
Collaborative Verification of Forward and Reverse
Reachability in the Internet Data Plane

Hongkun Yang and Simon S. Lam
Department of Computer Science, The University of Texas at Austin

{yanghk, lam}@cs.utexas.edu

Abstract—To debug reachability problems, a network operator
often asks operators of other networks for help by telephone
or email. We present a new protocol, COVE, for automating
the exchange of data plane reachability information between
networks in a business relationship. A network deploys COVE
in a host (its local verifier) which can construct both forward
and reverse reachability trees in the Internet data plane for the
network’s provider/customer cone. Each edge in a tree is annotated
by a set of packets that can traverse the edge. COVE was designed
with partial deployment in mind. Reachable networks that do not
deploy COVE are leaf nodes in reachability trees. Partial trees
are useful.

We constructed an Internet dataset of 2,649 ASes and per-
formed experiments in which up to 170 workstations ran COVE
as local verifiers to construct forward and reverse provider
(also customer) trees for ASes. The results of these experiments
demonstrate scalability of COVE to very large ASes in the
Internet. We illustrate applications of COVE to solve the fol-
lowing network management problems: evaluating inbound load
balancing policies, what-if analysis before adding a new provider,
finding additional paths, configuring default routes as backup,
black hole detection, and persistent forwarding loop detection.

I. INTRODUCTION

Networks connect to the Internet to reach other networks.
Network operators need reachability information to perform
a variety of network management tasks, such as, debugging
reachability when packets vanish into black holes [13], finding
redundant paths, what-if analysis prior to changing routing
policy or adding a new provider, etc.
Two different views of reachability are of interest to re-

searchers and operators, namely: “how do I see the world?”
and “how does the world see me?” [7]. We refer to these
two views as, respectively, forward reachability and reverse
reachability. Reachability information can be obtained from
two sources: (i) the control plane, namely, Border Gateway
Protocol (BGP) messages exchanged between autonomous
systems (ASes), import and export policies as well as the
BGP decision process of each AS; (ii) the data plane, namely,
forwarding tables in routers used to send data packets to other
routers. Within a network, data plane reachability also depends
on packet filters (e.g., ACLs and firewalls) that guard input and
output ports of routers and switches [15], [28].
Each AS receives BGP messages containing routes to

destination prefixes from its neighbor ASes. Wider views of
forward reachability are available from BGP route collectors
placed in hundreds of ASes in the Internet [26], [23]. Such
control plane reachability, however, is not a good predictor

of data plane reachability. For example, a destination may
be reachable in the control plane but unreachable in the data
plane because some network connectivity change has not been
observed in the monitored portion of the control plane [13].
Also, a destination may be unreachable in the control plane
but is in fact reachable in the data plane by default routes (not
advertised in the control plane) [7]. For the same reasons, even
if a destination is reachable in the data plane as well as the
control plane, the two paths may be different.
Active probes (pings and traceroutes) are widely used to

measure data plane reachability [27], [13], [7], [12], [14], [11]
but they have limitations and biases. For example, a probe may
be filtered along the way to its destination or its response is
filtered on its way back; also, the destination may choose not
to reply [25]. Thus the absence of a response is not a reliable
indication of unreachability [12].
Currently, when network operators debug reachability prob-

lems, they often ask operators of other networks for help
by telephone, email, or posting on mailing lists [20], [18].
We searched the NANOG Mailing List from April 2008 to
July 2014 and found that 14.5% of emails in the list are
about reachability problems. Network operators are generally
willing to help each other debug reachability problems for the
common good. However, operators of today’s very high speed
networks use very slow means of communication to ask each
other for reachability information.
Towards automating the exchange of reachability informa-

tion between networks, we have designed and implemented a
protocol, named COVE, for networks (namely ASes) in busi-
ness relationships.1 COVE is designed to improve a network’s
views of forward and reverse reachability in the Internet data
plane even if the protocol is partially deployed by as few as
two networks connected by a link.
A network deploys COVE by running the protocol in a

host, called its local verifier. Local verifiers of two networks
exchange (encrypted) messages with each other only if the net-
works have a business relationship. However, the local verifier
of a network, say B, which has independent relationships with
networks, A and C, can query the local verifier of A on behalf
of C, and vice versa. Once there is a set of interconnected
networks that deploy COVE, there is strong incentive for
another network to join and for the set to accept a new member
to increase every network’s view of reachability.
Input and output ports of links that connect different net-
1COVE is acronym for COllaborative VErification. For ease of exposition,

we use “network” and “AS” interchangeably unless otherwise stated.

2014 IEEE 22nd International Conference on Network Protocols

978-1-4799-6204-4/14 $31.00 © 2014 IEEE

DOI 10.1109/ICNP.2014.54

320

works are, by definition, public ports. Only reachability infor-
mation from the public input ports of a network to its public
output ports is provided to another network. Reachability
information to ports inside a network is kept private.
COVE is the first protocol designed and implemented to

enable discovery of forward and reverse inter-network reach-
ability in the data plane. The reachability information obtained
using COVE is ground truth assuming that local verifiers
of networks in a business relationship provide ground truth
information to each other. A summary of our contributions in
this paper follows:
Internet dataset for experiments. To show that COVE is

efficient and scalable for deployment by ASes in the Internet,
we need a large and realistic Internet dataset. We began with
data from different open sources, collected during October
2013 [3], [1], [4], [26], [23], [21]. There were 41,244 ASes
in the Internet topology and 582,947 prefixes. We used C-
BGP [2] to compute routing tables of all ASes. Many of the
ASes have numerous missing links [19]. However, we found
a subgraph in the topology, consisting of 2,649 “monitored”
ASes (each of which has all of its provider, peer, and customer
links in the Internet topology) and 57,429 links. All 15 tier-1
providers are included in the subgraph.
COVE design and implementation. COVE is an

application-layer protocol designed for the local verifier of a
network, say net1, to construct forward and reverse provider
trees and, if net1 has at least one customer, forward and
reverse customer trees. These trees are rooted at net1. Each
tree node is a network. Reachable networks that do not run
COVE are leaf nodes in trees. Each edge in a reachability
tree, say from netx to nety , is annotated by a set of packets
that can travel in the link from netx to nety . We use binary
decision diagram (BDD) as the data structure for representing
packet sets. It encodes longest prefix match semantics and has
been shown to be both time and space efficient [28].
COVE performance and scalability. We constructed for-

ward and reverse provider trees for the provider cones of
21 monitored tier-4 ASes. We also constructed forward and
reverse customer trees for the customer cones of 50 ASes
randomly selected from the monitored tier-2 and tier-3 ASes.
We measured communication overheads of COVE as well as
protocol run time for tree construction. The results of these
experiments demonstrate scalability of COVE to very large
ASes in the Internet. For example, the largest customer cone
size among the 50 selected ASes is 5,863.
Network management applications. The operator of an

AS can use all four reachability trees of the AS to perform
a variety of network management tasks. The reverse trees,
in particular, are especially useful since there is currently
no other method to get them. We performed experiments to
demonstrate several useful network management applications,
namely: evaluation of inbound load balancing polices, what-if
analysis prior to adding a new provider link, finding addi-
tional forward and reverse paths, configuring default routes as
backup, black hole detection, and persistent forwarding loop
detection.
The balance of this paper is organized as follows. In Section

II, we describe how the Internet dataset for our experiments
was constructed. In Section III, we present the basics of
COVE. In Section IV, we present protocols for constructing
forward and reverse trees for a provider/customer cone of an
AS. In Section V, we describe our methodology for performing
experiments and present statistics of forward and reverse trees
for 50 customer cones and 21 provider cones. In Section VI,
we present experimental results that demonstrate how network
operators can use COVE to perform very useful network
management tasks which cannot be done effectively using
existing methods and tools. We discuss related work in Section
VII and conclude in Section VIII.

II. INTERNET DATASET

We constructed a large set of ASes with BGP routing tables
that we used to evaluate the performance and scalability of
COVE. The routing tables were obtained using control plane
data available from many open sources. As such, they are
not ground truth of reachability in the Internet data plane.
However, since every AS in our dataset has all of its peer,
provider, and customer links, we can obtain routing tables that
are representative of the scale and characteristics of routing
tables in the Internet.

A. Data collection and computation of routing tables

We first downloaded the Internet topology from CAIDA cre-
ated with data collected during October 2013 [1]. Using new
methods for inferring AS relationships, the customer-provider
and peer-peer relationships in the topology are, respectively,
99.6% and 98.7% accurate when compared to validation data
[17].
BGP policies. Each entry (i.e., route) in the BGP routing

table of an AS has several fields including a destination
prefix, an AS path to the prefix, and a local preference
value assigned by the AS. A prefix may have multiple table
entries corresponding to all valid routes with the best route
marked. The BGP decision process of an AS is a sequence
of steps to select the best route from valid routes learned
from advertisements of neighbor ASes. A recent survey of
interdomain routing policies [10] shows that the majority of
surveyed networks follow the Gao-Rexford (GR) model [8].
For route export, the GR model specifies that (i) a customer
route may be advertised to all neighbor ASes, and (ii) a peer or
provider route may be advertised only to customers. For route
selection, the GR model specifies that routes are assigned local
preference values such that customer routes are preferred over
peer routes which are preferred over provider routes.
In the BGP decision process of an AS, a route with the

highest local preference is selected. Among routes with the
highest local preference value, the route with the shortest AS
path length is selected. These are the most important criteria.
AS path prepending is a widely used technique to increase

the AS path length in a prefix advertisement. This tech-
nique impacts the BGP decisions of ASes that receive the
advertisement and change the reverse reachability tree of the
prefix. Therefore, we can greatly improve the accuracy of AS
routing tables in our Internet dataset by making use of path
prepending information of BGP routes in route selection.

321

1 3 10 30 100
0.0

0.2

0.4

0.6

0.8

1.0

tier4
tier3
tier2

number of provider links

cu
m

ul
at

iv
e

pr
ob

ab
ili

ty

(a) Provider link distribution.

1 10 102 103 104
0.0

0.2

0.4

0.6

0.8

1.0

tier4
tier3
tier2
tier1

number of peer links

cu
m

ul
at

iv
e

pr
ob

ab
ili

ty

(b) Peer link distribution.

1 10 102 103 104
0.0

0.2

0.4

0.6

0.8

1.0

tier4
tier3
tier2
tier1

number of customer links

cu
m

ul
at

iv
e

pr
ob

ab
ili

ty

(c) Customer link distribution.

Fig. 1: Link distribution for monitored ASes.

We downloaded BGP routes obtained by the route collec-
tors2 of RouteView [26], RIPE [23], Packet Clearing House
[21], and Internet2 [4] during October 2013. The collectors
peered with 357 different ASes. We found that over 50% of
prefixes have AS path prepending indicating that it plays a
very important role in route selection.
We also downloaded prefix origin data from the UCLA

Internet topology archive [3] and mapped each prefix to an
AS that originates the prefix (for prefixes with length < 30).
Our dataset has 41,244 ASes from the Internet topology [1]
and 582,947 prefixes from the prefix origin data [3].
Computation of routing tables. Computing BGP routing

tables of all ASes in the Internet topolopy is time consuming.
An O(V 2) algorithm was proposed [9] where V is the number
of ASes under the assumption that prefixes originating from
the same AS have the same path from each source, i.e., shortest
paths are computed between ASes rather than between prefixes
and ASes. However, due to the widespread use of AS path
prepending, two prefixes originating from the same AS may
have different paths from the same source. Computing routing
tables of all ASes by considering prefixes one by one has
a time complexity of O(NV 2), where N is the number of
prefixes. In our dataset, N = 582, 947 and V = 41, 244.

We found an approach to partition the set of all prefixes
into equivalence classes, namely: Two prefixes belong to the
same equivalence class if and only if they originate from the
same AS and in every AS, they have identical import and
export policies. Thus prefixes in the same equivalence class
have the same route in every AS. Therefore, we only need
to compute BGP routes to each equivalence class of prefixes,
from which we get BGP routing tables of ASes. Using this
approach, the time complexity is reduced to O(nV 2), where
n is the number of equivalence classes. We found a total of
n =107,663 equivalence classes in our dataset.
We applied C-BGP, a centralized tool that solves BGP

decisions for an interconnected set of ASes to compute BGP
routes exchanged between ASes and the BGP routing tables
of all ASes. We ran C-BGP using 3-way parallelization to
compute BGP routing tables for all ASes in the Internet
topology. The computation time was less than 24 hours.

B. Monitored ASes and statistics

It is well-known that the Internet topology that can be dis-
covered from data obtained by route collectors is incomplete
due to missing links [19]. Most of the missing links are peer

2A route collector peers with multiple ASes and collects all route adver-
tisements from them.

links due to the widespread use of the Gao-Rexford export
policy. For our purposes, however, we only need a large subset
of ASes that have all of their links in the discovered topology.

Definition 1 (Monitored AS). An AS is monitored if and only
if one of the following conditions holds:

1) the AS peers with a BGP route collector;
2) the AS is a provider of a monitored AS.

Our definition of a monitored AS is the same as the defini-
tion of a “covered” AS in prior work [19]. A monitored AS
has all its customer, peer, and provider links in the discovered
Internet topology with probability close to 1 [7], [19].
We found a subgraph of 2,649 monitored ASes and 57,429

links in the discovered topology of our dataset. The monitored
ASes include all tier-1 networks. The subgraph is connected
and is much larger than what we need to evaluate the compu-
tation and communication overheads, as well as scalability of
of COVE.
We use the list of tier-1 networks from CAIDA [1]. For

k > 1, a tier-k network is a neighbor of a tier k− 1 network.
That is, the shortest path from a tier-k network to a tier-1
network is k AS hops. Table I shows the number of ASes of
each tier in the monitored set. Most of the monitored ASes
are in tier 2 and tier 3.

Tiers 1 2 3 4
Number 15 1694 879 23

TABLE I: Tier distribution of monitored ASes.

Figure 1 shows the link distribution of monitored ASes. The
maximum number of providers for an AS is less than 70. A
few networks in tier 2 and tier 3 have over 1000 peers each.
A few tier-2 networks have over 1000 customers each. Nearly
half of tier-1 networks have over 1000 customers each.
Monitored ASes have more links than unmonitored ASes in

the dataset. On average, a monitored tier-2 AS has 4 provider
links, 55 peer links, and 20 customer links; an unmonitored
tier-2 AS has 2.4 provider links, 0.4 peer link, and 1.1
customer links. There are two reasons: (i) unmonitored ASes
miss most of their peer links, and (ii) BGP route collectors
usually peer with large ISPs. By demonstrating that COVE
is scalable to monitored ASes, we show that it is scalable to
practically all ASes in the Internet.

III. COVE BASICS

We present the basics of COVE in this section. More details
of the COVE protocol are presented in Section IV.
A network deploys COVE by running the COVE protocol

in a host, called its local verifier. Initially, the local verifiers

322

of two networks in a business relationship establish a persis-
tent TCP connection and authenticate each other (e.g., using
SSL). Afterwards, they share a symmetric key for encrypting
query and reply messages between them. Two local verifiers
exchange messages with each other only if their networks have
a business relationship.
Consider two networks, neta and netb, in a business rela-

tionship and directly connected by at least one link. Each link
is bidirectional: An output port of neta transmits packets in
the link to an input port of netb; also, an output port of netb
transmits packets in the link to an input port of neta. Input
and output ports of links that connect different networks are,
by definition, public ports. Only reachability information from
the public input ports of a network to its public output ports
is provided to another network.3

A. Reachability sets in the data plane

Before constructing reachability trees, the local verifier of
each network precomputes reachability sets in the data plane
from each of its public input ports to each of its public
output ports. The forwarding tables in routers and switches
of a network, as well as the access control lists (ACLs) that
guard input and output ports are packet filters, which allow
some packets through a port while dropping others. The set
of packets that can travel from one port to another port along
a path can be obtained by intersecting the packet filters in the
path. When there are multiple paths in a network from one
port to another port, the reachability set between the ports is
the union of the reachability sets along the paths.
There exist tools that use centralized algorithms to compute

port-to-port reachability sets, namely: Header Space [15] and
AP Verifier [28]. For use in COVE, each reachability set from
a public input port to a public output port computed by one of
these algorithms must also be filtered to remove packets that
do not satisfy the network’s BGP export policy for the public
input port.
A set of packets can be represented by a predicate whose

variables are bits in the packet header. (Packets with identical
headers are considered to be the same by a packet filter.) Thus
a predicate P specifies the set of packets for which P evaluates
to true. It has been shown that binary decision diagram (BDD)
is a very efficient data structure for representing predicates that
specify packet sets [28]. We use BDDs in COVE to represent
reachability sets for two more reasons. First, BDD can be used
to encode longest prefix match semantics of IP forwarding
[28]. Second, intersection and union of packet sets correspond
to conjunction and disjunction of predicates. These logical
operations can be performed on BDDs efficiently using graph-
based algorithms [6].

B. Customer and provider trees

Figure 2 illustrates the customer and provider cones of an
AS (named Initiator). Note that each AS is included in its
customer and provider cones. Also, the provider cone does
not include tier-1 ASes.

3A network in our model can be used to represent interconnected ASes
that belong to the same owner. For such a network, reachability to ports of
internal links connecting sibling ASes is private.

�������	
����

�������	

�����

���	
�
�����	��
�	�����	��������	
����
���	����	
����

�	�����	
����

���	�

Fig. 2: Customer and provider cones

Consider an AS, neta. We use LVa to denote its local
verifier. LVa constructs both forward and reverse reachability
trees. A forward tree is rooted at neta as the source. A reverse
tree is rooted at neta as the destination. Each tree node stores
the identifier of an AS. Multiple nodes in a tree can store
the same AS. For example, when there are multiple forward
paths from neta to netg , there are multiple netg nodes in the
forward tree. Edges in a tree are directed. Each edge in a tree,
say from netx to nety , is annotated by a set of packets that
can travel in the link from netx to nety . LVa constructs two
forward trees (also two reverse trees) for the customer and
provider cones of neta.
Suppose all ASes, except tier-1 ASes, deploy COVE. The

leaf nodes in customer trees are stub ASes. The leaf nodes in
provider trees include: (i) tier-1 providers; (ii) peer ASes of
providers in the provider cone; (iii) any end provider, netd,
such that in a forward tree, there is a path from the root AS
to netd only for packets with destinations in netd’s customer
cone and, in a reverse tree, there is a path from netd to the root
AS only for packets from sources in netd’s customer cone.
If COVE is partially deployed, reachable ASes that do not

deploy COVE are also leaf nodes in reachability trees.

C. Forward and reverse path construction examples

To illustrate tree construction, we describe two path con-
struction examples for the network in Figure 3. LVa initiates
tree construction by sending queries to local verifiers of its
providers, netb and nete.
We first informally describe how a particular path in the

forward tree is constructed (message details in Section IV).
LVb receives the query containing P1 = true (set of all
packets) from LVa and finds that it has output ports to netc
and netf . Consider the output port to netc. LVb retrieves
the precomputed reachability set, F1, between the input port
coming from neta and the output port going to netc. LVb

computes P2 = P1 ∧ F1 and includes P2 and its path in a
reply to LVa. Then LVb sends a query (on behalf of LVa)
containing P2 to LVc.
Upon receiving the query, LVc retrieves the precomputed

reachability set, F2, between the input port coming from netb
and the output port going to netg . LVc computes P3 = P2∧F2

and includes P3 and its path in a reply to LVa. The reply from
LVc is sent back to LVb which forwards the reply to LVa. In
this example, LVc does not send a query to LVg because LVg

is a tier-1 network.4
4or because it does not deploy COVE

323

��������	�
�

�����	�
�

Fig. 3: Network example.

When LVa receives the reply containing P2, it stores P2 on
the edge connecting netb to netc in P2’s path in the forward
tree. When it receives the reply containing P3, it stores P3 on
the edge connecting netc to netg in P3’s path in the forward
tree. P3 is the set of packets that can travel from the a-to-b
link to the c-to-g link in the forward path.
We next informally describe how a particular path in the

reverse tree is constructed (message details Section IV). LVb

receives the query containing Q1 = true (set of all packets)
from LVa and finds that it has input ports from netc and
netf . Consider the input port from netf . LVb retrieves the
precomputed reachability set, R1, between the input port
coming from netf and the output port going to neta. LVb

computes Q2 = Q1 ∧ R1 and includes Q2 and its path in a
reply to LVa. Then LVb sends a query (on behalf of LVa)
containing Q2 to LVf .

Upon receiving the query, LVf retrieves the precomputed
reachability set, R2, between the input port coming from netg
and the output port going to netb. LVf computes Q3 = Q2 ∧
R2 and includes Q3 and its path in a reply to LVa. The reply
from LVf is sent back to LVb which forwards the reply to
LVa. In this example, LVf does not send a query to LVg

because LVg is a tier-1 network.
When LVa receives the reply containing Q2, it stores Q2 on

the edge connecting netf to netb in Q2’s path in the reverse
tree. When it receives the reply containing Q3, it stores Q3 on
the edge connecting netg to netf in Q3’s path in the reverse
tree. Q3 is the set of packets that can travel from the g-to-f
link to the b-to-a link in the reverse path.
Observation. A reply message destined to the initiator’s

local verifier is generated after a query is processed. Different
queries and replies generated by different local verifiers are
sent as separate messages (no merging). This approach results
in more messages, but smaller messages. The advantage is that
the initiator’s local verifier can construct a partial tree even if
some reply messages are missing. Such a partial tree is still
useful for checking reachability.

IV. COVE PROTOCOL

Tree notation. Each node of a tree stores a tuple
(net, flag, tag), where net is a network identifier; flag has 3
possible values: continue, finish, and loop; if flag is assigned
value finish, tag has 5 possible values: tier-1, peer, non-
COVE, stub, and end provider.
In a reachability tree, an edge between a node storing

netx and a node storing nety is annotated by a 5-tuple
(netx, portx, nety, porty, P) where portx is a public port of
netx, porty is a public port of nety , and P is a non-empty
set of packets. In a forward tree, portx sends to porty and P

is at the exit of portx which is an output port. In a reverse
tree, porty sends to portx and P is at the entrance of portx
which is an input port.
For a tree node, n, elements in its tuple are denoted by

n.net, n.flag, and n.tag. For a tree edge, e, elements in its
tuple are denoted by e.netx, e.portx, and e.P , etc.

Path notation. A path, denoted by path(1, k), k ≥ 1 is
specified by

net1, port1;net2, port2; . . . ;netk, portk;netk+1

where, for i = 1, 2, . . . , k + 1, neti is a network identifier,
porti is a public port of neti; for i = 1, 2, . . . , k, neti and
neti+1 are neighbors. In a forward tree, each port is an output
port and path(1, k) denotes a path from net1 to netk+1. In a
reverse tree, each port is an input port and path(1, k) denotes
a path from netk+1 to net1.
Protocol messages. COVE has two types of messages for

tree construction: (i) a query message and (ii) a reply message
in response to a query.
The protocol message header has one bit to indicate direc-

tion (forward or reverse) and a type field that indicates the
specific protocol message and message content. In COVE,
each packet set is represented by a BDD. The BDD of a
packet set is converted into a byte sequence by the source
local verifier for inclusion in a message; it is later converted
back to a BDD by the destination local verifier.
Neighbor networks. For a provider tree, a network’s neigh-

bor networks are its direct providers. For a customer tree, a
network’s neighbor networks are its direct customers.

A. Forward tree construction

Tree initialization. The local verifier of net1 creates a new
forward tree with its root node storing net1. For each neighbor
network, LV1 creates a node storing its identifier and an edge
from node net1 to the node. For each node in the initial tree,
n.flag = continue; for each edge e in the initial tree, e.P =
true.
For every public output port connecting net1 to a neigh-

bor network net2, LV1 sends to LV2 a query contain-
ing path(1, 1);P1, where P1 = true and path(1, 1) =
net1, port1;net2

Query processing. The local verifier of network netk has
received a query containing:

path(1, k − 1);Pk−1

where k ≥ 2, path(1, k − 1) denotes a path from port1 in
net1 to netk, and Pk−1 is the set of packets that can travel
from the exit of port1 to the exit of portk−1 which connects
to a public input port, portin, of netk.

To process the query message, LVk finds all public output
ports of netk connected to neighbor networks and, for a
provider tree, peer networks also. For each such public output
port, portk, LVk retrieves the precomputed reachability set,
F , from portin to portk. LVk then computes Pk = Pk−1∧F ,
and, if Pk �= false, creates a 5-tuple. The first two elements
of the 5-tuple are the identifiers of portk and netk+1. The

324

third element is Pk. The fourth element is a flag value. The
fifth element is a tag value.
The flag value is loop if a loop is detected in path(1, k).

The flag value is finish if netk+1 is a tier-1, a peer, or a
network that does not deploy COVE. Otherwise, the flag value
is continue and LVk sends a query containing path(1, k);Pk,
on behalf of net1, through portk to netk+1.
In a 5-tuple, if the flag value is finish, the tag value may

be tier-1, peer, or non-COVE providing information about
netk+1.

Each 5-tuple created is stored in a set output set. After all
public output ports of netk connecting to neighbor networks
have been processed, LVk sends a reply message to net1
containing

path(1, k − 1); output set

The reply message is relayed by local verifiers along the
reverse path of path(1, k − 1).

A reply message from netk with an empty output set

indicates that netk is a leaf node in the tree.
Reply processing. LV1 which initiated tree construction re-

ceives a reply message containing path(1, k−1); output set.
LV1 already has a tree RT . It first checks if there exists m,
m > 1 such that path(m, k − 1), within path(1, k − 1), does
not exist in RT . If so, it inserts new nodes and new edges
of the missing part to RT . In each newly inserted node, flag
is initialized to continue; in each newly inserted edge, P is
initialized to null.
Then LV1 finds the tree node n that stores netk as the

endpoint of path(1, k−1). If output set is empty, then n.flag
is assigned value finish and n.tag is assigned value stub (for
a customer tree) or value end provider (for a provider tree).
Otherwise, LV1 processes the 5-tuples in output set, one by
one, and updates node and edge information in the tree.

B. Reverse tree construction

The local verifier of net1 creates a new reverse tree with
its root node storing net1. For each neighbor network, LV1

creates a node storing its identifier and an edge from the
node to the root node. For every neighbor network net2
connected to an input port of net1, LV1 sends a query
including path(1, 1);P1 to LV2, where P1 = true.
When LVk receives a query containing path(1, k−1);Pk−1

where k ≥ 2 and Pk−1 is the set of packets that can travel from
the entrance of portk−1 to the entrance of port1. Let portout
be the public output port of netk connected to portk−1. To
process the query message, LVk finds all public input ports of
netk connected to neighbor networks and, for a provider tree,
peer networks also. For each such public input port, portk,
LVk retrieves the reachability set, R, from portk to portout.
Additional details of reverse tree construction are omitted

herein due to space limitation. Both initialization as well as
query and reply processing for a reverse tree are similar to
those for a forward tree presented above.

C. Extended provider trees

Consider a local verifier that has constructed forward and
reverse provider trees for its network net1. Nodes of each tree

are peer or provider networks. If a network, netk, is stored in
a node and it deploys COVE, LV1 can send a special query
message, relayed by local verifiers along the path to it, to
request for netk’s customer trees as well as its peer networks.
When LV1 receives a customer tree in a reply from netk, it

can extend net1’s provider tree by attaching the customer tree
to every node that stores netk. Useful applications of extended
forward provider trees include detection of black holes and
persistent forwarding loops (see examples in Section VI).

D. Protocol termination condition

Consider a local verifier that initiated the construction of
a reachability tree RT . It terminates tree construction after
processing a reply message if the following two conditions
for a complete and correct tree are satisfied:

1) for each node in RT , flag = continue if and only if it
is a non-leaf node,

2) for each edge in RT , P �= null.

The first condition ensures that RT includes all paths
between the root AS and all reachable ASes. The second
condition ensures that RT has all reachability sets for its
edges. The termination condition applies to any customer tree,
any provider tree, and any extended provider tree.

������
���	
�����

��	�����������
������

���

�������

������

��
����

������

������
�����

������
��	������

�����

���

�	
���������

������
������

�����

�	
����

������
���	������

��

��

���

���
��

����
�

���
��
����� ������

���

������
��	
�����

��
����
�����

�����

��������

�����

�����

Fig. 4: Forward provider tree of AS 58421.

E. Examples of provider trees of an AS in the Internet

Figures 4 and 5 show examples of forward and reverse
provider trees, respectively, of a real AS in our dataset. Each
edge is associated with a non-empty packet set (not shown
in the figures). Only non-leaf nodes are shown in the figures
with each tier-4 network shown as an oval, each tier-3 network
shown as an octagon, and each tier-2 network shown as a
rectangle. Each node in the tree is annotated with an AS
name and the number and type of leaf nodes connected to
it. For example, the rightmost node at the bottom in Figure 4
is annotated with

AS 4648
24 (1) peers
3 (3) providers

where 4648 is its AS number, it connects to 24 peer leaf
nodes (including 1 tier-1 network) and 3 provider leaf nodes
(including 3 tier-1 networks).

325

�������
�������	
���	�

������
����������	�

�������	
���	�

�������
����������	�

�������	
���	�

�������
����������	�
���	
���	

������
���������	�
���	
���	

������
���������	�

������
������������	�
�������	
���	

�������
�������	
���	�

������
������������	�
�������	
���	�

������
������������	�
�������	
���	�

������
�����������	�
�������	
���	

������
����������	�

��������	
���	�

�������
�����������	�
�������	
���	�

������
�����������	�
�������	
���	�

������
����������	�

�������	
���	�

�������
����������	�

�������	
���	�

������
�����	�

�������	
���	

������
����������	�

�������	
���	�

������
�����������	�
�������	
���	�

������
�����	

�������

�������
�����������	�

�������
�������	�

���������	
���	�

������
�����������	�
�������	
���	�

������
�����������	�
�������	
���	�

�������
������	�

�������	
���	�

�������
�����������	�
�������	
���	�

������
����������	�

�������	
���	�

������
����������	�

�������	
���	�

������
������	�

������
�����������	�
�������	
���	�

������
����������	�

�������	
���	�

�����
�����������	�
�������	
���	�

�������
�����	�

�������	
���	�

������
����������	�

�������	
���	�

������
����������	�

�������	
���	�

������
����������	�

�������	
���	�

�������
�����������	�
�������	
���	�

������
�����	�

�������	
���	�
�������

����������	�
��������	
���	�

������
�����������	�
�������	
���	�

������
���������	�

�������	
���	

�������
�������	
���	�

�����

�����

�����

Fig. 5: Reverse provider tree of AS 58421

In the forward provider tree in Figure 4, packets are actually
routed in the data plane along each forward path from the
root AS to every leaf network. Figure 5 shows the the reverse
provider tree which is much larger than the forward tree and
has many more leaf nodes. Numerous peer links appear in the
reverse provider tree. In the reverse provider tree, each reverse
path from a leaf node indicates an available path in the data
plane from the leaf network to the root AS.
We provide statistics of reachability trees in the next section.

V. EXPERIMENTS TO CONSTRUCT REACHABILITY TREES

1 10 102 103 104 105
0.0

0.2

0.4

0.6

0.8

1.0

unmonitored tier3
unmonitored tier2
monitored tier3
monitored tier2
ASes selected

customer cone size

cu
m

ul
at

iv
e

pr
ob

ab
ili

ty

Fig. 6: Customer cone size distribution.

A. Methodology

We implemented COVE as an application-layer protocol.
We ran experiments by using up to 170 workstations connected
by Ethernet in our department. (These are workstations in
public labs shared by all users.) For experiments with less
than 170 local verifiers of ASes, each local verifier ran on a
workstation (using one core). For networks consisting of more
than 170 ASes, we used a discrete-event packet-level simulator
of COVE in which message generation and processing use
COVE implementation code. In particular, query and reply
messages were encrypted. The message sizes and communi-
cation overheads obtained by the simulator are the same as
those from COVE running on workstations. Reachability trees
constructed by the simulator are also the same.
We manually verified our high-level specification of the

COVE protocol. To make sure that there is no implementation

error in our code, we ran COVE on workstations to con-
struct forward reachability trees for the Stanford and Internet2
datasets and found them to be the same as reachability trees
computed by two different centralized algorithms [15], [28].
(For running COVE, the input and output ports of each router
in the Stanford and Internet2 datasets were considered to be
public input and output ports of an AS.)
There are 23 tier-4 ASes in the set of monitored ASes.

Two of them do not have any provider. For the other 21 tier-
4 ASes, we ran COVE on workstations and constructed 21
forward provider trees and 21 reverse provider trees.
For experiments to construct customer trees, we randomly

selected 50 non-stub ASes among monitored tier-2 and tier-3
ASes (there are 2,573 in total). Figure 6 shows customer cone
size distributions. Note that customer cone sizes of monitored
ASes are much larger than those of unmonitored ASes. This is
because BGP route collectors usually peer with large networks
that have large customer cone sizes.
The customer cone sizes of ASes selected for our experi-

ments are, on average, much larger than those of monitored
ASes. The median customer cone sizes of monitored tier-2
and tier-3 ASes are 5 and 1, respectively. The median customer
cone size of our 50 selected ASes is 91 (with the largest being
5,863).
In experiments to be presented, all ASes in each customer

or provider cone deploy COVE.

B. Tree Statistics

Customer trees. Figures 7(a)-(b) show the numbers of tree
nodes (leaf and non-leaf) and height versus cone size for
forward and reverse trees of the 50 selected ASes. The height
of a reachability tree is defined to be the length of the longest
path between the root and a leaf node.
In Figure 8(a), the bottom two curves are distributions of

the numbers of paths between the root AS and another AS in
the forward and reverse trees. The vast majority of the ASes
have one path from, or to, the root AS. Because we obtained
the dataset from control plane information, there are no default

326

routes in the dataset. This explains why the average number
of paths from an AS to the root AS in a reverse customer tree
was found to be 0.87, showing that some ASes need default
routes to reach the tier-2 or tier-3 provider at the root.
Multiple paths between two ASes in a reachability tree

often share links. To quantify such path dependency, we also
computed the expected number of paths after one link in the
existing paths is down (with each link in the paths between
the two ASes chosen equally likely to be down). The top two
curves in Figure 8(a) are distributions obtained when one link
was down.

1 10 102 103 104
1

10

102

103

104

0

5

10

15

20
leaf
non−leaf
height

customer cone size

nu
m

be
r

of
 tr

ee
 n

od
es

he
ig

ht

(a) Forward customer trees.

1 10 102 103 104
1

10

102

103

104

0

5

10

15

20
leaf
non−leaf
height

customer cone size

nu
m

be
r

of
 tr

ee
 n

od
es

he
ig

ht

(b) Reverse customer trees.

1 10 102
1

10

102

103

104

105

1

2

4

8

16
height
leaf
non−leaf

provider cone size

nu
m

be
r

of
 tr

ee
 n

od
es

he
ig

ht

(c) Forward provider trees.

1 10 102
1

10

102

103

104

105

1

2

4

8

16
height
leaf
non−leaf

provider cone size

nu
m

be
r

of
 tr

ee
 n

od
es

he
ig

ht

(d) Reverse provider trees.

Fig. 7: Statistics of a reachability tree.

Provider trees. Figures 7(c)-(d) show the number of tree
nodes (leaf and non-leaf) and height versus cone size for
forward and reverse provider trees of the 21 monitored tier-4
ASes.
Figure 8(b) shows distributions of the numbers of paths

between the root AS and another AS in the forward and
reverse trees. Distributions for the expected number of paths
when one link is down are also shown in the figure. Reverse
provider trees have an order of magnitude more paths than
forward provider trees. On average, there are 11.26 paths from
a provider to the root AS in a reverse provider tree; there are
1.49 paths from the root AS to a provider in a forward provider
tree.

C. Protocol construction overheads

Message sizes. Figure 9(a) shows the distributions of
sizes of query messages for constructing customer trees and
provider trees. Figure 9(b) shows the distributions of sizes of
reply messages for constructing customer trees and provider
trees. The average size of one query message is 69.5 KB and
the average size of one reply message is 35.7 KB, which were

1 3 10 30
0.80

0.85

0.90

0.95

1.00

forward link−down
reverse link−down
reverse
forward

number of paths

cu
m

ul
at

iv
e

pr
ob

ab
ili

ty

(a) Customer trees.

1 3 10 30 60
0.0

0.2

0.4

0.6

0.8

1.0

forward link−down
forward
reverse link−down
reverse

number of paths

cu
m

ul
at

iv
e

pr
ob

ab
ili

ty

(b) Provider trees.

Fig. 8: Distribution of number of paths.

calculated over all messages used for constructing customer
and provider trees.

2K 16K 128K 2M
0.0

0.2

0.4

0.6

0.8

1.0

forward customer
reverse provider
forward provider
reverse customer

size of one query message (in bytes)

cu
m

ul
at

iv
e

pr
ob

ab
ili

ty

(a) Query messages.

2K 8K 32K 1M 16M
0.0

0.2

0.4

0.6

0.8

1.0

forward customer
reverse provider
reverse customer
forward provider

size of one reply message (in bytes)

cu
m

ul
at

iv
e

pr
ob

ab
ili

ty

(b) Reply messages.

Fig. 9: Message size distribution.

Number of message transmissions to construct a tree.
Figures 10(a) and 10(b) show the average number of message
transmissions per local verifier versus cone size to construct
a forward and a reverse customer tree, respectively, for the
50 selected ASes. Figures 10(c) and 10(d) show the average
number of message transmissions per local verifier versus
cone size to construct a forward and a reverse provider tree,
respectively, for the 21 monitored tier-4 ASes.
Each message transmission is a TCP transmission from a

local verifier to another (one hop). Every query message is
transmitted in one hop. A reply message may be transmitted
over multiple hops to reach the local verifier that initiated
tree construction. Therefore, the number of reply message
transmissions is larger than the number of query message
transmissions.

1 10 102 103 104
0.3

1

3

10
reply
query

customer cone size

no
. o

f m
es

sa
ge

 tr
an

s.

(a) Forward customer trees.

1 10 102 103 104
0.3

1

3

10

reply
query

customer cone size

no
. o

f m
es

sa
ge

 tr
an

s.

(b) Reverse customer trees.

1 3 10 30 102
0.1

0.3

1

3

10
reply
query

provider cone size

no
. o

f m
es

sa
ge

 tr
an

s.

(c) Forward provider trees.

1 3 10 30 102
0.1

0.3

1

3

10
reply
query

provider cone size

no
. o

f m
es

sa
ge

 tr
an

s.

(d) Reverse provider trees.

Fig. 10: Average number of message transmissions per local
verifier to construct a reachability tree.

Protocol run time to construct a tree. The run time to
construct a reachability tree is measured from the time a local
verifier, LVa, initiates tree construction by sending queries
to its neighbors until LVa terminates tree construction after
receiving replies. Figures 11(a) and 11(b) show protocol run
times to construct a forward customer tree and a reverse
customer tree, respectively, for customer cones with less than
170 ASes. Constructing a reverse customer tree takes an order
of magnitude more time than constructing a forward customer
tree for the same customer cone. On average, local verifiers
running on workstations connected by Ethernet took 0.43
second to construct a forward customer tree and 2.56 seconds
to construct a reverse customer tree.
Figures 11(c) and 11(d) show the protocol run times to

327

construct a forward provider tree and a reverse provider tree
for all monitored tier-4 ASes, respectively. On average, a
forward provider tree was constructed in 6.7 seconds, and a
reverse provider tree was constructed in 9.0 seconds.

0 30 60 90 120 150 180
0.0

0.3

0.6

0.9

1.2

1.5

customer cone size

tim
e

(in
 s

ec
on

ds
)

(a) Forward customer trees.

0 30 60 90 120 150 180
0

5

10

15

20

25

customer cone size
tim

e
(in

 s
ec

on
ds

)

(b) Reverse customer trees.

0 20 40 60 80 100
0

5

10

15

20

25

provider cone size

tim
e

(in
 s

ec
on

ds
)

(c) Forward provider trees.

0 20 40 60 80 100
0

5

10

15

20

25

provider cone size

tim
e

(in
 s

ec
on

ds
)

(d) Reverse provider trees.

Fig. 11: Protocol run time to construct a reachability tree.

VI. NETWORK MANAGEMENT APPLICATIONS

A. Inbound Load Balancing Policies

An AS with multiple providers can tune its route advertise-
ments to its providers to vary the amounts of inbound traffic
from them. There are several methods to perform inbound load
balancing: AS prepending, prefix engineering, and provider-
supported BGP communities [22]. However, the AS does not
have full control of how its providers route traffic back. Thus
it has to tune route advertisements iteratively to find the
best load balancing. Currently, each time after the AS tunes
route advertisements, there is a long delay before the resultant
inbound traffic shift can be detected. Using COVE, the AS can
construct its reverse provider tree in about 10 seconds after its
tuned advertisements are received by ASes in its provider cone.
With the reverse provider tree, the AS can use historical traffic
data to quickly estimate the resultant inbound traffic shift.
For example, in Figure 5, AS 4768 has two providers: AS

9901 and AS 4648. We carried out three experiments running
COVE in which a specific prefix, 202.0.58.0/24, is advertised
by AS 4768. In each experiment, AS 4768 changed the number
of times its AS number is prepended in route advertisements
to its two providers. We constructed the reverse provider trees
of AS 4768 for the different route advertisements. In these
reverse provider trees, each edge is associated with the packet
set specified by 202.0.58.0/24.
Figure 12(a) shows the reverse provider tree of AS 4768

when there is no prepending in advertisements to both
providers. Note that the majority of providers route traffic back
to AS 4768 through provider AS 9901.
When AS 4768 prepends once in advertisements to AS 9901

and does not prepend in advertisements to AS 4648, the entire
subtree of AS 6939 shifts over to AS 4826 from AS 4766,
resulting is a large amount of traffic shift from AS 9901 to
AS 4648 (see Figure 12(b)).
When AS 4768 prepends three times in advertisements to

AS 4648 and does not prepend in advertisements to AS 9901,

only AS 1273 changes its route, i.e., instead of routing through
the path from AS 7473 to AS 4648, it routes through the path
from AS 5089 to AS 9901 (see Figure 12(c)).

B. Network Planning

COVE can be used for what-if analysis when the operator
of an AS plans a link change in its provider cone to optimize
performance for inbound traffic. The link change may be
adding a new link, removing an existing link, or changing the
business relationship of an existing link. Such what-if analysis,
however, requires that collaborating ASes run a shadow BGP
in addition to deploying COVE.
An AS with a planned link change advertises in the shadow

BGP to ASes in its provider cone. Collaborative ASes in
the cone receive the advertisements in the shadow BGP and
compute their data plane reachability sets for the new topology.
Subsequently, the local verifier of the AS with a planned
change initiates construction of a new reverse provider tree.
The AS’s operator can use these new reverse provider trees to
find the best place in its provider cone for a link change.
We performed three experiments to illustrate what-if analy-

sis to optimize the placement of a new provider link. In Figure
5, AS 58421 has only one provider, AS 4768. Suppose the
operator of AS 58421 plans to add a new provider link to
an AS in its provider cone. To choose a new provider, the
operator of AS 58421 tests every AS in the provider cone,
one at a time, as a possible new provider. Advertisements are
sent in the shadow BGP. For each prospective new provider,
the local verifier of AS 58421 constructs a reverse provider
tree. From all reverse provider trees, the operator finds the
optimal choice for a given performance metric.
Minimum height of reverse provider tree. The operator

finds that adding a provider link to AS 4766 minimizes the
height of the reverse provider tree to 8 (Figure 13(a)). The
height of the original reverse provider tree of AS 58421 is 11.
Maximum number of paths in reverse provider tree.

The operator finds that adding a provider link to AS 9304
maximizes the average number of reverse paths to AS 58421.
In the original reverse tree, a provider has 12.7 reverse paths
to AS 58421 on average. After adding a provider link to AS
9304, a provider has 13.7 reverse paths on average (Figure
13(b)).
Maximum expected number of paths after one link down

in reverse provider tree. The operator finds that adding a
provider link to AS 4589 maximizes the average of expected
numbers of reverse paths after one link down. In the original
reverse tree, an AS has 10.3 paths to AS 58421 on average
after one link down. After adding a provider link to AS 4589,
a provider has 11.6 paths to AS 58421 on average after one
link down (Figure 13(c)).

C. Default Routes

Default routes are widely used by ASes in the Internet.
Experimental results [7] showed that only 19% of stub ASes,
42% of small ISPs, and 61% of large ISPs were found to
be default-free. Since our dataset was derived from control
plane information of the Internet, it does not include additional
paths in the Internet made possible by default routes. In what

328

�������

������

�������

�������

������

������

������

�����	

������

������

�����	

�������

������

������

���
���

������

������

���
	�

�����	

���
���

��

	�

�����	�

���	��

�������

����
�

���
��

����
�

������

�����	

���	�

�������

��	���

����
��

������

���
��

����	��

������

������

����	��

��
�	�

������

����

�����
�

(a) No prepending to both providers.

�������

�������

������

������

������

������

������	

���	�	

����	�

������

��	�	�

���

��

��	�
�

�����	

������

����	��

��		
�

������

������

�������

�����

����	�	

������

���	��	

������

������

������

������

������

�����

������

�����

���
���

������

������

���
���

�����	

�������

���
�	

�������

������

������

���
���

(b) No prepending to AS 4648; prepends once
to AS 9901.

�������

������

�������

�������

������

������

������

�����	

������

������

�����	

�������

������

������

���
���

������

������

���
	�

�����	

���
���

��

	�

�����	�

���	��

�������

����
�

���
��

����
�

������

�����	

���	�

�������

��	���

����
��

������

���
��

����	��

������

������

����	��

��
�	�

������

����

�����
�

(c) Prepends 3 times to AS 4648; no prepending
to AS 9901.

Fig. 12: Reverse provider trees for experiments on AS prepending.

�������������

��������������������

������

������

�����	
������������

�����	 ������� ������

������

���
���

������

��������
	���

���
	�

�����	

�����	� ���
���

��

	�

���	��

�������

����
�

���
��

����
�

������

�����	

���	��������

��	���

����
��

������

��
�	�

����	�� ������

������

����	��

���
�� ����

������

�����
�

(a) Minimize height of reverse provider tree.

�������

������

�������

�������

������ ������

������������	

���	�	

����	�

���

��

��	�	�

��	�
�

������

����	��

������

��		
�

������

�������������

����	�	

�������

�����

������

���	��	�����	

������

������

������

������

������

�����

������

�����

���
���������

���
�	

���������
���

�����	�������

������

������

���
���

(b) Maximize number of paths in reverse provider tree.

������� �������������

������� ������������ ������

������	

���	�	

����	�

������

��	�	�

���

��

��	�
�

������

����	��

��		
�

������

�����	������ �������

�������

�����

����	�	

������ ���	��	������

������

������

������

������

�����

������
�����

���
���

������

���
�	

���
��� �����	�������

������

������ ������

���
���

(c) Maximize expected number of paths after one link down in reverse provider tree.

Fig. 13: Reverse provider trees after adding a provider link for AS 58421.

follows, we present results that quantify such increase as well
as the effectiveness of default routes configured as backup.

Additional paths. In each AS in the 50 customer and 21
provider cones in our dataset, we configured a default route
to its provider if the AS has one provider or to a randomly
selected provider if the AS has multiple providers. Default
routes configured from customer to provider can increase
the number of paths in reverse customer trees and forward
provider trees only.

We found that after adding default routes, the average
number of paths from an AS in a reverse customer tree to
the root AS increased to 1.40 from 0.87 before. After adding
default routes, the average number of paths from the root AS
to an AS in a forward provider tree increased to 1.51 from
1.49 before. Thus, default routes are much more effective for
stub ASes than for ISPs, as expected.

Default routes as backup. For each provider link of an
AS (in the 50 customer cones and 21 provider cones) with
multiple providers, we provision for its failure by configuring
backup default routes to another provider (randomly selected
if more than one remaining providers after link failure). We
constructed reverse customer trees for the 50 selected ASes
and forward provider trees for the 21 monitored tier-4 ASes
and, for each AS affected by a link failure, computed the
number of paths after a link failure. This number is compared
to the number of paths after a link failure for the same set of
ASes when no backup default route is configured.
Figure 14 shows distributions of numbers of paths after

a link failure for two cases: (i) backup default routes are

configured, and (ii) no backup default route. For reverse
customer trees, an AS affected by a link failure has 1.36 paths
after the failure to the root AS, on average, when there are
backup default routes; this number decreases to 0.33 when
there is no backup default route. For forward provider trees,
an AS affected by a link failure has 2.74 paths after the failure,
on average, from the root AS if there are backup default routes;
this number decreases to 1.66 if no backup default route. We
conclude that default routes, configured as backup, are very
effective.

0 1 2 3 4 5 6 7 8
0.6

0.7

0.8

0.9

1.0

no default
default

number of paths

cu
m

ul
at

iv
e

pr
ob

ab
ili

ty

(a) Reverse customer trees.

0 1 2 3 4 5 6 7 8
0.0

0.2

0.4

0.6

0.8

1.0

no default
default

number of paths

cu
m

ul
at

iv
e

pr
ob

ab
ili

ty

(b) Forward provider trees.

Fig. 14: Default routes used as backup.

D. Detecting Black Holes

Black hole detection is useful for debugging some reacha-
bility problems. The local verifier of an AS, net1, can detect
black holes in ASes stored in nodes of its reachability trees.
We define a black hole in an AS as a prefix of packets that can
enter the AS but are not forwarded out of the AS, except for
packets whose destinations are inside the AS. (LV1 can find,
in the BGP routing tables of net1, prefixes originated from
each AS stored in a tree.)

329

In a forward tree of net1, packets in the reachability set
associated with each edge, say from netx to nety , are actually
forwarded by netx. In a reverse tree, the reachability set
associated with each edge, say from nety to netx, is a superset
of the set of packets that are actually forwarded by nety .
Furthermore, in a forward tree, LV1 finds black holes that are
prefixes originated from other ASes. In a reverse tree, LV1

finds black holes that are prefixes originated from net1 itself.
For these reasons, the algorithms for computing black holes of
ASes in forward and reverse trees are slightly different (these
algorithms are omitted due to space limitation).
Of the black holes in an AS, netk, found by our algorithms

in reachability trees rooted at net1, some may be due to black
holes in forwarding tables within netk or packets intentionally
dropped by routers in netk. The remaining black holes should
be investigated.

1 10 102 103 104
0.01

0.1

1

10
102
103
104

forward
reverse

customer cone size

tim
e

(in
 m

s)

(a) Customer trees.

1 3 10 30 100
0.1

1

10

102

103

forward
reverse

provider cone size

tim
e

(in
 m

s)

(b) Provider trees.

Fig. 15: Time to detect black holes for all ASes in a tree.

Results from analyzing reachability trees. We searched for
black holes in ASes that appear in customer trees of the 50
selected ASes, as well as in provider trees of the 21 tier-
4 ASes. The computation time to check black holes for all
ASes in a tree is shown in Figure 15. The computation time
to check black holes for a tree grows approximately linearly
with cone size. On average, it took 0.32 second to check black
holes for a forward customer tree, 0.022 second for a reverse
customer tree, 0.30 second for a forward provider tree, and
0.00076 second for a reverse provider tree.
For ASes in the 50 forward customer trees, we did not find

any black hole in them. A provider checks for black holes in
its forward customer tree for prefixes originated from ASes
in its customer cone. A black hole detected in a customer AS
indicates that the customer AS has a misconfiguration problem,
such as, route leak.
For the 50 reverse customer trees, we found that 2.1%

of the ASes in the union of the customer cones have black
holes. (There are 9,829 ASes in the union of the cones.) Black
holes in reverse customer trees should be further investigated.
They may indicate that the customer ASes with black holes
have complex business relationships or some prefixes of the
provider (root AS) have multiple origins, e.g., prefix hijack.
For the 21 forward provider trees, we found that 30% of the

ASes in the union of the 21 provider cones have black holes.
(There are 160 ASes in the union of the cones.) However,
these black holes are most likely due to packets forwarded to
customers of the ASes. The local verifier of the root AS can
check further by requesting for the forward customer tree of
each AS with black holes.
For the 21 reverse provider trees, we did not find any black

hole in them. If a customer detects a black hole in some

�������

���	
��

���	��
�����������

�����������

Fig. 16: Forwarding loop example.

AS stored in its reverse provider tree, the black hole’s prefix
has another origin, for example, the prefix has been hijacked.
However, if the attacker AS is far away from the victim AS,
the reverse provider tree of the victim AS may not have any
black hole. That is, the absence of a black hole in the reverse
provider tree provides no information about hijacking.

E. Persistent loop detection

Consider the provider cone of AS 58421 in Figure 5. Sup-
pose AS 4637 advertises an aggregated route to 134.159.0.0/16
to replace multiple more specific prefixes. There are unused
addresses in 134.159.0.0/16 and route aggregation creates
black holes [16] in forwarding tables of AS 4637. Furthermore
suppose AS 4637 has default routes to AS 4766 and AS 4766
has default routes to AS 2516. As a result, packets destined
to black holes in 134.159.0.0/16 will travel in a persistent
forwarding loop from AS 4367 to AS 4766, to AS 2516, and
then back to AS 4637, as shown in Figure 16. It has been
shown that default routes are used in many small and large
ISPs [7] and route aggregation may causes black holes and
forwarding loops [16].
The persistent forwarding loop described above can be

detected as follows: The local verifier of AS 58421 first
computes its forward provider tree, and then extends the
tree with AS 2516’s forward customer tree. AS 2516 has an
unusually large customer cone (8,781 ASes) and its forward
customer tree has 22,512 nodes and occupies 82.2 megabytes.
Given the customer tree of AS 2516, the time to compute
the extended provider tree and detect the loop took only 4.2
seconds of computation time running on one workstation core.
We illustrate this example with AS 2516 that has an

unusually large customer cone (8,781 ASes) to demonstrate
scalablility of COVE and our approach. In comparison, of
the 1,694 monitored tier-2 ASes in our Internet dataset, the
90-percentile value of customer cone size is 202 ASes; of the
879 monitored tier-3 ASes, the 90-percentile value of customer
cone size is 16 ASes.

F. Partial deployment

In the provider or customer cone of an AS, when only some
ASes in the cone deploy COVE, the AS’s reachability trees
constructed do not include all ASes in the cone. Nevertheless,
these partial trees still provide useful data plane reachability
information. In particular, the AS can find multiple forward
and reverse paths in partial trees. The AS can find inbound
traffic changes in a partial reverse provider tree after tuning
its route advertisements. When the AS’s operator plans a link
change, a partial reverse provider tree still provides useful
information. The AS can still check black holes in ASes in a
partial forward tree.

330

However, the AS may not be able to check black holes in
ASes in a partial reverse tree that does not have some ASes
in the cone. Detecting persistent forwarding loops may not be
possible when the forward provider tree has to be extended
with the forward customer tree of a non-COVE AS.

VII. RELATED WORK

Active probes (pings and traceroutes) have been widely
used to measure data plane reachability [27], [13], [7], [12],
[14], [11] but they have limitations and biases, some of which
are discussed in Introduction. Prior to COVE, there was no
method/protocol for constructing reverse reachability trees in
the Internet data plane. Reverse provider trees constructed by
COVE show that there are numerous reverse paths in the data
plane to reach an AS. But currently, an AS does not have any
reverse path information. An existing approach to find some
available reverse paths is by performing AS-path poisoning in
the control plane to trigger BGP rerouting [7], [14].
Another limitation of active probes not mentioned in Intro-

duction is that the operator of a network needs help at other
Internet locations to send probes back to her own network
to discover reverse reachability paths. An approach to piece
together an approximate reverse path to an AS using known
paths from many vantage points in the Internet was proposed
[12]. This approach provides an estimated reverse path which
is better than assuming a symmetric path but does not provide
enough accuracy for many network management decisions.
Using active probes, persistent forwarding loops from con-

figuration errors were found to be prevalent in the Internet
[27]. Numerous papers have been published on detecting prefix
hijacking using active probes in the data plane as well as
control plane data. The reader is referred to two recent papers
on this topic [5], [24] and references therein.

VIII. CONCLUSION

We designed and implemented an application-layer protocol
(COVE) and an efficient data structure (based on BDD) for
automating the exchange of data plane reachability informa-
tion between networks in a business relationship. The inter-
network reachability information in the Internet data plane
obtained using COVE is ground truth assuming that local
verifiers of networks in a business relationship provide ground
truth information to each other.
We constructed an Internet dataset, consisting of 2,649

monitored ASes each of which has all of its provider, peer,
and customer links, for evaluating the performance of COVE.5

We found COVE to be scalable to very large ASes in the
Internet. COVE was designed to improve a network’s views
of forward and reverse reachability in the Internet data plane
even if COVE is partially deployed by as few as two networks
connected by a link. Once there is a set of interconnected
networks that deploy COVE, there is strong incentive for
another network to join and for the set to accept a new member
to increase every network’s views of data plane reachability.
We also illustrated how network operators can use COVE to

5Our dataset is avalable from www.cs.utexas.edu/users/lam/Internet dataset/

perform very useful network management tasks which cannot
be done effectively using existing methods and tools.
Acknowlegment. This work was sponsored by National

Science Foundation grant CNS-1214239. We thank the anony-
mous reviewers of ICNP for their constructive comments.

REFERENCES

[1] The CAIDA UCSD AS Relationships Dataset - October 2013. In http:
//www.caida.org/data/as-relationships/ .

[2] C-BGP. In http://c-bgp.sourceforge.net. December 2013.
[3] Internet AS-level Topology Archive. In http:// irl.cs.ucla.edu/ topology/ .

October 2013.
[4] The Internet2 Observatory Data Collections. In http://www.internet2.

edu/observatory/archive/data-collections.html. October 2013.
[5] P. Bangera and S. Gorinsky. Impact of prefix hijacking on payments of

providers. In Procedings of IEEE COMSNETS, Bangalore, India, 2011.
[6] R. E. Bryant. Graph-Based Algorithms for Boolean Function Manipu-

lation. IEEE Trans. Comput., 35(8):677–691, August 1986.
[7] R. Bush, O. Maennel, M. Roughan, and S. Uhlig. Internet Optometry:

Assessing the Broken Glasses in Internet Reachability. In Proceedings
of ACM IMC, Chicago, Illinois, USA, 2009.

[8] L. Gao and J. Rexford. Stable Internet Routing without Global
Coordination. IEEE/ACM Trans. on Netw., 9(6):681–692, Dec 2001.

[9] P. Gill, M. Schapira, and S. Goldberg. Modeling on Quicksand:
Dealing with the Scarcity of Ground Truth in Interdomain Routing Data.
SIGCOMM Comput. Commun. Rev., 42(1):40–46, Janurary 2012.

[10] P. Gill, M. Schapira, and S. Goldberg. A Survey of Interdomain Routing
Policies. SIGCOMM CCR, 44(1):28–34, December 2013.

[11] U. Javed, I. Cunha, D. Choffnes, E. Katz-Bassett, T. Anderson, and
A. Krishnamurthy. PoiRoot: Investigating the Root Cause of Interdomain
Path Changes. In Proc. of ACM SIGCOMM, Hong Kong, China, 2013.

[12] E. Katz-Bassett, H. V. Madhyastha, V. K. Adhikari, C. Scott, J. Sherry,
P. Van Wesep, T. Anderson, and A. Krishnamurthy. Reverse Traceroute.
In Proceedings of USENIX NSDI, San Jose, CA, 2010.

[13] E. Katz-Bassett, H. V. Madhyastha, J. P. John, A. Krishnamurthy,
D. Wetherall, and T. Anderson. Studying Black Holes in the Internet
with Hubble. In Proc. of USENIX NSDI, San Francisco, CA, 2008.

[14] E. Katz-Bassett, C. Scott, D. R. Choffnes, Í. Cunha, V. Valancius,
N. Feamster, H. V. Madhyastha, T. Anderson, and A. Krishnamurthy.
LIFEGUARD: Practical Repair of Persistent Route Failures. In Pro-
ceedings of ACM SIGCOMM, Helsinki, Finland, 2012.

[15] P. Kazemian, G. Varghese, and N. McKeown. Header Space Analysis:
Static Checking for Networks. In Proc. of USENIX NSDI, San Jose,
CA, 2012.

[16] F. Le, G. G. Xie, and H. Zhang. On Route Aggregation. In Proceedings
of ACM CoNEXT, Tokyo, Japan, 2011.

[17] M. Luckie, B. Huffaker, A. Dhamdhere, V. Giotsas, and kc claffy. AS
Relationships, Customer Cones, and Validation. In Proceedings of ACM
IMC, Barcelona, Spain, 2013.

[18] NANOG Mailing List. In http://www.nanog.org/ list.
[19] R. Oliveira, D. Pei, W. Willinger, B. Zhang, and L. Zhang.

The (in)Completeness of the Observed Internet AS-level Structure.
IEEE/ACM Trans. Netw., 18(1):109–122, Feburary 2010.

[20] Outages Info Page. In https://puck.nether.net/mailman/ listinfo/outages.
[21] Packet Clearing House. In https://www.pch.net/ resources/data.php.

October 2013.
[22] L. Patterson and L. Lee. A How-To Guide to BGP Multihoming.

Technical report, Equinix, Inc., Feburary 2004.
[23] RIPE NCC. RIS Raw Data. In http://www.ripe.net/data-tools/ stats/ ris/

ris-raw-data. October 2013.
[24] X. Shi, Y. Xiang, Z. Wang, X. Yin, and J. Wu. Detecting Prefix

Hijackings in the Internet with Argus. In Proceedings of ACM IMC,
Boston, MA, 2012.

[25] R. Steenbergen. A Practical Guide to (Correctly) Troubleshooting with
Traceroute. In NANOG47, Dearborn, MI, 2009.

[26] University of Oregen. RouteView Project. In http://www.routeviews.org.
October 2013.

[27] J. Xia, L. Gao, and T. Fei. A measurement study of persistent
forwarding loops on the Internet. Computer Networks, 51(17):4780–
4796, December 2007.

[28] H. Yang and S. S. Lam. Real-time Verification of Network Properties
using Atomic Predicates. In Proceedings of IEEE ICNP, Göttingen,
Germany, 2013.

331

