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ABSTRACT

We present the design and specification of a scalable and reliable protocol for group rekeying together with performance
evaluation results. The protocol is based upon the use of key trees for secure groups and periodic batch rekeying. At the
beginning of each rekey period, the key server sends a rekey message to all users consisting of encrypted new keys (encryptions,
in short) carried in a sequence of packets. We present a simple strategy for identifying keys, encryptions, and users, and a key
assignment algorithm which ensures that the encryptions needed by a user are in the same packet. Our protocol provides
reliable delivery of new keys to all users eventually. It also attempts to deliver new keys to all users with a high probability
by the end of the rekeying period. For each rekey message, the protocol runs in two steps: a multicast step followed by a
unicast step. Proactive FEC multicast is used to control NACK implosion and reduce delivery latency. Our experiments show
that a small FEC block size can be used to reduce encoding time at the server without increasing server bandwidth overhead.
Early transition to unicast, after at most two multicast rounds, further reduces the worst-case delivery latency as well as user
bandwidth requirement. The key server adaptively adjusts the proactivity factor based upon past feedback information; our
experiments show that the number of NACKs after a multicast round can be effectively controlled around a target number.
Throughout the protocol design, we strive to minimize processing and bandwidth requirements for both the key server and
users.
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1. INTRODUCTION

Many emerging Internet applications, such as pay-per-view distribution of digital media, restricted teleconferences, multi-party
games, and virtual private networks will benefit from using a secure group communications model.1 In this model, members
of a group share a symmetric key, calledgroup key, which is known only to group users and the key server. The group key can
be used for encrypting data traffic between group members or restricting access to resources intended for group members only.
The group key is distributed by a group key management system which changes the group key from time to time (called group
rekeying). It is desirable that the group key changes after a new user has joined (so that the new user will not be able to decrypt
past group communications) or an existing user has departed (so that the departed user will not be able to access future group
communications).

A group key management system has three functional components: registration, key management, and rekey transport.2

All three components can be implemented in a key server. However, to improve registration scalability, it is preferable to use
one or more trusted registrars to offload user registration from the key server.2

When a user wants to join a group, the user and registration component mutually authenticate each other using a protocol
such as SSL.3 If authenticated and accepted into the group, the new user receives its ID and a symmetric key, called the
user’sindividual key, which it shares only with the key server. Authenticated users send join and leave requests to the key
management component which validates the requests by checking whether they are encrypted by individual keys. The key
management component also generates rekey messages, which are sent to the rekey transport component for delivery to all
users in the group. To build a scalable group key management system, it is important to improve the efficiency of the key
management and rekey transport components.
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We first consider the key management component, which has been the primary focus of prior work.4–9 In this paper,
we follow thekey treeapproach,4,5 which uses a hierarchy of keys to facilitate group rekeying, reducing the processing time
complexity of each leave request fromO(N) to O(logd (N)), whereN is group size andd the key tree degree. Rekeying after
every join or leave request, however, can still incur a large server processing overhead. Thus we propose to further reduce
processing overhead by using periodic rekeying,9–11 such that the key server processes the join and leave requests during a
rekey interval as a batch, and sends out just one rekey message per rekey interval to users. Batch rekeying reduces the number
of computationally expensive signing operations. It also reduces substantially bandwidth requirements of the key server and
users.

We next consider the rekey transport component. Reliable delivery of rekey messages has not had much attention in prior
work. In our prototype system, Keystone,2 we designed and implemented a basic protocol which uses proactive FEC to improve
the reliability of multicast rekey transport. We also investigated the performance issues of rekey transport9 and observed that
although many reliable multicast protocols have been proposed and studied in recent years,12–19 rekey transport differs from
conventional reliable multicast problems in a number of ways. In particular, rekey transport has the following requirements:

• Reliability requirement. It is required that every user will receive all of its (encrypted) new keys, no matter how large the
group size. This requirement arises because the key server uses some keys for one rekey interval to encrypt new keys for
the next rekey interval. Each user however does not have to receive the entire rekey message because it needs only a very
small subset of all the new keys.

• Soft real-time requirement. It is required that the delivery of new keys to all users be finished with a high probability
before the start of the next rekey interval. This requirement arises because a user needs to buffer encrypted data and keys
before the arrival of encrypting keys, and we would like to limit the buffer size.

• Scalability requirement. The processing and bandwidth requirements of the key server and each user should increase as
a function of group size at a low rate such that a single server is able to support a large group.∗

The above requirements of rekey transport were considered and analyzed in a companion paper.9 The objective of this
paper is to present in detail our rekey transport protocol as well as its performance.

Our server protocol for each rekey message consists of four phases: (i) generating a sequence of ENC packets containing
encrypted keys, (ii) generating PARITY packets containing FEC redundant information, (iii) multicast of ENC and PARITY
packets, and (iv) transition from multicast to unicast.

To achieve reliability, our protocol runs in two steps: a multicast step followed by a unicast step. During the multicast step,
which typically lasts for just one or two rounds, almost all of the users will receive their new keys because each user only needs
one specific packet (guaranteed by our key assignment algorithm) and proactive FEC is also used. Subsequently, for each user
who cannot recover its new keys in the multicast step, the keys are sent to the user via unicast. Since each user only needs a
small number of new keys, and there are few users remaining in the unicast step, our protocol achieves reliability with a small
bandwidth overhead.

To meet the soft real-time requirement, proactive FEC in the multicast step is used to reduce delivery latency.20,21 When
needed, early transition from multicast to unicast reduces worst-case delivery latency because the server does not need to wait
for the maximum round-trip time (RTT ) for all users before sending in the unicast step. By adaptively adjusting the time to
switch to unicast, our protocol allows explicit tradeoff between key server bandwidth overhead and worst-cast delivery latency.

Towards a scalable design, we observe that the key factors are processing and bandwidth requirements at the key server and
each user. To improve scalability, we use the following ideas: 1) To reduce the key server processing requirement, we partition
a rekey message into blocks to reduce the size of each block and therefore reduce the key server’s FEC encoding time. 2) To
reduce each user’s processing requirement, our key assignment algorithm assigns encrypted new keys such that each user needs
only one packet. Thus, the vast majority of users do not need to recover their specific packets through FEC decoding. 3) To
reduce key server bandwidth requirement, our protocol uses multicast to send new keys to users initially. 4) To reduce a user’s
bandwidth requirement, we use unicast for each user who cannot recover its new keys during the multicast step. This way, a
small number of users in high-loss environments will not cause our protocol to perform multicast to all users.

∗To further increase system reliability as well as group size, we might consider the use of multiple servers, which is a topic beyond the
scope of this paper.



In summary, we have the following contributions. First, we present a detailed specification of a scalable and reliable
protocol for group rekeying, together with performance results. Second, a simple key identification strategy and key assignment
algorithm are presented and evaluated. Third, we show that our block partition algorithm reduces the server’s FEC encoding
time without increasing server bandwidth overhead. Finally, an adaptive algorithm to adjust the proactivity factor is proposed
and evaluated. The algorithm is found to be effective in controlling NACK implosion.

The balance of this paper is organized as follows. In Section 2, we briefly review the key tree and periodic batch rekeying
ideas. In Section 3 we present our server and user protocols. In Section 4 we show how to construct a rekey message. The key
identification strategy and key assignment algorithm are presented. The block partition algorithm is proposed and evaluated
in Section 5. In section 6 we discuss how to adaptively adjust proactivity factor to control NACK implosion. In Section 7 we
discuss when and how to unicast. Our conclusions are in Section 8.

2. BACKGROUND

We review in this section the key tree4,5 and periodic batch rekeying9–11ideas and a marking algorithm. The algorithm is used
to update the key tree and generate workload for rekey transport.

2.1. Key tree

A key tree is a rooted tree with the group key as root. A key tree contains two types of nodes:u-nodescontaining users’
individual keys, andk-nodescontaining the group key and auxiliary keys. A user is given the individual key contained in its
u-node as well as the keys contained in the k-nodes on the path from its u-node to the tree root. Consider a group with 9 users.
An example key tree is shown in Figure 1. In this group, useru9 is given the three keys on its path to the root:k9, k789, and
k1−9. Key k9 is the individual keyof u9, key k1−9 is thegroup keythat is shared by all users, andk789 is an auxiliary key
shared byu7, u8, andu9.
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Figure 1. An example key tree

Supposeu9 leaves the group. The key server will then need to change the keys thatu9 knows: changek1−9 to k1−8,
and changek789 to k78. To distribute the new keys to the remaining users using the group-oriented5 rekeying strategy, the
key server constructs the followingrekey messageby traversing the key tree bottom-up: ({k78}k7 , {k78}k8 , {k1−8}k123 ,
{k1−8}k456 , {k1−8}k78 ). Here{k′}k denotes keyk′ encrypted by keyk, and is referred to as anencryption. Upon receiving
a rekey message, a user extracts the encryptions that it needs. For example,u7 only needs{k1−8}k78 and{k78}k7 . In other
words, a user does not need to receive all of the encryptions in a rekey message.

2.2. Periodic batch rekeying

Rekeying after every join and leave request, however, can be expensive. In periodic batch rekeying, the key server first collects
J join andL leave requests during a rekey interval. At the end of the rekey interval, the key server runs a marking algorithm to
update the key tree and construct a rekey subtree.

In the marking algorithm, the key server first modifies the key tree to reflect the leave and join requests. The u-nodes for
departed users are removed, or replaced by u-nodes for newly joined users. WhenJ > L, the key server will split the nodes
after the rightmost k-node at the highest level (with the root as level 0) to expand the extra joins. After modifying the key tree,
the key server changes the key in a k-node if the k-node is on the path from a changed u-node (either removed or newly joined
node) to the tree root.

Next, the key server constructs a rekey subtree. Arekey subtreeconsists of all of the k-nodes whose keys have been updated
in the key tree, the direct children of the updated k-nodes, and the edges connecting updated k-nodes with their direct children.



Given a rekey subtree, the key server can then generate encryptions. In particular, for each edge in the rekey subtree, the key
server uses the key in the child node to encrypt the key in the parent node.

Appendix B shows the detailed marking algorithm.

3. PROTOCOL OVERVIEW

In this section, we give an overview of the rekey transport protocol. An informal specification of the key server protocol is
shown in Figure 2.

First the key server constructs a rekey message as follows. At the beginning of a rekey interval, after the marking algorithm
has generated encryptions, the key server runs the key assignment algorithm to assign the encryptions intoENC packets.† Our
key assignment algorithm guarantees that each user needs only oneENC packet.

Next, the key server uses a Reed-Solomon Erasure (RSE) coder to generate FEC redundant information, calledPARITY
packets. In particular, the key server partitionsENC packets into multiple blocks. Each block containsk ENC packets. We
call k the block size. The key server generatesd(ρ− 1)ke PARITY packets for each block, whereρ is theproactivity factor.

Then the key server multicasts theENC andPARITY packets to all users. A user can recover its required encryptions
in any one of the following three cases: 1) The user receives the specificENC packet which contains all of the encryptions
for the user. 2) The user receives at leastk packets from the block that contains its specificENC packet, and thus the user can
recover thek originalENC packets. 3) The user receives aUSR packet during a subsequent unicast phase. TheUSR packet
contains all of the encryptions needed by the user.

After multicasting theENC andPARITY packets to the users, the server waits for the duration of a round, which is
typically larger than the maximum round-trip time over all users, and collects NACKs from the users. Based on the NACKs,
the key server adaptively adjusts the proactivity factor to control the number of NACKs for the next rekey message. Each NACK
specifies the number ofPARITY packets that a user needs in order to havek packets to recover its block. In particular, the
key server collects the largest number ofPARITY packets needed (denoted asamax[i]) for each blocki. At the beginning of
the next round, the key server generatesamax[i] newPARITY packets for each blocki, and multicasts the newPARITY
packets to the users. This process repeats until the conditions for switching to unicast are satisfied (see Section 7). Typically,
unicast will start after one or two multicast rounds. During unicast, the key server sendsUSR packets to the users who have
not recovered their required encryptions.

1. Use key assignment algorithm to constructENC packets
2. Partition the sequence ofENC packets into multiple blocks
3. Multicastk ENC packets andd(ρ− 1)ke PARITY packets for each block
4. When timeout

adaptively adjust proactivity factor
if conditions for switching to unicast hold
then unicastUSR packets to users who did not receive their required encryptions
else

collectamax[i] as the largest number ofPARITY packets needed for each blocki
generateamax[i] newPARITY packets for each blocki
multicast thesePARITY packets to all users at the beginning of next round

Figure 2. Basic protocol for key server

An informal specification of the user protocol is shown in Figure 3. In our protocol, a NACK-based feedback mechanism
is used because the vast majority of users can receive or recover their required encryptions within a single round. In particular,
during each round, a user checks whether it has received or can recover its block. If not, the user will reporta, the number of
PARITY packets needed to recover its block, to the key server. By the property of Reed-Solomon encoding,a is equal tok
minus the number of packets received in the block containing its specificENC packet.

†An ENC packet is a protocol message generated in the application layer. But we will refer to it as apacketto conform to terminology
in other papers.



When timeout
if received its specificENC packet, or at leastk packets in the required block, or aUSR packet
then success
else

a← number ofPARITY packets needed for recovery
senda by NACK to the key server

Figure 3. Basic protocol for a user

In summary, our protocol generates four types of packets: 1)ENC packet, which contains encryptions for a set of users;
2) PARITY packet, which contains FEC redundant information produced by a RSE coder; 3)USR packet, which contains
the encryptions for a specific user; 4)NACK packet, which is feedback from the users to the key server. This type of packets
reports the number ofPARITY packets needed for specific blocks.

Note that protocols given in Figure 2 and 3 only outline the behaviors of the key server and users. More detailed specifica-
tions of these protocols and packet formats are shown in Appendix A.

4. CONSTRUCTION OF ENC PACKETS

After running the marking algorithm to generate the encryptions of a rekey message, the key server next runs a key assignment
algorithm to assign the encryptions intoENC packets. To increase the probability for each user to receive its required encryp-
tions within one round, our key assignment algorithm guarantees that all of the encryptions for a given user are assigned into a
singleENC packet. For each user to identify its specificENC packet and extract its encryptions from theENC packet, the
key server assigns a unique ID for each key, user and encryption, and includes ID information inENC packets.

Below, we first discuss how to assign an ID for each key, user and encryption; then we define the format of anENC packet.
Finally we present and evaluate our key assignment algorithm to generateENC packets.

4.1. Key identification

To uniquely identify each key, the key server assigns an integer as the ID of each node on a key tree. In particular, the key
server first expands the key tree to make it full and balanced by adding null nodes, which we refer to asn-nodes. As a result
of the expansion, the key tree contains three types of nodes: u-nodes containing individual keys, k-nodes containing the group
key and auxiliary keys, and n-nodes. Then the key server traverses the expanded key tree in a top-down and left-right order, and
sequentially assigns an integer as a node’s ID. The ID starts from 0 and increments by 1. For example, the root node has an ID
of 0, and its leftmost child has an ID of1. Figure 4 (left) illustrates the IDs of nodes in an expanded key tree with a tree degree
of three.
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Figure 4. Illustration of key identification

Given the key identification strategy, we observe that the IDs of a node and its parent node have the following simple
relationship: If a node has an ID ofm, its parent node will have an ID ofbm−1

d c, whered is the key tree degree. Figure 4 (right)
illustrates the relationship.

To uniquely identify an encryption{k′}k, we assign the ID of the encrypting keyk as the ID of this encryption because the
key in each node will be used at most once to encrypt another key. Sincek′ is the parent node ofk, its ID can be easily derived
given the ID of the encryption.



The ID of a user is by definition the ID of its individual key. Given the ID of an encryption and the ID of a user, by the
simple relationship between a node and its parent node, a user can easily determine whether the encryption is encrypted by a
key that is on the path from the user’s u-node to the tree root.

When users join and leave, our marking algorithm may modify the structure of a key tree, and thus the IDs of some nodes
will be changed. For a user to determine the up-to-date ID of its u-node, a straightforward approach is to inform each user its
new ID by sending a packet to the user. This approach, however, is obviously not scalable. By Lemma 4.1 and Theorem 4.2,
we show that by knowing the maximum ID of the current k-nodes, each user can derive its new ID independently.

LEMMA 4.1. If the key server uses the marking algorithm in Appendix B, then in the expanded key tree, the ID of any k-node is
always less than the ID of any u-node.

THEOREM 4.2. For any user, letm denote the user’s ID before the key server runs the marking algorithm, andm′ denote the
ID after the key server finishes the marking algorithm. Letnk denote the maximum k-node ID after the key server finishes the
marking algorithm. Define functionf(x) = dxm + 1−dx

1−d for integerx ≥ 0, whered is the key tree degree. Then there exists
one and only one integerx′ ≥ 0 such thatnk < f(x′) ≤ d ∗ nk + d. Andm′ is equal tof(x′).

A proof is shown in Appendix C. By Theorem 4.2, we know that a user can derive its current ID by knowing its old ID and
the maximum ID of the current k-nodes.

4.2. Format ofENC packets

Given the results in subsection 4.1, we can now define the format of anENC packet. As shown in the Figure 5, anENC
packet has8 fields, and contains both ID information and encryptions.

1. Type:ENC (2 bits) 2. Rekey message ID (6 bits)
3. Block ID (8 bits) 4. Sequence number within a block (8 bits)
5. maxKID (16 bits) 6.< frmID, toID > (32 bits)
7. A list of <encryption, ID> (variable length) 8. Padding (variable length)

Figure 5. Format of anENC packet

The ID information in anENC packet allows a user to identify the packet, extract its required encryptions, and update its
user ID (if changed). In particular, Fields1 to 4 uniquely identify a packet. Since rekey messages seldom overlap in time for
periodic batch rekeying, we use just6 bits to identify a rekey message. Field5 is the maximum ID of the current k-nodes. As
we discussed in the previous subsection, each user can derive its current ID based upon this field and its old ID. Field6 specifies
that thisENC packet contains only the encryptions for users whose IDs are in the range of< frmID, toID > inclusively.

Field7 of anENC packet contains a list of encryption and its ID pairs. After the encryption payload, anENC packet may
be padded by zero to have fixed length because FEC encoding requires fixed length packets. We observe that padding by zero
will not cause any ambiguity because no encryption has an ID of zero.

4.3. User-oriented Key Assignment algorithm

Given the format of anENC packet, we next discuss the details of our key assignment algorithm, which we refer to as the
User-oriented Key Assignment (UKA) algorithm. UKA guarantees that all of the encryptions for a user are assigned into a
singleENC packet.

Figure 6(left) illustrates a particular run of theUKA algorithm in which7 ENC packets are generated.UKA first sorts
all of the user IDs into a list in increasing order. Then, a longest prefix of the list is extracted such that all of the encryptions
needed by the users in this prefix will fill up anENC packet. Repeatedly,UKA generates a sequence ofENC packets whose
< frmID, toID > intervals do not overlap. In particular, the algorithm guarantees that thetoID of a previousENC packet
is less than thefrmID of the next packet. This property is useful for block ID estimation to be performed by a user.



4.4. Performance ofUKA

UKA assigns all of the encryptions for a user into a singleENC packet, and thus significantly increases the probability for a
user to receive its encryptions in a single round. Consequently, the number of NACKs sent to the key server is reduced.

This benefit, however, is achieved at an expense of sending duplicate encryptions. In a rekey subtree, users may share
encryptions. For two users whose encryptions are assigned into two differentENC packets, their shared encryptions are
duplicated into those twoENC packets; therefore, we expect thatUKA would increase the bandwidth overhead at the key
server.

We evaluate the performance ofUKA in this subsection using simulations. In the simulations, we assume that at the
beginning of a rekey interval the key tree is full and balanced withN u-nodes. During the rekey interval,J join andL leave
requests are processed. We further assume that the leave requests are uniformly distributed over the u-nodes. We set the key
tree degreed as4 and the length of anENC packet as1027 bytes in our experiments.
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Figure 6. Illustration ofUKA algorithm (left), average number ofENC packets as a function ofJ andL (middle), and as a
function ofN (right)

We first investigate the size of a rekey message as a function ofJ andL for N = 4096, as shown in Figure 6 (middle). For
a fixedL, we observe that the average number ofENC packets increases linearly withJ . To understand such linear increase,
we need to investigate the size of the rekey subtree as a function ofJ . For a given number of leave requests, our marking
algorithm first replaces departed u-nodes with newly joined u-nodes, and then splits the n-nodes or u-nodes at the highest level
(with the root as level0). As a result, the rekey subtree and consequently the number ofENC packets grow proportionally to
J as we increaseJ . For a fixedJ , we observe that asL increases, the number ofENC packets first increases (because more
leaves means more keys to be changed), and then decreases (because now some keys can be pruned from the rekey subtree).
The maximum of the number of packets is achieved when aboutN/d users leave the group.

Next we investigate the size of a rekey message as a function ofN , as shown in Figure 6 (right). We observe that the
average number ofENC packets in a rekey message increases linearly withN for three combinations ofJ andL values.
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Figure 7. Average duplication overhead as a function ofJ andL (left) and as a function ofN (right)

We then evaluate the duplications generated by theUKA algorithm. Define duplication overhead as the ratio of duplicated
encryptions over the total number of encryptions in a rekey subtree. Figure 7 (left) shows the average duplication overhead as
a function ofJ andL for N = 4096. First consider the case of a fixedL. From our marking algorithm, we know that a larger



value ofJ will generate a larger rekey subtree, and a larger rekey subtree will have more shared encryptions. Therefore the
numerator of the duplication overhead will increase as we increaseJ . On the other hand, the number of encryptions, which is
the denominator of our duplication overhead, increases at a faster speed as implied by Figure 6 (left). Consequently, we observe
that the duplication overhead decreases roughly from0.1 to 0.05 as we increaseJ . Next consider the case of a fixedJ . As
implied by Figure 6 (left), for a givenJ , a rekey subtree will first grow and then shrink as we increaseL; therefore, the number
of duplications will also first increase and then decrease. However, since the number of duplications changes at a faster speed
than the number of encryptions does, we observe that the duplication overhead first increases and then decreases as we increase
L.

Last, we plot in Figure 7 (right) the average duplication overhead as a function ofN . We observe that forJ = 0, L = N/4 or
J = L = N/4, the average duplication overhead increases approximately linearly withlog(N) for N ≥ 32. This is because the
rekey subtree is almost full and balanced forJ = 0, L = N/4 or J = L = N/4, and thus the duplication overhead is directly
related to the tree heightlogd(N). We also observe that the duplication overhead is generally less thanlogd(N)−1

46 , where46 is
the number of encryptions that can be contained in anENC packet with a packet size of1027 bytes. ForJ = N/4, L = 0, the
rekey subtree is very sparse, and thus the curve of duplication overhead fluctuates around the curve ofJ = L = N/4.

5. BLOCK PARTITIONING

After running theUKA assignment algorithm to generateENC packets, the key server next generatesPARITY packets for
theENC packets using a Reed-Solomon Erasure (RSE) coder.

Although grouping all of theENC packets into a single RSE block may reduce bandwidth overhead, a large block size
can significantly increase encoding and decoding time.22,23,17 For example, using the RSE coder by L. Rizzo,22 the encoding
time for onePARITY packet is approximately a linear function of block size. Our evaluation shows that for a large group, the
number ofENC packets generated in a rekey interval can be large. For example, for a group with4096 users, whenJ = 0 and
L = N/4, the key server can generate up to107 ENC packets with a packet size of1027 bytes. Given such a large number of
ENC packets in a rekey interval, it is necessary to partition theENC packets into multiple blocks in order to reduce the key
server’s encoding time.

Below we first present our block partition algorithm for a given block sizek. Then we discuss how to choose the block size.

5.1. The block partition algorithm

For a given block sizek, to reduce the encoding time at the key server, we partition theENC packets into multiple blocks.
The key server first sorts theENC packets according to their generating orders. Then during each iteration, the key server first
increases the current block ID, takesk packets from the top of theENC packets to form a block, assigns theseENC packets
the current block ID, and increases sequentially the sequence number within the current block. To form the last block, the key
server may need to duplicate theENC packets in the last block until there arek packets.‡

One issue of partitioning theENC packets into blocks is that if a user loses itsENC packet, the user will not be able
to know directly the block to which itsENC packet belongs, so the user needs to estimate the block ID to which itsENC
specific packet belongs. Our estimation algorithm guarantees that even if the user cannot determine the accurate value of its
block ID, which happens with a very low probability, the user can still estimate a possible range of the block ID. For this case,
during feedback, the user will then requirePARITY packets for each block within this range. For an algorithm to estimate
block ID, we refer the interested readers to Appendix D.

After forming the blocks, the key server generatesPARITY packets, and multicasts all of theENC andPARITY
packets to the users. The remaining issue then is to determine the order in which the key server sends the packets. In our
protocol, the key server sends packets from different blocks in an interleaving pattern. By interleaving packets from different
blocks, two packets from the same block will be separated by a larger interval, and thus are less likely to experience the same
burst loss period on a link. By interleaving, our evaluation shows that the bandwidth overhead at the key server can be reduced.

‡A flag bit may be used in anENC packet to specify whether the packet is a duplicate. A duplicatedENC packet will be used in FEC
decoding performed by users, but will not be used for block ID estimation. Also the key server may distribute such duplicates over several
blocks.



5.2. Choosing block size

The block partition algorithm discussed in the previous subsection operates for a given block sizek. To determine the block
size, we need to evaluate the impact of block size on two performance metrics.

Our first performance metric is the key server’s multicast bandwidth overhead, which is defined as the ratio ofh′ andh,
whereh is the number ofENC packets in a rekey message, andh′ is the total number of packets that the key server multicasts
to make all of the users recover their specificENC packets. To evaluate the bandwidth overhead, we only consider the impact
of block sizek and useρ = 1 for the experiments in this section. We observe that the average bandwidth overhead at the key
server forρ = 1 is typically no more than that forρ > 1. The joined effects of block sizek and adaptiveρ on the key server
bandwidth overhead will be evaluated in Section 6.

Our second performance metric is overall FEC encoding time, which is the time that the key server spends to generate all of
thePARITY packets for a rekey message. Although block sizek also has direct impact on the users’ FEC decoding time, the
impact is small because in our protocol a vast majority of users can receive their specificENC packets, and thus do not have
any decoding overhead.

We use simulations to evaluate the effects of block size. We adopt the network topology used by J. Nonnenmacher, etc,19

which is a tree hierarchy that connects the key server to a backbone network through a source link, and connects each user to
the backbone through a receiver link. As for our loss model, we assume that the source link has a fixed loss rate ofps, and the
backbone is loss-free. We assume that a fractionα of theN users have a high loss rate ofph, and the others have a low loss
rate ofpl. At a given loss rate, we use a two-state continuous time Markov chain17 to simulate burst loss. We assume that the
average duration of a burst loss is100

p msec, and the average duration of a loss-free time is100
1−p msec, wherep is the link loss

rate. The default values of our simulations areN = 4096, d = 4, J = 0, L = N/d, α = 20%, ph = 20%, pl = 2%, ps = 1%,
the key server’s sending rate is10 packets/second, and the length of anENC packet is1027 bytes. These simulation topology
and parameters will also be used in the experiments in the following sections unless stated otherwise.
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Figure 8. Average server bandwidth overhead (left) and relative overall FEC encoding time(right) as a function of block size

We first consider the effects of block size on the key server’s bandwidth overhead. As shown in Figure 8 (left), we observe
that the key server’s average bandwidth overhead is not sensitive to the block size fork ≥ 5. To explain this phenomenon, we
observe thatk has the following two effects on the key server’s bandwidth overhead. First, ask decreases, the number of users
who need to receive theirENC packets from a given block decreases, and thus aPARITY packet can only recover a smaller
number of users. Therefore, we expect a higher bandwidth overhead as block size decreases. On the other hand, as block size
decreases, the number of packets that a user needs in order to recover its lostENC packet decreases. Therefore, we expect the
bandwidth overhead for retransmission decreases. Fork ≥ 5, these two factors almost balance each other, and we observe a
flat bandwidth overhead curve. The high bandwidth overhead fork = 50 comes from the duplicatedENC packets in the last
block.

We next consider the effects of block size on the key server’s overall FEC encoding time. If we use L. Rizzo’s RSE coder,22

the encoding time for onePARITY packet is approximately a linear function of block sizek. Therefore, the overall total
encoding time for allPARITY packets is the product of the total number ofPARITY packets and the encoding time for
onePARITY packet. Now consider the total number ofPARITY packets. By the definition of the key server’s bandwidth
overhead, we know that the total number ofPARITY packets is proportional to the server bandwidth overhead. As implied
by the flat bandwidth overhead curves in Figure 8 (left), the total number ofPARITY packets is not sensitive to block size
k for k ≥ 5. Therefore, we anticipate that the overall encoding time for allPARITY packets will be approximately a linear
function of block sizek. Figure 8 (right) confirms our analysis and shows the normalized overall encoding time (assumingk



time units to generate onePARITY packet for block sizek). We also observe from this figure some irregularity on the overall
encoding time for a large block size. Such irregularity can be explained by the duplicated packets in the last block, which do
not need any encoding time.

In summary, we observe that forρ = 1, a small block sizek can be chosen to provide fast FEC encoding without a large
bandwidth overhead. For the following experiments, we choosek = 10 as the default value.

6. ADAPTIVE PROACTIVE FEC MULTICAST

In the previous section, we discussed how to partition theENC packets of a rekey message into blocks and generated(ρ−1)ke
PARITY packets for each block. The discussion, however, assumes a given proactivity factorρ. In this section, we investigate
how to determineρ.

We observe thatρ is an effective mechanism for controlling NACK implosion at the key server. Feedback implosion occurs
when many users simultaneously send feedbacks to the key server. Mechanisms such as structure-based feedback aggregation or
timer-based NACK suppression14,24–26 have been proposed to reduce feedback traffic. However, structure-based mechanisms
rely on a tree hierarchy of designated nodes to aggregate feedbacks. In timer-based NACK suppression mechanisms, users use
a random delay timer to avoid feedback implosion. The extra delay introduced by delay timers makes it harder for users to meet
the soft deadline of group rekeying. In this section, we present our algorithm to adaptively adjust the proactivity factor to avoid
NACK implosion.

6.1. Impact of proactivity factor

To design the algorithm to adaptρ, we need to first evaluate the impact ofρ on the number of NACKs, the delivery latency at
users, and the bandwidth overhead at the key server.

We first evaluate the impact ofρ on the number of NACKs. Figure 9 (left) plots the average number of NACKs received
at the key server at the end of the first round. Note that y-axis is in log scale. We observe that the average number of NACKs
decreases exponentially as a function ofρ (a previous study has made a similar observation21). One conclusion we draw from
this figure is that the number of NACKs is very sensitive toρ, and a small increase ofρ can substantially reduce the number of
NACKs.
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Figure 9. Average number of NACKs of the first round (left) and average number of rounds for all users to receive their
encryptions (right) as a function ofρ

We next evaluate the impact ofρ on delivery latency. Figure 9 (right) plots the average number of rounds for all users to
receive their encryptions. From this figure, we observe that the average number of rounds decreases linearly as we increase
ρ, until ρ is large enough so that the effect ofρ diminishes and the curve levels off. Figure 10 (left) plots the percentage of
users who need a given number of rounds to receive their encryptions. The x-axis is the number of rounds for a user to receive
its encryptions and the y-axis is the percentage of users who need the number of rounds. Forρ = 1, we observe that more
than94.4% of the users can receive their encryptions within a single round; forρ = 1.6, the percentage value is increased to
99.89%; for ρ = 2.0, the percentage value is increased to99.99%.

We next evaluate the impact ofρ on the average server bandwidth overhead, as shown in Figure 10 (right). For a smallρ,
the key server sends a small amount of proactivePARITY packets during the first round, but it needs to send more reactive
PARITY packets in the subsequent rounds to allow users to recover their packets. Therefore, we observe that the increase of
ρ has little effect on the average server bandwidth overhead. Whenρ becomes large, however, the bandwidth overhead during
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Figure 10. Percentage of users who need specific rounds to receive their encryptions (left) and average server bandwidth
overhead as a function ofρ (right)

the first round can dominate the overall bandwidth overhead, and we observe that the overall bandwidth overhead increases
linearly withρ.

In summary, we observe that an increase ofρ can have the following three effects: 1) It will significantly reduce the average
number of NACKs; 2) It will slightly reduce delivery latency; 3) It will increase the key server’s bandwidth overhead whenρ is
larger than needed.

6.2. Adjustment of proactivity factor

Motivated by the effect of the proactivity factorρ, we present in Figure 11 our algorithm to adaptively adjustρ. The basic idea
of the algorithm is to adjustρ such that the key server will receive a target number of NACKs.

Algorithm AdjustRho(A)
� A = {ai}: each itemai is the number ofPARITY packets requested by a user.
1. If (current round= 1) and(size(A) > numNACK)

sortA so thata0 ≥ a1 ≥ a2, ...

ρ← anumNACK+dkρe
k

2. If (current round= 1) and(size(A) < numNACK)
doρ← max(0, dkρ−1e

k ) with probabilitymax(0, numNACK−size(A)∗2
numNACK )

Figure 11. The algorithm to adaptively adjust proactivity factor

The input to the algorithmAdjustRho is a listA. Each item ofA is the number ofPARITY packets requested by a user.
If a user requests packets for a range of blocks, the maximum number ofPARITY packets requested by the user is recorded
into A. For example, if a user requests2 PARITY packets for block1 and4 packets for block2, then4 will be recorded into
A.

The algorithm works as follows. For each rekey message, at the end of the first round, the key server compares the number of
NACKs that it has received (which is equal tosizeof(A)) and the number of NACKs that it targets (denoted bynumNACK).
The comparison has two results.

In the first case, the key server receives more NACKs than it targets. For this case, the server selects the(numNACK+1)th

largest item (denoted byanumNACK) from A, and increasesρ so thatanumNACK additional proactivePARITY packets will
be generated for each block of the next rekey message. Consider this example. Assume that10 usersui, i = 0, ..., 9 send
NACKs for the current rekey message, and userui requestsai PARITY packets. For illustration purposes, we assume
a0 ≥ a1 ≥ ... ≥ a9, and the number of NACKs that the key server targets is2, that isnumNACK = 2. Then according to our
algorithm, for the next rekey message, the key server will senda2 additionalPARITY packets so that users{u2, u3..., u9}
have a higher probability to recover theirENC packets within a single round. This is because according to the current rekey
message, if users{u2, u3..., u9} were to receivea2 morePARITY packets, they could have recovered theirENC packets
within a single round.



In the second case, the key server receives less NACKs than it targets. Although receiving less NACKs is better in terms
of avoiding NACK implosion, the small number of NACKs received may imply that the current proactivity factor is too high,
and thus may cause high bandwidth overhead. Therefore, the key server reducesρ by onePARITY packet with probability
proportional tonumNACK−size(A)∗2

numNACK .

Our algorithmAdjustRho will not only adjustρ according tonumNACK, but also adjustnumNACK dynamically.
We observe that a smallernumNACK implies a smaller number of NACKs, and therefore a smaller average delivery latency.
On the other hand, a smallernumNACK may also imply a larger server bandwidth overhead. Given these, we update
numNACK according to the following heuristics (wheremaxNACK is an upper bound ofnumNACK):

1. If all users meet deadline for the current rekey message, the key server updatesnumNACK asmin(numNACK +
1, maxNACK) to save server bandwidth overhead.

2. If i receivers miss deadline, the key server updatesnumNACK asmax(numNACK − i, 0) to increase the number of
users who can meet deadline.

If numNACK exceeds the upper bound, the server may experience NACK implosion. The exact value ofmaxNACK will
be a configuration parameter and depend on a key server’s available bandwidth and processing power.

6.3. Performance evaluation

We use simulations to evaluate theAdjustRho algorithm. In Section 6.3.1, we evaluate the performance of our algorithm to
avoid NACK implosion. In Section 6.3.2, we investigate how to choose block sizek for the adaptiveρ scenario. In Section 6.3.3,
we investigate how to choosemaxNACK. In Section 6.3.4, we evaluate the server bandwidth overhead for adaptive proactive
FEC.

6.3.1. Controlling NACK implosion

Before evaluating whether theAdjustRho algorithm can control NACK implosion, we first investigate the stability of the
algorithm. For the simulations in this section, we set the target number of NACKs (numNACK) at20.

Figure 12 shows howρ is adaptively adjusted when the key server sends a sequence of rekey messages. For initialρ = 1
as shown in the left figure, we observe that it takes only a couple of rekey messages forρ to settle down to stable values. For
initial ρ = 2 as shown in the right figure, we observe thatρ keeps decreasing until it reaches stable values. Comparing both
figures, we note that the stable values of those two figures match each other very well.
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Figure 12. Adjusting of proactivity factor, initiallyρ = 1 (left) and initiallyρ = 2 (right)

Next we consider the number of NACKs received by the key server at the end of the first round for each rekey message, as
shown in Figure 13. In the left figure where the initialρ is 1, the number of NACKs received become stabilized very quickly,
and the stable values are generally less than1.5 times ofnumNACK for α > 0. Forα = 0, which means all users have a low
loss rate of2%, the number of NACKs fluctuates in a large range because the number of users who can receive their encryptions
during the first round is very sensitive toρ for small loss rate. The sharp slope of the curve forα = 0 in Figure 9 (left) conforms
this sensitivity. The right figure shows the case for initialρ = 2. We observe that the stable values of those two figures match
very well.

Next we evaluate whetherAdjustRho algorithm can control the number of NACKs for various numNACKs. As shown in
the left figure (initiallyρ is 1) and right figure (initiallyρ is 2) of Figure 14, the numbers of NACKs received at the key server
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Figure 13. Number of NACKs received, initiallyρ = 1 (left) and initiallyρ = 2 (right)
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Figure 14. Number of NACKs for differentnumNACKs, initially ρ = 1 (left) and initiallyρ = 2 (right)

fluctuate around the target value for a wide range ofnumNACK values. However, we do observe that the fluctuations become
more significant for largernumNACK. Therefore, to choosemaxNACK, we need to consider the potential impact of large
fluctuations whenmaxNACK is large. In our following experiments, we choose20 as the default value ofnumNACK.

6.3.2. Choosing block size

In section 5.2, we have discussed how to choose block sizek for ρ = 1. In this section, we reconsider this problem for a new
scenario whereρ is adaptively adjusted. To determine the block size, we consider the following factors:
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Figure 15. Average number of NACKs for differentk, initially ρ = 1 (left) and initiallyρ = 2 (right)

1. Fluctuations in the number of NACKs received. As shown in Figure 15, we observe that a very small block size may
cause large fluctuations in the number of NACKs. For example, fork = 1 or 5, the number of NACKs received by the
key server can reach as high as two timesnumNACK.

2. Server bandwidth overhead. First consider Figure 16 (left), which shows the average bandwidth overhead at the key
server as a function ofk whenρ is adaptively adjusted. We observe that the average server bandwidth overhead is very
high fork = 1; then it decreases and becomes flat as we increasek. The higher bandwidth overhead fork = 50 comes
from the duplicated packets in the last block.This observation is almost the same as what we see forρ = 1, except that
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Figure 16. Average bandwidth overhead as a function of block size for differentα (left) and for differentN (right)

0

1

2

3

4

5

6

7

0 5 10 15 20 25 30 35 40 45 50

av
er

ag
e 

# 
se

rv
er

 r
ou

nd
s

k

N=4096, L=N/4, pHigh=20%, pLow=2%, sendingInterval=100, numNACK=20

alpha=0
alpha=20%
alpha=40%

alpha=1

0

0.5

1

1.5

2

0 5 10 15 20 25 30 35 40 45 50

av
er

ag
e 

# 
ro

un
ds

 b
y 

a 
us

er

k

N=4096, L=N/4, pHigh=20%, pLow=2%, sendingInterval=100, numNACK=20

alpha=0
alpha=20%
alpha=40%

alpha=1

Figure 17. Average number of rounds for all users to receive their encryptions (left) and average number of rounds needed by
a user (right) as a function ofk

the bandwidth overhead fork = 1 is much higher in the adaptiveρ scenario. This is because fork = 1, one block
contains only oneENC packet. When the key server increasesρ, the key server will have to generate at least one more
PARITY packet for each block (that is, for just oneENC packet) to have any effect. For example, for initialρ = 1,
any increase ofρ will at least double the total number of packets sent during the first round. Given such large granularity
adjustment, the key server experiences high bandwidth overhead fork = 1.

Next consider Figure 16 (right), which shows the average server bandwidth overhead as a function of group size when
ρ is adaptively adjusted. The figure shows the same trend as the left figure. However, the average server bandwidth
overhead fluctuates a lot forN = 1024. This is because the rekey message contains only26 ENC packets forN =
1024, J = 0, L = N/4. Hence the duplicated packets in the last block can significantly affect the bandwidth overhead at
the key server if block size is large.

3. Overall FEC encoding time to generate allPARITY packets in a rekey message. According to our observations in
Figure 16, we know that fork ≥ 5, the bandwidth overhead at the key server is not sensitive to block size. As a result,
the overall FEC encoding time at the key server will linearly increase with block sizek.

4. Delivery latency. From Figure 17 (left), we observe that the average number of rounds for all users to receive their
encryptions stays flat as we vary block sizek; therefore, the change of block sizek does not have much impact on the
delivery latency at users. To further validate this result, Figure 17 (right) plots the average number of rounds for a single
user to receive its encryptions. From this figure, we again observe that block sizek does not have any noticeable effect
on delivery latency. We further notice that using our algorithm, the average number of rounds for a user to receive its
encryptions is close to1.

In conclusion, whenρ is adaptively adjusted, block sizek should not be too small because of the large fluctuations in the
number of NACKs, and the large key server bandwidth overhead. On the other hand, block sizek should be small enough to
reduce key server’s FEC encoding time. This conforms our previous conclusion drawn for theρ = 1 case.

6.3.3. ChoosingmaxNACK

Next, we evaluate the impact ofmaxNACK, which is the upper bound ofnumNACK. The following observations about
numNACK will help us choosemaxNACK.
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Figure 18. Average number of rounds needed by a user (left) and average server bandwidth overhead (right) as a function of
numNACK

1. First, a largenumNACK can cause NACK implosion.

2. Second, as observed in Section 6.3.1, a largenumNACK can cause large fluctuations in the number of NACKs received
by the server.

3. Third, an increase ofnumNACK will slightly increase the delivery latency. From Figure 18 (left), we observe that the
average number of rounds for a user to receive its encryptions will increase linearly withnumNACK. However, the
increasing speed is very slow because more than94.4% users can receive their encryptions within a single round even for
ρ = 1 whenα = 20%.

4. Fourth, a very smallnumNACK may cause a large average bandwidth overhead at the key server. As shown in Figure 18
(right), we observe that fornumNACK = 0 andα > 0, the average overhead at the key server bandwidth overhead
can be as high as2.3. However, as we increasenumNACK, the bandwidth overhead decreases and becomes flat for
numNACK ≥ 5..

Given the above observations, we know thatmaxNACK should be large enough (maxNACK ≥ 5) to avoid large
bandwidth overhead at the key server. On the other hand,maxNACK should be small enough to avoid NACK implosion, and
also to reduce fluctuations in the number of NACKs.

The above observations can also help us choose the initial value ofnumNACK. If the rekey interval is small, a small
numNACK is desired because delivery latency is the major performance metric for a small rekey interval. Otherwise, a large
initial value ofnumNACK can be chosen to reduce the bandwidth overhead at the key server.

6.3.4. Overhead of adaptive proactive FEC

From the previous section, we know that theAdjustRho algorithm can effectively avoid NACK implosion and reduce delivery
latency. However, compared with an approach that does not send any proactivePARITY packets at all during the first round
and only generates reactivePARITY packets during the subsequent rounds, the adaptive proactive FEC scheme may incur
extra bandwidth overhead at the key server. We investigate this issue in this section.
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Figure 19. The extra server bandwidth caused by adaptiveρ for differentα

We first evaluate the extra bandwidth overhead at the key server caused by proactive FEC. Figure 19 shows the results for
various loss environments. We observe that compared with the approach where allPARITY packets are generated reactively
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Figure 20. The extra server bandwidth caused by adaptiveρ for differentN

(i.e. ρ = 1), our adaptive proactive scheme causes little extra server bandwidth overhead in homogeneous low loss situations
(i.e. α = 0 ). Forα = 1, our scheme can even save a little bandwidth. This is because forρ = 1, the key server takes much
more rounds for all users to recover their encryptions than the adaptive proactive scheme. And during each round, the key server
generatesPARITY packets according to the maximum number requested. Therefore, it is possible that the total number of
PARITY packets generated during so many rounds forρ = 1 is larger than the adaptive proactive scheme. In a heterogeneous
environment such asα = 20%, the extra bandwidth overhead generated by adaptiveρ is less than0.25 for k ≥ 5.

We next consider the server bandwidth overhead for various group size. From Figure 20, we observe that the extra bandwidth
overhead incurred by adaptiveρ increases withN . The extra bandwidth overhead, however, is still less than0.4 even for
N = 16384.

7. SPEEDUP WITH UNICAST

Rekeying transport has a soft real-time requirement, that is, it is desired that all users receive their new keys before the end of
the rekey interval. To meet this requirement, in the previous section, we have proposed to adaptively adjustnumNACK andρ
during the multicast phase to reduce the the number of users missing deadline. However, these approaches may not be enough
becausenumNACK does not directly affect delivery latency at users.

Consider Figure 21, which shows the number of users missing deadline and the adjustment ofnumNACK, when we set
the deadline at2 rounds, the initialρ as1, and initialnumNACK as200 (a rather high initial value). We observe that the
number of users missing deadline reduces dramatically during the first few rekey messages because of the rapid decrease of
numNACK. However, whennumNACK becomes stable, there are still a few users missing deadline.
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Figure 21. Number of users who missed deadline (left) and adjusting ofnumNACK (right), for initially ρ is 1, numNACK
is 200

To further increase the number of users meeting deadline, the key server will switch to unicast after one or two multicast
rounds. Unicast can reduce delivery latency compared to multicast because a duration of a multicast round is typically larger
than the largest round-trip time over all users.

To use unicast, we need to solve two problems. First, we need to determine when to switch to unicast so that unicast will
not cause a large bandwidth overhead at the key server. Second, we need to determine how to send the unicast packets so that
the users can quickly and efficiently receive their encryptions.



7.1. When to switch to unicast

One issue of early unicast is its possible high bandwidth overhead at the key server. This is because the server has to send
separate packets for each user who did not receive their encryptions.

However, in our protocol, unicast will not cause large bandwidth overhead at the key server due to the following two reasons.
First, the packet size of theUSR packets sent during unicast is much smaller than those ofENC andPARITY packets. In
our protocol, aUSR packet contains only the encryptions for a specific user, and its packet size is at most(3 + 20h) bytes,
whereh is the height of the key tree. On the other hand, the packet sizes ofENC andPARITY packet are typically more
than one kilobyte long. Second, our protocol guarantees that only a few users need unicast. From Figure 10, we observe that
the vast majority of the users can receive their encryptions within a single multicast round. In fact, our evaluations show that
for numNACK = 20, roughly5 or less users need retransmissions after two multicast rounds.

Our conditions for switching to unicast are as follows. Our protocol switches to unicast after one or two multicast rounds.
We suggest two multicast rounds for a large rekey interval and one multicast round for a small rekey interval. Even for a large
interval, the time to switch to unicast can be earlier if the total length of theUSR packets (plus UDP headers) is no more than
that ofPARITY packets needed for the next multicast round.

For our protocol, the duration of each multicast round is not fixed. It is adjusted so that all users are expected to meet
deadline. In particular, if some users miss deadline, we propose that the duration of a round should be reduced by the missing
time; otherwise, the duration of a round should be increased by a small value.

7.2. Unicast protocol

Switch2Unicast(R)
� R: the set of users who need unicast.
1. i← 2
2. Sendi duplicateUSR packets by UDP to each user inR
3. i← i + 1
4. When receiving a NACK from a user

sendi duplicateUSR packets to the user; i← i + 1

Figure 22. Unicast protocol for the key server

The server’s unicast protocol is shown in Figure 22. To provide fast delivery, the key server sends an increasing number
of duplicatedUSR packets during unicast. In particular, the server sends two duplicateUSR packets over a certain interval
to each user inR at the beginning of unicast. The number of duplicates will then be incremented by1 for each subsequent
retransmission. Since the size ofR and the length of aUSR packet is small, such duplications will not cause large bandwidth
and processing overheads for the key server.

8. CONCLUSION

The objective of this paper is to present in detail our rekey transport protocol as well as its performance. Our server protocol for
each rekey message consists of four phases: (i) generating a sequence of ENC packets containing encrypted keys, (ii) generating
PARITY packets (iii) multicast of ENC and PARITY packets, and (iv) transition from multicast to unicast.

In the first phase, after running the marking algorithm to generate encryptions for a rekey message, the key server constructs
ENC packets. The major problem in this phase is to allow a user to identify its required encryptions. To solve the problem,
first we assign a unique integer ID for each key, user and encryption. Second, our key assignment algorithm guarantees that
each user needs only oneENC packet. By including a small amount of ID information inENC packets, each user can easily
identify its specificENC packet and extract the encryptions it needs.

In the second phase, the key server uses a RSE coder to generatePARITY packets forENC packets. The major problem
in this phase is to determine the block size for FEC encoding. This is because a large block size can significantly increase
FEC encoding and decoding time. Our performance results show that a small block size can be chosen to provide fast FEC
encoding rate without increasing bandwidth overhead. We also present an algorithm for a user to estimate its block ID if it has
not received its specificENC packet



In the third phase, the key server multicastsENC andPARITY packets to all users. The major problem in this phase is to
control NACK implosion. In our protocol, the key server adaptively adjusts the proactivity factor based on past feedback. Our
experiments show that the number of NACKs can be effectively controlled around a target number, while the extra bandwidth
overhead incurred is small. Additionally, adaptively adjusting the proactivity factor reduces the delivery latency of users.

In the fourth phase, the key server switches to unicast to reduce the worst-case delivery latency. The major problem in
this phase is to determine when to switch to unicast such that unicast will not cause large server bandwidth overhead, and
how to do unicast to provide smaller delivery latency. In our protocol, a vast majority of users can receive or recover their
required encryptions within one multicast round. Also, during unicast theUSR packet transmitted is very small. Based on
these observations, we let the key server switch to unicast after one or two multicast rounds (depending upon deadline). To
provide even faster delivery, the key server duplicates theUSR packet during unicast.

In summary, we have the following contributions. First, we present a detailed specification of a scalable and reliable
protocol for group rekeying, together with performance results. Second, a simple key identification strategy and key assignment
algorithm are presented and evaluated. Third, we show that our block partition algorithm reduces the server’s FEC encoding
time without increasing server bandwidth overhead. Finally, an adaptive algorithm to adjust the proactivity factor is proposed
and evaluated. The algorithm is found to be effective in controlling NACK implosion.

ACKNOWLEDGMENTS

We would like to thank Mr. Min S. Kim and Jia Liu for their constructive comments.

REFERENCES

1. I. R. T. F. (IRTF), “The secure multicast research group (SMuG).” http://www.ipmulticast.com/community/smug/.
2. C. K. Wong and S. S. Lam, “Keystone: a group key management system,” inProceedings of ICT 2000, (Acapulco,

Mexico), May 2000.
3. A. O. Freier, P. Karlton, and P. C. Kocher, “The SSL protocol version 3.0.” Work in progress, IETF Internet-Draft, Mar.

1996.
4. D. Wallner, E. Harder, and R. Agee,Key Management for Multicast: Issues and Architectures, INTERNET-DRAFT, Sept.

1998.
5. C. K. Wong, M. G. Gouda, and S. S. Lam, “Secure group communications using key graphs,” inProceedings of ACM

SIGCOMM ’98, Sept. 1998.
6. H. Harney and E. Harder,Logical Key Hierarchy Protocol, INTERNET-DRAFT, Mar. 1999.
7. I. Chang, R. Engel, D. Kandlur, D. Pendarakis, and D. Saha, “Key management for secure Internet multicast using boolean

function minimization techniques,” inProceedings of IEEE INFOCOM ’99, vol. 2, Mar. 1999.
8. D. Balenson, D. McGrew, and A. Sherman,Key Management for Large Dynamic Groups: One-way Function Trees and

Amortized Initialization, INTERNET-DRAFT, 1999.
9. Y. R. Yang, X. S. Li, X. B. Zhang, and S. S. Lam, “Reliable group rekeying: A performance analysis,” inProceedings of

ACM SIGCOMM 2001, (San Diegao, CA), Aug. 2001.
10. X. S. Li, Y. R. Yang, M. G. Gouda, and S. S. Lam, “Batch rekeying for secure group communications,” inProceedings of

Tenth International World Wide Web Conference (WWW10), (Hong Kong, China), May 2001.
11. S. Setia, S. Koussih, S. Jajodia, and E. Harder, “Kronos: A scalable group re-keying approach for secure multicast,” in

Proceedings of IEEE Symposium on Security and Privacy, (Berkeley, CA), May 2000.
12. I. R. T. F. (IRTF), “Reliable Multicast Research Group.” http://www.nard.net/ tmont/rm-links.html.
13. S. Paul, K. Sabnani, and D. Kristol, “Multicast transport protocols for high speed networks,” inProceedings of IEEE

ICNP ’94, (Boston, MA), Oct. 1994.
14. S. Floyd, V. Jacobson, C. Liu, S. McCanne, and L. Zhang, “A reliable multicast framework for light-weight sessions and

application level framing,”IEEE/ACM Transactions on Networking5(6), pp. 784–803, 1997.
15. D. Towsley, J. Kurose, and S. Pingali, “A comparison of sender-initiated reliable multicast and receiver-initiated reliable

multicast protocols,”IEEE Journal on Selected Areas in Communications15(3), pp. 398–406, 1997.
16. B. Levine and J. Garcia-Luna-Aceves, “A comparison of known classes of reliable multicast protocols,” inProceedings of

IEEE ICNP ’96, (Columbus, OH), Oct. 1996.
17. J. Nonnenmacher, E. Biersack, and D. Towsley, “Parity-based loss recovery for reliable multicast transmission,” inPro-

ceedings of ACM SIGCOMM ’97, Sept. 1997.



18. S. K. Kasera, J. Kurose, and D. Towsley, “A comparison of server-based and receiver-based local recovery approaches for
scalable reliable multicast,” inProceedings of IEEE INFOCOM ’98, (San Francisco, CA), Mar. 1998.

19. J. Nonnenmacher, M. Lacher, M. Jung, E. Biersack, and G. Carle, “How bad is reliable multicast without local recovery?,”
in Proceedings of IEEE INFOCOM ’98, (San Francisco, CA), Mar. 1998.

20. R. G. Kermode, “Scoped Hybrid Automatic Repeat reQuest with Forward Error Correction (SHARQFEC),” inProceed-
ings of ACM SIGCOMM ’98, Sept. 1998.

21. D. Rubenstein, J. Kurose, and D. Towsley, “Real-time reliable multicast using proactive forward error correction,” in
Proceedings of NOSSDAV ’98, July 1998.

22. L. Rizzo, “Effective erasure codes for reliable computer communication protocols,”Computer Communication Review,
Apr. 1997.

23. J. W. Byers, M. Luby, M. Mitzenmacher, , and A. Rege, “A digital fountain approach to reliable distribution of bulk data,”
in Proceedings of ACM SIGCOMM ’98, (Vancouver, B.C.), Sept. 1998.

24. M. Grossglauser, “Optimal deterministic timeouts for reliable scalable multicast,” inProceedings of IEEE INFOCOM ’96,
Mar. 1998.

25. H. W. Holbrook, S. K. Singhal, and D. R. Cheriton, “Log-based receiver-reliable multicast for distributed interactive
simulation,” inProceedings of ACM SIGCOMM ’95, 1995.

26. J. Nonnenmacher and E. Biersack, “Optimal multicast feedback,” inProceedings of IEEE INFOCOM ’98, (San Francisco,
CA), July 1998.

APPENDIX A. PROTOCOL SPECIFICATION

A.1. Formats of packets

Figure 5, 23, 24 and 25 define the formats of anENC, PARITY , USR andNACK packet respectively. In aUSR packet,
the encryption IDs are optional if we arrange the encryptions in increasing order of ID.

1. Type:PARITY (2 bits) 2. Rekey message ID (6 bits)
3. Block ID (8 bits) 4. Sequence number within a block (8 bits)
5. FEC parity information for Fields5 to 8 of ENC packets

Figure 23. Format of aPARITY packet

1. Type:USR (2 bits) 2. Rekey message ID (6 bits)
3. New user ID (16 bits) 4. A list of<encryption, ID> (variable length)

Figure 24. Format of aUSR packet

1. Type:NACK (2 bits) 2. Rekey message ID (6 bits)
3. A list of <number ofPARITY packets requested, block ID> (variable length)

Figure 25. Format of aNACK packet

A.2. The specification of protocols

The protocol for the key server is shown in Figure 26. And the protocol for a user is shown in Figure 27. In both protocols, we
consider only one rekey message. In the protocols, both the server and users behave based on rounds. In fact, it is feasible for
a user to send a NACK as soon as it detects a loss, and for the server to multicastPARITY packets as soon as it receives a
NACK from any user. An arising problem is that the server has to determine whether it has already satisfied or partially satisfied
an incoming NACK. This problem can be easily solved by containing in each NACK the maximum sequence number of the
packets received by the user in a specific block. This idea was first proposed by D. Rubenstein, etc.21



1. status = MULTICAST
2. For each block: multicastk ENC packets andd(ρ− 1)ke PARITY packets
3. R← empty set //R is the set of users who send NACK
4. A← empty list //A contains NACK information
5. For each block ID i:amax[i]← 0
6. Start timeout
8. AcceptNACK(m, a list of< a, i >)

// m: the ID of the user who sends the NACK
// < a, i >: the user requestsa PARITY packets for blocki
if (status=MULTICAST)
then

R← R + {m}
append the maximuma of < a, i > list to A
for each entry< a, i > in the list: amax[i]← max(amax[i], a)

else sendUSR packets tom // refer toSwitch2Unicast(R)
9. When timeout

UpdateRho(A)
if (conditions for switching to unicast hold)
then status = UNICAST; Switch2Unicast(R)
else if (R is not empty)

for each blocki: multicastamax[i] newPARITY packets; amax[i]← 0
start timeout

Figure 26. Key server protocol for one rekey message

APPENDIX B. MARKING ALGORITHM

In periodic batch rekeying, the key server collectsJ join andL leave requests during a rekey interval. At the end of the interval,
the server runs the following marking algorithm to update the key tree and construct a rekey subtree. The marking algorithm is
slightly different from the one presented in our previous paper.9,10 The n-node and ID information are introduced in Section 4.

To update the key tree, the marking algorithm performs the following operations:

1. If J = L, replace all u-nodes who have left by the u-nodes of newly joined users.

2. If J < L, chooseJ u-nodes who have smallest IDs among theL departed u-nodes, and replace thoseJ u-nodes with
joins . Change the remainingL− J u-nodes to n-nodes. If all of the children of a k-node are n-nodes, change the k-node
to n-node. Repeat this operation iteratively on all k-nodes.

3. If J > L, first replace the u-nodes who have left by joins, then replace the n-nodes with ID betweennk +1 andd∗nk +d
(inclusive) in order from low to high, wherenk is the maximum ID of current k-nodes. If there are still extra joins after
this, keep splitting the node whose ID is equal tonk + 1, and updatingnk. The split node becomes its leftmost child.

4. If any n-node has a descendant u-node, change the n-node to k-node.

To construct the rekey subtree, the marking algorithm first copies the current key tree as the initial rekey subtree. Then the
marking algorithm labels the nodes in the rekey subtree. We have four label: “Unchanged”, “Join”, “Leave”, and “Replace”:

1. First label all of the n-nodes as Leave.

2. Then label the u-nodes. Label a newly joined u-node as Join, a u-node who has departed and then joined as Replace, and
other u-nodes as Unchanged.

3. Next label the k-nodes: 1) If all the children of a key node are labeled Leave, label it as Leave, and remove all of its
children from the rekey subtree. 2) Otherwise, if all of its children are Unchanged, label it as Unchanged, and remove all
of its children. 3) Otherwise, if all of its children are Unchanged or Join, label it as Join. 4) Otherwise, if the node has at
least one Leave or Replace child, label it as Replace.



1. For each block IDi: counter[i]← 0
2. Start timeout
3. Receive a packetpkt

3.1 if (pkt is aUSR packet), thenm← the new ID contained inpkt; success
3.2 if (pkt is anENC packet)

then
m← calculated new ID
if (pkt.frmID ≤ m ≤ pkt.toID) then success
else

EstimateBlkID(m, high, low, pkt)
increasecounter[pkt.blkID] by 1

4. When timeout
4.1 if (high = low) and(counter[high] ≥ k) then decode the block; success

else
for each block IDi ∈ [low, high]

if (counter[i] ≥ k)
then

decode the block
if (requiredENC packet is decoded) then success

else put< k − counter[i], i > into aNACK packet
send theNACK packet to the key server; start timeout

Figure 27. User protocol for one rekey message

We call the remaining subtreerekey subtree. Each edge in the rekey subtree corresponds to an encryption. The key server
traverses the rekey subtree and uses the key assign algorithm to assign encryptions into packets.

APPENDIX C. PROOFS OF LEMMA AND THEOREM

C.1. Proof of Lemma 4.1

1. The property holds for the initial key tree constructed with only join requests.

2. The property holds when the key server processesJ join andL leave requests during any rekey interval because:

(a) The property holds forJ ≤ L because the joined u-nodes replace the departed u-nodes in our marking algorithm.

(b) ForJ > L, newly joined u-nodes first replace the departed u-nodes or the n-nodes whose IDs are larger thannk,
wherenk is the maximum ID of current k-nodes . These replacements make the property hold. Then the marking
algorithm splits the node with IDnk + 1. Therefore, the property holds after splitting.

C.2. Proof of Theorem 4.2

1. There exists such an integerx′ ≥ 0 such thatnk < f(x′) ≤ d ∗ nk + d, because:

(a) From the marking algorithm, we know that the u-nodem needs to change its ID only when it splits. If no splitting
happens, thenm′ = m = f(0). Otherwise, after splitting, the u-node becomes its leftmost descendant, and the new
ID m′ is the form off(x′) for an integerx′ > 0. By Lemma 4.1,nk < m′ sincem′ is a u-node.

(b) Since the maximum ID of current k-nodes isnk, the maximum ID of current u-nodes must be less than or equal to
d ∗ nk + d. Thereforem′ ≤ d ∗ nk + d

2. Suppose besidesm′, there exists another leftmost descendant (denoted bym′′) of m which also satisfies the condition
nk < m′′ ≤ d ∗ nk + d. Then we get a contradiction because:

(a) By the assumptionnk < m′′, m′′ must be a u-node or n-node. Furthermore,m′′ must be a n-node and be a
descendant ofm′ sincem′ is a u-node.



(b) Sincem′ is the ancestor ofm′′, nk is the parent node ofd ∗ nk + d, and by the assumptionm′′ ≤ d ∗ nk + d, we
havem′ ≤ nk. This contradicts Lemma 4.1 sincem′ is a u-node.

3. From the proof above, we havem′ = f(x′).

APPENDIX D. ESTIMATING BLOCK ID

When we partition theENC packets into multiple blocks, and if a user loses its specificENC packet, the user will not be able
to know directly the block to which itsENC packet belongs. We address this issue in this appendix.

The key observation is that a user can estimate the block ID to which itsENC packet belongs from the ID information
contained in the receivedENC packets. Assume a user has IDm, and itsENC packet is thejth packet in blocki. Let
< i, j > denote the<block ID, sequence number within a block> pair. Whenever a user receives anENC packet, it can
refine its estimation of the block IDi. For example, ifm > toID of a received packet, theni ≥ block ID of the received
packet because the received packet must be generated earlier than the user’s specificENC packet. In this way, if the user can
receive any oneENC packet inSl = {< i − 1, k − 1 >, < i, 0 >, ..., < i, j − 1 >}, and receive any oneENC packet in
Su = {< i, j + 1 >, ..., < i, k − 1 >, < i + 1, 0 >}, then it can determine the accurate value ofi even when< i, j > is lost.
The detailed algorithm to estimate block ID is shown in Figure 29. Figure 28 illustrates the block ID estimation.

k−1 1 1 ... ...

block i−1 block i block i+1

... ...k−2... ... k−1j+1jj−1 ... ...2 2

lS : lower bound S : upper boundu

Figure 28. Illustration of block ID estimation

A user can determine the accurate value of the block ID with high probability. Only when all of theENC packets in set
Sl + {< i, j >} are lost, or when all of the packets in setSu + {< i, j >} are lost, the user cannot determine the accurate value
of the block ID. The probability of such failure, however, is as low aspj+2 + pk−j+1 − pk+2, wherep is the loss rate observed
by the user when we assume independent loss among packets. In the worst case whenj = 0 or j = k − 1, the probability is
aboutp2. In case of failure, the user first estimates a possible range of the required block ID. Then during feedback, the user
requiresPARITY packets for each block within the estimated block ID range.

Algorithm EstimateBlkID (m, low, high, pkt)
� m is the user’s ID who calls this algorithm.
� low is the current estimate of the lower bound of required block ID.
� high is the current estimate of the upper bound of required block ID.
� pkt is theENC packet received.
1. If (pkt.toID ≤ m ≤ pkt.frmID) thenhigh← pkt.blkID; low ← pkt.blkID
2. If (m > pkt.toID) and(pkt.seqNo = k − 1) thenlow ← max(low, pkt.blkID + 1)
3. If (m > pkt.toID) and(pkt.seqNo < k − 1) thenlow ← max(low, pkt.blkID)
4. If (m < pkt.frmID) and(pkt.seqNo = 0) thenhigh← min(high, pkt.blkID− 1)
5. If (m < pkt.frmID) and(pkt.seqNo > 0) thenhigh← min(high, pkt.blkID)
6. If (m > pkt.toID) then

high← min(high, pkt.blkID + dd∗(pkt.maxKID+1)−pkt.toID−(k−1−pkt.seqNo)
k e

Figure 29. Estimating required block ID

Initially, a user sets the lower boundlow as0, and upper boundhigh as infinity. The step6 in Figure 29 guarantees that the
final value ofhigh will not be infinity. The reasoning is as follows. When the user receives anENC packetpkt, themaxKID
field of the packet specifies the maximum ID of current k-nodes. Therefore, the maximum ID of current users cannot be larger
thand ∗ (pkt.maxKID + 1). In the worst case, oneENC packet contains encryptions for only one user, then there are at
most(d ∗ (pkt.maxKID + 1) − pkt.toID) ENC packets whosefrmID sub-field is larger thanpkt.toID. Therefore, the
maximum block ID cannot be larger thanpkt.blkID + dd∗(pkt.maxKID+1)−pkt.toID−(k−1−pkt.seqNo)

k e.


