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Abstract the key tree degree. This approach was shown to be opti-
mal in terms of server communication cost per user join or
In secure group communications, there are both rekey an¢ave [20].
data traffic. We propose to use application-layer multicast To further reduce server processing and bandwidth over-
to support concurrent rekey and data transport. Rekey trafheads, periodic batch rekeying was proposed [18, 24, 12, 26].
fic is bursty and requires fast delivery. It is desired to redn batch rekeying, the key server processes the join and leave
duce rekey bandwidth overhead as much as possible sinoequests during a rekey interval as a batch, and generates a
it competes for bandwidth with data traffic. Towards thissingle rekey message at the end of the rekey interval. The
goal, we propose a multicast scheme that exploits proxintekey message is then sent to all users immediately, and it
ity in the underlying network. We further propose a rekeyequires fast delivery to achieve tight group access control.
message splitting scheme to significantly reduce rekey ban#ls a resultyekey traffic is bursty
width overhead at each user access link and network link. Existing rekey transport protocols [24, 3, 19, 26, 25] are
We formulate and prove correctness properties for the mubased on IP multicast, which has not been widely deployed.
ticast scheme and rekey message splitting scheme. We havehis paper, we propose to use application-layer multicast
conducted extensive simulations to evaluate our approacfALM) to support concurrent rekey and data transport. To
Our simulation results show that our approach can reduceur best knowledge, this paper is the first attempt on how to
rekey bandwidth overhead from several thousand encryptefficiently support both rekey and data transport using ALM.
new keys (encryptions, in short) to less than ten encryptions Using ALM to support both rekey and data transport cre-
for more than 90% of users in a group of 1024 users. ates new challenges. In particular, bursty rekey traffic com-
petes for available bandwidth with data traffic, and thus con-
siderably increases the load of bandwidth-limited links, such
1. Introduction as the access links of users that are close to the root of the
Many emerging Internet applications, such as grid compuA-‘LM tree. Congestion at such an access link causes Qata
’ f@sses for many downstream users. Therefore, it is desired

ing, teleconferences, pay-per-view, multi-party games, ang o ,,-e rekey bandwidth overhead as much as possible.
distributed interactive simulations will benefit from using Using ALM to support aroun rekeving also offers new
a secure group communications model [8]. In this model 9 pport group ying

members of a group share a symmetric key, catjexlip Oppﬁrtumn.es r:o do naming ?‘”d (;outlng. Inll:t))ur: approac_h,
key which is known only to group users and a key servereaC user Inthe groupis assigned a unique thatis a string
E ,h ris an end host. The ar K nb d for or; D digits. All the user IDs and their prefixes are orga-
ach useris an end nost. 1he group key can be Used 1or &k o 4 inig 3 tree structure, referred tolBdree. In addition,
crypting data traffic between group members or restrictin S )
. ach user maintaingeeighbor tablehat supports hypercube
access to resources intended for group members only. The .. .
L routing [14, 16, 28, 13, 10, 11]. The neighbor tables embed
group key is distributed by a group key management system

which changes the group key from time to time (caliee Mmulticast trees rooted at the key server and each user. There-
rekeying 9 groupkey P fore, the key server or any user can send a message to every

. one else via multicast. We propose a multicast scheme usin
There have been extensive research results on the des brop 9

of group key management in recent years [21, 22, 6, 2, 2 '@ nelghportables fqr both rekey and data transport.
To provide fast delivery of rekey messages, we propose a

26]. In partlculgr, th? key tree approach [21, 22] rec_juces th(ﬁstributed user ID assignment scheme to exploit proximity
server processing time complexity of group rekeying from

. . . in the underlying network. By virtue of this scheme, each
O(N) to O(log, (N)) where N is the group size and is | vicoot tree embedded in the neighbor tables tends to be

*This is a slightly revised version of our paper foceedings IEEE tODOIOQY'a\_Nare- That s, users.in the same multicast subtree
ICDCS June 2005. Research sponsored in part by NSF grant ANI-03191682Nnd to be in the same topological region. As a result, when




a message is forwarded from its multicast source towards [a_ symbol gescripftion R
user during multicast, it tends to be always forwarded in th B ase of each digitin user 1D

. . . D number of digits in user ID
direction towards the user, rather than being forwarded ovetz—percentie | a joining user computeB-percentile of the RTTs

links that may go back and forth across continents. measured for users in ifs, j)-ID subtree
To reduce rekey bandwidth overhead, we observe thatin K mtﬁ)‘IXimum number of neighbors in each neighbor
each rekey interval, each user needs only a small subset pf table entry :
. . N total number of users in a group
encrypted new keysehcryptmnsl_n _short)_generated by the P ajoining user collectd” users from(z, ;)-ID subtree
key server [24, 26]. Therefore, it is desired to let each usefr R; RTT thresholds; = 1,2,...,D — 1
receive only the encryptions needed by itself or its down{  v.fD useru’s ID

stream users. The challenging issue is how each user knows_“ZPl] | ahdigitofu./D.0<i<D -1
who are its downstream users and which encryptions ar u.IDI[0:4] | firsti + 1 digits ofu.ID. Itis a null string ifi <0
needed by these users. Table 1. Notation

To add_ress this issue, we propose to modify the key tr‘%%port [27] for proofs of the lemmas and theorems. Notation
to make its structure match that of the ID tree. We then

; . : . used in this paper is defined in Table 1.

propose an identification scheme to identify each key and pap

encryption. With this scheme, a user can easily determing{ |p tree

whether an encryption is needed by itself or its downstream _ . . _ . .

users by checking the encryption’s ID. We further propos&ach user in the group is assigned a unique ID that is a string

a message splitting scheme to let each user receive only tAkD digits of baseB, whereD > 0 andB > 0. We count

encryptions needed by itself or its downstream users. TH&gits from left to right and call the leftmost digit the Oth

splitting scheme can significantly reduce rekey bandwidtdigit. We useD = 5 and B = 256 in the simulations pre-

overhead at each user access link and network link. sented in this paper. All the user IDs and their prefixes are
Itis possible to perform rekey message splitting on top 0@;rganlzed into a tree structure, referrgd to as ID tree, as de-

an existing ALM scheme such as the ones in [7, 4, 29, 17, 1§ned below. Note that an ID is a prefix of itself, and a null

9]. If we use an existing ALM scheme to replace our mul-String is a prefix of any ID.

ticast scheme, however, it incurs a large maintenance cqskfinition 1 Given a group of users, the correspondiiy

at users, and the efficiency of the splitting scheme would b@eeis defined as follows:

reduced. In our approach, each user does not need to MaINe At level 0, there is a single node, the tree root, whose ID

tain states for its downstream users to perform rekey mes-

sage splitting. We defer a detailed discussion of this issue to 'sa nuII.stnng-, denoted by *[I". . .
Section 2.6. e Atleveli, 1 < i < D, each node has a unique ID that is

a string of: digits. A node with IDr exists at level if

there exists a usar in the group such that is a prefix
of u.ID. The node with 1Dz at leveli is a child of the
node at level — 1 whose ID is a prefix of.

We formulate and prove correctness properties for the
multicast scheme and rekey message splitting scheme. We
conducted extensive simulations to evaluate our approach.
Simulation results show that for 78% of users in a group of
226 users, the latency from a sender to each of these us@isn ID tree, a subtree is said to beesel-i ID subtree if it
over the multicast paths is less than twice the unicast dés rooted at a node of levél0 < i < D. The ID of a subtree
lay between the sender and such user. Furthermore, wiidefined to be the ID of the subtree root. Hereafter, we say
the rekey message splitting scheme, more than 90% of useraita user belongs to an ID subtréfethe ID subtree has the
in a group of 1024 users can reduce their rekey bandwidi{eaf node whose ID equals the user’s ID.

overhead from several thousand encryptions to less thanten . .. .
encryptions yp Befinition 2 Given a useru and an ID tree, a levels +

The rest of this paper is organized as follows. In Sec}) ID subtree is said to be the, j)-ID subtreeof u if the
pap 9 : arent node (at level) of the subtree root is an ancestor of

on 2, e s o syt s, In Secion s, e o 1o sl . and h ot it
b P joining ubtree’s IDisj, 0 <i <D —1land0<j < B — 1.

ID, and discuss user joins, leaves, and failure recovery. V\?e

evaluate our approach through simulations in Section 4, argy definition 2, for each usev that belongs ta's (i, j)-1D
conclude in Section 5. subtree,w.I D must share the the flrstdlglts with w.ID,

and theith digit of w.ID (thatis,w.IDJi]) is j.

Fig. 1 illustrates the ID tree for a group of five users with
the IDs “[0,0]", “[0,1]", “[2,0]", “[2,1]", and “[2,2]", respec-
In this section, we present our system design. We assurtieely. In the ID tree, userss, us, andus belong tou;’s
a fixed group ofN users in this section. User joins and (0, 2)-ID subtree, and:» belongs tou;’s (1,1)-1D subtree.
leaves are discussed in Section 3. Please see our technidale that an ID tree is not a data structure maintained by the

2. System design



level 0 A FORWARD ()
/ . > The sender should setsg.forward _level tobeO

S (0,2)-ID before calling this routine. _ o
level 1 . subtree > msg: the message to multicast if the caller (who calls the routinge) is
" of Y the sender; otherwise, it is the message received by the galler.
o v g 1 level — msg.forward _evel
level2 g1 o7 Ju3 o ud W5 N 2 if level = D then return
[0,0] ! [0,1]! L1200 [21 [22] | 3 if the caller is the key servénen > level = 0 in this case

(i:i);]D ”””””””””” 4  msg.forward _level <« level 41

subiree of 4 5 send a copy ofnsg to each(0, j)-primary neighbor) < j < B

6 else fori < levelto D — 1 do

Figure 1. Example ID tree. 8 msg.forward level «—i+1 _
9 send a copy ofnsg to each(s, 7)-primary neighbor) < j < B

key server or any user. Itis defined as a conceptual structur
to guide us in protocol design. Figure 2. Routine to send or forward a multi-
Our user ID assignment scheme exploits proximity in the Cast message.
underlying network. More specifically, user IDs are assigned2) If ; +# «.IDJ[i], then the (i,j)-entry contains
such that the round-trip-time (RTT) between any two users  min{K,m} (i, j)-neighbors, wheren denotes the to-
belonging to the same levelD subtree tends to be less than tal number of users belonging to tki j)-1D subtree of
or equal to a delay thresholg;, fori = 1,2,..., D — 2. As .
a result, all the users belonging to the same |évél-sub- ] )
tree tend to be in the same topological region with one-wajhe concept of{-consistency was proposed in [11, 16]-
delay diameteR; /2. These users are partitioned into multi-consistency implies 1-consistency. If all the users in the
ple child level{i + 1) ID subtrees of the leveliD subtree, 9roup maintain 1-consistent neighbor tables, then a message
such that all the users belonging to the same Iével1) ID IS guaranteed to reach every user via multicast, as proved in
subtree tend to be in the same topological sub-region witfection 2.3. Itis desired to léf > 1 for resilience [11, 10].
delay diamete?, 1/2, whereR;;; < R;. In Section 3.1, The key server also maintains a neighbor table, which has
we discuss how a joining user determines its ID. a single row. The row containB entries, each referred to as
We further define the ID of the key server to be a null(0,j)-entry,j = 0,1,..., B — 1. Among all the users whose
string, denoted by “[I". By definition, the key server belongs/Ds have the prefix I, the key server chooses tié (or

[¢)

to the level-0 ID subtree. all, if the total number of such users is less th&h users
who have the smallest RTTs to the key server ag0itg)-
2.2. Neighbor tables neighbors.

Each user in the group maintains a neighbor table. Similat.3. Multicast scheme: T-mesh
neighbor tables were used to support hypercube routing [1
16, 28, 13, 10, 11].

A neighbor table ha® rows and each row has entries.

éiven a group of users with their neighbor tables, the neigh-
bor tables embed multicast trees rooted at the key server and
) . ; o each user. Therefore, the key server or any user can send a
The jth entry at theith row is referred to agi, j)-entry, message to every one else via multicast by using their neigh-

0<i<D-1land0 < j < B-—1. The(i,j)-entry of a . : .
, . - bor tables. A multicast session consists of a sender, a set of
user’s neighbor table contains user records and performance__. . .
o ; receivers, and a message to multicast. The sender is the mul-
measures of some other users, referred {@,a3-neighbors.

. . ticast source. In a multicast session for rekey transport, the
Each(i, j)-neighbor of useru must be a user that belongs key server is the sender, and all the users in the group are re-
to the(4, j)-ID subtree ofu. The first neighbor in each entry Y ' group

is referred to as therimary neighbor of that entry. Each ceivers. In a multicast session for data transport, a particular

. ._user who has data to multicast is the sender, and all the other
user record contains the IP address, ID, and some other in- . y ”
i . . users are receivers. Hereafter, we use “member” to refer to
formation of a particular neighbor. For rekey transport, th .
he key server or a user in the group.

erformance measure of a neighbor is the RTT between the .
P u '9 ! W We propose a multicast scheme, referred td-aseshfor

neighbor and the owner of the table. All the neighbors in th .
same entry are arranged in increasing order of their RTTS'F)not;[eraeggytgn:qggg gf‘zzir)]?;hlsrfl;wa%ultltl::\% Ischfeig;((je, each

Definition 3 Given a group of users, each with a uniqueThis field specifies the forwarding level of each user, as de-
ID of D digits, their neighbor tables are said to be fined below. Each user is at a unique forwarding level in a
K-consistent K > 1, if for any useru in the group, each multicast session since each one receives a single copy of the
(i,7)-entry,0 < i < D—1and0 < j < B —1,inits multicast message, as stated in Theorem 1.

neighbor table satisfies the following conditions: Definition 4 In a multicast session, the sendeidswarding

(1) If j = w.ID[i], then the(i, j)-entry is empty. levelis defined to be 0. A useris said to be at forwarding



key server group key 4 [] k-node

level 0
(change to k1-4)
level1 ul u4 a‘;’;i)',igry @ ] (change tokzay (B0 7 o%es
[0,0] [21] .
T S e
u2 u3 us ul u2 u3 u4 u5
[0,1] [2,0] [2,2] [0,1] [0,2] 2,01 [21] [22]
Figure 3. Example multicast tree for rekey Figure 4. Example modified key tree.
transport. Theorem 1 In a multicast session, assume that every user in
level i if it receives a message with tiferward _level the group has 1-consistent neighbor table and no message is
field equal toi, 1 < i < D. lost. Then following the multicast scheme specified in Fig. 2,

. i each member (except the sender) will receive a single co
To multicast a message, the sender first sets the messa%%he multicast( mesSage ) g Py

forward _level field to be 0, and then executes routine T-mesh also provides fast failure recovervy and auick
FORWARD specified in Fig. 2. When a user receives the ! provi . y q
ggptatlon to network dynamics £ > 1. Once a mem-

message, it also executes this routine. We can see that e er detects the failure of a next hop, or detects congestion on
member can determine who are the next hops by looking L{ P, 9

its neighbor table according to tHerward _level field fo?vxf)e?rt: rtw(wjea;gzxfazotg Zﬁgt?:rxggﬁggftigof;:i’éxf?a%gﬂﬁ-
of the multicast message. 9 9

: . . try as the failed or congested neighbor. At the same time, the

Fig. 3 illustrates an example rekey multicast tree for the . .
. ) A, . user needs to look for another neighbor to replace the failed

group of five users defined in Fig. 1. Intuitively, a copy ofOr congested one

the multicast message first enters each lévi) subtree, 9 '

and then enters each levelD subtree, and so on. Itis not 2 4. Modified key tree

surprising to find out that the IDs of a member and its down-

stream users satisfy a specific relationship, as stated below.€ key server maintains a key tree. To support efficient
rekey message splitting, the key tree used in this paper is

Lemmal In a multicast session, suppose membes at  different from the original approach [21, 22, 24, 26]. The
forwarding leveli, 0 < i < D. Thenthe IDs of. and allits  original key tree has a fixed tree degree, and the tree grows
downstream users have the common prefbD[0 : i — 1].  vertically when users join. Our modified key tree has a fixed
Furthermoreu and its downstream users belong to the sam@eight, and it grows in a horizontal direction when users join.
level< 1D subtree. Hereafter, unless otherwise stated, we use “key tree” to refer

Recall that all the users belonging to the same ID subtrd@ the modified key tree.

tend to be in the same topological region by virtue of our A key tree is a rooted tree with the group key as root. A
user ID assignment scheme. key tree contains two types of nodasnodesandk-nodes

Each u-node corresponds to a particular user, and it contains
the user’s individual key. A user shares its individual key
only with the key server. A k-node contains the group key or
an auxiliary key. A user in the group is given the individual
key contained in its corresponding u-node as well as the keys
A direct implication of Lemmas 1 and 2 is that eachcontained in the k-nodes on the path from its corresponding
multicast tree embedded in the neighbor tables tends to laenode to the root.
topology-aware. That is, in a multicast session, only a single To facilitate rekey message splitting, the key server makes
copy of the multicast message is forwarded to each topologhe structure of the key tree match exactly that of the ID tree.
ical region; once the message wittrward _level = ¢ More specifically, for each user, the u-node in the key tree
enters a region (which corresponds to a levHD)- subtree), that containg:’s individual key corresponds to the leaf node
it is forwarded only to its sub-regions (each corresponds tim the ID tree whose ID equalsID. Fig. 4 shows the key
a child level{i + 1) ID subtree), and not be sent out of thetree that corresponds to the example ID tree shown in Fig. 1.
region anymore. As a result, the message goes through eachAt the end of each rekey interval, the key server changes
long-latency link that connects remote regions only onceall the keys on the path from each newly joined or departed
This helps to reduce delivery latency as well as link stressi-node to the root (see technical report [27] for a detailed
Here, stress of a physical links defined as the number of description). Then the key server uses the key in each child
identical copies of the message carried by a physical linkode of the updated k-node to encrypt the new key in the
during multicast. updated k-node. Each encrypted new key is referred to as
The correctness of the multicast scheme is stated belowan encryption. For example, suppose; leaves the group

Lemma 2 In a multicast session, suppose membas at
forwarding leveli, 0 < ¢ < D. Then for any other member
w whose ID has the prefix.7D[0 : < — 1], w can only be a
downstream user of.



REKEY-MESSAGE-SPLIT fnsg, ws, ;, 5) fied in Fig. 2. The correctness of the rekey message splitting

>msg: it is the original rekey message if the caller is the key scheme is stated below.
server, otherwise, it is the message received by the callgr. ) .
> ws ;: the (s, j)-primary neighbor of the callef) < j < B. Theorem 2 In a multicast session for rekey transport, sup-

> s: it equals 0 if the caller is the key server; otherwise, we have pose that member is at forwarding level, 0 < i < D — 1.
msg.forward level <s < D. Let w be any(s, j)-primary neighbor ofu, wheres = 0 if

1 msg’ < an empty message witbrward _level =s+1 . . . .

2 for each encryptior contained innsg do u is the key servers = i,i + 1,...,D — 1if u is a user,

3 if e.IDis aprefix ofw.ID[0 : s] or andj = 0,1,...,B — 1. Let setV containw and all the
ws,j.1D[0 : s] is a prefix ofe.I D then downstream users af. Then given an encryptian the en-

4 copye into msg’

cryption is required by at least one user¥nif and only if
e.ID is a prefix ofw.IDI0 : s], or w.ID]0 : s] is a prefix of

Figure 5. Routine to compose a separate rekey eD.

message for a particular next hop. Corollary 1 In a multicast session for rekey transport, as-
in Fig. 4. The key server needs to change the keys thgt!me that every user in the group has 1-consistent neighbor
us knows: change;_s to ki_4, and changés.s to ky,.  table and nomessage is IosF. .Followmgthe mulltlpas'F scheme
Then the key server generates four encryptidis:_4 } ..., and the rekey message splitting scheme specified in Figs. 2
{k1—1} hass (k31 iy, and{ksq}r,. Here{k'}, denotes key and 5, respecuyely, for any userin the group and any en-
k" encrypted by key. All the encryptions are putin a single CTyPtione that is generated by the key servereceives a
rekey message. Each user needs only a small subset of &f9le copy ot if and only ife is needed by or by at least
cryptions in the rekey message. For exampleneeds only ©One downstream user of
{E1—athss. 2.6. Discussion

We propose aidentification schemt identify each key | "

n our rekey message splitting scheme, each user can eas-

and encryption. We define the ID of a key in the key tree t . o . i
be the ID of its corresponding node in the ID tree. The ID o?ly determine whether an encryption is needed by its down

an encryption is defined to be the ID of the encrypting ke stream users by checking the encryption’s ID. Therefore,

Y, ; T ; )
The ID is attached to each encryption. With this identifica-there Is no need for each user to malnta|r_1 s_tates forits down
. . . - stream users. However, if we use an existing ALM scheme
tion scheme, a user can easily determine whether it needs a

) . ) L uch as the ones in [7, 4, 29, 17, 15, 9] to replace T-mesh,
g:;/lzcvencrypnon by checking the encryption’s ID, as stateé)r use the original key tree [21, 22, 24, 26] to replace the

modified key tree, then in order to perform rekey message

Lemma 3 Given an encryption, a user needs the key ersplitting, each user has to keep track of who are its down-
crypted in the encryption if and only if the ID of the encryp-stream users and which encryptions are needed by them. In
tion is a prefix of the user’s ID. the original key tree approach, the IDs of a user’s required
keys keep changing for each rekey interval even when no
downstream users join or leave. Therefore, each user has to
To send new keys to users after rekeying, a straightforwatkeep track of such changes for itself and all its downstream
approach is to mulitcast all the encryptions to each user, angers. As a result, it incurs a large maintenance cost for the
let each user extract the encryptions that it needs. The bursigers who are close to the root of the ALM tree since each
rekey traffic, however, may cause congestion at bandwidtlof them hasD (V) downstream users.
limited links, especially at user access links. Congestion Furthermore, our splitting scheme is more effective in
at an access link causes rekey and data message lossesréaiucing rekey bandwidth overhead than what could be
all the downstream users. Therefore, it is desired to reduaehieved with the existing ALM schemes. In T-mesh, be-
rekey bandwidth overhead as much as possible. cause of the exact structure match between the modified key

To reduce rekey bandwidth overhead, we propose a rekénee and the ID tree, all the users sharing a common encryp-
message splitting scheme. In this scheme, each memh&m belong to the same levéllD subtree, wheré is the
sends or forwards an encryption to its downstream users fumber of digits contained in the encryption’s ID. As a re-
and only if the encryption is needed by at least one dowrsult, only a single copy of the encryption is forwarded when
stream user. To achieve this goal, the key server conthe forwarding level is less than or equaktdt is then dupli-
poses a separate message for ed@ch)-primary neighbor cated to users who need it at subsequent forwarding levels.
by executing routine REKEY-MESSAGE-SPLIT specifiedIn contrast, if we use an existing ALM scheme to replace T-
in Fig. 5,7 = 0,1,...,B — 1. Each user at forwarding mesh, it becomes hard to make the structure of the key tree
leveli, 0 < i < D — 1, also composes a separate messagmatch that of the ALM tree. As aresult, users sharing a com-
for each(s, j)-primary neighbor by executing the routine, mon encryption have random positions in the ALM tree. In
s=1t,i+1,...,D—1andj =1,2,...,B—1. Theroutinein this case, the shared encryption may have to be duplicated at
Fig. 5 is called at lines 5 and 9 of routine FORWARD speci-early forwarding levels.

5 sendmsg’ to ws,; via unicast

2.5. Rekey message splitting scheme



The efficiency of our splitting scheme also benefits fron®, 1, ..., B — 1. These users tend to be in the same topo-
our topology-aware user ID assignment scheme. Since dtlgical region, and each one’s ID shares the firgligits
the users sharing a common encryption belong to the saméth «’s ID. (Useru has already determined the fiistigits,
ID subtree, they tend to be in the same topological region.ID[0 : i — 1], of its ID so far.) In the second step,mea-
by virtue of the user ID assignment scheme. As a resulsures the RTTs between itself and the users it collected. Ac-
only a single copy of the shared encryption is forwarded uncording to the measurement resulisgetermines the value
til it enters the region. It is then duplicated and forwardeaf «.I DJi] in the third step. More specifically, if predicts
to multiple sub-regions. In contrast, if each user randomlthat it is “close” to the users belonging to a particular 1D
chooses its ID, then each user has a random position in teabtree, sayi,b)-ID subtree, then: setsu.ID[i] to beb,
ID tree. For example, users from the same LAN could bed < b < B — 1. As aresultuy’s ID shares one more digit
long to differentlevel-0 ID subtrees. In this case, their sharedith the users in th¢i, b)-ID subtree, and. itself becomes a
encryptions have to be duplicated once the multicast startgser belonging to this ID subtree. We thus achieve the effect
and multiple copies of the shared encryptions traverse tththat users close to each other belong to the same ID subtree.
Internet and enter the same LAN. In the last stepy notifies the key server its determined ID
In short, the efficiency of our rekey message splittingligits. We describe each step in detail below.
scheme comes from a careful integration of the other sys-
tem components, that is, the user ID assignment scheme, 9§ 1. Step 1: collecting user records
multicast scheme T-mesh, and the modified key tree. If any
of these components is replaced by an existing scheme, ther v to know which users belong to ifg, j)-ID subtree,
efficiency of the splitting scheme would be reduced. Thisig = 0,1, ..., B — 1, a straightforward approach is to let the
confirmed by our simulation results presented in Section 4 key server provide such information. This however increases
the key server's bandwidth overhead. Therefore, weulet
3. Protocol description collect the information by querying other users. _
Fori = 0, u sends a query to the user whose record is
In this section, we present the protocol for a user to deteprovided tou by the key server. Foi > 0, sinceu has
mine its ID. We also discuss the issues related to a usergready determined the firstigits of its ID so far, it knows

join, leave, and recovery from neighbor failures. at least one user that belongais (i — 1, 0)-ID subtree i —
1,1)-ID subtree, ..., ofi—1, B—1)-ID subtree. Usex sends
3.1. User ID assignment a query to such a user. The query specifies a target ID prefix

To join a group, a user, say first contacts the key server (or asu.ID[0 : 7 — 1]. Upon receiving the query, the receiver
J group, » Say y kooks up its neighbor table, and returns the user records of

a separate registrar server [23]). They mutually authentica . . .
each other using a protocol such as SSL. If authenticated aﬁ% the neighbors whose IDs have the target ID prefix. In this

accepted into the group,receives its individual key and the way, u collectg, one or more gsers from {5 j)-ID subtree
7. if the subtree is not empty, fgr=0,1,..., B — 1.
current group key. From now on, all the communications be-

tweenu and the key server are encrypted with the individua] [0 €&cty, j = 0,1, ..., B—1, to collect more users from
key, and all the communications betweeand other users 'S (¢:7)-ID subtree,u keeps querying the users it collected
in the group are encrypted with the group Rey. from the ID subtree until it collect® users from the subtree,

If w is the first join in the group, the key server assigns el it has queried all the users it collected from the subtree. In
user ID asD digits of “0”. The kéy server then sendsa each queryy specifies the target ID prefix as/ D[0 : i — 1]

message via unicast that contairis ID and all the keys on ?‘ppe_”deo' with dig. We setP” = 10 for all the simulations
the path fromu’s corresponding u-node to the root in the keyIn this paper.
tree.

If u is not the first join, the key server givesthe user 3.1.2. Step 2: measuring RTTs
record of another user already in the group. Themeds to
determine its ID digit by digit, starting with the Oth digit. To
determine théth digit,0 < ¢ < D — 2, u's actions consist of
four steps. (We assumias fixed in the following discussion
and in Sections 3.1.1, 3.1.2,and 3.1.3.)

In the first stepu collects the records of users who be-
long to its (¢, 7)-ID subtree (see Definition 2), fof =

In this step,u estimates whether it is close to the users it
collected from its(¢, j)-ID subtree, forj = 0,1,..., B — 1.

For this purposey measures the RTT between the first-hop
and last-hop routers (referred to as gateway routers) on the
path fromu to w, for each usetw it collected in the ID sub-
trees. Letr(u,w) denote the RTT betweenandw's gate-

way routers. Leti(u,w) denote the RTT between the two
1The key server needs to semdthe new group key via unicast i end hosts: andw. In our protocol usesr(u, ) instead

cannot finish constructing its neighbor table before the end of the curre@f h(u, w) to eStimate whether it is close mt0p0|09ica”¥-
rekey interval. The rational is that two end hosts tend to be topologically




close to each other even if their access links have long la- Our technical report [27] presents an analysis of the com-

tency? munication cost for a joining user to determine its ID. The
Useru can easily derive (u, w) if it knows h(u,w), the  main result is that if each non-leaf node in the ID tree has

RTT betweenu and its gateway router, and the RTT be-the same outgoing degree, then the co$?(# - In N) for

tweenw and its gateway router. For this purposeesti- D =InN.

matesh(u, w) by using ping messages. And each user mea- _ )

sures the RTT between itself and its gateway router using tre2- Join, leave, and failure recovery

traceroute  utility. The value of the RTT between a user After its ID is determinedy needs to build its neighbor ta-

and its gateway router is stored in each copy of the userigie# It also needs to contact some other users to have its user

corresponding user records so that others can know it.  record inserted in their neighbor tables. The join protocol

- . presented in the Silk system [13, 10] is used to accomplish

3.1.3. Step 3: determiningu.I D[] this task. The join protocol is proved to construct consistent

In this step, for each, j = 0,1,..., B — 1, useru computes neighbor tables after an arbitrary number of joins if messages

the F-percentile of the RTTs measured for all the users itire delivered reliably and there are no user leaves or failures.

collected from its(z, j)-ID subtree. (Each RTT used in this After its joining process terminates,sends the key server a

step is the one between two gateway routers.) Heéie a  notification message.

system parameter. In order to tolerate the estimation error of Whenu decides to leave the group, it needs to contact

RTTs, we did not use 100-percentile. Inste@dakpercentile other users to have its user record deleted from their neigh-

is used in all the simulations in this paper. Suppose the RTTsor tables. The leave protocol presented in Silk is used to

of the users that, collected from its(i, b)-ID subtree0 <  accomplish this task. After that, sends a leave request to

b < B—1, produces the smallest-percentile value, denoted the key server.

by fi . Useru then compareg; , with the delay threshold Useru detects the failure of a neighbor if the neighbor

R;+1, and the comparison results in two cases. does not respond to consecutive ping messages. Upon de-
In the first casef; ; is less than or equal t&; ;. User tecting the failure of a neighbat,sends the key server a no-

u then predicts that it is topologically close to the users betification message. It also needs to contact some other users

longing to its(7, b)-1D subtree, and thus assignd D[i] asb.  to look for appropriate users to replace the failed one. We

Useru then continues to determine the next digif D[i +1]  refer interested readers to [11] for effective failure recovery

of its ID if the next digit is not the last digit. That is, in-  strategies.

creases the value ofby 1, and goes back to step 1. If the

next digit is the last oney goes to step 4 and asks the key4. Performance evaluation

server to assign the last digit to make sure that every user {flg eyajuate the performance of our approach in this section.
the group has a unique ID. We first study whether T-mesh can provide low delivery la-
In the second cas¢; ;, is larger thani?; ;. Useru then  yoncy \We then study the modified key tree by the size of the
predicts that it is not close enough to the users in@nJ)-  rekey message. Next, we examine whether the rekey mes-
ID subtree;j = 0,1, ..., B — 1. In this casey goes to step 4 540 gpjitting scheme can significantly reduce rekey band-
and asks the key server to assign digitsfatDli], u.ID[i+  jgth overhead. Finally, we investigate the impact of differ-
1], ..., andu.ID[D —1]. ent values of the delay thresholfts, i = 1,2,...,D — 1, on
the latency performance of T-mesh.
For efficiency, we wrote our own discrete event-driven
In this step,u sends the key server a message that contaiRgmulator. We simulate the sending and the reception of a
its determined ID digits. Supposealready determines the message as events. The following two topologies were used
first! dlgltS,uID[O - 1], ofits ID, 0 <l<D-1. The in the simulations:
key server then assigns tlid digit to the last digit ofu’s
ID, such that none of the other users in the group shares the
first I + 1 digits with . 3 Consequently, in the ID tree,
becomes a user in a new leg¢H 1) subtree to which none
of the other users in the group belong. After that, the key
server sends a message that contains complete ID and
all the keys on the path fromis corresponding u-node to the

root in the key tree. 4All the user records collected hywhile it determines its ID could be
used to fill its neighbor table.
°Note that the latency stored for each neighbor in a neighbor table is the 5We also used the minimum value of 20 RTT samples measured for

3.1.4. Step 4: notifying the key server

e PlanetLab topology — We measured the RTT between
each pair of 227 hosts on the PlanetLab infrastruc-
ture [1] using a single probe message on August 12,
20042 In our simulator, we let each member (a user or
the key server) correspond to a PlanetLab host, and set
the RTT between each pair of members to be the same

RTT between two end hosts. each pair of PlanetLab hosts, and repeated each simulation presented in
3In an extreme case, the key server may not be able to find a uniqugection 4.1. The relative performance of T-mesh to NICE (the multicast
value foru.ID[0 : I]. See technical report [27] for a solution. scheme for comparison) does not change.



as the RTT between the corresponding two PlanetLafiroup at a random time between 0 and 452 seconds. After
hosts. We set one-way delay between two members @l the joins terminate, the key server multicasts a message.
be half of their RTT. Fig. 6 plots the inverse cumulative distribution of user
e GT-ITM topology — This is a transit-stub topology stress, application-layer delay, and RDP. Each curve is ob-
based on the GT-ITM topology models [5]. The topol-tained from 100 simulation runs. For each run in Fig. 6 (a),
ogy consists of 5000 routers and 13000 network linkswe changed user joining times, and started a rekey multicast
Each member is attached to a randomly selected routeession in T-mesh and NICE, respectively. We then ranked
We abstract away queueing delays in the simulationshe users in increasing order of their stresses. For each rank,
See technical report [27] for the parameter settings oihich corresponds to a point artaxis, we computed the
the topology. average user stress (shown as a point in the figure) of the
In the simulations, we compare the performance of Tusers with this particular rank across all runs, as well as the
mesh with NICE [4], one of the state-of-the-art ALM 5 to 95-percentile value (shown as a vertical bar). Therefore,
schemes® In our simulation of NICE, a user will not join each point with coordinate&:, y) in Fig. 6 (a) can be in-
or leave the group until the previous join or leave terminateserpreted asz fraction of users have an average user stress
In NICE, the ALM tree constructed by such sequential joindess than or equal tg. Figs. 6 (b) and (c) can be interpreted
and leaves is expected to have better (at least not worse) psimilarly.
formance than the tree constructed by concurrentjoins. Inall From Fig. 6, we observe that the distributions of user
the simulations (except the ones in Section 4.2) for T-mesktress in T-mesh and NICE are comparable; however, the
we use concurrent joins and leaves. The join and leave prasers have much smaller application-layer delay and RDP
tocols of T-mesh are based on the Silk protocols, but simin T-mesh than those in NICE. The application-layer delay
plified to improve simulation efficiency. For each run of ain T-mesh is about half of that in NICE for the majority of
simulation, users follow the same join and leave order in Tusers. In T-mesh, 78% of users have an RDP less than 2, and
mesh and NICE. In all the simulations of T-mesh, we se®5% of users less than 3. In NICE only 23% of users have
D=5 R =150ms, Ry =30ms,R3 =9ms, Ry =3 an RDP less than 2, and 47% of users less than 3.
ms, B = 256, andK = 4, unless otherwise stated. In all From Fig. 6, we also observe that in different runs the
the simulations of NICE, each cluster contains three to eightistributions of application-layer delay and RDP have much
users [4]. smaller variations in T-mesh than those in NICE. This im-
plies that the latency performance of T-mesh is less sensitive
to different user joining orders than that of NICE.
We evaluate the delivery latency of a rekey message when We repeated these simulations on the GT-ITM topology
the key server multicasts the message in T-mesh and NICfar 256 and 1024 user joins, respectively. We also conducted
respectively. Given a particular user, we define three perfogimulations on both the PlanetLab and GT-ITM topologies to

4.1. Delivery latency

mance metrics: evaluate delivery latency of a data message when it is mul-
e User stress — The total number of messages the uditast by a user. The simulation results (see technical re-
forwards in a multicast session. port [27]) showed that in these simulations the relative per-

o Application-layer delay (in milliseconds) — The latencyformance of T-mesh to NICE is similar to that in Fig. 6.
from the time that the sender sends a message to the Note that it is not appropriate to conclude that T-mesh
time that the user receives a copy of the message. is better than NICE for data transport in general. NICE is
¢ Relative delay penalty (RDP) — The ratio of the user'slesigned for scalable group communications, and has no no-
application-layer delay to the one-way unicast delayion of a key server. In NICE, to determine its position in the
from the sender to the user. tree, each joining user probes a smaller number of users than
Note that there is no notion of a key server in the origina@ joining user in T-mesh does.
design of NICE [4]. In our simulations, to multicast a rekey
message in NICE, we let the key server unicast the messagi@. Rekey message size
to the root of the NICE tree, which is the topological center
of all the users in the group [4]. The message then travers
the tree in a top-down fashion.

this subsection, we study the modified key tree by the size
of the rekey message. We defirekey costas the number

We ran simulations on the PlanetLab topology witté ‘?f enc;rx(p;}t_mnsgon?med ina re;:key mdessazﬁe.él_l It'kl"(li/lstlmm?_
user joins. In every run of our simulations, each user join thfions in this su Section are performed on the & 1- Oopol-

ogy. In each simulation, 1024 users join the group each at

6We did not choose Narada [7] for comparison because the structure gf random time between 0 and 2048 seconds. After all the

Narada mesh keeps changing for self-improving purposes even when thifﬁns terminate. the key server processIejsin andl leave
are no user joins or leaves. This incurs significant communication cost for !

each user to keep track of its downstream users in order to perform rekE§duests) < J, L < 1024, in one r_e!<ey interval, and gener-
message splitting. ates one rekey message. For efficiency, we use a centralized
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Figure 6. Rekey path latency on the PlanetLab topology.
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minus that of the original key tree. rekeying heuristic to the modified key tree.
Figure 7. Rekey cost as a function of number of joins and leaves in the modified and the original key
trees.

controller to simulate thd joins andL leaves in that rekey report [27] for a detailed description of the heuristic.
interval. Fig. 7 (c) plots the average rekey cost of the modified key

Fig. 7 (a) plots the average rekey cost of the modified kiglee with the cluster rekeying heuristic applied minu_s t.hat of
tree as a function of number of joins and leaves. Each avdf€ original key tree. We observe that with the heuristic, the
age value is computed based on 20 simulation runs. Fig.F¢key cost of the modified key tree becomes even smaller
(b) plots the rekey cost of the modified key tree minus thahan that of the original key tree when the fraction of leaving

of the original key tree. The original key tree is based oiSers is small.

the Wong-Gouda-Lam key tree [22] with degree 4 and the

batch rekeying algorithm proposed in [26]. A degree of 44-3. Rekey bandwidth overhead

is proved to be optimal in terms of rekey cost per join Okyie now evaluate whether the rekey message splitting
leave [22]. From Fig. 7 (b) we observe that the rekey cost afcheme can significantly reduce rekey bandwidth overhead.
the modified key tree is higher than that of the original keyye yse the GT-ITM topology for all the simulations in this
tree because the modified key tree is not balanced. subsection. In each simulation, 1024 users join the group
We propose a cluster rekeying heuristic to reduce theach at a random time between 0 and 2048 seconds. After
rekey cost of the modified key tree. In the heuristic, all theall the joins terminate, the key server processes 256 joins
users belonging to the same leyé)— 1) ID subtree are and 256 leaves in one rekey interval of 512 seconds, and
referred to as a bottom cluster. For each bottom cluster generates one rekey message. Each of the 256 joins and 256
user is selected as the leader. The leader has all the kdggves starts at a random time of the rekey interval. Such
on the path from its corresponding u-node to the root in the large number of joins and leaves is not typical in prac-
modified key tree. A non-leader user has only three key$ice; however, it represents a challenging scenario. If the
the group key, the user’s individual key, and a pairwise kegplitting scheme works well in this scenario, then we expect
shared with its cluster leader. When a leader receives a ndhat rekey transport has little interference with data transport
group key, it unicasts a copy of the group key to each user iwhen users join and leave less frequently.
its cluster by first encrypting the group key with the receiv- For comparison, we define seven rekey transport proto-
ing user’s pairwise key. With this heuristic, only the join andcols, as specified in Table 2. The IP multicast scheme used in
leave of a leader incurs group rekeying. Please see technidal is based on the DVMRP multicast routing algorithm. As
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protocol || keytree | multicast cluster | rekey msg 02 ‘ ‘ ‘ 5 ‘ ‘ ‘ ‘
i it > 150, 20,3) ——— 150, 20,3) ———
approach | scheme rekeying | splitting 2 L f— Al PO g—
P1 0r|g|na| NICE n/a no >, 015 (150, 40, 15, 3) - (150, 40, 15, 3) -~
7 — & (150, 50, 30, 9, 3) 3l (150, 50, 30, 9, 3)
P/ original NICE n/a yes 8 o1 )
P modified | T-mesh no no g 4
P modified | T-mesh no yes L 005
Py modified | T-mesh yes no <, R B S
P} modified | T-mesh yes yes 0 02 04 06 08 1 0 02 04 06 08 1
Py 0rigina| IP multicast | n/a no Fraction of Users Fraction of Users
(a) Inverse cumulative distribution (b) Inverse cumulative distribution
Table 2. Seven rekey protocols of application-layer delay. of RDP.

pointed out in Section 2.6, to allow rekey message splitting Figure 9. Rekey path latency in T-mesh for
in P/, users need to maintain states @fN) downstream  Various values of D and delay thresholds
users. In our evaluation of NICE, we did not count such (R1, Rz, ..., Rp-1)-
maintenance cost because the cost depends on the particalad (c), respectively. These users and links are close to the
maintenance protocol. root of the NICE tree. Congestion at these users or links can

Figs. 8 (a), (b), and (c) plot the inverse cumulative districause data and rekey message losses for many downstream
bution of the number of encryptions received per user, forsers. Therefore, iP?] the rekey bandwidth overhead of the
warded per user, and going through each of the 13000 netiost loaded users and links is a big concern.
work links, respectively. Each curve in the figure is obtained We conclude that rekey message splitting is very effec-
from a typical simulation run where one rekey message ive in reducing rekey bandwidth overhead. Furthermore,
distributed. Note that thg-axis is in log scale, and the- it is more effective to perform message splitting/th and
axis starts from 0.9 or 0.96 since we are concerned with th&; (using T-mesh) than i, (using NICE), especially for
most loaded users and links. the most loaded users and links. In addition Ahand P;

In Fig. 8, by comparing?] to P;, Py to P, and P} to each user does not need to maintain states for its downstream
Ps, we observe that rekey message splitting is very effectiviésers to perform message splitting.
in reducing rekey bandwidth overhead. In particularPin
and P} (using T-mesh), the rekey message splitting can ré-4- Delay thresholds
duce rekey bandwidth overhead for more than 90% of use® determine its ID, a joining user needs to compare the
and links from several thousand encryptions to less than teRTTs between itself and the users it collected with the de-
encryptions. No users receive or forward more than 350 emay thresholds?;, i = 1,2, ..., D — 1. To choose appropri-
cryptions inP; and P (see Figs. 8 (a) and (b)). And only ate values forR;, we use the following heuristic. First, we
a few links receive up to 1500 encryptions (see Fig. 8 (c)ksetR; around one hundred milliseconds so that all the users
These links are on the paths from the key server t(itg)-  from the same continent could belong to the same level-0 ID
primary neighborsj = 0,1, ..., B—1. Since rekey transport subtree. Second, we sBf,_; to be in the order of several
and data transport choose different multicast trees in T-mestjlliseconds, so that all the users in a few closely located
we expect that in?; and P; rekey transport does not affect LANs could belong to the same level) — 1) ID subtree.
data transport as long as the rekey bandwidth overhead ladist, we make the ratio a®;/R;.; larger than or equal to
most users and most links is very small. 2, so that each levellD subtree contains several levgh1)

In P{ (using NICE), however, a few users still need tolD subtrees.
forward 1000 to 10000 encryptions, and some links need Fig. 9 plots the inverse cumulative distributions of
to transfer up to 4000 encryptions, as shown in Figs. 8 (lgpplication-layer delay and RDP for various value®xdnd
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(R1, Ra, ..., Rp_1) when the key server multicasts a rekey[11]
message. The PlanetLab topology with 226 joins is used in
the simulations. Each curve in the figure is obtained from a
typical simulation run. From the figure, we observe that thé!
latency performance of T-mesh is not sensitive to the various
values of delay thresholds that we chose.

. [13]
5. Conclusion
In this paper, we proposed an application-layer multicast ap-
proach that supports concurrent rekey and data transpgr]t‘.”
Our goal is to provide fast delivery of rekey messages and
reduce rekey bandwidth overhead as much as possible. Qus
approach consists of a multicast scheme using neighbor ta-
bles, a modified key tree, and a rekey message splitting
scheme. These system components are integrated with a &6
herent scheme to identify each user, key, and encryption. By
virtue of the identification scheme, each user can determine
who are the next hops by looking up its neighbor tables in
a multicast session. Also each user can determine whether)
an encryption is needed by its downstream users by check-
ing the encryption’s ID. Furthermore, our user ID assign-
ment scheme exploits proximity in the underlying network 1€l
such that each multicast tree embedded in the neighbor tables
tends to be topology-aware. Our simulation results showed
that our approach can achieve much smaller delivery latengyp
and rekey bandwidth overhead for almost all the users (and
links) than a representative existing ALM scheme.
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