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Formal Methods for Protocol Conversion

KENNETH L. CALVERT AnD SIMON S. LAM, FELLOW, IEEE

Abstract—We consider ways of overcomi g a protocol mismatch using
protocol conversion. Three different methods for finding a protocol con-
verter are described. Two of these are ‘‘bottom up’’ in nature, and
involve relating the conversion system to existing protocols. The third
approach, which is new, is ““top down’’: the desired global properties
of the conversion system are used in deriving the converter. An ex-
ample is used to illustrate each method. We discuss more general forms
of the abstract problem in the context of layered network architec-
tures.

I. INTRODUCTION

COMPUTER communication networks today practi-
cally span the globe. Yet, achieving useful commu-
nication between programs residing in different computer
systems remains a nontrivial problem. Often, this is be-
cause the systems are designed to communicate using dif-
ferent protocols: the form and meaning of the messages
they send are governed by different sets of rules and pro-
cedures. In Fig. 1, system P, is designed to communicate
with system P, using protocol P, while Oy and Q, are
designed to use protocol Q. When P, needs to interact
with Qy, a protocol mismatch exists.

The existence of different protocols to perform the same
function is a fact of life that is unlikely to change. One
reason for this is the large installed base of systems from
various manufacturers, whose different protocol architec-
tures were developed prior to the definition of adequate
‘‘open system’’ standards.' Another reason is that com-
munication protocols evolve with technology. In other
words, we are still learning how to build networks, and
we will continue to learn. As new protocols replace old
ones, several ‘‘generations’’ of architecture may coexist
at any time, and upward compatibility may eventually be
sacrificed for superior performance. Still another reason,
noted in [12], is the desirability of having different pro-
tocols for the same general purpose, to serve the needs of
different user communities. For example, a protocol op-
timized for transfer of bulk data over long-haul networks
will differ from one intended for transfer of interactive
terminal session data over the same networks [7]. For
these and other reasons, convergence to a single protocol
architecture is likely to take a long time, if indeed it ever
occeurs.
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'Indeed, some might say that adequate standards do not yet exist.
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Fig. 1. Protocol configurations.

The most obvious solution to the problem of Fig. 1is
to modify Py or Q, or both to achieve compatibility. This
may, in fact, be the best solution in some cases. How-
ever, in general, it is tantamount to convergence to a sin-
gle architecture, and therefore we seek other solutions. If
we cannot modify P, or Q,, some form of translation be-
tween protocols would seem to be the best alternative.
Fig. 2 shows an intermediary called a protocol converter,
which translates messages sent by P, into messages of
protocol Q, forwards them to Q,, and performs a similar
translation in the other direction. Protocol converters of
this kind have been mentioned in the literature, where they
are sometimes called ‘‘gateways’’ [10], [14], [35]. We
use the term protocol conversion to refer to the general
approach of using translation to solve protocol mismatch
problems.

Green [13] considered the general problem of protocol
conversion and thoroughly examined many of its practical
aspects. He pointed out that no general solution method-
ology is known, and suggested that the formal methods
used in specification and verification of protocols might
form the basis for *‘a deeper and more systematic calculus
of conversion.”” Since then, some approaches based on
formal methods have been proposed [21], [31]. In this
paper, we consider the application of formal methods to
the problem of finding a protocol converter. After for-
malizing the problem, we discuss and compare three
methods that might constitute part of a ‘‘calculus of con-
version.”” The approaches of Lam [21] and Okumura [31]
can be seen as ‘‘bottom-up,’” heuristic methods; the third,
a new approach, is ‘‘top-down’’ and algorithmic, but
computationally hard.

Note that it is not our intent to advocate protocol con-
version as the preferred solution or only solution to pro-
tocol mismatch problems. Rather, it is our hope that a
precise definition of the problem and experience with var-
ious solution methods will enable classification of proto-
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Fig. 2. Interposing a protocol converter.

col mismatch problems according to whether conversion
is a reasonable solution.

The rest of this paper is organized as follows. In Sec-
tion II, we formalize the problem and introduce a simple
example. In Sections III, IV, and V, we present three so-
lution methods, and apply each to our example problem.
In Section VI, we consider the problem as it may actually
arise in the context of layered network interconnection.
Section VII contains some conclusions.

II. FORMALIZING THE PROBLEM

For the purposes of this paper, a formal method for
specification and verification of a protocol system has
three parts.

* A way of precisely describing the components of an
implementation of the protocol and how they interact. In
the context of a layered network architecture, the com-
ponents of an implementation include the protocol “‘peer
entities’” and the lower level services they use.

* A way of defining the correct behavior of the pro-
tocol system. For a protocol in a layered architecture, its
desired correct behavior is often specified in the form of
a service to be provided to the users of the protocol sys-
tem.

¢ A definition of what it means for a specified imple-
mentation to satisfy a correctness specification, i.e., a se-
mantics.

If there is to be any systematic and general approach to
protocol conversion, we must abstract from details of the
protocols and their function. Exploring the problem within
a formal framework of this kind enables us—indeed,
forces us—to take intuitive notions such as ‘‘achieving
useful communication’” and ‘‘protocol incompatibility”’
and make them precise and rigorous. Formal methods are
also advocated as a way of managing the inherent com-
plexity of concurrent systems; because they involve mul-
tiple protocols, conversion problems are likely to be even
more complex, and formal methods may, in fact, be a
necessity. Finally, because specifications are represented
in a precise mathematical form, there may be classes of
systems for which automatic generation of converter
specifications is possible (we shall see that this is indeed
the case).

It must be noted that few (if any) of the protocols and
services in wide use today have been formally specified
as described above. A systematic approach based on a
particular formalism can be applied to existing implemen-
tations and services only after they have been specified in
that formalism. This is likely to be a nontrivial task, and
there is generally no way to prove that such a post hoc
specification adequately captures the behavior of an im-
plementation. Nevertheless, it is instructive to investigate
what can be accomplished given the requisite formal

specifications. By solving problems using formal models,
we may obtain fundamental results, which can then be
applied to real problems.

A. Conversion Problem

Referring again to Fig. 1, suppose protocols P and
provide services that are similar, but differ in certain de-
tails. The protocol P implementation consists of the peer
entities Py and P, while Q consists of Q; and Q,. (This
is a simplified view of the problem; an implementation
may, of course, have more than two components, includ-
ing services implemented by lower-level protocols. We
consider some of these cases in Section VI.) Now, sup-
pose Py and Q) are able to exchange messages. We would
like to use Py and Q, to provide a service similar to that
provided by P and Q. We are given formal specifications
of Py and Q| and a specification S of the desired service.
We want to specify a converter C which will help Py and
Q, to implement the service defined by S¢ (Fig. 3). There
may be any number of converters satisfying these require-
ments. A general solution method for this problem would
enable us to produce a correct converter, or an indication
that no such converter exists, from specifications of P and
Q and Sc.

It is important to realize that the notion of incompati-
bility of protocols—which we equate with the nonexist-
ence of a converter in the problem just defined—only
makes sense relative to a given required service. Any con-
verter will suffice if the conversion system only has to
satisfy the trivial specification ‘‘true.’” The idea is that
the service specification S¢ defines the minimal properties
required by the users of the conversion system. The no-
tions of ‘‘hard mismatch’” and ‘‘soft mismatch,’” dis-
cussed by Green in [13], can be interpreted in this con-
text. When protocols are not compatible with respect to
any useful service, a hard mismatch exists. In a soft mis-
match, no converter can give the full functionality of the
original protocols, but a converter exists for a less pow-
erful, but still useful, service. Thus, S¢ defines the bounc-
ary between a hard and soft mismatch.

Our assumption that a formal specification for the cor-
rectness of the conversion system is part of the problem
input is a significant one. Even if specifications of the
services implemented by P and Q are available, Sc will,
in general, differ from both of them. (For example, the
user interfaces of Py and Q, may differ.) Techniques for
deriving S. from existing service specifications are of in-
terest as an alternative to constructing S¢ “‘from scratch,”’
i.e., by formalizing the functional requirements of the
users. We consider the problem of obtaining S¢ to be sep-
arate from the conversion problem, however.

B. Specifications

While the above formulation of the problem is indepen-
dent of any particular formalism, a solution method may
require that specifications be given in a particular nota-
tion. In this section, we briefly discuss the formalisms o
be encountered in the methods described later. The reader
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S (service specification)

Fig. 3. The abstract problem.

is assumed to be familiar with the basics of protocol spec-
ification and verification.

For each of the methods we describe, protocol com-
ponents are specified as interacting state machines. The
Lam and Okumura approaches assume a message passing
model. In this model, components interact and change
state asynchronously by sending and receiving named
messages over unidirectional channels. Each event (send-
ing or receiving a message) occurs under the control of
exactly one component, and the channels form the inter-
face between components. The approach presented in
Section V is based on a ‘‘rendezvous’’ model, in which
interaction between two components occurs synchro-
nously, via named actions. Such an action can take place
only if both components are ‘‘ready’’ for it, and the re-
sulting state changes happen simultaneously in both com-
ponents. In this model, communication channels are spec-
ified as separate components of the system.

A state machine is defined by a state set, including a
distinguished initial state, and a set of state transitions.
The state transitions tell how the state of the specified pro-
tocol component changes through interaction with its en-
vironment. (By ‘‘environment,’’ we mean the users of the
protocol or other components of the protocol implemen-
tation.) If s and s’ are states, and there is a transition from
s to s’ associated with event e, we write s % s’. (The term
“‘event’’ refers to the kind of interaction appropriate to
the context: sending or receiving messages in the message
passing model, or synchronized actions in the rendezvous
model.) When the state machine reaches state s in the
course of its execution, we say the transition to s’ and the
associated event are enabled. The behavior of the com-
ponent is modeled by the possible sequences of state tran-
sitions and associated events beginning in the initial state.
If we regard a state machine as a directed graph, with
states as nodes and transitions as directed edges, then the
behaviors of a component correspond to the parhs in this
directed graph beginning in the initial state.

The behavior of a collection of interacting protocol
components is modeled by a global state machine, formed
from the state machines of the individual components. The
state of this global system is a tuple comprising the state
of each component (and each channel). Each transition of
the global state machine comes from one of the compo-
nent state machines; global state transitions occur instan-
taneously and indivisibly. A behavior of the global sys-
tem is a linear sequence of states and transitions
corresponding to a path through the global state space;
concurrency is modeled by the possibility of events oc-
curring in arbitrary order.

129

A correctness specification defines aspects of the de-
sired global behavior that ensure that any implementation
provides the desired service. It tells the users of a system
what kind of behavior to expect, while leaving unspeci-
fied the details of how that behavior is achieved. Safety
properties define the system’s allowed behavior. If we
think of a behavior as a sequence of interactions between
the protocol system and its users, then a safety property
can be viewed as prohibiting certain ‘‘bad’’ sequences or
states. Progress properties, on the other hand, define re-
quired aspects of system behavior, e.g., that some re-
sponse is generated for each input. Safety and progress
properties of a global state machine can be defined using
formulas of temporal logic [27}, [25], [23], [3] or in terms
of another global transition system having the desired
properties [19], [22], [26].

We represent component specifications (state machines)
pictorially in the form of directed graphs as described
above. The initial state is represented by node 0. The la-
bel ““—m’’ on an edge indicates that message m is sent
when that transition occurs; ‘“+m’’ denotes receipt of the
message m. Other labels denote other kinds of interac-
tions besides sending and receiving of messages, e.g..
timeouts. Where multiple labels appear on a single edge,
a transition is associated with each of the indicated events.

In what follows, we shall not be too fussy about distin-
guishing between components and their specifications: the
phase ‘‘the component A’ can be understood to mean
“‘the specification of component A.”” Similarly, ‘‘finding
a converter’’ can be read as ‘‘finding a specification for a
converter.”’

C. An Example

In the next three sections, we describe and compare
three methods for solving the problem defined above. As
an aid to understanding and comparison of the methods,
we pose a simple example problem and apply each method
to it. The example involves a mismatch between the ven-
erable Alternating-Bit (AB) protocol and a protocol that
does not use any sequence numbers, called the nonse-
quenced (NS) protocol. Both provide delivery of data from
a Sender to a Receiver in spite of possible message losses
by the transmission medium. For the example problem, it
is desired to transfer data from an AB Sender to an NS
Receiver.

The protocol specifications are shown in Figs. 4 and 5,
respectively. The “‘acc’” and ‘‘del’’ events model inter-
action with the user, denoting acceptance of a data unit
from the user at the Sender end and delivery of a data unit
to the user at the Receiver end, respectively. To distin-
guish between the messages of the two protocols, AB
messages have all lower case names, while those of NS
are capitalized.

The AB Sender (Ag) attaches a one-bit sequence num-
ber to each data unit transmitted; the data messages are
thus represented as d0 and d 1. The Receiver (A,) uses
this number to synchronize with the Sender and determine
whether a received data message has already been deliv-
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Fig. 5. Nonsequenced protocol.

ered; this mechanism ensures that each data message is
delivered exactly once. An acknowledgment message,
containing the sequence number of the last-delivered data
message (a0 or al), is returned for each data message
received.

The NS protocol has no sequence numbers; a data mes-
sage is represented by D. The Receiver (N,) simply de-
livers every received data message, and returns an ac-
knowledgment message A. The Sender (N,) repeatedly
transmits the data until an acknowledgment is received;
if an acknowledgment is lost, the same message may be
delivered several times by the Receiver of the NS proto-
col. The service implemented by the NS protocol is thus
‘‘weaker’’ than that of AB.

Both protocols use the standard technique for detecting
losses, namely, timeouts. Because our simple specifica-
tions do not include an explicit notion of time, we use
other techniques to represent loss/timeout behavior. In the
message-passing model, ‘‘virtual messages’’ model the
causal relationship between lost messages and subsequent
timeouts, as introduced in [5]; these messages and their
associated transitions are not part of the protocol itself.
We assume there are no premature timeouts. Whenever a
timeout occurs (represented by receipt of a tm or Tm mes-
sage), it is the result of losing a data or acknowledgment
message (represented by sending Is instead of data or rm
instead of an acknowledgment). This way of modeling
losses and timeouts is not always valid; it works here be-
cause of the stop-and-wait nature of the protocols. In Figs.
4 and 5, the virtual messages are parenthesized because
they are part of the protocol specifications in the message-
passing model, but not the rendezvous model. In the ren-
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dezvous model, losses and timeouts are represented di-
rectly in the specification of the transmission media (Sec-
tion V-E); the AB Sender has a tm action corresponding
to each +tm in Fig. 4, and similarly for NS. Again, a
timeout occurs only after loss of a data message or an ack
message.

1II. CONVERSION VIA PROJECTION

Lam showed how the techniques of protocol projection
[22] can be used to reason about the correctness of con-
version systems, and in some cases to derive a converter
specification [21], [20]. In the context of protocol verifi-
cation, projection is a way to focus on the aspects of each
system that are relevant to the properties to be proved.
This is achieved by projecting the system onto an image
protocol. The method is based on the following result: let
P be a protocol, and P’ its image protocol under a projec-
tion mapping. For any safety property of P’, there is a
corresponding safety property that holds for P. If, in ad-
dition, transitions of the image protocol satisfy a well-
formedness condition, then an analogous result holds for
progress properties. (A statement and proof of the above
results using temporal logic can be found in [23].) The
projection method can be used for protocols specified with
finite state machines, in a programming language notation
or in a relational notation [23], [24]. The message passing
model is assumed, and communication channels may lose,
duplicate, and reorder messages in transit.

A. Image Protocols

We briefly describe the projection method. An image
protocol is derived from a given protocol by partitioning
the state set of each protocol component; states in the same
block of the partition are considered to be indistinguish-
able in the image of that component. This defines a map-
ping from each component state to a state in the image
component. The state space partition induces an equiva-
lence relation on the set of messages sent and received in
the protocol. Messages whose receptions cause the same
image state transitions are considered equivalent, and are
mapped to the same image message. Messages that cause
no change in the image state of their receiver do not ap-
pear in the image protocol at all, and are said to have a
null image.

A simple example of a protocol projection is shown in
Fig. 6; the original protocol is on top, with its image be-
low. Primes indicate image quantities. States 0 and 1 of
each original protocol component are indistinguishable in
the image; thus Pj and P{ each have only two states. Be-
cause neither message x nor message y causes any image
state change, each has a null image.

One type of safety property is an invariant: a predicate
that is true at all states reachable by a path in the global
state machine. An invariant of the image protocol in the
figure is (py = 0') = (p} = 0') where pj and p| represent
the state of the left and right image components, respec-
tively. Each state 0’ is the image of the original states 0
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Py

)

Fig. 6. Simple projection example.

and 1, so the corresponding invariant of the original pro-
tocolis (pp =0V py=1)=(p, =0Vp, = 1).

B. Common Image Protocol

Conversion can be considered as a solution to a proto-
col mismatch only when the protocols ‘‘provide similar
services.”’ Projection can be used to formalize this no-
tion. Suppose protocols P and Q can each be projected
onto the same image protocol, say R. Then R, the com-
mon image, embodies some functionality that is common
to P and Q. Each protocol has properties corresponding
to those of R; each has messages whose meanings corre-
spond to those of R. On the other hand, messages that
have a null image in the projection have no meaning with
respect to the common functionality represented by R. The
common image R defines a semantic correspondence be-
tween states of P and states of Q: states with the same
image have the same meaning with respect to the service
implemented by R.

If a common image with adequate functionality can be
found, specification of a converter is straightforward. The
projection mapping defines an equivalence between the
messages of P and Q, just as it does for states: messages
with the same image have the same ‘‘meaning.”” This
static equivalence can easily be implemented by a srare-
less converter, as follows: whenever the converter re-
ceives a message, it immediately forwards a message of
the other protocol that has the same image. Null-image
messages are ignored. It can be shown that the common
image protocol is an image of the resulting conversion
system; thus, the conversion system has safety properties
corresponding to those of the common image. If the im-
age is well formed in each projection, then the correspon-
dence holds for progress properties as well.

It is always possible to find a common image for any
two protocols: the degenerate protocol, in which each
component has only one state and no transition, is a well-
formed image of every protocol. The problem is to find
an image protocol that satisfies the conversion service
specification S¢. This is a process that must be carried out
heuristically, using intuitive understanding of the proto-
cols. Unfortunately, a common image protocol satisfying
Sc may not exist.

C. Example

When no common image with the desired characteris-
tics can be found, a finite-state converter may be con-
structed based on intuition. Projection can also be useful

Sender

+ls

-a0
—al

Receiver

Fig. 7. Projection of AB.

in proving properties of a system with such a converter.
This is illustrated in [1], and also by our example problem
involving AB and NS, as shown in [21]. Refer to Fig. 7,
which shows a projection of A, that resembles N, but is
not quite the same. The difference is the +40 and +al
transitions from image state (2/5) to image state (1/4),
which are not present in Ng. After receiving an acknowl-
edgment, the image Sender may still retransmit data.
Thus, we cannot statistically map A to either a0 or al.
We therefore propose a converter of more complex struc-
ture, one that emulates the AB Receiver and the NS Sender
in an alternating manner (Fig. 8).

We can derive properties of this conversion system by
viewing as a single component the subsystem consisting
of C, Ag, and the channels between them (Fig. 9). As
shown in [21], this composite system can in fact be pro-
jected onto Ny by partitioning the subsystem states based
on the states of C. With N, projected onto itself, the con-
version system has NS as a well-formed image. Similarly,
the system can be projected onto AB by aggregating C
and N,. It follows that the properties of AB hold for the
communication between the Sender and the Converter,
and those of NS hold between Converter and Receiver.
Using these properties and the structure of the converter,
we can deduce properties of the global system. The AB
protocol guarantees that each accepted message will be
delivered exactly once. The NS protocol, however, guar-
antees that each accepted message will be delivered ar
least once. What can we say about the service of the con-
version system?

Informally, we reason as follows. In the projection of
Cand N; onto A, the +4 event maps to the ‘‘del’’ tran-
sition in the image. Thus, we can infer (from the prop-
erties of AB—not given here explicitly) that +4 occurs
exactly once for each ‘‘acc’’ event. However, as we have
already noted, ‘‘del’’ can occur at N, several times for
each occurrence of +4 at Nj because of the possibility of
losses. Thus, the service of the whole system corresponds
to that of NS. If the desired service is that of AB, then
converter C must be connected to the NS Receiver by re-
liable channels that do not lose messages.

D. Discussion

The projection method provides a sufficient condition
for finding a useful converter to overcome a protocol mis-
match. If a common image protocol with the desired prop-
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Fig. 9. Projection of converter system.

erties can be found, a very simple converter can be ob-
tained easily. However, such a common image need not
exist, and must be sought using intuitive understanding of
the protocols. Projection can also be used to reason for-
mally about correctness of converters obtained by other
methods.

IV. OKUMURA’S APPROACH

Another approach to the problem of Fig. 3 has been
presented by Okumura [31]. For this method, the proto-
cols must be specified as finite-state machines (FSM’s),
which interact by passing messages over channels. The
sets of messages sent and received in each protocol are
assumed to be disjoint; this is easily achieved by renam-
ing of messages, if necessary. The method employs an
algorithm to construct a converter from components of the
original protocols and a partial specification of the con-
verter’s behavior. For protocols P and Q, where com-
munication between P, and Q, is desired, the input to the
algorithm consists of P,, @, and an additional FSM called
a conversion seed.

A. The Algorithm

Okumura’s algorithm is based on a somewhat different
idea of correctness for the conversion system than that of
Fig. 3. In particular, there is no explicit definition of a
service to be provided to users; indeed, there is no notion
of ‘“‘users’” in the model at all. Instead, the conversion
system is considered correct if it is free from deadlock and
unspecified reception,” and if the converter C satisfies two
requirements. The first is that C must be a reduced FSM
of P, in its communication with P,, and a reduced FSM
of Qq in its communication with Q,. This is defined as

An unspecified reception is a reachable global state in which a message
is at the head of some channel, and the receiving component has no receive
event specified for that message.

follows. For communicating FSM’s 4, B, and E, *‘4 is a
reduced FSM of B in its communication with E,”’ means
that

1) for every path in 4, there is a corresponding path in
B that has the same sequence of send and receive events
(of messages to and from E ), and

2) if a path in B that corresponds to some path in A can
be extended by reception of a message from E, then the
corresponding path in A4 can also be extended by the same
reception event.

This property of the converter implies that any se-
quence of messages sent by C to P, (Q,) is a sequence
that could have been sent by P, (Q,). If the original pro-
tocols are free from deadlock and unspecified reception .
this is a sufficient condition for the conversion system to
be free from those faults.

The conversion seed defines the other required property
of C as follows. The seed—call it X—is a finite-state ma-
chine whose message set is a subset of the union of the
message sets of Py and Q. This message set contains the
significant messages of the conversion, and X defines
constraint on the order in which these messages may be
sent and received by the converter. In particular, each of
the converter’s possible sequences of sends and receives
of significant messages must correspond to some se-
quence of sends and receives of X. Messages that are nor
in X’s message set are unconstrained and may be sent or
received at any time by the converter, as long as the re-
duced-FSM requirement is satisfied.

Fig. 10 shows a simple example, adapted from [31].
We want to provide communication between Py and Q.
The “‘data’’ message of Q corresponds to the ‘‘msg’’ of
P, so we want each ‘‘msg’’ received to be forwarded as
‘‘data’ by the converter. The seed X specifies that
““+msg’’ and ‘*—data’’ events must alternate. For inputs
Py, Oy, and X, the algorithm produces the converter shown
in Fig. 11. Note that the ‘‘—data’’ for a given *‘ +msg”’
need not occur immediately, but may be preceded by any
number of “‘poll, end’’ exchanges between P, and C.

The algorithm constructs a converter from the input
FSM’s, P, Qy, and X, in several steps, as follows. Let
Sp, and Sy, represent the state sets of P, and Q,, respec-
tively. Let e and f represent arbitrary send or receive
events.

1) Construct an FSM Y with states ¢ p, g ) where p €
Sp, and g € Sy,. For each ¢ and each transition p % p’ of
Py, Y has a transition ¢ p, q) (p', g>. Similarly, for
each p and each tr}msition q q' of Oy, Y contains a
transition { p, g) =~ {(p, q' ).

2) Remove transitions of Y that violate the constraints
defined by the conversion seed by combining Y and X to
form FSM Z as follows. Z has states { y, x) where y is a
state of Y and x is a state of X. For each transition y % y’
of Y involving a message that is nor significant, Z has a
transition { y, x) % (y’, x). If the message is signifi-
cant, then there is a transition ( y, x) =~ (y’, x' ) in Z
if and only if there is also a transition x % x’ in X.

e
£,
f
2,
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Fig. 10. Example conversion problem with seed (X ).

+data

-poll
OO

Fig. 11. Converter for P, and Q,.

3) Mark all states ¢ y, x ) of Z such that either ¢ ¥, XD
has no outgoing transitions or there is a receive event
y ="y’ of Y for some m and y’, with no corresponding
receive event ¢ y, x> =" { y', x' ) in Z. Remove marked
states from Z, together with all their incoming transitions,
thereby possibly creating new marked states (by removal
of a receive transition or the last outgoing transition of a
state). Iterate as long as there are marked states.

Upon termination, the remaining states and transitions,
if any, form the correct converter. The running time of
the algorithm is polynomial in the product of the sizes of
P, and Q,.

A component FSM is said to be effective in a protocol
if for every sequence of messages that can be sent and
received by the component, there is a path in the protocol
system’s global state machine containing the same se-
quence of events. If the input FSM’s P, and Q, are effec-
tive and the state set of Z is empty when the algorithm
terminates, it means that the reduced-FSM requirement
conflicts with the requirements of the conversion seed.
Thus, failure of the algorithm to produce a converter
means that none exists for the given inputs, provided the
inputs P, and Q, are effective in their original protocols.

Okumura considers an unspecified reception to occur
when a message appears at the head of a channel and no
receive event is specified for it in that state of the com-
ponent. This is a strong condition—usually it is not con-
sidered an unspecified reception if the message can even-
tually be received after some sequence of sends and/or
internal transitions. Under the Okumura definition, re-
moval of a receive transition from an effective FSM will
result in an unspecified reception. If the algorithm fails to
produce a converter for effective protocols, the conclu-
sion that no converter exists is based on this strong defi-
nition; a converter that would be considered correct under
the usual definition of unspecified reception could exist.
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Fig. 13. Correct seed for AB-NS example.

B. Example

The input for our example includes the specifications of
the AB Receiver (A,) and NS Sender (N,) from Figs. 4
and 5. The algorithm permits only send and receive tran-
sitions, so the ‘‘acc’’ and ‘‘del’’ events and associated
transitions of A; and N, are removed. For the required
service, we want every message accepted by A, to be de-
livered by N, eventually. Clearly, d0 and d1 should be
forwarded as D by the converter; our conversion seed
should reflect this. However, the algorithm is sensitive to
the way this functionality is represented in the seed. With
the naive seed shown in Fig. 12, the algorithm fails to
produce a converter. (The input FSM’s are not effective,
so we cannot conclude that no converter exists for these
inputs.) The seed of Fig. 13, however, produces the con-
verter shown in Fig. 14. Analysis of a system including
this converter shows that the service provided is similar
to that of NS.

C. Discussion

A general method for solving the problem of Fig. 3
using Okumura’s algorithm is the following. From the
service specification S, construct (heuristically) a con-
version seed X, and run the algorithm on P,, Qp, and X.
If a converter C is produced, analyze the system compris-
ing Py, C, and Q. If this system satisfies S, then C is
the desired converter; otherwise, iterate with a different
seed.

The algorithm allows efficient construction of the con-
verter from the existing components P, and Q,, provided
a suitable seed can be found. However, desired global
properties of the conversion system cannot be input di-
rectly; a service specification given in terms of P, and Q,
must be changed into a conversion seed constraining the
converter’s behavior. As we have seen, this transforma-
tion may not be straightforward. Moreover, if the algo-
rithm fails to produce a converter, it is difficult to con-
clude that a hard mismatch exists (even if the protocols
are effective) because the problem may be in the way the
conversion seed is specified or due to the strong definition
of unspecified reception.
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Fig. 14. Resulting converter.

V. THE QUOTIENT APPROACH

In the previous two methods, finding a converter in-
volves relating the conversion system to the original pro-
tocols or to some other protocol. The global service spec-
ification enters the picture only after this relationship has
been established. The advantage of this approach is that
a converter can be efficiently constructed; the disadvan-
tage is that no systematic way of finding the desired re-
lationship—a satisfactory common image protocol in the
projection method or a proper conversion seed in the Oku-
mura method—is available. It is also difficult to conclude
with certainty that the required service cannot be provided
with the given protocols. In contrast to these *‘bottom-
up’’ approaches, a ‘‘top-down’’ approach would derive
the converter directly from the given specifications, and
give precise conditions for detection of a hard mismatch.
In this section, we describe such an approach.

Consider the problem depicted in Fig. 15. Let A be a
service specification, and let B specify one component of
an implementation. B has two interfaces; one is ‘‘exter-
nal’’ and is the same as the interface of 4, while the other
is *‘internal,”” comprising a set of possible interactions
between B and another component. The goal is to specify
another component C, which interacts with B via its in-
ternal interface, so that the behavior observed at B’s ex-
ternal interface implements the service defined by A. Let
the operator ‘||’ on specifications represent interaction
between components, and let satisfies be a relation be-
tween specifications that means one implements the ser-
vice defined by the other. We want to find C such that
(B || C) satisfies A. By analogy with the problem of find-
ing the multiplicative inverse of a number, we call this
the guotient problem: in effect, we want to ‘‘divide’” A4
by B. As with real numbers, a quotient does not exist for
every A and B.

It should be clear that Fig. 3 depicts a form of the quo-
tient problem: P, and Q, correspond to B, while the ser-
vice specification of the conversion system corresponds
to A. The interface between P, and Q, and their users
corresponds to B’s external interface; B’s internal inter-
face corresponds to the actions by which P interacts with
P|, and Q, interacts with Q,. Thus, a solution method for
the quotient problem can be used to solve the problem of
Fig. 3.

An algorithmic solution for the quotient problem is im-
possible for any sufficiently powerful specification for-
malism: if the specified systems can imitate Turing ma-
chines, an algorithm that decides whether a quotient exists

Fig. 15. Quotient problem.

could be used to solve the halting problem! By restricting
the specification language such that only finite-state sys-
tems can be specified, an algorithm is possible, but the
problem is computationally hard.> This is not surprising—
the problem is extremely general because only the ab-
stract structure of the given components can be used to
solve it. In other words, without resorting to the kind of
intuitive understanding that must be used to find a com-
mon image or a conversion seed, we are faced with an
exhaustive search of possibilities.

In [28], Merlin and Bochmann discussed the similar
problem of ‘‘construction of submodule specifications’’
using a simple trace-set semantics. They described a so-
lution that dealt with safety properties only. More re-
cently, the ‘‘supervisor synthesis problem’’ for discrete-
event systems has received some attention in the control
theory literature, and solutions based on language-theo-
retic semantics have been proposed [34], [6], [4]. Parrow
[33] has described an interactive system for solving
‘‘equations’’ in components, based on the bisimulation
semantics of CCS [29].

In what follows, we describe briefly a theory of speci-
fications of finite-state systems, and present an algorithm
for solving quotient problems for a class of such systems.
Our algorithm deals with both safety and progress prop-
erties, and produces a specification of a solution if and
only if one exists.

A. Specifications

We model protocols as collections of finite-state ma-
chines interacting via named actions. This form of inter-
action is used in many formalisms [16], [29], [26], [19],
including LOTOS [18]. We are concerned with two main
ideas: composition, i.e., viewing interacting components
together as a composite whole; and what it means for one
system to satisfy, or implement, another. These ideas ap-
pear in the theory as a composition operator and a satis-
faction relation on specifications. Together, they allow us
to reason about whether a collection of protocol compo-
nents correctly implements a specified service.

A specification is a tuple (L, S, T, 1, s5) where

L is a finite set of actions

S is a nonempty finite set of srates

T € § X £ X Sis the external transition relation
I € § X Sis the internal transition relation

sp € S is the distinguished initial state.

*For specifications represented as (nondeterministic) finite-state ma-
chines, a method to decide whether a quotient exists can be used to decide
whether two nondeterministic finite-state machines accept different lan-
guages, a problem as hard as any that can be solved in polynomial space

[11].
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The set L of actions completely defines a system’s in-
terface with its environment. (Note: by “‘system’ here,
we mean the specified object. It may be an individual
component, a composite formed from several interacting
components, or a service—all are specified the same way.)
The actions of the interface are the only way systems can
interact; intuitively, actions model an exchange of infor-
mation or handshake across the interface, possibly in-
volving a state change on both sides. In a protocol or ser-
vice specification, actions are abstractions of occurrences
such as submission of a message for transmission, or ex-
piration of a timer.

The relations T and / define the transitions of the sys-
tem. Each transition in T has an associated interface ac-
tion in I; these define how the local state is affected by
interaction with the environment. If (s, e, s'yisin T, we
write s - s'. Whenever the local state is s, and the en-
vironment is also ready for action e, e may occur, accom-
panied by a state change to s'. It is important to realize
that external events are not under the exclusive control of
either side of an interface, but can occur only when the
associated action is enabled on borh sides.

The relation / defines internal state transitions that may
occur unobserved and without environmental interaction.
When (s, s') is in I, we write simply s — s'. Internal
transitions allow some state changes to occur under the
exclusive control of one side of the interface, and play
several important roles in specifications. In a correctness
or service specification, an internal transition can repre-
sent a choice among different acceptable behaviors, and
help avoid unnecessary overspecification. For example,
suppose the buffering capacity of a transport service is not
specified in its correctness specification. After accepting
the first data unit for transmission, the allowable behav-
iors are to accept another data unit or to refuse to accept
another until the previous one has been delivered. The
choice among these behaviors is made once, by the de-
signer of the implementation.

Internal transitions also serve as an abstraction mecha-
nism in considering the service implemented by a collec-
tion of interacting components. The environment (user) is
not concerned with interactions between the individual
components, so these are hidden by making them internal
transitions. Thus, A || B can have internal transitions cor-
responding to the synchronized interactions between 4 and
B, even if neither A nor B separately has internal transi-
tions.

Finally, internal transitions can model low-level be-
havior that would add too much complexity if modeled
explicitly. An example is the loss of a message in a com-
munication channel. Modeling the actual causes of the loss
would greatly complicate the channel specification. In-
stead, the chain of events constituting a loss is represented
by a single internal transition, which may or may not oc-
cur. This kind of transition is often regarded as fair,
meaning that if it is repeatedly enabled, it will eventually
occur. On the other hand, such a fairness requirement
would usually not be placed on internal transitions used
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to avoid unnecessary overspecification, as in the buffering
capacity example above.

Instead of attaching explicit fairness requirements to
each internal transition in our specifications, we make
certain assumptions about fairness. In defining ‘“B satis-
fies A4, we regard A as a service specification and B as
the specification of an implementation. In this paper, ser-
vice specifications are assumed to be deterministic in the
following sense: they have no internal transitions, and no
action is associated with more than one transition origi-
nating in the same state. (Our results hold, and our quo-
tient algorithm works, for nondeterministic service spec-
ifications in a certain ‘‘normal form’’; the restriction to
deterministic service specifications simplifies the presen-
tation, and is adequate for the examples in this paper. A
fuller treatment appears in [2].) We also assume that im-
plementation specifications satisfy the following fairness
requirement: any transition that is repeatedly enabled wil:
eventually occur.

In what follows, 4, B, C, and D refer to distinct spec-
ifications. Parts of different specifications are distin-
guished by subscripts: Iy is the set of actions of B, S, is
the state set of A, etc. The states of a specification are
represented by (primed) lower case italic letters corre-
sponding to the name of that specification; thus, a and a'
are members of S,. The letter denoting a state makes it
clear to which specification it belongs, so that when we
write @ % a’ A b > b’ it should be clear that one tran-
sition is defined in T, while the other is in T,. Function
and predicate application are denoted by a period, as in

f-c.

B. Composition

When components interact, each becomes part of the
other’s environment; their interactions with each other are
synchronized and hidden from the rest of the environ-
ment. The specification of the resulting composite system
is determined by the specifications of its components, as
denoted by the infix operator *|.”

For any specifications 4 and B, (4 || B) is a specifica-
tion given by

Ll = (B4 U Zp) = (Z, N )

Scallp) = S4 X Sp

Tals) = {(<a’ b), e (a',b')): e €L
AM(a=a nb = bYV(b=b Na— a’))}

Liayg = {((a, by, {a',b')):(b=>b'Na—a)
V(ia=a Ab—1b")
V(EIe:eeEAﬂEB/\aia’/\bib’)}

(a, b)Yy = ao, by).

Each internal transition of the composite comes from
one of two sources: an internal transition in one of the
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components, or a synchronized action in £, N Iy that
becomes hidden in the composition.

C. Satisfaction

A trace is a sequence of actions, and represents a be-
havior of the system as it might be observed by its envi-
ronment. In terms of the directed graph structure, a trace
corresponds to the sequence of labels along a finite path
in the graph. We associate a particular prefix-closed set
of traces with each specification, namely, those corre-
sponding to all finite paths in the graph beginning at the
initial state. This set describes all possible behaviors of
the system, and thus captures all of its safety properties.
Each trace represents a sequence of actions that the en-
vironment might observe over some finite time interval,
and is not necessarily maximal or complete. The empty
trace, denoted by e, corresponds to the interval before
anything happens, and is a possible behavior of every sys-
tem. We denote traces by the letters ¢z, r, etc. Individual
actions are considered traces of length one, and concate-
nation is denoted by juxtaposition: ze is a trace ending
with action e. For any specification 4, we write A.¢ to
denote “‘t is a trace of A.”> The symbol = denotes the
reflexive and transitive closure of I; thus, s = s’ means
s’ is reachable from s via zero or more internal transitions.
Also, for a set ¥ of actions, L * is the set of all finite
sequences of members of L.

Every specification defines a relation ‘‘—,”” which is
the least relation satisfying, for any states s, s', s”, trace
t, and event e:

o5 5.

H * t
e s> s AS =" =",
1 e te

e s> As — 5" = 5",

In other words, s 5 s' means there is a path from s to s’
corresponding to trace r. Thus, we have A.t = (3a:
ay % a).

‘“B satisfies A with respect to safety’” means that every
possible behavior of B is a possible behavior of 4. Using
the trace set interpretation of specifications, this is easy
to express: the set of traces of B is contained in the set of
traces of A. Thus, B satisfies A with respect to safety if
andonly if v¢: B.t = A.¢.

Because both sides of the interface must ‘‘be ready’”’
for an action to occur, the notion of progress in this model
deals with the actions (or sets of actions) enabled in the
system after any particular trace. With this information,
the environment can ensure that there is always some ac-
tion enabled on both sides of the interface, and thus pre-
vent deadlock. Intuitively, ‘B satisfies A4 with respect to
progress’’ means that if an environment cannot reach a
deadlock with A4, then it cannot reach a deadlock with B.
This idea of progress is similar to the ‘‘refusals’’ of Hoare
[16] or the ‘‘acceptance sets’’ of Hennessey [15]. To de-
fine this in terms of specifications, we must consider what
it means for an action to be enabled after a trace.

For a deterministic specification, there is at most one
path corresponding to any trace. Thus, the state of the
system—which cannot be observed directly by its envi-
ronment—after any trace is uniquely determined, and the
environment can always ‘‘know’’ exactly what actions are
enabled. If internal transitions are present, however,
things are more complicated. The problem is that a tran-
sition associated with an action may be ‘‘preempted’’ by
an internal transition if the two are enabled in the same
state. Thus, we might consider an action to be ‘‘enabled’’
only in a state with no outgoing internal transitions. But
a trace may lead to a cycle of internal transitions; if these
internal transitions occur continuously, the system may
never enter a state with no outgoing internal transition.
However, our fairness assumption says that a repeatedly
enabled transition must eventually occur; under this as-
sumption, no cycle of internal transitions can preempt any
transition infinitely many consecutive times. If there is a
transition, internal or otherwise, leading out of the cycle,
then eventually it or some other cycle-breaking transition
will occur. As a consequence, we can regard a set of states
connected by a cycle of internal transitions as a single
state for the purposes of defining the set of enabled events.
We call such a set of states a sink set if no internal tran-
sition (except those in the cycle) is enabled in any state
of the set.

In the left-hand specification of Fig. 16, the two unla-
beled states constitute a sink set. Once either state is
reached, the actions f and g cannot forever be preempted
by internal transitions, and one of them will eventually
occur. Thus, we can view the sink set as a single state
with two events enabled, as on the right-hand side. We
write sink. s to indicate that a state s is a member of a sink
set.

We denote the set of actions associated with transitions
originating in state s by 7.s:

eer.s = (35155 s').

We write 7*.s for the set of all actions enabled in any
state internally reachable from s:

eer*s =(3s:5s >s' Neer.s').

The set 7*.s contains all actions that may occur next if
the current state of the system is s; if s is in a sink set,
the set of actions considered enabled at s is defined to be
7%.5. Observe that for a deterministic specification, every
state is a singleton sink set, and 7*.5 = 7.5.

Now consider a deterministic service specification 4 and
an implementation specification B satisfying the fairness
requirement. Let ¢ be a trace of both systems, and suppose
that ay % a in A and by - b in B where b is a sink set.
In order for B to satisfy A, the set of actions enabled at b
must contain all actions enabled at a; otherwise, some
action e can be enabled at a, but not b. An environment
that has only e enabled after trace ¢ can deadlock with B
after ¢ because no action is enabled on both sides; how-
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Fig. 16. Collapsing internal cycles.

ever, it would not deadlock with A after . Formally, B
satisfies A with respect to progress if and only if

t t
Vi, a, b: (ag > a A by = b Asink.b) = 17.a S 7%.b.

Using the fact that a sink set is reachable from every state,
the above formula can be shown to be equivalent to

! 1
vt,a, b:(ag > aANby—b) = 1.0 < 7b.

For deterministic A and for B satisfying the fairness re-
quirement, B satisfies 4 if and only if both of the follow-
ing conditions hold:

(Safety) vi: B.t = A.1
(Progress) Vi, a, b: (ag San by 5 b) = 1.a S *.b.

D. The Algorithm

The algorithm described here takes a (deterministic)
service specification A and a specification B describing
part of an implementation, and produces C such that B || C
satisfies A if such a C exists. If no such C exists, the al-
gorithm produces a degenerate specification with an empty
state set. In computing C, safety and progress are handled
in sequential phases. In the first phase, the state set and
transition relation of C are built up inductively, beginning
with the initial state; the result is a specification with the
largest trace set consistent with safety of B ||C. In the sec-
ond phase, states of C at which a progress violation by
B || C cannot be prevented are iteratively removed. (Such
progress problems can only be corrected by removal of
transitions from C because C already has the largest pos-
sible trace set; no transitions can be added without vio-
lating safety requirements.) When the second phase ter-
minates, if C’s state set is nonempty, then it is a quotient,
and moreover, it is a maximal quotient in the sense that,
for any other quotient D, any trace of D is a trace of C.

Let the specifications A and B be given, let the user
interface of A consist of the set Ext of actions, and let Int
be the set of actions comprising the B-C interface (Fig.
15). We have £, = Ext, Ly = Int U Ext, £c = Int, and
Int and Ext are disjoint. In terms of the conversion prob-
lem of Fig. 3, the event set Exz is the interface between
the user and the service, and Int represents the interac-
tions (messages that may be sent and received) between
the peers of protocols P and Q.

Now, the observable aspects of the behavior of B || C
are determined by B: the trace set of B | C consists of
members of B’s trace set with actions in /nt removed.
Also, the behaviors that can occur at the B-C interface
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are traces of B with events in Ext removed. The functions
i and o will be used to make these ideas precise. If f is a
trace of B, i.t and o.r are subsequences of ¢ containing
only actions in Inz and Ext, respectively.

i.e = ¢
) (i.t)e ifeeln
i.te =

it if e & Int
0.€ = €

(o.t)e ifeeExt
o.te =

0.1 if e & Ext.

In what follows, the variable g denotes a member of Ext*
(e.g.,atraceof Aor B I C), t denotes a member of (Int
U Ext)* (a trace of B), and r is in Int* (a trace of C).

For each trace g of B || C, there is a corresponding trace
tof Bsuchthato.t = gand i.t is a trace of C. In a similar
way, a trace r of C corresponds to the set of traces ¢ of B
such thati.t = rand o.t is a trace of B || C. The following
formula characterizes the relationship among traces and
states of B, C, and B || C forany g, b, b', c, and ¢’ (recall
that (b, ¢) is a state of B| C):

(b, cy > (b, c")

(3r: 0.1

t it
gnAb = b Ac— ).
We say a trace r in Int* is safe, and write safe. r if every
trace of B that matches r is a trace of A when projected
on Ext:

(ve: (i.t = r A B.t) = A.(0.1)).
Note that safe. re does not imply safe. r, and that r is triv-
ially safe if no trace of B matches it. For any specification
C, B| C satisfies A with respect to safety if and only if
every trace of C is safe.

In the first phase of the algorithm, we construct a spec-
ification C satisfying the following:

safe. r

(Safety) vr: C.r = safe.r
(Maximality) (Vr: D.r = C.r) for any specification DD
such that B || D satisfies 4 with respect to safety.

The first requirement says that C is a solution with re-
spect to safety; the second says that it has the largest pos-
sible trace set. To accomplish this, we must consider each
trace over Int as a possible trace of C. Because trace sets
are prefix closed, the obvious way to do this is induc-
tively, beginning with the empty trace.

In constructing C, we ‘‘tag’’ each state with informa-
tion about the traces leading to it, the corresponding traces
of B, and their projections on the Ext interface. This in-
formation enables us to ensure that every trace of C 1s
safe, and also makes an inductive computation possible.
We first introduce a mapping # from traces in Int* to sers
of pairs (a, b) where a is a state of 4 and b is a state of
B. The mapping is defined by

(a,b)eh.r

t o.t
(it =rANby > bAay— a)
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Each pair in 4. r represents a possible state of B after some
trace 1 matching r and the state of A after the trace o. 7.
The idea is that from h. r, we determine what events might
be enabled in B || C after C observes the behavior r at the
B-C interface. We set up a bijection fag between such sets
of pairs and states of C, and construct C so that tag.cy =
h. e, and for any trace r and state ¢ such that co >, tag. c
= h.r. We know S, and Sy are finite; hence, the number
of distinct sets of (a, b) pairs is finite. Since each state
of C corresponds to a different set, S is finite.

We can check the safety of traces inductively using a
predicate over these sets of pairs. For a set J of (a, b)
pairs such that J = h.r for some trace r, we define the
predicate ok.J by

ok.J = (¥a, b: (a,b)eJ: (r.b N Ext) C 7.a).

Intuitively, ok.J says that for every pair (a, b) in J, any
event in Ext that is enabled in b is also enabled a. Note
that ok.J is easily checked by examination of J and the
specifications 4 and B. The following properties are con-
sequences of the definitions given above.

® ok.(h.e) = safe.e.
® Forany r € Int* and e € Int: safe.r A ok.(h.re) =
safe. re.

We begin the inductive construction of C by computing
h.e, and checking ok.(h.€), a necessary and sufficient
condition for existence of a solution (with respect to
safety). If ok. (h.¢) holds, we create an initial state co and
set tag.cy = h.e. Then we iterate, computing k. re for
each e from an already computed (and safe) A. r, and add-
ing a state with tag h. re if ok. (h. re) holds; this continues
until closure is achieved.

To obtain h.re from h.r, we define a function ¢ that
maps a set J of (a, b) pairs and an action e to another set
of pairs, such that if J = h.r, then ¢. (J, €) = h. re. Such
a function, easily computed from J, A, and B, is given by

(a.b)ep.(J,e) = (3a', b, 12
(@, b)elnit=enb >bnra S a).

Observe that ¢. (J, ¢) is empty if and only if the action e
is not enabled in B in any of the possible states repre-
sented by set J. Soiftag.c = Jand ¢ (J, e) = &, e will
never occur at ¢. The quotient will, in general, have a
‘‘dead state’” whose tag is the empty set, which can never
be reached via any interaction with B. Fig. 17 shows the
safety phase of the algorithm, which implements this in-
ductive construction. The internal transition relation I-is
defined to be empty. The state set S is empty upon ter-
mination of this phase if and only if B has a trace ¢ such
that i.¢ = ¢, and 0.1 is not a trace of A4.

In the progress phase—which is executed only if the
first phase produces a nonempty S-—we identify states of
B || C where a progress requirement of 4 is violated (be-
cause some required event is not enabled in B || C), and
remove the corresponding states of C. We say a state ¢ of

S¢ = 0: new :=0:
tag.cy = h.e:
if ok.(tag.cy) then new = {¢}:
while new is not empty
sclect ¢ i new;
for cacli e in Int:
J = ¢(tag.c,e):
if ok.J then
if tag='.J ¢ (S¢: U new)
then create ¢
tag.c = J;
add ¢ to new:
clse ¢ = tag™".J
add ¢ % ¢ to Ty
move ¢ from new to Se:

Fig. 17. Algorithm—safety phase.

C is bad if and only if
3a, b: (a, b) etag.c N 1.a & 1*.(b, c).

From the properties of tag.c and the definition of satis-
faction, it follows that B || C satisfies A4 with respect to
progress if and only if C contains no bad states. Because
the definition of a bad state depends on 7*. (b, ¢}, which
depends on T, if we remove any bad states and modify
T, we must then recalculate 7#. { b, ¢ ) for each b and c,
and recheck for bad states. The process terminates when
there are no more bad states to remove. Note that remov-
ing the initial state is equivalent to removing all remaining
states because it makes them all unreachable.

The progress phase of the algorithm is shown in Fig.
18. This phase preserves the maximality of C: any trace
removed from C’s trace set cannot be a trace of anv D
such that B || D satisfies A. It follows that if the algorithm
terminates with an empty state set, and therefore an empty
trace set, no quotient exists.

E. Example

To apply the algorithm to our example AB-NS conver-
sion problem, we have to model the transmission media
as separate components; Fig. 19 shows the protocol con-
figuration. The converter interacts only with the channels,
and not directly with A, and N,. The specifications for
channels ABchan and NSchan are shown in Fig. 20. The
unlabeled (internal) transitions in the specifications rep-
resent loss of a message; after each such loss, a time out
event occurs at the ‘‘Sender end’’ of the channel. In the
case of NSchan, the ‘‘Sender end’’ is the converter end.

The specifications of A, and N, are as shown in
Figs. 4 and 5, without the ‘‘virtual message’’ transitions.
The inputs to the quotient algorithm are
Aol ABchan || NSchan || N; (this composite specification
is not shown, but is straightforward to compute) and the
service specification shown in Fig. 21, which requires
service similar to that of AB.

The output of the safety phase of the quotient algorithm
for these inputs is shown in Fig. 22. (For clarity, the
‘*dead state’’ and transitions leading to it are omitted from
the figures showing the output of the quotient algorithm.)
This is a correct converter with respect to safety: all traces
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repeat
save ;= S¢:
compute 7*.(b, ¢} for cach b, ¢ pair:
foreach ¢ € S¢:
forcach (a,b) € tag.c:
if .a € 77.{b, c) then
mark ¢ bad;
remove bad states and their
associated transitions from S¢ and Te:
until ¢g is removed or save = S

Fig. 18. Algorithm—progress phase.

ABchan

NSchan

+d1
Fig. 22. Output of safety phase of algorithm.

of the system A, || ABchan || C|| NSchan || N, are prefixes
of the sequence ‘‘acc, del, acc, del, . . . .”” However, the
converter is not correct with respect to progress. We have
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already seen the problem in previous sections: when a
time-out occurs at the converter, there is no way to deter-
mine whether the loss occurred before or after the ‘‘del’”
action, and thus no more D messages can be forwarded
As soon as a loss occurs in NSchan, the system enters a
set of states in which neither ‘‘del’” nor ‘‘ack’’ can be
safely enabled, while the service specification requires
that one of these two be enabled at all times. In the prog-
ress part of the algorithm, states 3, 4, 6, 8, 12, 13, 15.
and 17 are immediately marked ‘‘bad’’; this leaves only
states O, 1, and 2 reachable, and they are removed in the
second iteration. The algorithm terminates with a degen-
erate converter, and we conclude that the ‘‘exactly once™
service of Fig. 21 cannot be provided with the given pro-
tocol components.

The constructed quotient has the largest possible trace
set, SO it may contain states and transitions that are harm-
less, but contribute nothing to system progress; these use-
less parts of the converter are indicated in the figures by
dotted boxes. The converter in Fig. 22 can return the
““‘wrong’’ acknowledgment to A, even after receiving the
data message correctly. Removal of such superfluous sec-
tions simplifies the converter without affecting correct-
ness, but is hard to accomplish automatically, and is best
left to a human.

We can solve the problem of losses in NSchan by as-
suming that the converter is colocated with N,. We then
have the configuration of Fig. 23. The inputs to the al-
gorithm are A, Il ABchan || N, and the same service spec-
ification. The quotient algorithm yields a converter for
this case; it is shown in Fig. 24. Note that the +D action
of the converter matches that of N;, and denotes the pas-
sage of a data message from C to N,; similarly, the —4
action denotes passage of a message from N, to C.

An alternative way to solve the problem is to weaken
the service specification to allow more than one ‘‘del’’ per
‘‘acc.”” To accomplish this with a deterministic service
specification, we can model loss or correct transmission
of a message with interface actions of NSchan (and of the
service). Each time a message is submitted to NSchan.
the environment chooses between ‘‘Is’” and ‘‘xmit,”’ rep-
resenting the loss or correct transmission of the message.
The *‘Is’” and ‘‘xmit’’ actions are not part of the inter-
face with the user of the service, but with another part of
the environment that we regard as a random process,
modeling the actual events that lead to message loss in
channels. The service specification (Fig. 25) indicates that
““‘del’” may occur until there are two ‘‘xmit’’ events in 2
row. In other words, only as many extra deliveries as nec-
essary are allowed. The modified channel specification is
shown in Fig. 26. The output of the quotient algorithm
for these inputs is shown in Fig. 27. Removal of the *‘use-
less”’ states in the dotted boxes results in a converter sim-
ilar to those obtained with the other two methods.

F. Discussion

The quotient algorithm can, in theory, be used to find
a converter for any mismatch problem that can be repre-
sented by our finite-state specifications. However, the
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Fig. 27. Quotient for weaker service.

state set of the quotient is constructed so that each state
corresponds to a set of pairs of states of A and B. There
are 219171581 guch sets of pairs, so the state set of the quo-
tient can grow exponentially in the size of the inputs. In
terms of running time, the problem of finding C such that
B || Csatisfies A with respect to safery only is hard enough
that we cannot hope to do better than exponential time in
the worst case. Interestingly, the progress phase does not
add significantly to the overall worst case running time of
the algorithm: it takes time polynomial in the size (of the
state set) of the output of the safety phase.

However, as our example showed, the algorithm does
not always use exponential time and space. In some cases

it can very quickly yield a correct converter or determine
that we are dealing with a hard mismatch. In taking the
quotient view of the conversion problem, we trade guar-
anteed efliciency for generality.

VI. ARCHITECTURAL ISSUES

In the foregoing discussion, we considered a simplified
form of the conversion problem in order to focus on so-
lution methods. In practice, however, protocol mis-
matches may involve multiple layers in an architecture.
In this section, we broaden our view to consider the prob-
lem of interconnection of layered networks with different
architectures. Note that this is still an abstract view, in
that we ignore issues such as addressing, routing, network
management, etc.

Although protocol mismatches can occur at any layer,
the problems of primary interest today occur at the net-
work and transport layers. Fig. 28 shows two ‘‘adjacent’
networks, each with a different architecture. The network
services are represented by a single box labeled NS in
each network; the transport protocol peer entities are la-
beled TA, and TA, and TB, and TB,, respectively, and
the transport services are denoted by TS. The goal is to pro-
vide a transport service conforming to a service specifi-
cation CST between the user on Network A and the user
on Network B. (Note that these ‘‘users’” may be peers of
some higher level protocol.)

We assume that the two networks are in some sense
close to each other; that is, the two network services can
be easily physically connected (perhaps a host is con-
nected to both networks). By connecting the different
transport services to each other via a simple passthrough
device (Fig. 29), we provide a ‘‘concatenated’’ data
transport service between the two users. However, any
end-to-end synchronization capability of the existing ser-
vices will not be preserved. In Fig. 29, synchronization
occurs only between user and converter; this is not suffi-
cient for the transport level, which is supposed to provide
end-to-end functionality. In particular, the connection
management function is concerned only with synchroniz-
ation. An example is the ‘‘orderly close’’ function, which
guarantees that all user data have been delivered to the
remote end if the connection closes normally. One user
might successfully close the connection, and think that all
data had been delivered to the far user when it was ac-
tually only delivered as far as the converter.

One solution is to replace TA, and TB, with a con-
verter, as shown in Fig. 30. This is essentially the same
configuration as in Fig. 19 where the network service be-
tween the converter and the transport peer entities may be
lossy. In terms of the simplified problem discussed ear-
lier, we can consider TAy and NS, as P,, and TB, and
NS as Q,, and apply any of the three methods. A de-
scription of a conversion between two transport-level pro-
tocols, the DoD Standard Transmission Control Protocol
[9] and the International Organization for Standardiza-
tion’s Transport Protocol Class 4 [17], can be found in
[14].
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Network A Network B
user
I P
TA,| TSa [ Ta, TSy | TB,
1
e ] [ =
Fig. 28. Heterogeneous networks.

]

T
Ty | TSa [ Ta, TSs | TB,
3
Cw ] T

Fig. 29. **Going up a level."’

¢ 1

I NS, NSg |

Fig. 30. Transport-level conversion.

Fig. 31 shows a different approach, combining conver-
sion with augmentation, the addition of a ‘‘sublayer”
protocol in both architectures. This sublayer deals with
routing and addressing, combining all the (intra-) network
services into an (unreliable) internetwork service. An ex-
ample of this approach is the Internet Protocol [8] used in
the DARPA Internet, a collection of heterogeneous net-
works. In Fig. 31, the internetwork service provides a
transmission path between the transport peers TA, and
TB,. At that point, however, a protocol mismatch occurs.
To handle the mismatch, a converter is colocated with the
TB, implementation (it could also be placed at the TA,
end). As in Fig. 23, the configuration is asymmetric be-
cause the path between converter and TA, is unreliable,
while that between converter and TB, is (presumably) re-
liable. As we have seen from the AB-NS example, such
a setup allows the converter to have better ‘‘knowledge”’
of the state of the local entity, and may allow a more pow-
erful conversion system than would be possible in the
symmetric configuration of Fig. 30. With the internet-
work service specified by IS, the required converter is the
quotient of CST and TA,| IS || TB,.

This configuration has other advantages. We have al-
ready noted that addressing issues are essentially confined
to the network layer, at the boundary between networks.
Another advantage is that, if both NS, and NS, provide
alternate routing, and the two networks ‘‘intersect’’ at
more than one place, then the conversion system can have
the advantages of alternate routing. This is not possible
when the converter is placed at the network boundary, and
state information for each internetwork connection is
maintained in the converter. (For a discussion of this and
other issues related to transport-level ‘‘gateways,’’ the
reader is referred to [32].) )

Although the problems of interest today are primarily
at the transport level, it might be expected that in the
future, solutions of one kind or another will be found, and
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Fig. 31. Asymmetric configuration.
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Fig. 32. Application-level conversion.

an adequate, end-to-end, reliable transport service will be
more or less universally available. At that point, the con-
version problems of interest may be those at higher levels.
as shown in Fig. 32. AP, and APy are application proto-
col peers that perform some similar function, and AS i
the service to be provided by them. TS is a standard in-
ternetwork transport service, which both are designed tc
use.

As a simple example, AP, might be a ‘‘yellow pages’
server on Network B and AP, is a yellow pages client or
Network A, designed to work with Network A4’s service.
The converter serves as a ‘‘front man’’ for the B server.
allowing Network A clients to access the service. At the
same time, Network A clients can access the server di-
rectly. Interoperation of clients and servers using different
protocols is discussed in [30]. The approach described
there involves modification of the server entity to use a
single protocol service, which can be implemented by
placing a so-called ‘‘thin veneer’” on top of any of several
different underlying protocols. This differs from protocol
conversion in that the server must be modified.

VII. CONCLUSIONS

We have formalized the problem of constructing a pro-
tocol converter as a way to overcome protocol mismatch,
and discussed a range of approaches to solving the prob-
lem. The problem of finding a converter can be viewed as
the problem of finding a ‘‘quotient’’ of specifications. For
some classes of (finite-state) protocols, general algo-
rithmic methods for deriving a converter (solving a quo-
tient problem) exist, but the problem is hard: the quotient
algorithm has exponential worst case running time.

Okumura’s algorithm is efficient, but it can be applied
only when a partial specification of the converter—the
seed—is known. If it terminates without producing a con-
verter, it is difficult to conclude that a hard mismatch ex-
ists because a converter might exist for a slightly different
seed.

Lam’s projection approach provides a sufficient condi-
tion for finding a useful converter, based upon our intui-
tive understanding of the protocols; as such, it is a heu-
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ristic. It is useful for formulating semantic equivalences
between protocols, and can be used to reason formally
about correctness of converters obtained by other meth-
ods.

Even if convergence to a ‘“‘universal’’ network archi-
tecture is achieved, different implementations of the same
protocol standard may not be compatible with each other.
We are also witnessing a proliferation of variants of the
same standard as time goes by. Thus, protocol conversion
will remain a problem for the foreseeable future.
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