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ABSTRACT

We present the design and specification of a scalable and reliable protocol for group rekeying together with performance
evaluation results. The protocol is based upon the use of key trees for secure groups and periodic batch rekeying. At the
beginning of each rekey period, the key server sends a rekey message to all users consisting of encrypted new keys (encryptions,
in short) carried in a sequence of packets. We present a simple strategy for identifying keys, encryptions, and users, and a key
assignment algorithm which ensures that the encryptions needed by a user are in the same packet. Our protocol provides
reliable delivery of new keys to all users eventually. It also attempts to deliver new keys to all users with a high probability
by the end of the rekeying period. For each rekey message, the protocol runs in two steps: a multicast step followed by a
unicast step. Proactive FEC multicast is used to control NACK implosion and reduce delivery latency. Our experiments show
that a small FEC block size can be used to reduce encoding time at the server without increasing server bandwidth overhead.
Early transition to unicast, after at most two multicast rounds, further reduces the worst-case delivery latency as well as user
bandwidth requirement. The key server adaptively adjusts the proactivity factor based upon past feedback information; our
experiments show that the number of NACKs after a multicast round can be effectively controlled around a target number.
Throughout the protocol design, we strive to minimize processing and bandwidth requirements for both the key server and
users.
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1. INTRODUCTION

Many emerging Internet applications, such as pay-per-view distribution of digital media, restricted teleconferences, multi-party
games, and virtual private networks will benefit from using a secure group communications'mirdidis model, members

of a group share a symmetric key, calgup keywhich is known only to group users and the key server. The group key can

be used for encrypting data traffic between group members or restricting access to resources intended for group members only.
The group key is distributed by a group key management system which changes the group key from time to time (called group
rekeying). It is desirable that the group key changes after a new user has joined (so that the new user will not be able to decrypt
past group communications) or an existing user has departed (so that the departed user will not be able to access future group
communications).

A group key management system has three functional components: registration, key management, and rekey transport.
All three components can be implemented in a key server. However, to improve registration scalability, it is preferable to use
one or more trusted registrars to offload user registration from the key Server.

When a user wants to join a group, the user and registration component mutually authenticate each other using a protocol
such as SSE. If authenticated and accepted into the group, the new user receives its ID and a symmetric key, called the
user’'sindividual key which it shares only with the key server. Authenticated users send join and leave requests to the key
management component which validates the requests by checking whether they are encrypted by individual keys. The key
management component also generates rekey messages, which are sent to the rekey transport component for delivery to all
users in the group. To build a scalable group key management system, it is important to improve the efficiency of the key
management and rekey transport components.
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We first consider the key management component, which has been the primary focus of priériwdrkthis paper,
we follow thekey treeapproact;® which uses a hierarchy of keys to facilitate group rekeying, reducing the processing time
complexity of each leave request fra{V) to O(log,; (N)), whereN is group size and the key tree degree. Rekeying after
every join or leave request, however, can still incur a large server processing overhead. Thus we propose to further reduce
processing overhead by using periodic rekeyling, such that the key server processes the join and leave requests during a
rekey interval as a batch, and sends out just one rekey message per rekey interval to users. Batch rekeying reduces the numbe
of computationally expensive signing operations. It also reduces substantially bandwidth requirements of the key server and
users.

We next consider the rekey transport component. Reliable delivery of rekey messages has not had much attention in prior
work. In our prototype system, KeystoReaye designed and implemented a basic protocol which uses proactive FEC to improve
the reliability of multicast rekey transport. We also investigated the performance issues of rekey tfearspottserved that
although many reliable multicast protocols have been proposed and studied in receft y&arskey transport differs from
conventional reliable multicast problems in a number of ways. In particular, rekey transport has the following requirements:

e Reliability requirement. It is required that every user will receive all of its (encrypted) new keys, no matter how large the
group size. This requirement arises because the key server uses some keys for one rekey interval to encrypt new keys for
the next rekey interval. Each user however does not have to receive the entire rekey message because it needs only a very
small subset of all the new keys.

e Soft real-time requirement. It is required that the delivery of new keys to all users be finished with a high probability
before the start of the next rekey interval. This requirement arises because a user needs to buffer encrypted data and keys
before the arrival of encrypting keys, and we would like to limit the buffer size.

e Scalability requirement. The processing and bandwidth requirements of the key server and each user should increase as
a function of group size at a low rate such that a single server is able to support a large‘group.

The above requirements of rekey transport were considered and analyzed in a companién Fapeobjective of this
paper is to present in detail our rekey transport protocol as well as its performance.

Our server protocol for each rekey message consists of four phases: (i) generating a sequence of ENC packets containing
encrypted keys, (ii) generating PARITY packets containing FEC redundant information, (iii) multicast of ENC and PARITY
packets, and (iv) transition from multicast to unicast.

To achieve reliability, our protocol runs in two steps: a multicast step followed by a unicast step. During the multicast step,
which typically lasts for just one or two rounds, almost all of the users will receive their new keys because each user only needs
one specific packet (guaranteed by our key assignment algorithm) and proactive FEC is also used. Subsequently, for each user
who cannot recover its new keys in the multicast step, the keys are sent to the user via unicast. Since each user only needs a
small number of new keys, and there are few users remaining in the unicast step, our protocol achieves reliability with a small
bandwidth overhead.

To meet the soft real-time requirement, proactive FEC in the multicast step is used to reduce delivery?gtendihen
needed, early transition from multicast to unicast reduces worst-case delivery latency because the server does not need to wait
for the maximum round-trip timeR1'T) for all users before sending in the unicast step. By adaptively adjusting the time to
switch to unicast, our protocol allows explicit tradeoff between key server bandwidth overhead and worst-cast delivery latency.

Towards a scalable design, we observe that the key factors are processing and bandwidth requirements at the key server and
each user. To improve scalability, we use the following ideas: 1) To reduce the key server processing requirement, we partition
a rekey message into blocks to reduce the size of each block and therefore reduce the key server's FEC encoding time. 2) To
reduce each user’s processing requirement, our key assignment algorithm assigns encrypted new keys such that each user neec
only one packet. Thus, the vast majority of users do not need to recover their specific packets through FEC decoding. 3) To
reduce key server bandwidth requirement, our protocol uses multicast to send new keys to users initially. 4) To reduce a user’s
bandwidth requirement, we use unicast for each user who cannot recover its new keys during the multicast step. This way, a
small number of users in high-loss environments will not cause our protocol to perform multicast to all users.

*To further increase system reliability as well as group size, we might consider the use of multiple servers, which is a topic beyond the
scope of this paper.



In summary, we have the following contributions. First, we present a detailed specification of a scalable and reliable
protocol for group rekeying, together with performance results. Second, a simple key identification strategy and key assignment
algorithm are presented and evaluated. Third, we show that our block partition algorithm reduces the server's FEC encoding
time without increasing server bandwidth overhead. Finally, an adaptive algorithm to adjust the proactivity factor is proposed
and evaluated. The algorithm is found to be effective in controlling NACK implosion.

The balance of this paper is organized as follows. In Section 2, we briefly review the key tree and periodic batch rekeying
ideas. In Section 3 we present our server and user protocols. In Section 4 we show how to construct a rekey message. The key
identification strategy and key assignment algorithm are presented. The block partition algorithm is proposed and evaluated
in Section 5. In section 6 we discuss how to adaptively adjust proactivity factor to control NACK implosion. In Section 7 we
discuss when and how to unicast. Our conclusions are in Section 8.

2. BACKGROUND

We review in this section the key tregand periodic batch rekeyifigtlideas and a marking algorithm. The algorithm is used
to update the key tree and generate workload for rekey transport.

2.1. Key tree

A key tree is a rooted tree with the group key as root. A key tree contains two types of nedeslescontaining users’
individual keys, andk-nodescontaining the group key and auxiliary keys. A user is given the individual key contained in its
u-node as well as the keys contained in the k-nodes on the path from its u-node to the tree root. Consider a group with 9 users.
An example key tree is shown in Figure 1. In this group, ugeis given the three keys on its path to the roks; kg9, and

ki1_g. Key kg is theindividual keyof ug, key k1 is thegroup keythat is shared by all users, ahgy is an auxiliary key

shared byur, ug, andug.

k-node

k-nodes

individual
keys

Figure 1. An example key tree

Supposeuqy leaves the group. The key server will then need to change the keysdhatows: changé, o to k1 _g,
and changesy to krs. To distribute the new keys to the remaining users using the group-orfergtieglying strategy, the
key server constructs the followingkey messagby traversing the key tree bottom-up:{k7s}i,, {k78}ksr {k1-8}k1as
{k1-8}kuse» {K1-8}kqs )- Here{k’'}, denotes key’ encrypted by ke, and is referred to as ancryption Upon receiving
a rekey message, a user extracts the encryptions that it needs. For exagni®, needs{k1_s}x,, and{kzs},. In other
words, a user does not need to receive all of the encryptions in a rekey message.

2.2. Periodic batch rekeying

Rekeying after every join and leave request, however, can be expensive. In periodic batch rekeying, the key server first collects
J join and L leave requests during a rekey interval. At the end of the rekey interval, the key server runs a marking algorithm to
update the key tree and construct a rekey subtree.

In the marking algorithm, the key server first modifies the key tree to reflect the leave and join requests. The u-nodes for
departed users are removed, or replaced by u-nodes for newly joined users.JWhén the key server will split the nodes
after the rightmost k-node at the highest level (with the root as level 0) to expand the extra joins. After modifying the key tree,
the key server changes the key in a k-node if the k-node is on the path from a changed u-node (either removed or newly joined
node) to the tree root.

Next, the key server constructs a rekey subtremk&y subtreeonsists of all of the k-nodes whose keys have been updated
in the key tree, the direct children of the updated k-nodes, and the edges connecting updated k-nodes with their direct children.



Given a rekey subtree, the key server can then generate encryptions. In particular, for each edge in the rekey subtree, the key
server uses the key in the child node to encrypt the key in the parent node.

Appendix B shows the detailed marking algorithm.

3. PROTOCOL OVERVIEW

In this section, we give an overview of the rekey transport protocol. An informal specification of the key server protocol is
shown in Figure 2.

First the key server constructs a rekey message as follows. At the beginning of a rekey interval, after the marking algorithm
has generated encryptions, the key server runs the key assignment algorithm to assign the encryidfs imakets. Our
key assignment algorithm guarantees that each user needs onyNo@gpacket.

Next, the key server uses a Reed-Solomon Erasure (RSE) coder to generate FEC redundant informatibul Ball&d
packets. In particular, the key server partitidiid C' packets into multiple blocks. Each block containg N C' packets. We
call & the block size. The key server generdtgs— 1)k| PARITY packets for each block, whepas theproactivity factor

Then the key server multicasts tleVC and PARITY packets to all users. A user can recover its required encryptions
in any one of the following three cases: 1) The user receives the spEfic packet which contains all of the encryptions
for the user. 2) The user receives at |dapackets from the block that contains its specHiy C' packet, and thus the user can
recover thek original ENC packets. 3) The user receive§& R packet during a subsequent unicast phase.UTH& packet
contains all of the encryptions needed by the user.

After multicasting theENC and PARITY packets to the users, the server waits for the duration of a round, which is
typically larger than the maximum round-trip time over all users, and collects NACKs from the users. Based on the NACKs,
the key server adaptively adjusts the proactivity factor to control the number of NACKSs for the next rekey message. Each NACK
specifies the number d?PARITY packets that a user needs in order to hWayeckets to recover its block. In particular, the
key server collects the largest numbefod RITY packets needed (denotedmasax|:]) for each block. At the beginning of
the next round, the key server generatesix[i] new PARITY packets for each block and multicasts the neR ARITY
packets to the users. This process repeats until the conditions for switching to unicast are satisfied (see Section 7). Typically,
unicast will start after one or two multicast rounds. During unicast, the key server Befllgackets to the users who have
not recovered their required encryptions.

1. Use key assignment algorithm to constrigV C' packets
2. Partition the sequence &fN C packets into multiple blocks
3. Multicastk ENC packets and(p — 1)k] PARITY packets for each block
4. When timeout
adaptively adjust proactivity factor
if conditions for switching to unicast hold
then unicast/ SR packets to users who did not receive their required encryptions
else
collectamax[i] as the largest number 6fARITY packets needed for each block
generateimax[i| new PARITY packets for each block
multicast thesd® ARITY packets to all users at the beginning of next round

Figure 2. Basic protocol for key server

An informal specification of the user protocol is shown in Figure 3. In our protocol, a NACK-based feedback mechanism
is used because the vast majority of users can receive or recover their required encryptions within a single round. In particular,
during each round, a user checks whether it has received or can recover its block. If not, the user will, tepartimber of
PARITY packets needed to recover its block, to the key server. By the property of Reed-Solomon encdauyal tok
minus the number of packets received in the block containing its spétNi€' packet.

TAn ENC packet is a protocol message generated in the application layer. But we will refer topjaaketto conform to terminology
in other papers.



When timeout
if received its specifi& NC packet, or at least packets in the required block, oaS R packet
then success
else
a <— number of PARITY packets needed for recovery
senda by NACK to the key server

Figure 3. Basic protocol for a user

In summary, our protocol generates four types of packetdl )~ packet, which contains encryptions for a set of users;
2) PARITY packet, which contains FEC redundant information produced by a RSE codéf B)packet, which contains
the encryptions for a specific user; ))AC K packet, which is feedback from the users to the key server. This type of packets
reports the number dPARITY packets needed for specific blocks.

Note that protocols given in Figure 2 and 3 only outline the behaviors of the key server and users. More detailed specifica-
tions of these protocols and packet formats are shown in Appendix A.

4. CONSTRUCTION OF ENC PACKETS

After running the marking algorithm to generate the encryptions of a rekey message, the key server next runs a key assignment
algorithm to assign the encryptions inkdVC' packets. To increase the probability for each user to receive its required encryp-
tions within one round, our key assignment algorithm guarantees that all of the encryptions for a given user are assigned into a
single ENC' packet. For each user to identify its specifiév C' packet and extract its encryptions from théV C' packet, the

key server assigns a unique ID for each key, user and encryption, and includes ID informa&ivicipackets.

Below, we first discuss how to assign an ID for each key, user and encryption; then we define the fornfabaf'gpacket.
Finally we present and evaluate our key assignment algorithm to gerelatépackets.

4.1. Key identification

To uniquely identify each key, the key server assigns an integer as the ID of each node on a key tree. In particular, the key
server first expands the key tree to make it full and balanced by adding null nodes, which we refestodes As a result

of the expansion, the key tree contains three types of nodes: u-nodes containing individual keys, k-nodes containing the group
key and auxiliary keys, and n-nodes. Then the key server traverses the expanded key tree in a top-down and left-right order, and
sequentially assigns an integer as a node’s ID. The ID starts from 0 and increments by 1. For example, the root node has an ID
of 0, and its leftmost child has an ID af Figure 4 (left) illustrates the IDs of nodes in an expanded key tree with a tree degree

of three.

,,,,,,,,,,

~— d*m+1 d*m+d

n-nodes

Figure 4. lllustration of key identification

Given the key identification strategy, we observe that the IDs of a node and its parent node have the following simple
relationship: If a node has an ID of, its parent node will have an ID dgf’QT‘lJ , Whered is the key tree degree. Figure 4 (right)
illustrates the relationship.

To uniquely identify an encryptiof’}, we assign the ID of the encrypting ké&yas the ID of this encryption because the
key in each node will be used at most once to encrypt another key. Birgthe parent node df, its ID can be easily derived
given the ID of the encryption.



The ID of a user is by definition the ID of its individual key. Given the ID of an encryption and the ID of a user, by the
simple relationship between a node and its parent node, a user can easily determine whether the encryption is encrypted by a
key that is on the path from the user’s u-node to the tree root.

When users join and leave, our marking algorithm may modify the structure of a key tree, and thus the IDs of some nodes
will be changed. For a user to determine the up-to-date ID of its u-node, a straightforward approach is to inform each user its
new ID by sending a packet to the user. This approach, however, is obviously not scalable. By Lemma 4.1 and Theorem 4.2,
we show that by knowing the maximum ID of the current k-nodes, each user can derive its new ID independently.

LEmMA 4.1.If the key server uses the marking algorithm in Appendix B, then in the expanded key tree, the ID of any k-node is
always less than the ID of any u-node.

THEOREM4.2. For any user, letn denote the user’s ID before the key server runs the marking algorithmyémignote the

ID after the key server finishes the marking algorithm. lugtlenote the maximum k-node ID after the key server finishes the
marking algorithm. Define functiofi(z) = d*m + 11%{; for integerxz > 0, whered is the key tree degree. Then there exists
one and only one integer > 0 such thatn;, < f(2') < d*ny + d. Andm/ is equal tof (z').

A proofis shown in Appendix C. By Theorem 4.2, we know that a user can derive its current ID by knowing its old ID and
the maximum ID of the current k-nodes.
4.2. Format of ENC packets

Given the results in subsection 4.1, we can now define the format &f/46’ packet. As shown in the Figure 5, &WC
packet has fields, and contains both ID information and encryptions.

1. Type: ENC (2 bits) 2. Rekey message ID bits)
3. Block ID (8 bits) 4. Sequence number within a blo&dts)
5. max K 1D (16 bits) 6.< frmID,tol D > (32 bits)

7. Alist of <encryption, ID> (variable length) 8. Padding (variable length)

Figure 5. Format of anE N C packet

The ID information in anE N C' packet allows a user to identify the packet, extract its required encryptions, and update its
user ID (if changed). In particular, Fieldsto 4 uniquely identify a packet. Since rekey messages seldom overlap in time for
periodic batch rekeying, we use jusbits to identify a rekey message. Fidlds the maximum ID of the current k-nodes. As
we discussed in the previous subsection, each user can derive its current ID based upon this field and its old IEpdtisiels
that thisE N C packet contains only the encryptions for users whose IDs are in the rargg¢ahl D, tol D > inclusively.

Field7 of an ENC packet contains a list of encryption and its ID pairs. After the encryption payloaddNafi packet may
be padded by zero to have fixed length because FEC encoding requires fixed length packets. We observe that padding by zero
will not cause any ambiguity because no encryption has an ID of zero.

4.3. User-oriented Key Assignment algorithm

Given the format of art NC' packet, we next discuss the details of our key assignment algorithm, which we refer to as the
User-oriented Key Assignment/(X A) algorithm. U K A guarantees that all of the encryptions for a user are assigned into a
single ENC packet.

Figure 6(left) illustrates a particular run of theX A algorithm in which?7 ENC' packets are generatet!.K A first sorts
all of the user IDs into a list in increasing order. Then, a longest prefix of the list is extracted such that all of the encryptions
needed by the users in this prefix will fill up &V C packet. Repeatedly] K A generates a sequencefolV C packets whose
< frmID, tol D > intervals do not overlap. In particular, the algorithm guarantees thabftie of a previousE? NC packet
is less than thgrmI D of the next packet. This property is useful for block ID estimation to be performed by a user.



4.4, Performance ofUK A

U K A assigns all of the encryptions for a user into a singlgC' packet, and thus significantly increases the probability for a
user to receive its encryptions in a single round. Consequently, the number of NACKs sent to the key server is reduced.

This benefit, however, is achieved at an expense of sending duplicate encryptions. In a rekey subtree, users may share
encryptions. For two users whose encryptions are assigned into two differf€iat packets, their shared encryptions are
duplicated into those twd N C packets; therefore, we expect thiaf{ A would increase the bandwidth overhead at the key
server.

We evaluate the performance BfK A in this subsection using simulations. In the simulations, we assume that at the
beginning of a rekey interval the key tree is full and balanced witb-nodes. During the rekey interval,join and L leave
requests are processed. We further assume that the leave requests are uniformly distributed over the u-nodes. We set the ke
tree degred as4 and the length of ait N C packet ag 027 bytes in our experiments.
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Figure 6. lllustration of U K A algorithm (left), average number &N C packets as a function of and . (middle), and as a
function of N (right)

We first investigate the size of a rekey message as a functigraofi L for N = 4096, as shown in Figure 6 (middle). For
a fixed L, we observe that the average numbeFd¥ C' packets increases linearly with To understand such linear increase,
we need to investigate the size of the rekey subtree as a functidn Bbr a given number of leave requests, our marking
algorithm first replaces departed u-nodes with newly joined u-nodes, and then splits the n-nodes or u-nodes at the highest level
(with the root as leveb). As a result, the rekey subtree and consequently the numbieNaf packets grow proportionally to
J as we increasd. For a fixedJ, we observe that ak increases, the number &fN C' packets first increases (because more
leaves means more keys to be changed), and then decreases (because now some keys can be pruned from the rekey subtree
The maximum of the number of packets is achieved when a@dtusers leave the group.

Next we investigate the size of a rekey message as a functidh ek shown in Figure 6 (right). We observe that the
average number df NC packets in a rekey message increases linearly Witor three combinations of and L values.
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Figure 7. Average duplication overhead as a functionfadnd L (left) and as a function oV (right)

We then evaluate the duplications generated by theA algorithm. Define duplication overhead as the ratio of duplicated
encryptions over the total number of encryptions in a rekey subtree. Figure 7 (left) shows the average duplication overhead as
a function ofJ and L for N = 4096. First consider the case of a fixéd From our marking algorithm, we know that a larger



value of J will generate a larger rekey subtree, and a larger rekey subtree will have more shared encryptions. Therefore the
numerator of the duplication overhead will increase as we incréa€m the other hand, the number of encryptions, which is

the denominator of our duplication overhead, increases at a faster speed as implied by Figure 6 (left). Consequently, we observe
that the duplication overhead decreases roughly foano 0.05 as we increasd. Next consider the case of a fixed As

implied by Figure 6 (left), for a gived, a rekey subtree will first grow and then shrink as we incrdggkerefore, the number

of duplications will also first increase and then decrease. However, since the number of duplications changes at a faster speed
than the number of encryptions does, we observe that the duplication overhead first increases and then decreases as we increas
L.

Last, we plotin Figure 7 (right) the average duplication overhead as a functiénWe observe thatfof = 0, L = N/4 or
J = L = N/4, the average duplication overhead increases approximately linearljog{tN) for N > 32. This is because the
rekey subtree is almost full and balanced foe= 0, L = N/4 or J = L = N/4, and thus the duplication overhead is directly
related to the tree heighig, (V). We also observe that the duplication overhead is generally Iesé&ﬁ#é%f)_—l, where46 is
the number of encryptions that can be contained i?AhC' packet with a packet size @027 bytes. ForJ = N/4, L = 0, the

rekey subtree is very sparse, and thus the curve of duplication overhead fluctuates around thetunie ef N /4.

5. BLOCK PARTITIONING

After running theU K’ A assignment algorithm to generaeéV C' packets, the key server next generdtesRITY packets for
the ENC packets using a Reed-Solomon Erasure (RSE) coder.

Although grouping all of the" NC' packets into a single RSE block may reduce bandwidth overhead, a large block size
can significantly increase encoding and decoding fifrfé:'” For example, using the RSE coder by L. RiZZothe encoding
time foronePARITY packet is approximately a linear function of block size. Our evaluation shows that for a large group, the
number ofE N C packets generated in a rekey interval can be large. For example, for a groufp9dthsers, whery = 0 and
L = N/4, the key server can generate up @y ENC packets with a packet size 8927 bytes. Given such a large number of
ENC packets in a rekey interval, it is necessary to partitionfl#éC packets into multiple blocks in order to reduce the key
server’s encoding time.

Below we first present our block partition algorithm for a given block &iz&€hen we discuss how to choose the block size.

5.1. The block partition algorithm

For a given block sizé, to reduce the encoding time at the key server, we partitiorEtie”' packets into multiple blocks.

The key server first sorts thé N C packets according to their generating orders. Then during each iteration, the key server first
increases the current block ID, takepackets from the top of thE NC packets to form a block, assigns thds& C packets

the current block ID, and increases sequentially the sequence number within the current block. To form the last block, the key
server may need to duplicate tiEV C packets in the last block until there drgackets?

One issue of partitioning th& NC' packets into blocks is that if a user loses &V C packet, the user will not be able
to know directly the block to which ité’ N C packet belongs, so the user needs to estimate the block ID to whigh\its
specific packet belongs. Our estimation algorithm guarantees that even if the user cannot determine the accurate value of its
block ID, which happens with a very low probability, the user can still estimate a possible range of the block ID. For this case,
during feedback, the user will then requiFA RITY packets for each block within this range. For an algorithm to estimate
block ID, we refer the interested readers to Appendix D.

After forming the blocks, the key server generafed RITY packets, and multicasts all of theNC and PARITY
packets to the users. The remaining issue then is to determine the order in which the key server sends the packets. In our
protocol, the key server sends packets from different blocks in an interleaving pattern. By interleaving packets from different
blocks, two packets from the same block will be separated by a larger interval, and thus are less likely to experience the same
burst loss period on a link. By interleaving, our evaluation shows that the bandwidth overhead at the key server can be reduced.

A flag bit may be used in aR NC packet to specify whether the packet is a duplicate. A duplicA®d packet will be used in FEC
decoding performed by users, but will not be used for block ID estimation. Also the key server may distribute such duplicates over several
blocks.



5.2. Choosing block size

The block partition algorithm discussed in the previous subsection operates for a given block Bizdetermine the block
size, we need to evaluate the impact of block size on two performance metrics.

Our first performance metric is the key server’'s multicast bandwidth overhead, which is defined as theatinddi,
whereh is the number of NC packets in a rekey message, drids the total number of packets that the key server multicasts
to make all of the users recover their specHi®&/C' packets. To evaluate the bandwidth overhead, we only consider the impact
of block sizek and usep = 1 for the experiments in this section. We observe that the average bandwidth overhead at the key
server forp = 1 is typically no more than that fg5 > 1. The joined effects of block size and adaptive on the key server
bandwidth overhead will be evaluated in Section 6.

Our second performance metric is overall FEC encoding time, which is the time that the key server spends to generate all of
the PARITY packets for a rekey message. Although block &izéso has direct impact on the users’ FEC decoding time, the
impact is small because in our protocol a vast majority of users can receive their sp@éifiqppackets, and thus do not have
any decoding overhead.

We use simulations to evaluate the effects of block size. We adopt the network topology used by J. Nonnenmé&ther, etc,
which is a tree hierarchy that connects the key server to a backbone network through a source link, and connects each user to
the backbone through a receiver link. As for our loss model, we assume that the source link has a fixed logs, ratel difie
backbone is loss-free. We assume that a fractiai the V users have a high loss rategf, and the others have a low loss
rate ofp;. At a given loss rate, we use a two-state continuous time Markov thairsimulate burst loss. We assume that the
average duration of a burst Iossﬁ% msec, and the average duration of a loss-free tinfé_?%smsec, where is the link loss
rate. The default values of our simulations afe= 4096,d =4, J =0, L = N/d, a = 20%, pr, = 20%, p; = 2%, ps = 1%,
the key server’s sending rateli® packets/second, and the length of AV C' packet is1027 bytes. These simulation topology
and parameters will also be used in the experiments in the following sections unless stated otherwise.
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Figure 8. Average server bandwidth overhead (left) and relative overall FEC encoding time(right) as a function of block size

We first consider the effects of block size on the key server’s bandwidth overhead. As shown in Figure 8 (left), we observe
that the key server’s average bandwidth overhead is not sensitive to the block size farTo explain this phenomenon, we
observe thak has the following two effects on the key server’s bandwidth overhead. Firktdasreases, the number of users
who need to receive thelt NC packets from a given block decreases, and thBsi& 7Y packet can only recover a smaller
number of users. Therefore, we expect a higher bandwidth overhead as block size decreases. On the other hand, as block size
decreases, the number of packets that a user needs in order to recovelity (dgiacket decreases. Therefore, we expect the
bandwidth overhead for retransmission decreaseskEor5, these two factors almost balance each other, and we observe a
flat bandwidth overhead curve. The high bandwidth overhea# fer50 comes from the duplicatell NC packets in the last
block.

We next consider the effects of block size on the key server's overall FEC encoding time. If we use L. Rizzo’s RSE coder,
the encoding time for on® ARITY packet is approximately a linear function of block size Therefore, the overall total
encoding time for alPARITY packets is the product of the total numberfaA RITY packets and the encoding time for
one PARITY packet. Now consider the total numberH RITY packets. By the definition of the key server’'s bandwidth
overhead, we know that the total numberfRARITY packets is proportional to the server bandwidth overhead. As implied
by the flat bandwidth overhead curves in Figure 8 (left), the total numb&ARITY packets is not sensitive to block size
k for k > 5. Therefore, we anticipate that the overall encoding time foPallRITY packets will be approximately a linear
function of block sizek. Figure 8 (right) confirms our analysis and shows the normalized overall encoding time (aséuming



time units to generate onfeARITY packet for block sizé&). We also observe from this figure some irregularity on the overall
encoding time for a large block size. Such irregularity can be explained by the duplicated packets in the last block, which do
not need any encoding time.

In summary, we observe that for= 1, a small block sizé: can be chosen to provide fast FEC encoding without a large
bandwidth overhead. For the following experiments, we ch@osel 0 as the default value.

6. ADAPTIVE PROACTIVE FEC MULTICAST

In the previous section, we discussed how to partitionER&C' packets of a rekey message into blocks and genéfatel)k |
PARITY packets for each block. The discussion, however, assumes a given proactivityfdotthis section, we investigate
how to determineg.

We observe that is an effective mechanism for controlling NACK implosion at the key server. Feedback implosion occurs
when many users simultaneously send feedbacks to the key server. Mechanisms such as structure-based feedback aggregation
timer-based NACK suppressibi?* 2 have been proposed to reduce feedback traffic. However, structure-based mechanisms
rely on a tree hierarchy of designated nodes to aggregate feedbacks. In timer-based NACK suppression mechanisms, users use
arandom delay timer to avoid feedback implosion. The extra delay introduced by delay timers makes it harder for users to meet
the soft deadline of group rekeying. In this section, we present our algorithm to adaptively adjust the proactivity factor to avoid
NACK implosion.

6.1. Impact of proactivity factor

To design the algorithm to adapt we need to first evaluate the impactmobn the number of NACKSs, the delivery latency at
users, and the bandwidth overhead at the key server.

We first evaluate the impact gfon the number of NACKs. Figure 9 (left) plots the average number of NACKs received
at the key server at the end of the first round. Note that y-axis is in log scale. We observe that the average number of NACKs
decreases exponentially as a functiop@é previous study has made a similar observatiprOne conclusion we draw from
this figure is that the number of NACKSs is very sensitivept@nd a small increase pfcan substantially reduce the number of
NACKs.
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Figure 9. Average number of NACKs of the first round (left) and average number of rounds for all users to receive their
encryptions (right) as a function pf

We next evaluate the impact pfon delivery latency. Figure 9 (right) plots the average number of rounds for all users to
receive their encryptions. From this figure, we observe that the average number of rounds decreases linearly as we increase
p, until p is large enough so that the effect fliminishes and the curve levels off. Figure 10 (left) plots the percentage of
users who need a given number of rounds to receive their encryptions. The x-axis is the number of rounds for a user to receive
its encryptions and the y-axis is the percentage of users who need the number of rounds= Howe observe that more
than94.4% of the users can receive their encryptions within a single roundp fer1.6, the percentage value is increased to
99.89%; for p = 2.0, the percentage value is increase@9d09%.

We next evaluate the impact pfon the average server bandwidth overhead, as shown in Figure 10 (right). For @,small
the key server sends a small amount of proaciMeRITY packets during the first round, but it needs to send more reactive
PARITY packets in the subsequent rounds to allow users to recover their packets. Therefore, we observe that the increase of
p has little effect on the average server bandwidth overhead. Wiheaomes large, however, the bandwidth overhead during
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Figure 10. Percentage of users who need specific rounds to receive their encryptions (left) and average server bandwidth
overhead as a function pf(right)

the first round can dominate the overall bandwidth overhead, and we observe that the overall bandwidth overhead increases
linearly with p.

In summary, we observe that an increasg o&n have the following three effects: 1) It will significantly reduce the average
number of NACKSs; 2) It will slightly reduce delivery latency; 3) It will increase the key server’s bandwidth overheagmsen
larger than needed.

6.2. Adjustment of proactivity factor

Motivated by the effect of the proactivity factpr we present in Figure 11 our algorithm to adaptively adjusthe basic idea
of the algorithm is to adjugt such that the key server will receive a target number of NACKSs.

Algorithm Adjust Rho(A)
> A = {a;}: each itemu; is the number oPARITY packets requested by a user.
1. If (currentround= 1) and(size(A) > numNACK)

sortA so thatag > a1 > as, ...

p— AnumNACK+[kp]
k
2. If (currentround= 1) and(size(A) < numNACK)

dop « maz(0, 2211y with probabilitymaz (0, " NACK —sizc(A):2)

Figure 11. The algorithm to adaptively adjust proactivity factor

The input to the algorithmldjust Rho is a list A. Each item ofA is the number oPARITY packets requested by a user.
If a user requests packets for a range of blocks, the maximum numbet BT 7Y packets requested by the user is recorded
into A. For example, if a user requet ARITY packets for block and4 packets for block, then4 will be recorded into
A.

The algorithm works as follows. For each rekey message, at the end of the first round, the key server compares the number of
NACKs that it has received (which is equaldzeo f (A)) and the number of NACKSs that it targets (denotediayn N ACK).
The comparison has two results.

In the first case, the key server receives more NACKs than it targets. For this case, the server sélectsthéC K +1)*"
largest item (denoted by, ... n acx) from A, and increases so thata,,... v ac x additional proactive® ARITY packets will
be generated for each block of the next rekey message. Consider this example. Assurbeuleasu;,: = 0,...,9 send
NACKs for the current rekey message, and usgrequestsy; PARITY packets. For illustration purposes, we assume
ag > a1 > ... > ag, and the number of NACKs that the key server targes ibat isnum N ACK = 2. Then according to our
algorithm, for the next rekey message, the key server will sgnadditional PARITY packets so that usefsio, us..., ug}
have a higher probability to recover théitNV C' packets within a single round. This is because according to the current rekey
message, if userSus, us..., ug } were to receiver, more PARITY packets, they could have recovered thBiN C' packets
within a single round.



In the second case, the key server receives less NACKs than it targets. Although receiving less NACKs is better in terms
of avoiding NACK implosion, the small number of NACKs received may imply that the current proactivity factor is too high,
and thus may cause high bandwidth overhead. Therefore, the key server redycase PARITY packet with probability

. numNACK —size(A)x2
proportional to e NACK :

Our algorithmAdjust Rho will not only adjustp according tonumN AC K, but also adjushumN AC K dynamically.
We observe that a smallewm N AC K implies a smaller number of NACKSs, and therefore a smaller average delivery latency.
On the other hand, a smallenm N ACK may also imply a larger server bandwidth overhead. Given these, we update
numN AC K according to the following heuristics (whereaz N ACK is an upper bound ofum N ACK):

1. If all users meet deadline for the current rekey message, the key server updatdsAC K asmin(numNACK +
1, maxzN ACK) to save server bandwidth overhead.

2. If i receivers miss deadline, the key server updatea N AC K asmaz(numN ACK — i,0) to increase the number of
users who can meet deadline.

If numN AC K exceeds the upper bound, the server may experience NACK implosion. The exact value $AC K will
be a configuration parameter and depend on a key server’s available bandwidth and processing power.

6.3. Performance evaluation

We use simulations to evaluate tAejust Rho algorithm. In Section 6.3.1, we evaluate the performance of our algorithm to
avoid NACK implosion. In Section 6.3.2, we investigate how to choose blockdizethe adaptive scenario. In Section 6.3.3,

we investigate how to chooseax N AC K. In Section 6.3.4, we evaluate the server bandwidth overhead for adaptive proactive
FEC.

6.3.1. Controlling NACK implosion

Before evaluating whether thédjust Rho algorithm can control NACK implosion, we first investigate the stability of the
algorithm. For the simulations in this section, we set the target number of NAQKs V AC K) at 20.

Figure 12 shows how is adaptively adjusted when the key server sends a sequence of rekey messages. Foenitial
as shown in the left figure, we observe that it takes only a couple of rekey messages &attle down to stable values. For
initial p = 2 as shown in the right figure, we observe tpdteeps decreasing until it reaches stable values. Comparing both
figures, we note that the stable values of those two figures match each other very well.
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Figure 12. Adjusting of proactivity factor, initiallyp = 1 (left) and initially p = 2 (right)

Next we consider the number of NACKSs received by the key server at the end of the first round for each rekey message, as
shown in Figure 13. In the left figure where the initials 1, the number of NACKSs received become stabilized very quickly,
and the stable values are generally less thaimes ofnum N ACK for a > 0. Fora = 0, which means all users have a low
loss rate 02%, the number of NACKs fluctuates in a large range because the number of users who can receive their encryptions
during the first round is very sensitive pdor small loss rate. The sharp slope of the curvefet 0 in Figure 9 (left) conforms
this sensitivity. The right figure shows the case for iniiak 2. We observe that the stable values of those two figures match
very well.

Next we evaluate whethetdjust Rho algorithm can control the number of NACKSs for various numNACKs. As shown in
the left figure (initiallyp is 1) and right figure (initiallyp is 2) of Figure 14, the numbers of NACKs received at the key server



N=4096, L=N/4, k=10, pHigh=20%, pLow=2%, sendingInterval=100, numNACK=20 N=4096, L=N/4, k=10, pHigh=20%, pLow=2%, sendinglnterval=100,numNACK=20

100 . . . . . 100
5 80 [ < 80
< I c
= S
<} e
% 60 % 60
- <
S S
< 40 2 40
o 8}
< <
P4 P4
* 20 * 20|
0 0
rekey message 1D rekey message 1D
Figure 13. Number of NACKSs received, initially = 1 (left) and initially p = 2 (right)
N=4096, L=N/4, k=10, alpha=20%, pHigh=20%, pLow=2%, sendinginterval=100 N=4096, L=N/4, k=10, alpha=20%, pHigh=20%, pLow=2%, sendingInterval=100
140 |} numnACK=0 —— 1 140 [ numnACK=0 —— ]
| NUMNACK=5 ---x--- NUMNACK=5 ---%---
o 120 {inumMNACK=10 ---*--- 4 — 120 [ NumNACK=10 ------ 4
15 ‘NUMNACK=40 =] g numNACK=40 =)
S 100 MNACK=100 - .. [ ] n 4 2 100 fMUMNACK=100 --m=-- "o n E
— \ - N, - n i - n n AN | / /
7] n_u ™ / - / i A 14} - AN SN omm
L i w0 e 0 5 8r R L L
L !
¢ 60 P E 2 60 ! E
Q i 0 i
Z 40t B i 4 2 40t i a
S DDBE‘EDD FBag BDDEDDEDEDDDE S //-\\_, DDD- b spa™e
0% o x Xx DX XK KX 20 FoketPa g aka Ex Hx AR
0 o PO e T o R 0 L VA SRER TS VR R St SR LR B A
0 5 10 15 20 25 0 5 10 15 20 25
rekey message ID rekey message ID

Figure 14. Number of NACKs for differenbum N AC K s, initially p = 1 (left) and initially p = 2 (right)

fluctuate around the target value for a wide rangewh N AC K values. However, we do observe that the fluctuations become
more significant for largenum N AC K. Therefore, to chooseax N AC K, we need to consider the potential impact of large
fluctuations whemmax N ACK is large. In our following experiments, we chodeas the default value ofum N ACK.

6.3.2. Choosing block size

In section 5.2, we have discussed how to choose blockisfaep = 1. In this section, we reconsider this problem for a new
scenario wherg is adaptively adjusted. To determine the block size, we consider the following factors:
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Figure 15. Average number of NACKs for differer, initially p = 1 (left) and initially p = 2 (right)

1. Fluctuations in the number of NACKs received. As shown in Figure 15, we observe that a very small block size may
cause large fluctuations in the number of NACKs. For examplek fer1 or 5, the number of NACKs received by the
key server can reach as high as two timesn N ACK.

2. Server bandwidth overhead. First consider Figure 16 (left), which shows the average bandwidth overhead at the key
server as a function of whenp is adaptively adjusted. We observe that the average server bandwidth overhead is very
high for k = 1; then it decreases and becomes flat as we incrieasbe higher bandwidth overhead fbr= 50 comes
from the duplicated packets in the last block.This observation is almost the same as what wepseelfaxcept that
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Figure 17. Average number of rounds for all users to receive their encryptions (left) and average number of rounds needed by
a user (right) as a function éf

the bandwidth overhead fdr = 1 is much higher in the adaptive scenario. This is because fbr= 1, one block
contains only ond/ NC' packet. When the key server increagethe key server will have to generate at least one more
PARITY packet for each block (that is, for just o0&V C packet) to have any effect. For example, for iniiak 1,

any increase g will at least double the total number of packets sent during the first round. Given such large granularity
adjustment, the key server experiences high bandwidth overheadHfdr.

Next consider Figure 16 (right), which shows the average server bandwidth overhead as a function of group size when
p is adaptively adjusted. The figure shows the same trend as the left figure. However, the average server bandwidth
overhead fluctuates a lot f&¥ = 1024. This is because the rekey message contains 2hlif NC packets forN =

1024, J = 0, L = N/4. Hence the duplicated packets in the last block can significantly affect the bandwidth overhead at
the key server if block size is large.

. Overall FEC encoding time to generate BIWLRITY packets in a rekey message. According to our observations in
Figure 16, we know that fok > 5, the bandwidth overhead at the key server is not sensitive to block size. As a result,
the overall FEC encoding time at the key server will linearly increase with blockisize

. Delivery latency. From Figure 17 (left), we observe that the average number of rounds for all users to receive their
encryptions stays flat as we vary block sizetherefore, the change of block sizedoes not have much impact on the
delivery latency at users. To further validate this result, Figure 17 (right) plots the average number of rounds for a single
user to receive its encryptions. From this figure, we again observe that block daes not have any noticeable effect
on delivery latency. We further notice that using our algorithm, the average number of rounds for a user to receive its
encryptions is close tob.

In conclusion, whem is adaptively adjusted, block sizeshould not be too small because of the large fluctuations in the

number of NACKs, and the large key server bandwidth overhead. On the other hand, blotlskméd be small enough to
reduce key server’s FEC encoding time. This conforms our previous conclusion drawn forthease.

6.3.3. ChoosingnaxNACK

Next, we evaluate the impact efax N ACK, which is the upper bound ofum N ACK. The following observations about
numN AC K will help us choosenax NACK.
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Figure 18. Average number of rounds needed by a user (left) and average server bandwidth overhead (right) as a function of
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1. First, a largerum N AC K can cause NACK implosion.

2. Second, as observed in Section 6.3.1, a laitga N AC K can cause large fluctuations in the number of NACKSs received
by the server.

3. Third, an increase ofum N AC K will slightly increase the delivery latency. From Figure 18 (left), we observe that the
average number of rounds for a user to receive its encryptions will increase linearlywittv AC K. However, the
increasing speed is very slow because more $Hatf; users can receive their encryptions within a single round even for
p = 1whena = 20%.

4. Fourth, avery smallum N AC K may cause a large average bandwidth overhead at the key server. As shown in Figure 18
(right), we observe that farum N ACK = 0 anda > 0, the average overhead at the key server bandwidth overhead
can be as high a&.3. However, as we increasaum/N ACK, the bandwidth overhead decreases and becomes flat for
numNACK > 5..

Given the above observations, we know thaiz N ACK should be large enoughnez N ACK > 5) to avoid large
bandwidth overhead at the key server. On the other hand /N AC K should be small enough to avoid NACK implosion, and
also to reduce fluctuations in the number of NACKs.

The above observations can also help us choose the initial valuerofVAC K. If the rekey interval is small, a small
numN ACK is desired because delivery latency is the major performance metric for a small rekey interval. Otherwise, a large
initial value ofnum N AC K can be chosen to reduce the bandwidth overhead at the key server.

6.3.4. Overhead of adaptive proactive FEC

From the previous section, we know that théjust Rho algorithm can effectively avoid NACK implosion and reduce delivery
latency. However, compared with an approach that does not send any prdadtREl'Y” packets at all during the first round

and only generates reactiv@ARITY packets during the subsequent rounds, the adaptive proactive FEC scheme may incur
extra bandwidth overhead at the key server. We investigate this issue in this section.
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We first evaluate the extra bandwidth overhead at the key server caused by proactive FEC. Figure 19 shows the results for
various loss environments. We observe that compared with the approach wherefalll'Y” packets are generated reactively
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Figure 20. The extra server bandwidth caused by adaptife different NV

(i.e. p = 1), our adaptive proactive scheme causes little extra server bandwidth overhead in homogeneous low loss situations
(i,e.a = 0). Fora = 1, our scheme can even save a little bandwidth. This is becauge=fot, the key server takes much

more rounds for all users to recover their encryptions than the adaptive proactive scheme. And during each round, the key server
generate? ARITY packets according to the maximum number requested. Therefore, it is possible that the total number of
PARITY packets generated during so many roundgfer 1 is larger than the adaptive proactive scheme. In a heterogeneous
environment such as = 20%, the extra bandwidth overhead generated by adaptiséess thar).25 for k£ > 5.

We next consider the server bandwidth overhead for various group size. From Figure 20, we observe that the extra bandwidth
overhead incurred by adaptiyeincreases withV. The extra bandwidth overhead, however, is still less thdneven for
N = 16384.

7. SPEEDUP WITH UNICAST

Rekeying transport has a soft real-time requirement, that is, it is desired that all users receive their new keys before the end of
the rekey interval. To meet this requirement, in the previous section, we have proposed to adaptively.adNistC' K andp

during the multicast phase to reduce the the number of users missing deadline. However, these approaches may not be enougkt
becausawum N AC K does not directly affect delivery latency at users.

Consider Figure 21, which shows the number of users missing deadline and the adjustment'™fAC K, when we set
the deadline a® rounds, the initiap as1, and initialnumN AC K as200 (a rather high initial value). We observe that the
number of users missing deadline reduces dramatically during the first few rekey messages because of the rapid decrease of
numN ACK . However, whemumN AC' K becomes stable, there are still a few users missing deadline.

N=4096, L=N/4, k=10, alpha=20%, pHigh=20%, pLow=2%, sendingInterval=100 and initially, rho=1 and numNACK=200
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Figure 21. Number of users who missed deadline (left) and adjustingof N AC K (right), for initially pis 1, num NACK
is 200

To further increase the number of users meeting deadline, the key server will switch to unicast after one or two multicast
rounds. Unicast can reduce delivery latency compared to multicast because a duration of a multicast round is typically larger
than the largest round-trip time over all users.

To use unicast, we need to solve two problems. First, we need to determine when to switch to unicast so that unicast will
not cause a large bandwidth overhead at the key server. Second, we need to determine how to send the unicast packets so tha
the users can quickly and efficiently receive their encryptions.



7.1. When to switch to unicast

One issue of early unicast is its possible high bandwidth overhead at the key server. This is because the server has to send
separate packets for each user who did not receive their encryptions.

However, in our protocol, unicast will not cause large bandwidth overhead at the key server due to the following two reasons.
First, the packet size of thé S R packets sent during unicast is much smaller than thode/d” and PARITY packets. In
our protocol, aJ.SR packet contains only the encryptions for a specific user, and its packet size is g8mo20h) bytes,
whereh is the height of the key tree. On the other hand, the packet sizBsval and PARITY packet are typically more
than one kilobyte long. Second, our protocol guarantees that only a few users need unicast. From Figure 10, we observe that
the vast majority of the users can receive their encryptions within a single multicast round. In fact, our evaluations show that
for num N ACK = 20, roughly5 or less users need retransmissions after two multicast rounds.

Our conditions for switching to unicast are as follows. Our protocol switches to unicast after one or two multicast rounds.
We suggest two multicast rounds for a large rekey interval and one multicast round for a small rekey interval. Even for a large
interval, the time to switch to unicast can be earlier if the total length oft6& packets (plus UDP headers) is no more than
that of PARITY packets needed for the next multicast round.

For our protocol, the duration of each multicast round is not fixed. It is adjusted so that all users are expected to meet
deadline. In particular, if some users miss deadline, we propose that the duration of a round should be reduced by the missing
time; otherwise, the duration of a round should be increased by a small value.

7.2. Unicast protocol

Switch2Unicast(R)
> R: the set of users who need unicast.
1.7 2
2. Send duplicatelU SR packets by UDP to each userih
3.i—1+1
4. When receiving a NACK from a user
send: duplicateU SR packets to the user; i «— i+ 1

Figure 22. Unicast protocol for the key server

The server’s unicast protocol is shown in Figure 22. To provide fast delivery, the key server sends an increasing number
of duplicatedU S R packets during unicast. In particular, the server sends two duplitéie packets over a certain interval
to each user irR at the beginning of unicast. The number of duplicates will then be incrementéddryeach subsequent
retransmission. Since the size Bfand the length of & S R packet is small, such duplications will not cause large bandwidth
and processing overheads for the key server.

8. CONCLUSION

The objective of this paper is to present in detail our rekey transport protocol as well as its performance. Our server protocol for
each rekey message consists of four phases: (i) generating a sequence of ENC packets containing encrypted keys, (ii) generating
PARITY packets (iii) multicast of ENC and PARITY packets, and (iv) transition from multicast to unicast.

In the first phase, after running the marking algorithm to generate encryptions for a rekey message, the key server constructs
ENC packets. The major problem in this phase is to allow a user to identify its required encryptions. To solve the problem,
first we assign a unique integer ID for each key, user and encryption. Second, our key assignment algorithm guarantees that
each user needs only o8V C' packet. By including a small amount of ID informationW C' packets, each user can easily
identify its specificE N C packet and extract the encryptions it needs.

In the second phase, the key server uses a RSE coder to geRerBtel'Y packets forE N C packets. The major problem
in this phase is to determine the block size for FEC encoding. This is because a large block size can significantly increase
FEC encoding and decoding time. Our performance results show that a small block size can be chosen to provide fast FEC
encoding rate without increasing bandwidth overhead. We also present an algorithm for a user to estimate its block ID if it has
not received its specifi€ N C' packet



In the third phase, the key server multicabty C and PARITY packets to all users. The major problem in this phase is to
control NACK implosion. In our protocol, the key server adaptively adjusts the proactivity factor based on past feedback. Our
experiments show that the number of NACKs can be effectively controlled around a target number, while the extra bandwidth
overhead incurred is small. Additionally, adaptively adjusting the proactivity factor reduces the delivery latency of users.

In the fourth phase, the key server switches to unicast to reduce the worst-case delivery latency. The major problem in
this phase is to determine when to switch to unicast such that unicast will not cause large server bandwidth overhead, and
how to do unicast to provide smaller delivery latency. In our protocol, a vast majority of users can receive or recover their
required encryptions within one multicast round. Also, during unicasttB& packet transmitted is very small. Based on
these observations, we let the key server switch to unicast after one or two multicast rounds (depending upon deadline). To
provide even faster delivery, the key server duplicate$té: packet during unicast.

In summary, we have the following contributions. First, we present a detailed specification of a scalable and reliable
protocol for group rekeying, together with performance results. Second, a simple key identification strategy and key assignment
algorithm are presented and evaluated. Third, we show that our block partition algorithm reduces the server's FEC encoding
time without increasing server bandwidth overhead. Finally, an adaptive algorithm to adjust the proactivity factor is proposed
and evaluated. The algorithm is found to be effective in controlling NACK implosion.
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APPENDIX A. PROTOCOL SPECIFICATION

A.l. Formats of packets
Figure 5, 23, 24 and 25 define the formats oflaNC, PARITY,USR andN AC K packet respectively. In&S R packet,

the

encryption IDs are optional if we arrange the encryptions in increasing order of ID.

1. Type: PARITY (2 bits) 2. Rekey message IDB bits)
3. Block ID (8 bits) 4. Sequence number within a blo&kts)
5. FEC parity information for Fields to 8 of ENC packets

Figure 23. Format of aPARITY packet

1. Type:USR (2 bits) 2. Rekey message ID bits)
3. New user ID (6 bits) 4. A list of <encryption, ID> (variable length)

Figure 24. Format of al/ S R packet

1. Type:NACK (2 bits) 2. Rekey message ID bits)
3. Alist of <number of PARITY packets requested, block ID (variable length)

Figure 25. Format of aV AC K packet

A.2. The specification of protocols

The protocol for the key server is shown in Figure 26. And the protocol for a user is shown in Figure 27. In both protocols, we

con

sider only one rekey message. In the protocols, both the server and users behave based on rounds. In fact, it is feasible for

a user to send a NACK as soon as it detects a loss, and for the server to mHtc&$T'Y packets as soon as it receives a
NACK from any user. An arising problem is that the server has to determine whether it has already satisfied or partially satisfied
an incoming NACK. This problem can be easily solved by containing in each NACK the maximum sequence number of the
packets received by the user in a specific block. This idea was first proposed by D. Rubenstéin, etc.



status = MULTICAST
For each block: multicagt ENC packets and(p — 1)k] PARITY packets
R «— empty set /IR is the set of users who send NACK
A — emptylist //A contains NACK information
For each block ID iamazx[i] — 0
Start timeout
AcceptNACK(n, a list of < a, 7 >)
/' m: the ID of the user who sends the NACK
Il < a,i >: the user requests PARITY packets for block
if (status=MULTICAST)
then
R— R+ {m}
append the maximumof < a,i > listto A
for each entry< a, ¢ > in the list: amax[i] < maz(amaxl[i], a)
else send/ SR packetston  // refer toSwitch2Unicast(R)
9. When timeout
UpdateRho(A)
if (conditions for switching to unicast hold)
then status = UNICAST; Switch2Unicast(R)
else if (R is not empty)
for each blocki: multicastamaz[i] new PARITY packets; amax[i] < 0
start timeout

©ouhAwNE

Figure 26. Key server protocol for one rekey message

APPENDIX B. MARKING ALGORITHM

In periodic batch rekeying, the key server colletipin and L leave requests during a rekey interval. At the end of the interval,
the server runs the following marking algorithm to update the key tree and construct a rekey subtree. The marking algorithm is
slightly different from the one presented in our previous papér.The n-node and ID information are introduced in Section 4.

To update the key tree, the marking algorithm performs the following operations:

1. If J = L, replace all u-nodes who have left by the u-nodes of newly joined users.

2. If J < L, chooseJ u-nodes who have smallest IDs among fhdeparted u-nodes, and replace thdse-nodes with
joins . Change the remaining— J u-nodes to n-nodes. If all of the children of a k-node are n-nodes, change the k-node
to n-node. Repeat this operation iteratively on all k-nodes.

3. If J > L, first replace the u-nodes who have left by joins, then replace the n-nodes with ID betyweérandd «ny + d
(inclusive) in order from low to high, wheney, is the maximum ID of current k-nodes. If there are still extra joins after
this, keep splitting the node whose ID is equahio+ 1, and updating:,.. The split node becomes its leftmost child.

4. If any n-node has a descendant u-node, change the n-node to k-node.

To construct the rekey subtree, the marking algorithm first copies the current key tree as the initial rekey subtree. Then the
marking algorithm labels the nodes in the rekey subtree. We have four label: “Unchanged”, “Join”, “Leave”, and “Replace”:

1. First label all of the n-nodes as Leave.

2. Then label the u-nodes. Label a newly joined u-node as Join, a u-node who has departed and then joined as Replace, and
other u-nodes as Unchanged.

3. Next label the k-nodes: 1) If all the children of a key node are labeled Leave, label it as Leave, and remove all of its
children from the rekey subtree. 2) Otherwise, if all of its children are Unchanged, label it as Unchanged, and remove all
of its children. 3) Otherwise, if all of its children are Unchanged or Join, label it as Join. 4) Otherwise, if the node has at
least one Leave or Replace child, label it as Replace.



1. Foreach block 1D: counter|i] < 0
Start timeout
3. Receive a packeikt
3.1if (pktis aUSR packet), themn + the new ID contained ipkt; success
3.2if (pktisanENC packet)
then
m « calculated new ID
if (pkt.frmID < m < pkt.tol D) then success
else
Estimate BlkID(m, high, low, pkt)
increasecounter|pkt.blkID] by 1
4. When timeout
4.1if (high = low) and(counter[high] > k) then decode the block; success
else
for each block IDi € [low, high]
if (counter[i] > k)
then
decode the block
if (required E N C' packet is decoded) then success
else put< k — counter[i],i > into aN ACK packet
send theV AC K packet to the key server;  start timeout

N

Figure 27. User protocol for one rekey message

We call the remaining subtreekey subtree Each edge in the rekey subtree corresponds to an encryption. The key server
traverses the rekey subtree and uses the key assign algorithm to assign encryptions into packets.

APPENDIX C. PROOFS OF LEMMA AND THEOREM

. Proof of Lemma 4.1

1. The property holds for the initial key tree constructed with only join requests.

The property holds when the key server procedgen and L leave requests during any rekey interval because:

(a) The property holds fao¥ < L because the joined u-nodes replace the departed u-nodes in our marking algorithm.

(b) ForJ > L, newly joined u-nodes first replace the departed u-nodes or the n-nodes whose IDs are larggr than
whereny, is the maximum ID of current k-nodes . These replacements make the property hold. Then the marking
algorithm splits the node with IR, + 1. Therefore, the property holds after splitting.

. Proof of Theorem 4.2

1. There exists such an integér> 0 such thaty, < f(2’) < d xny + d, because:

(a) From the marking algorithm, we know that the u-nedeeeds to change its ID only when it splits. If no splitting
happens, them’ = m = f(0). Otherwise, after splitting, the u-node becomes its leftmost descendant, and the new
ID m’ is the form of f(z’) for an integerr’ > 0. By Lemma 4.1pn;, < m’ sincem’ is a u-node.

(b) Since the maximum ID of current k-nodesiis, the maximum ID of current u-nodes must be less than or equal to
d *ny + d. Thereforen’ < ds*ny +d

. Suppose besides’, there exists another leftmost descendant (denoted’Hyof m which also satisfies the condition

n < m” <dx*ny + d. Then we get a contradiction because:

(a) By the assumption; < m', m” must be a u-node or n-node. Furthermoré, must be a n-node and be a
descendant af’ sincem’ is a u-node.



(b) Sincem’ is the ancestor ofx”, n;, is the parent node af * ny, + d, and by the assumption” < d * ng + d, we
havem’ < n,. This contradicts Lemma 4.1 sine€ is a u-node.

3. From the proof above, we haxe = f(2’).

APPENDIX D. ESTIMATING BLOCK ID

When we partition théZ N C packets into multiple blocks, and if a user loses its speéifiléC' packet, the user will not be able
to know directly the block to which it&# N C packet belongs. We address this issue in this appendix.

The key observation is that a user can estimate the block ID to whidhNt€' packet belongs from the ID information
contained in the receiveB NC packets. Assume a user has #Q) and its ENC packet is thej” packet in blocki. Let
< 4,7 > denote the<block ID, sequence number within a blagkpair. Whenever a user receives BINC packet, it can
refine its estimation of the block I For example, ifm > tol D of a received packet, then> block ID of the received
packet because the received packet must be generated earlier than the user'sispecifiacket. In this way, if the user can
receive any oné&ZNC packetinS; = {<i—1,k—1 >,< 4,0 >,...,< 4,5 — 1 >}, and receive any onENC packet in
Su={<i,j+1> ..,<ik—1> <i+1,0>}, thenit can determine the accurate valueé efen wher< i, j > is lost.
The detailed algorithm to estimate block ID is shown in Figure 29. Figure 28 illustrates the block ID estimation.

block i-1 block i block i+1
o o o O o O O @) o o
k-2 k-1 1 2 e 1§ L e k-l 1 2 .
S, lower bound S,; upper bound

Figure 28. lllustration of block ID estimation

A user can determine the accurate value of the block ID with high probability. Only when all &A@ packets in set
Si+{< i,7 >} arelost, or when all of the packets in $&t+ {< 4, j >} are lost, the user cannot determine the accurate value
of the block ID. The probability of such failure, however, is as low&s® + p*—7+1 — p*+2 wherep is the loss rate observed
by the user when we assume independent loss among packets. In the worst cage=when;j = k& — 1, the probability is
aboutp?. In case of failure, the user first estimates a possible range of the required block ID. Then during feedback, the user
requiresPARITY packets for each block within the estimated block ID range.

Algorithm EstimateBIKID n, low, high, pkt)
> m is the user’s ID who calls this algorithm.
> low is the current estimate of the lower bound of required block ID.
> high is the current estimate of the upper bound of required block ID.
> pkt is the ENC packet received.
If (pkt.toID < m < pkt.frmID) thenhigh «— pkt.blkID; low « pkt.blkID
If (m > pkt.toID) and(pkt.seqNo =k — 1) thenlow «— maz(low, pkt.blkID + 1)
If (m > pkt.toID) and(pkt.seqNo < k —1) thenlow — maz(low, pkt.blkID)
If (m < pkt.frmID) and(pkt.seqNo =0) thenhigh — min(high, pkt.blkID — 1)
If (m < pkt.frmID) and(pkt.seqNo > 0) thenhigh «— min(high, pkt.blkID)
If (m > pkt.toID) then

thh - mm(hzgh,pktblkID + "d*(pkt.mawKID+1)7pk2tolD7(k717pkt.seqN0)-|

ok wnNE

Figure 29. Estimating required block ID

Initially, a user sets the lower bounaw as0, and upper bountligh as infinity. The stej in Figure 29 guarantees that the
final value ofhigh will not be infinity. The reasoning is as follows. When the user receivdsEid’ packetpkt, themax K 1D
field of the packet specifies the maximum ID of current k-nodes. Therefore, the maximum ID of current users cannot be larger
thand « (pkt.maxKID + 1). In the worst case, onENC' packet contains encryptions for only one user, then there are at
most(d * (pkt.maxKID + 1) — pkt.toI D) ENC packets whos¢rmlID sub-field is larger thapkt.tol D. Therefore, the
maximum block ID cannot be larger thakt.blkI D + [ &-@ktmarKIDE1) “pht-tol D—(k—1_pht.seqNo) |




