. NETWORK MODEL

We model a packet network as a directed graph of middle
boxes. A middle box can be a switch or a router. A middle box
has a forwarding table as well as input and output ports guarded
by access control lists (ACLs). Each packet has a header of h
bits. The header is partitioned into multiple fields. The three
networks analyzed in this paper are all IP networks. However,
our model of packet headers is general and not limited to IP
headers.

Each ACL consists of a list of ACL rules. Each ACL
rule is specified by a predicate and an action. (Our model
includes firewalls, which are ACLs with large numbers of
rules.) The variables of the predicate are packet header fields.
AP Verifier has a parser for converting ACL rules written
in Cisco IOS to predicates. All predicates in AP Verifier are
represented by binary decision diagrams (BDDs) which are
rooted, directed acyclic graphs. Logical operations on BDDs
can be performed efficiently using graph-based algorithms [4].
(We use the software package JDD [15].) Consider an ACL
with m rules:

G1,action1

G2,action2

· · ·

Gm,actionm

where Gi is the predicate for the ith rule and actioni is allow
or deny.

When a packet is checked against an ACL, it is matched by
the first rule whose predicate evaluates to true for the packet.
From the predicates in rules, we use Algorithm 1 to compute
a single predicate that specifies the packet set allowed by the
ACL. (Predicate false specifies the empty set.)

Algorithm 1 Converting an ACL to a predicate

Input: An ACL
Output: A predicate for the ACL
1: allowed← false, denied← false
2: for i = 1 to m do
3: if actioni = deny then
4: denied← denied ∨Gi

5: else
6: allowed← allowed ∨ (Gi ∧ ¬denied)
7: end if
8: end for
9: return allowed

If the allowed values of each header field in an ACL rule
are specified by a suffix, prefix or an interval, we proved that
the predicate of an ACL rule can be represented by a BDD
with ≤ 2 + 2h nodes, where h is the number of bits in the
packet header [17] . We found that this constraint is satisfied
by each ACL rule in the several datasets we have (including
those from Stanford and Purdue). For an ACL rule in which
the allowed values of a header field are specified by multiple
disjoint intervals, the number of nodes in the rule’s BDD may
be larger than 2 + 2h but Algorithm 1 remains the same.

The forwarding table in a middle box is also a list of
rules. Each rule has an IP prefix and a port name. The port
may be physical or virtual. There is also a special port for
packets to be intentionally dropped. AP Verifier has parsers for
converting forwarding rules written in Cisco IOS and Juniper
JUNOS to predicates. We first convert each prefix to a predicate
represented by a BDD. The number of nodes in the BDD is
≤ n+ 2 where n is the number of bits in an IP address.

In IP forwarding, a packet may be matched by multiple
rules in the table; the packet is forwarded to the output port
specified by the matched rule with the longest prefix. To

compute a single predicate for each port in the forwarding
table, which has k ports indexed by {1, . . . , k}, we first sort
the rules in the table in descending order of prefix length and
represent the forwarding table with m rules as follows:

Pre1,L1, port1

Pre2,L2, port2

· · ·

Prem,Lm, portm

where Prei denotes a prefix; Li, i ∈ {1, . . . ,m}, are prefix
lengths such that L1 ≥ L2 ≥ . . . Lm; and porti ∈ {1, . . . , k}.
Then we use Algorithm 2 to convert the sorted forwarding table
to a list of predicates, one for each output port.

Algorithm 2 Converting a forwarding table to forwarding
predicates

Input: A sorted forwarding table
Input: A set of output ports {1, . . . , k}
Output: A list of predicates {P1, . . . , Pk}
1: for j = 1 to k do
2: Pj ← false
3: end for
4: fwd← false
5: for i = 1 to m do
6: Pporti ← Pporti ∨ (Prei ∧ ¬fwd)
7: fwd← fwd ∨ Prei
8: end for
9: return {P1, . . . , Pk}

From the several datasets we have (including those from
Stanford, Purdue, and Internet2), we observed that the number
of BDD nodes used to represent an ACL or a forwarding
table increases approximately linearly with the number, m, of
rules in the ACL/table up to a maximum and then decreases
as m increases further. For example, in the Purdue dataset,
an ACL with 52 rules is represented by 515 BDD nodes
(maximum); the ACL with the most rules (693) is represented
by only 187 BDD nodes. In the Stanford dataset, a forwarding
table with 1,825 rules is represented by 5,325 BDD nodes
(maximum); the forwarding table with the most rules (184,908)
is represented by only 1,900 BDD nodes. (See Figures 5 and
6 in Appendix C.)

A port in a middle box may be a virtual port (e.g. a VLAN
port) which has a set of physical ports corresponding to it.
We map the ACL and forwarding predicates of a virtual port
to its set of physical ports. As a result, a physical port can
have multiple ACLs; also, a physical output port can have
multiple predicates computed from the same forwarding table.
For reachability computation, the ACL predicate of a physical
port is the disjunction of its predicates computed from all of
the ACLs. The forwarding predicate of a physical output port
is the disjunction of all of its predicates computed from the
forwarding table.

Thus we have the model shown in Fig. 1, namely: a middle
box with a set of physical input ports and a set of physical
output ports. Each input port is guarded by an ACL predicate.
Each output port is guarded by a forwarding predicate followed
by an ACL predicate.

A1

A2

A4

A3

A5

A6

F4

F5

F6

Fig. 1: An example of a middle box. A1, . . . , A6 are ACL
predicates and F4, F5, F6 are forwarding predicates.

III. ATOMIC PREDICATES

A. Basic Idea

Definition 1 (Atomic Predicates). Given a set P of predicates,
its set of atomic predicates {p1, . . . , pk} satisfies these five
properties:

1) pi 6= false, ∀i ∈ {1, . . . , k}.

2) ∨ki=1pi = true.

3) pi ∧ pj = false, if i 6= j.

4) Each predicate P ∈ P , P 6= false, is equal to the
disjunction of a subset of atomic predicates:

P =
∨

i∈S(P)

pi, where S(P) ⊆ {1, . . . , k}. (1)

5) k is the minimum number such that the set {p1, . . . , pk}
satisfies the above four properties.

Note that if P = true, then S(P) = {1, . . . , k}; if P =
false, S(P) = ∅. Since p1, . . . , pk are disjoint, the expression
in equation (1) is unique for each predicate P ∈ P .

Given a set P , there are numerous sets of predicates that
satisfy the first four properties of Definition 1. In the trivial
case, these four properties are satisfied by the set of predicates
each of which specifies a single packet. We are interested in
the set with the smallest number of predicates. The meaning of
atomic predicates is provided by the following theorem (proof
in Appendix A).

Theorem 1. For a given set P of predicates, the set of atomic
predicates for P specifies the minimum set of equivalence
classes in the set of all packets.

To enable fast computation of reachability in a network, AP
Verifier precomputes the set of atomic predicates for all port
predicates of the network. The set of atomic predicates together
with the network topology preserve all network reachability
information but without any redundant information in ACL
rules and forwarding rules. Thus, AP Verifier is space efficient.

More importantly, the conjunction of two predicates, P1 and
P2 in P , can be computed by the intersection of two sets of
integers, S(P1) and S(P2). Similarly, the disjunction of P1 and
P2 can be computed by the union of two sets of integers, S(P1)
and S(P2). Operations on predicates (or operations on packet
sets) are highly computation-intensive because they operate
on many packet header fields. Using atomic predicates, these
computation-intensive operations are replaced by operations on
sets of integers (i.e., identifiers of atomic predicates) with a
dramatic decrease in computation time. Thus, AP Verifier is
also time efficient.

0

1
0

0

2
0

0

3
0

0

4
0

0

5
0

0
5

1
0

0

100

200

300

400

500
Random selection
Selection by box

Number of Forwarding Predicates

N
u

m
b

e
r

o
f

A
to

m
ic

 P
re

d
ic

a
te

s

(a) Number of atomic predicates for forwarding in Stanford network.

0

1
0

2
0

3
0

4
0

5
0

6
0

7
1

0

5

10

15

20

25
Random selection
Smallest ACL first

Number of ACLs

N
u

m
b

e
r

o
f

A
to

m
ic

 P
re

d
ic

a
te

s

(b) Number of atomic predicates for ACLs in Stanford network.

0

3
0

6
0

9
0

1
2

0

1
5

0

1
5

9
0

40

80

120

160

200

240
Random selection
Selection by box

Number of Forwarding Predicates

N
u

m
b

e
r

o
f

A
to

m
ic

 P
re

d
ic

a
te

s

(c) Number of atomic predicates for forwarding in Internet2.

0

1
0

0

2
0

0

3
0

0

4
0

0

5
0

0
5

1
9

0

1000

2000

3000

4000
Random selection
Smallest ACL first

Number of ACLs

N
u

m
b

e
r

o
f

A
to

m
ic

 P
re

d
ic

a
te

s
(d) Number of atomic predicates for ACLs in Purdue network.

Fig. 2: Number of atomic predicates for forwarding and for ACLs in three real networks.

B. Computing Atomic Predicates

For a given set P of predicates, we present an algorithm
to compute its set of atomic predicates, denoted by A(P).

First, we compute the set of atomic predicates for each
predicate P in P using equation (2) below. It is easy to see
that A({P}) satisfies Definition 1.

A({P}) =

{

{true} if P = false or true

{P,¬P} otherwise.
(2)

Second, let P1,P2 be two sets of predicates, P1’s set
of atomic predicates be {b1, . . . , bl} and P2’s set of atomic
predicates be {d1, . . . , dm}. We compute a set of predicates
a1, . . . , ak as follows:

{ai = bi1 ∧ di2 |ai 6= false, i1 ∈ {1, ..., l}, i2 ∈ {1, ...,m}}
(3)

In the worst case, the above set can have l×m predicates.
However, in practice we found that most intersections in (3)
are false. The following theorem states that {a1, . . . , ak} is the
set of atomic predicates for P1 ∪ P2 (proof in Appendix B).

Theorem 2. The set of atomic predicates for P1 ∪ P2 is
{a1, . . . , ak} where, for i ∈ {1, . . . , k}, ai is computed by
formula (3).

Given a set of predicates, P = {P1, . . . , PN}, Algorithm 3
computes the set of atomic predicates for P .

Algorithm 3 uses formula (3) repeatedly. Theorem 2 en-
sures that Algorithm 3 returns the correct set of atomic
predicates. Since the set of atomic predicates is unique, it is

Algorithm 3 Computing atomic predicates

Input: {P1, P2, . . . , PN}
Output: A({P1, P2, . . . , PN})
1: for i = 1 to N do
2: compute A({Pi}) using equation (2)
3: end for
4: for i = 2 to N do
5: compute A({P1, . . . , Pi}) from A({P1, . . . , Pi−1}) and

A({Pi}) using formula (3)
6: end for
7: return A({P1, . . . , PN})

independent of the predicates’ order in the list given to Algo-
rithm 3 as input. The computation time however is affected by
the predicates’ order (see next subsection).

Stanford Internet2 Purdue

No. of middle boxes 16 9 1,646

No. of ports used 58 56 2,736

Stanford Internet2 Purdue

No. of rules
Forwarding ACL Forwarding ACL

757,170 1,584 126,017 3,605

No. of atomic predicates 494 21 216 3,917

TABLE I: Statistics of three real networks.

C. Atomic Predicates in Real Networks

We downloaded datasets of three real networks from Stan-
ford University [1], Purdue University [14], and Internet2
[2]. Some network statistics are shown in Table I. All 16
middle boxes in the Stanford dataset are routers. All 9 middle
boxes in the Internet2 dataset are routers. The 1,646 middle
boxes in the Purdue dataset consist of routers and switches.
We observed that forwarding and ACL rules have different

characteristics and locality properties. Therefore we consider
ACL and forwarding rules separately and compute separate
sets of atomic predicates for ACL and forwarding predicates.

To compute atomic predicates for ACLs using Algorithm
3, we experimented with two ways for ordering the ACL
predicates:

• Random selection: Select an ACL randomly.

• Smallest ACL first: Select an ACL with the smallest
number of rules.

To compute atomic predicates for forwarding, we also experi-
mented with two ways for ordering the forwarding predicates:

• Random selection: Select a forwarding predicate ran-
domly.

• Selection by box: Select a middle box randomly and
then select its forwarding predicates one by one ran-
domly.

Figure 2 shows growth of the number of atomic predicates
in the three networks versus the number of forwarding/ACL
predicates. Figures 2(a) and (c) show that for forwarding pred-
icates, the number of atomic predicates grows approximately
linearly with the number of forwarding predicates whichever
selection method is used. Figures 2(b) and (d) show that
when ACLs are selected randomly, the number of atomic
predicates grows approximately linearly with the number of
ACLs. But with smallest ACL first, the number of atomic
predicates remains low for a long time until near the end of
the computation (thus requiring less computation time).

From Table I and Figure 2, observe that the Stanford
network has 71 ACLs with 1,584 rules but only 21 atomic
predicates for these ACLs – a surprisingly small number which
indicates large amounts of redundancy in the rules as well as
similarity between ACLs. The number of atomic predicates
is 3,917 for Purdue’s 519 ACLs with 3,605 rules; we found
that the Purdue dataset contains many different rules and a
sizable number of extended ACL rules. The number of atomic
predicates is 494 for Stanford’s 757,170 forwarding rules. The
number of atomic predicates is 216 for Internet2’s 126,017
forwarding rules.

atomic predicates for ACLs

random selection (ms) smallest ACL first (ms)

Stanford 1.56 0.84

Purdue 886.21 450.31

atomic predicates for forwarding

random selection (ms) selection by box (ms)

Stanford 210.26 201.40

Internet2 154.91 148.28

TABLE II: Time to compute atomic predicates.

Table II shows times used to compute atomic predicates
for the three networks.2 Table II shows that for ACLs smallest
ACL first uses about 50% less time than random selection. For
forwarding tables, the computation time of selection by box is
slightly smaller than the time of random selection. We will use

2All results in this paper were computed using just one core of a six-core
Xeon processor with 12 MB of L3 cache and 16 GB of DRAM.

smallest ACL first to compute atomic predicates for ACLs and
selection by box to compute atomic predicates for forwarding.

The computation times for ACL atomic predicates in the
Stanford and Purdue networks were 0.84 ms and 0.45 second,
respectively. The computation times for forwarding atomic
predicates in the Stanford network and Internet2 were 0.2 and
0.15 second, respectively.

D. Packet Set Specification

The set of packets that can pass through an output port is
specified by the conjunction of its forwarding and ACL predi-
cates. For a particular port, let F and A denote the forwarding
and ACL predicates, respectively. Let SF denote the set of
integer identifiers of atomic predicates for forwarding. Let SA

denote the set of integer identifiers of atomic predicates for
ACLs. Then the set of packets that can pass through the output
port is specified by the predicate

P = (∨i∈SF
fi) ∧ (∨j∈SA

aj) (4)

where fi and aj denote atomic predicates for forwarding and
ACLs, respectively.

IV. COMPUTING REACHABILITY AND VERIFYING

NETWORK PROPERTIES

Consider a network represented by a directed graph of
middle boxes. Any full-duplex physical link connecting two
boxes is represented as two unidirectional logical links; each
logical link connects the output port of one box to the input
port of the other box. Each input port is guarded by an
ACL predicate. Each output port is guarded by a forwarding
predicate followed by an ACL predicate. If a predicate is true,
any packet can pass through. If a predicate is false, no packet
can pass through. (Notation: In figures in this paper, if a port is
not labeled by any predicate identifier, its predicate is assumed
to be true.)

In this section, we first present an algorithm for computing
the set of packets that can travel from a port s to another port
d in the network (more specifically, from the entry point of s
to the exit point of d). We next describe how the algorithm
is extended to compute the reachability tree from s. Such a
reachability tree is labeled by sets of integer identifiers of
atomic predicates. Operations on sets of integers are extremely
fast. The reachability trees from ports can be computed quickly
and stored efficiently. AP Verifier can be extended to check the
network’s compliance with most safety and temporal proper-
ties, such as, properties specified using CTL [5].

We will describe how to verify several specific network
properties, namely: loop detection, black hole detection, net-
work slice isolation, and required waypoints. Using the datasets
from Stanford University and Internet2, we present computa-
tion results and compare the performance of AP Verifier versus
Hassel in C [1], [8].

A. Reachability trees

We first consider a path from port s to port d. Let
F1, . . . , Fj be the forwarding predicates in the path represented
by S(F1), . . . , S(Fj). Let A1, . . . , Ak be the ACL predicates

Average (ms) Median (ms) Maximum (ms)

Hassel in C 233.57 48.57 2086.71

AP Verifier 0.91 0.98 1.48

(a) Port to port reachability computation in Stanford network.

Average (ms) Median (ms) Maximum (ms)

Hassel in C 757.73 610.80 7433.85

AP Verifier 0.26 0.29 0.48

(b) Port to port reachability computation in Internet2.

Average (ms) Median (ms) Maximum (ms)

Hassel in C 218.22 53.45 1881.41

AP Verifier 0.95 1.03 1.38

(c) Loop detection from one port in Stanford network.

Average (ms) Median (ms) Maximum (ms)

Hassel in C 754.19 609.14 5873.44

AP Verifier 0.27 0.29 0.45

(d) Loop detection from one port in Internet2.

Average (ms) Median (ms) Maximum (ms)

AP Verifier 0.011 0.0064 0.040

(e) Black hole detection for each forwarding table in Stanford network.

Average (ms) Median (ms) Maximum (ms)

AP Verifier 0.014 0.014 0.027

(f) Black hole detection for each forwarding table in Internet2.

TABLE III: Computation times of reachability, loop detection, and black hole detection.

in the path represented by S(A1), . . . , S(Ak). (Any predicate
equal to true is not represented.) Algorithm 4 computes the
reachability set from s to d along the path. In steps 1-2, SF

and SA represent the set of all packets that are injected into
port s to test reachability. If the Algorithm returns false, port
d is not reachable from port s. The reachability set from s to d,
represented by SF and SA returned in step 11, is specified by
the predicate P in equation (4). If there are multiple paths from
s to d, then the reachability set is the union of the reachability
sets of the paths.

Note that reachability can be computed from any port to
any other port in the network. The source port s does not have
to be an input port that accepts packets from an external host
or box. The destination port d does not have to be an output
port that connects to an external host or box.

Algorithm 4 Computing s− d reachability along a path

Input: S(F1), . . . , S(Fj), and S(A1), . . . , S(Ak)
Output: packet set specification
1: SF ← {1, . . . , I} // identifiers of atomic predicates
2: SA ← {1, . . . , J} // identifiers of atomic predicates
3: SF ← SF ∩ S(F1) ∩ · · · ∩ S(Fj)
4: if SF = ∅ then
5: return false
6: end if
7: SA ← SA ∩ S(A1) ∩ · · · ∩ S(Ak)
8: if SA = ∅ then
9: return false
10: end if
11: return SF , SA // packet set specification

We compare the computation times of AP Verifier versus
Hassel in C [1] for the Stanford network and Internet2.3 For
each network, we compute reachability sets for all port pairs
and measure the time used for each pair. The results are
presented in Table III(a) and (b). On the average, AP Verifier
is 256 times faster than Hassel in C for the Stanford network
and it is 2,914 times faster than Hassel in C for Internet2.

The reachability tree from a port s to all other ports in
the network is computed by performing a depth-first search
which begins with visiting port s. The packet set injected into
port s is the set of all packets (same as lines 1 and 2 in

3The C version of Hassel is faster than the Python version [9] by about two
orders of magnitude.

Algorithm 4). When the search visits a port, SF and SA are
intersected with the sets representing the port’s forwarding and
ACL predicates, respectively (any port predicate equal to true
is not represented.) A search branch is terminated after visiting
a port (say x) if one of the following conditions holds: (i) SF or
SA becomes empty after visiting port x; (ii) port x is an output
port and there is no link connecting x to an input port; (iii)
port x is an input port of a box with no output port; (iv) port x
has been visited before in the search (loop detected). In each
case, the search backtracks and depth-first search continues
until no more port can be reached. When search terminates, a
reachability tree from port s to all reachable ports is created.
Each node in the tree has a port number and two sets of
integers, SF and SA, specifying the set of packets that can
reach and pass through the port.

Figure 3 shows a small network example. The network
has 6 atomic predicates, f1, f2, f3, f4, f5, f6, for forwarding
and 2 atomic predicates, a1, a2, for ACLs. Ports that filter
packets are labeled by integer identifiers of atomic predicates
specifying packets allowed to pass (ports without labels allow
all packets to pass). For examples, port 1 allows all packets
to pass; port 3 labeled by S(F3) = {1, 2, 3} forwards only
packets in predicate f1 ∨ f2 ∨ f3. The ACL of port 6 labeled
by S(A6) = {2} allows only packets in predicate a2 to pass.

The reachability tree from port1 is shown in Figure 4. Each
node in the tree is a port with two sets of integers separated
by a semicolon. Integers before the semicolon identify atomic
predicates for forwarding. Integers (in bold italics) after the
semicolon identify atomic predicates for ACLs. For example,
the expression “1,2,3,4,5,6; 1,2” represents the set of all packets
injected into port 1. As another example, port 6 is labeled by
“4,5,6; 2” with the following meaning: packets that satisfy the
predicate (f4 ∨ f5 ∨ f6) ∧ a2 can reach and pass through port
6. Note that a port can appear as nodes in different paths of
the reachability tree, such as, ports 8, 9, and 10 in Figure 4.

Optimization techniques. AP Verifier uses several op-
timization techniques to reduce time for checking various
network properties. First, AP Verifier maintains a hash table,
HT , of (key, value) pairs. A key is a port number (or name).
Given a key, say port number x, its value is the set of tree nodes
each of which has port number x. HT can be used to query
the reachability set from a source port s to some destination
port d without traversing the reachability tree from s. Function
HT (d) returns the set of port d nodes in s’s reachability tree.

Box1

Box2 Box3 Box4

Fig. 3: A small network example.

1,2,3,4,5,6; 1,2

4,5,6; 1,2 4,5,6; 2 4; 2 4; 2 4; 2

1,2,3; 1,2 1,2,3; 1,2 1,2; 1,2 1,2; 2 1,2; 2 1,2; 2

1; 2

2; 2

Fig. 4: The reachability tree of port1.

Second, when computing the reachability tree from a source
port s, AP Verifier stores in each tree node (say port y) the set
of ports along the path from s to the tree node (y). Port set
information enables fast loop detection without traversing the
reachability tree.

Third, if a set of integer identifiers (such as, SF , SA, S(Fi),
or S(Aj)) is too large, the set’s complement is stored and used
instead.

B. Storage Costs of Reachability Trees

We compare the memory requirements of Hassel in C and
AP Verifier for storing reachability trees computed for all ports
of the Stanford network and Internet2. The results are presented
in Table IV. Hassel in C required 37 times more memory for the
Stanford network and 28 times more memory for Internet2 than
AP Verifier. Furthermore, we monitored the maximum memory
used to store intermediate data when reachability trees were
computed one at a time. The maximum memory was over 400
MB for Hassel in C and was less than 1 MB for AP Verifier.

Size (MB)

Hassel in C 323.06

AP Verifier 8.70

(a) Stanford network (58 ports).

Size (MB)

Hassel in C 187.60

AP Verifier 6.72

(b) Internet2 (56 ports).

TABLE IV: Storage costs of reachability trees from ports.

C. Loop Detection

Loop detection is performed by computing the reachability
tree for every port, as described above.

We used AP Verifier and Hassel in C to detect loops in the
Stanford network and Internet2. For the Stanford network, we
computed reachability trees for 30 ports as was done previously
[9]. Twelve infinite loop paths were detected by both AP Ver-
ifier and Hassel in C. For Internet2, we computed reachability
trees for all ports. Two infinite loop paths were detected by
both AP Verifier and Hassel in C. Their computation times are
presented in Table III(c) and (d). On the average, AP Verifier
is 230 times faster than Hassel in C for the Stanford network
and 2,793 times faster for Internet2.

D. Black Hole Detection

A black hole in the forwarding table of a box is a set of
packets that are dropped due to no forwarding entry (rather than
intentionally). Finding black holes in the forwarding table of a
box is very easy for AP Verifier. Let S(F1), S(F2), . . . S(Fk)
be sets of identifiers of atomic predicates for output ports,
1, 2, . . . , k of the box (including the special port for intentional
packet drop). Let S(true) be the set of identifiers of all atomic
predicates for forwarding. The set of black holes is represented
by the set,

S(true)− ∪ki=1S(Fi) (5)

If the above set is empty, the forwarding table has no black
hole.

We checked for black holes in each forwarding table in the
Stanford network and Internet2. The computation times for AP
Verifier are presented in Table III(e) and (f). On the average,
AP Verifier took 11 µs for the Stanford network and 14 µs
for Internet2. It found no black hole in forwarding tables of
the Stanford network. It found black holes in every forwarding
table of Internet2.

E. Slice Isolation

Network operators provide different network slices (virtual
networks, e.g., VLANs) to customers/applications and must
ensure that the slices do not overlap; any overlap would allow
packets to leak from one slice to another. A slice can be defined
by a set of ports together with a set of packets allowed in the
slice.

In AP Verifier, a set of packets is represented by two sets
of identifiers of atomic predicates for forwarding and ACLs.
Consider two slices, Slice1 and Slice2. Slice1 has a set, T1, of
ports and a set of packets represented by SF1

and SA1
. Slice2

has a set, T2, of ports and a set of packets represented by SF2

and SA2
. To check whether Slice1 and Slice2 overlap, AP

Verifier first computes T1∩T2. If the intersection is empty, then
the two slices are isolated; else, it computes SF = SF1

∩SF2
. If

SF is empty, then the two slices are isolated; else, it computes

SA = SA1
∩ SA2

. If SA is empty, then the two slices are
isolated; else, Slice1 overlaps Slice2 at ports T1 ∩ T2 and the
set of packets shared by both slices is specified by SF and SA.

F. Required Waypoints

Many networks have one or more required waypoints (e.g.,
firewalls) through which all packets from a source port s must
pass through before reaching a specified set of destination
ports. Consider a single middle box, with several input ports,
which is a required wayppoint for all packets from source port
s. To verify compliance with the waypoint requirement, AP
Verifier traverses the reachability tree from s to check that
every path in the tree passes through an input port of the
waypoint before reaching any destination port in the specified
set. AP Verifier returns true or a set of paths that avoid the
waypoint.

Checking compliance with the waypoint requirement from
a set of source ports to a set of destination ports is performed
by traversing the reachability tree of every source port in the
specified set. It is also straightforward to check the waypoint
requirement that all packets from port s pass through any
member of a set of waypoints or the requirement that all
packets from port s pass through several waypoints in a
specified sequence before reaching specified destination ports.

V. REAL-TIME COMPLIANCE CHECK FOR NETWORK

STATE CHANGES

In this section, we describe how AP Verifier handles rule
insertion/deletion and link up/down events which change the
network state. For performance comparison, we performed the
same benchmark experiments for link up and rule insertion
events described in the NetPlumber paper [8]. We also provide
performance results for link down and rule delection events
not reported in the paper. In these benchmark experiments, the
reachability tree of a port is precomputed which satisfies a
network property or reachability policy. We investigate the time
used by AP Verifier to update the reachability tree when a state
change event is detected. We performed one experiment for the
reachability tree of each of Stanford network’s 58 ports and
Internet2’s 56 ports.

A. Link Status Change

The sets of atomic predicates are derived from a network’s
forwarding predicates and ACL predicates and, therefore, do
not depend on the status of any link in the network. The
reachability tree of a port, however, depends on network
topology and thus the status of each link. In each experiment,
the reachability tree from a port and its hash table, HT, are
precomputed. For a link up/down event, AP Verifier needs to
update the reachability tree and HT.

Consider a link down event for a bidirectional link with two
output ports. For each of the two ports, AP Verifier uses HT to
locate nodes in the reachability tree identified by the two port
numbers. It removes these nodes and all of their descendant
nodes from the reachability tree and from the hash table.

Consider a link up event for a bidirectional link with two
output ports. For each of the two ports, AP Verifier uses HT

to locate nodes in the reachability tree identified by the two
port numbers. From each node located, it performs a depth-first
search to extend the reachability tree. It also adds new nodes
from the subtrees to HT .

The benchmark performance results of AP Verifier are
summarized in Table V(a)-(d) for the Stanford network and
Internet2. For each link in a reachability tree, we performed
two experiments for link down and link up. We measured the
time to update the reachability tree. AP Verifier’s results are
compared with those reported for NetPlumber.4 On the average,
AP Verifier is 4-5 orders of magnitude faster than NetPlumber.

The Veriflow paper [11] reports that its average time to
verify a link failure was 1.15 seconds with a maximum of 4.05
seconds. Veriflow experiments were performed for a different
network, i.e., a synthetic network with a Rocketfuel topology
and BGP update traces.

B. Rule Update

When a rule is inserted into, or deleted from, a forwarding
table, it may change a forwarding port predicate. (For an
ACL rule update, the following description is similar and will
not be repeated.) As a result the set of atomic predicates
for forwarding may change. To update a port’s reachability
tree being used for reachability compliance check, AP Verifier
running on one processor core performs these steps: (i) It
checks if a port predicate is changed by the rule update; if
so, it computes a new predicate for the port. (ii) It updates the
reachability tree using the new predicate, if any. (iii) It forks
a process which runs on a second core to update the set of
atomic predicates. Steps (ii) and (iii) occur concurrently.

Steps (i) and (ii) can be completed in hundreds of µs on
the first core. The updated reachability tree is correct and can
be used for compliance check but is intended to be temporary.
In a temporary reachability tree, nodes of the port affected
by a rule update store a new predicate whose representation
by atomic predicates has not been resolved. Let SF and SA

represent the set of packets that can arrive at the port’s entry
point. Suppose the port’s ACL predicate is Aport and the port’s
forwarding predicate, Fport, has been changed to F ′

port which
is unresolved. After the rule update, the set of packets that can
pass through the port is represented by S(Aport) ∩ SA, SF ,
and F ′

port, which together specify the following predicate:

(∨j∈S(Aport)∩SA
aj) ∧ (∨i∈SF

fi) ∧ F ′

port

The port’s descendant nodes in the subtree are updated accord-
ingly (more details in our technical report [17]).

If rule updates arrive in rapid succession, AP Verifier can
keep on updating the temporary reachability tree correctly
(however, computation time increases as the number of un-
resolved predicates in the tree increases).

The process running on the second core can compute the
updated set of atomic predicates in 10 ms on the average for
one rule update. If the updated set of atomic predicates is
unchanged and there are three5 or fewer unresolved predicates,

4NetPlumber results were computed using 6-core Xeon processors with 12
MB of L2-cache and 12 GB of DRAM [8].

5This is a configurable parameter value.

Average (ms) Median (ms) Maximum (ms)

NetPlumber 3020.00 2120.00 (not reported)

AP Verifier 0.16 0.037 1.55

(a) Link up in Stanford network.

Average (ms) Median (ms) Maximum (ms)

NetPlumber 4760.00 2320.00 (not reported)

AP Verifier 0.027 0.0067 0.36

(b) Link up in Internet2.

Average (ms) Median (ms) Maximum (ms)

AP Verifier 0.0028 0.00094 0.27

(c) Link down in Stanford network.

Average (ms) Median (ms) Maximum (ms)

AP Verifier 0.0016 0.0011 0.10

(d) Link down in Internet2.

Average (ms) Median (ms) Maximum (ms)

NetPlumber 0.2 0.065 (not reported)

AP Verifier 0.29 0.077 26.44

(e) Rule insertion in Stanford network.

Average (ms) Median (ms) Maximum (ms)

NetPlumber 0.53 0.52 (not reported)

AP Verifier 0.35 0.19 10.40

(f) Rule insertion in Internet2.

Average (ms) Median (ms) Maximum (ms)

AP Verifier 0.32 0.083 12.71

(g) Rule deletion in Stanford network.

Average (ms) Median (ms) Maximum (ms)

AP Verifier 0.35 0.13 46.24

(h) Rule deletion in Internet2.

TABLE V: Computational times for dynamic updates.

the process running on the first core replaces each unresolved
predicate in the temporary tree with its atomic predicate
identifiers and converts the temporary tree to a “normal” one.
Otherwise, the process deletes the temporary tree and computes
a new reachability tree directly from the updated set of atomic
predicates. It can do so in less than 1 ms most of the time.
(See Tables III(c) and III(d); note that loop detection for a port
is performed by computing its reachability tree.)

We performed benchmark experiments [8] using AP Veri-
fier for the Stanford network and Internet2. For each network,
the reachability tree of a port was first computed using 90%
of rules selected at random. (For the Stanford network, the
rules include ACL and forwarding rules.) The 10% of rules
remaining were inserted one by one and the time for updating
the reachability tree was measured. We also ran experiments
for each network with 100% of the rules initially. Ten percent
of the rules were then selected one by one for deletion; the
time for updating the reachability tree after each rule deletion
was measured. Results are presented in Table V(e)-(h). For
rule insertions, the performance of AP Verifier is comparable
to NetPlumber for the Stanford network; it is better than
NetPlumber for Internet2.

VI. RELATED WORK

A model for static reachability analysis of network state in
the data plane was first presented by Xie et al. [16]. Gouda
and Liu presented firewall decision diagram (FDD) for formal
analysis of firewalls [6] and distributed firewalls [7]. Quarnet
uses FDDs to represent ACLs in packet networks; it used tens
to hundreds of seconds to compute reachability along paths
with ACLs only [10].

There were two proposals to use general verification
tools from other application domains. ConfigChecker [3] uses
boolean formulas to specify state transition relations of packet
sets before and after a packet filter. It applies symbolic model
checking to check network properties. Anteater [12] uses
boolean formulas to represent packet filters and a SAT solver
for checking network properties. Both of these general-purpose
tools are slow and operate on time scales of seconds to hours
[11].

Custom-designed methods for reachability computation in-
clude Header Space/Hassel in C [9], NetPlumber [8], and
Veriflow [11]. We have compared the performance of AP
Verifier versus Hassel in C and NetPlumber and showed that
AP Verifier is much more time and space efficient.

Veriflow aggregates packets into equivalence classes (ECs)
by first storing all rules in a multi-dimensional prefix tree (trie)
[11]. An EC is defined by a particular choice of one of the
disjoint intervals of allowed values for every header field in
the trie. After tens of thousands of rules are inserted in the
trie, the number of disjoint intervals for each header field is
numerous. For ACL rules which specify allowed values for
many header fields, the number of ECs is the product of the
set sizes of disjoint intervals and is very large. The performance
of Veriflow was demonstrated mostly for forwarding rules with
only one header field. Veriflow used one to several seconds
of time to verify the compliance of a link down event for a
synthetic network. AP Verifier used 10 µs for most link failures
(maximum of 0.27 ms for the Stanford network and maximum
of 0.1 ms for Internet2).

VII. ANSWERS TO QUESTIONS FROM REVIEWERS

Question: How would AP Verifier perform on backbone ISP
networks? Answer: The Stanford dataset has 757,170 prefixes
in forwarding tables of which 197,808 are distinct. The number
of distinct prefixes in the forwarding tables of a backbone ISP
network may be twice as many. We believe that AP Verifier
will scale and can be used for verifying reachability properties
of backbone ISP networks. (We need access to the forwarding
tables and ACLs of a backbone ISP.)

Question: Can AP Verifier be extended to include firewall
rules? Answer: AP Verifier is already designed and imple-
mented to include firewall rules. A firewall is an ACL with
a large number of rules. In the Stanford dataset, there are 12
ACLs with 50 to 111 rules. In the Purdue dataset, there are
5 ACLs with 52 to 111 rules and one ACL with 693 rules.
These ACLs were included in our experiments. Furthermore,
our model of packet headers is general. A packet header is a
sequence of h bits partitioned into multiple fields. Our parsers
and AP Verifier can be extended to handle nonstandard rules.

Question: Why is there no experimental comparison using
the Purdue dataset? It is possible that AP Verifier won’t bring
much advantage when there is low redundancy. Answer: We
performed experiments using AP Verifier and Hassel in C to
compute port-to-port reachability sets for the Purdue dataset.
Since the Purdue dataset does not have forwarding tables,
the intersection of ACL predicates along the shortest path (in
hop count) between two ports is computed. AP Verifier used
1-2 µs, on the average, for each pair of source-destination
ports and is 2-3 orders of magnitude faster than Hassel in C
(see technical report [17]). Comparing with Tables III(a) and
(b), it is noteworthy that computing the intersection of ACL
predicates is 2-3 orders of magnitude faster than computing
the intersection of forwarding predicates.

VIII. CONCLUSION

We present a new formal method for a new tool, Atomic
Predicates (AP) Verifier, which is much more time and space
efficient than existing tools. We evaluated the performance
of AP Verifier using forwarding tables and ACLs from three
large real networks. The sizes of atomic predicate sets of these
networks are surprisingly small. This outcome indicates that
there exist large amounts of redundancy in the forwarding and
ACL rules of real networks. By encoding the network state in
terms of atomic predicates, such redundancy is eliminated.

The use of atomic predicates dramatically speeds up com-
putation of reachability trees from ports. On the average, AP
Verifier is 3 orders of magnitude faster than Hassel in C. It
also uses 2 to 3 orders of magnitude less memory than Hassel
in C for computing and storing reachability trees from ports.

Real networks are subject to dynamic state changes over
time as a result of rule insertion and deletion by protocols
and operators, failure and recovery of links and boxes, etc. AP
Verifier includes algorithms to process such events and check
compliance of network policies and properties in real time.
In particular, atomic predicates are not affected by link status
(up or down). Thus while existing tools used several seconds
of time to verify reachability compliance of a link up/down
event, AP Verifier’s compliance verification times are 4 to 5
orders of magnitude smaller.

Lastly, reachability properties of networks are affected by
middle boxes that modify packets, e.g., NAT, MPLS, IPsec,
etc. Our work on modeling and analysis of such “packet
transformers” is presented in a related paper under preparation.

Acknowlegment. This work was sponsored by National
Science Foundation grant CNS-1214239. We thank the anony-
mous reviewers for their constructive comments.

APPENDIX

A. Proof of Theorem 1

To prove Theorem 1, we first define equivalence classes of
packets with respect to (w.r.t.) a given set P of predicates. We
then prove Lemmas 1 and 2. Theorem 1 follows directly from
Lemmas 1 and 2.

For a predicate P and a packet pkt, the indicator function
IP (pkt) is defined as follows:

IP (pkt) =

{

1 P evaluates to true for pkt,

0 otherwise.

Given a set P of predicates, two packets, pkt1 and pkt2 are
equivalent w.r.t. P if and only if IP (pkt1) = IP (pkt2), ∀P ∈
P .

The packet equivalence relation partitions the set of all
packets into equivalence classes, {C1, . . . , Cn}. That is, for
every pair of packets, pkt1 and pkt2, they are in the same
Ci, for i ∈ {1, . . . , n}, if and only if they are equivalent. We
can also define the indicator function on equivalence classes:
IP (Ci) = IP (pkt), ∀pkt ∈ Ci, where i ∈ {1, . . . , n}, and
P ∈ P .

Lemma 1. Given a set P of predicates, the predicates that
specify {C1, . . . , Cn} satisfy the first four properties in Defi-
nition 1.

Proof: We prove the four properties one by one using
set notation. By the definition of equivalence classes, Ci 6= ∅,
∀i ∈ {1, . . . , k} so Property 1 is satisfied. The equivalence
classes partition the set of all packets; thus the disjunction of all
predicates is true and Property 2 is satisfied. A packet cannot
belong to two equivalence classes; therefore, the conjunction
of two different predicates is false and Property 3 is satisfied.

To prove Property 4, consider an arbitrary predicate P ∈ P .
Let the packet set specified by P be {pkt | IP (pkt) = 1}. We
prove Property 4 by proving that a packet pkt′ is in {pkt |
IP (pkt) = 1} if and only if packet pkt′ is in ∪IP (Ci)=1Ci.

If part: Consider a packet pkt′ ∈ ∪IP (Ci)=1Ci. Then for
some i, pkt′ ∈ Ci and IP (Ci) = 1. Thus IP (pkt

′) = IP (Ci) =
1. Hence pkt′ ∈ {pkt | IP (pkt) = 1}.

Only if part: Consider a packet pkt′ ∈ {pkt | IP (pkt) =
1}. Then IP (pkt

′) = 1. Since {C1, . . . , Cn} is a partition
of the set of all packets, there exists an i ∈ {1, . . . , n}
such that pkt′ ∈ Ci. Thus IP (Ci) = IP (pkt

′) = 1. Hence
pkt′ ∈ ∪IP (Ci)=1Ci.

We have proved that {pkt|IP (pkt) = 1} = ∪IP (Ci)=1Ci,
which means that P is equal to the disjunction of a subset of
predicates specifying equivalent classes (Property 4).

Lemma 2. For a set P of predicates, let {C1, . . . , Cn} denote
the equivalence classes w.r.t. P . Consider any set of predicates
{p1, . . . , pm} that satisfies the first four properties of Definition
1. Then for all i ∈ {1, . . . ,m}, there exists a unique j ∈
{1, . . . , n} such that Cj ⊇ the packet set specified by pi. This
implies that m ≥ n which is minimum.

Proof: For any predicate P ∈ P , from the assumption
that {p1, . . . , pm} satisfies the fourth property of Definition
1, P can be represented by the disjunction of a subset of
{p1, . . . , pm}. Consider some pi ∈ {p1, . . . , pm} and choose
any two packets, pkt1 and pkt2, from the packet set specified
by pi. We will show that pkt1 and pkt2 are equivalent. There
are two possibilities in the disjunction representation of P .
First, pi appears in the subset representing P , in which case,
IP (pkt1) = IP (pkt2) = 1. Second, pi does not appear in the

subset representing P , in which case, IP (pkt1) = IP (pkt2) =
0. Therefore, IP (pkt1) = IP (pkt2), ∀P ∈ P . Thus pkt1
and pkt2 are equivalent w.r.t. P , and pkt1, pkt2 ∈ Cj for
some j ∈ {1, . . . , n}. Thus Cj ⊇ the packet set specified by
pi ∈ {p1, . . . , pm}.

B. Proof of Theorem 2

Proof: Theorem 1 states that the atomic predicates for
P1 ∪ P2 specify the set of equivalence classes w.r.t. P1 ∪ P2.
We prove Theorem 2 by showing that a1, . . . , ak from formula
(3) specify equivalence classes w.r.t. P1 ∪P2. That is, for any
two packets, pkt1 and pkt2, pkt1 is equivalent to pkt2 w.r.t.
P1 ∪ P2 if and only if there exists i ∈ {1, . . . , k} such that
pkt1 and pkt2 belong to the packet set specified by ai.

If part: Assume that there exists i ∈ {1, . . . , k} such that
pkt1, pkt2 belong to the packet set specified by ai. Then there
exist i1 ∈ {1, . . . , l} and i2 ∈ {1, . . . ,m} such that ai =
bi1 ∧ di2 . Thus pkt1, pkt2 belong to the packet set specified
by bi1 and to the packet set specified by di2 . From Theorem
1, bi1 and di2 each specifies an equivalence class w.r.t. P1

and P2, respectively. Thus, ∀P ∈ P1, IP (pkt1) = IP (pkt2),
and ∀P ∈ P2, IP (pkt1) = IP (pkt2). Therefore, IP (pkt1) =
IP (pkt2), ∀P ∈ P1∪P2. That is, pkt1 and pkt2 are equivalent
w.r.t. P1 ∪ P2.

Only if part: Assume that pkt1 and pkt2 are equivalent
w.r.t. to P1 ∪ P2. Then we have IP (pkt1) = IP (pkt2), ∀P ∈
P1, and IP (pkt1) = IP (pkt2), ∀P ∈ P2. Thus, pkt1, pkt2 are
equivalent w.r.t. P1, and pkt1, pkt2 ∈ the equivalence class
specified by bi1 , for some i1 ∈ {1, . . . , l}. Similarly, we can
show that pkt1, pkt2 ∈ the equivalence class specified by di2 ,
for some i2 ∈ {1, . . . ,m}. Since pkt1, pkt2 ∈ the equivalence
classes specified by bi1 and di2 respectively, and bi1 ∧ di2 6=
false, there exists i ∈ {1, . . . , k} such that ai = bi1 ∧di2 , and
pkt1, pkt2 ∈ the packet set specified by ai.

Consequently, the set {a1, . . . , ak} specifies the set of
equivalence classes of packets w.r.t. P1 ∪ P2. Thus A(P1 ∪
P2) = {a1, . . . , ak}.

C. Number of BDD Nodes to Represent an ACL and a For-
warding Table

The number of BDD nodes to represent an ACL in Purdue
dataset is shown in Figure 5, and the number of BDD nodes
to represent a forwarding table in Stanford dataset is shown in
Figure 6 (both axes are in log scale). More results are shown
in our technical report [17].

REFERENCES

[1] Header Space Library and NetPlumber. In https://bitbucket.org/

peymank/hassel-public/ .

[2] The Internet2 Observatory Data Collections. In http://www.internet2.

edu/observatory/archive/data-collections.html.

[3] E. Al-Shaer, W. Marrero, A. El-Atawy, and K. ElBadawi. Network
Configuration in A Box: Towards End-to-End Verification of Network
Reachability and Security. In Proceedings of IEEE ICNP, Princeton,
New Jersey, 2009.

[4] R. E. Bryant. Graph-Based Algorithms for Boolean Function Manipu-
lation. IEEE Trans. Comput., 35(8):677–691, August 1986.

[5] E.A. Emerson. Temporal and Modal Logic. In Jan van Leeuwen, editor,
Handbook of Theoretical Computer Science, vol. B. MIT Press, 1990.

0 100 200 300 400 500 600 700
0

100

200

300

400

500

550

Number of Rules in ACL

N
u
m

b
e
r

o
f
N

o
d
e
s

Fig. 5: Number of BDD nodes to represent an
ACL in Purdue dataset.

1000 2000 4000 8000 16000 64000 180000

1000

2000

3000

4000

5000

6000

Number of Rules in Forwarding Table

N
u
m

b
e
r

o
f
N

o
d
e
s

Fig. 6: Number of BDD nodes to represent a
forwarding table in Stanford dataset.

[6] M. G. Gouda and A. X. Liu. Firewall Design: Consistency, Complete-
ness, and Compactness. In Proc. of IEEE ICDCS, Tokyo, Japan, 2004.

[7] M. G. Gouda, A. X. Liu, and M. Jafry. Verification of Distributed
Firewalls. In Proc. of IEEE GLOBECOM, New Orleans, Louisiana,
2008.

[8] P. Kazemian, M. Chang, H. Zeng, G. Varghese, N. McKeown, and
S. Whyte. Real Time Network Policy Checking using Header Space
Analysis. In Proceedings of USENIX NSDI, Lombard, Illinois, 2013.

[9] P. Kazemian, G. Varghese, and N. McKeown. Header Space Analysis:
Static Checking for Networks. In Proc. of USENIX NSDI, San Jose,
California, 2012.

[10] A. R. Khakpour and A. X. Liu. Quantifying and Querying Network
Reachability. In Proc. of IEEE ICDCS, Genoa, Italy, 2010.

[11] A. Khurshid, X. Zou, W. Zhou, M. Caesar, and P. B. Godfrey. VeriFlow:
Verifying Network-Wide Invariants in Real Time. In Proceedings of

USENIX NSDI, Lombard, Illinois, 2013.

[12] H. Mai, A. Khurshid, R. Agarwal, M. Caesar, P. B. Godfrey, and S. T.
King. Debugging the Data Plane with Anteater. In Proceedings of ACM

SIGCOMM, Toronto, Ontario, Canada, 2011.

[13] D. Oppenheimer, A. Ganapathi, and D. A. Patterson. Why do Internet
services fail, and what can be done about it? In Proceedings of the

4th conference on USENIX Symposium on Internet Technologies and

Systems (USITS’03), Seattle, Washington, 2003.

[14] Y.-W. E. Sung, S. G. Rao, G. G. Xie, and D. A. Maltz. Towards
Systematic Design of Enterprise Networks. In Proceedings of ACM

CoNEXT, Madrid, Spain, 2008.

[15] Vahidi, A. JDD, a pure Java BDD and Z-BDD library. In http://

javaddlib.sourceforge.net/ jdd/ . 2004.

[16] G. G. Xie, J. Zhan, D. A. Maltz, H. Zhang, A. Greenberg, G. Hjalmtys-
son, and J. Rexford. On Static Reachability Analysis of IP Networks.
In Proceedings of IEEE INFOCOM, Miami, Florida, 2005.

[17] H. Yang and S. S. Lam. Real-time Verification of Network Properties
using Atomic Predicates. Technical Report TR-13-15, The University
of Texas at Austin, Computer Science Department, August 2013.

