Adaptors for Protocol Conversion

*

Kenneth L. Calvert and Simon S. Lam
Department of Computer Sciences
University of Texas at Austin
Austin, Texas 78712

Abstract

We propose the use of adaptors for protocol conver-
sion in heterogeneous data networks with layered ar-
chitectures. An adaptor is a form of protocol converter
enabling a peer component of one protocol to simu-
late a peer of a different protocol. Adaptors have cer-
tain architectural advantages over other conversion ap-
proaches; in addition, the correctness definition for an
adaptor is simpler than for other converters. We il-
lustrate the approach with an example involving three
different connection management protocols.

1 Introduction

Enabling users of different computer networks to com-
municate in spite of differences in network architectures
and protocols is an important and difficult task. In this
paper we consider the problem of enabling peer entities
of different protocols to cooperate and to provide a use-
ful service. The basic problem is shown in Fig. 1. P, is
a peer of protocol P, while Q; is a peer of a different
protocol @), the counterpart of P in another network.
The two networks are interconnected at a lower level,
giving “logical connectivity” [13] between P, and Q,
i.e. messages can travel between between them. We
want to implement a service between the two users by
making it possible for the two peers to cooperate with
each other. However, in general the syntax and seman-
tics of the messages of the two protocols differ. There
are two choices: modify one or both of the peers so that
they use the same protocol, or perform some transla-
tion on the messages they send and receive. A module
that performs such a translation is called a protocol
converter.

We propose an architecture for protocol conversion
based on the notion of adaptors. An adaptor is a
protocol converter enabling a peer of one protocol to
simulate a peer of a different protocol. In this paper

*work supported by the National Science Foundation under
grant number NCR-8613338

CH2826-5/90/0000/0552/$01.00 © 1990 IEEE

552

Figure 1: Protocol peer mismatch

we point out several advantages of adaptors over other
architectures for conversion. One of these is that the
problem of deriving an adaptor algorithmically, as a
quotient of known specifications, is simpler than the
corresponding problem for more general converters.

The paper is organized as follows. In the next sec-
tion, we define the problem, describe architectural ad-
vantages of the adaptor approach, and discuss some
necessary conditions for its application. In section 3,
we consider the problem of deriving and/or verifying
the correctness of different types of converter. Finally,
we illustrate the use of adaptors with an example in-
volving connection management protocols.

2 Conversion Architectures

Consider a generic internetworking problem involving
networks with different layered architectures (Fig. 2).
Py and P; are peers of protocol P; using a lower-level
service Py, they provide a service to users of the left
network. In another network, peers Qo and @, use Qn
to provide a similar service. We would like to provide a
service to users of the networks without extensive mod-
ification of the existing components. In particular, the
upper interfaces of protocols P and Q should remain
unchanged, so that the users (which may be peers of a
higher-level protocol) need not be modified. While the
following discussion applies to any level in the protocol
hierarchy, the conversion problems of primary interest
today arise at the Network and Transport layers [8, 9].

In some cases the required service can be provided
simply by “bridging” the upper interfaces of P; and
Qo, so as to concatenate the services of P and Q. This



solution, based on the mapping of service primitives
between interfaces [1, 2, 6], is nice because the protocol
peers Py and @); themselves need not enter the picture.
However, this approach may be inadequate if the par-
ticular service to be provided is end-fo-end in nature,
i.e., involves synchronization of the two end-user inter-
faces. For example, suppose protocol P provides con-
firmation to the user that a message has been queued
for delivery to the remote user. The concatenation ap-
proach changes the end-to-end nature of this confirma-
tion, which is given when the message has been queued
at Py, not Q1.

Efficiency is also a concern with this method, as each
message must be handled by two protocol peers and a
bridge each time it crosses a boundary between archi-
tectures. (Fig. 2 depicts the two networks as adjacent;
in a more general case, they may be separated by sev-
eral intervening networks.)

Figure 2: Layered networks to be connected

In order to provide a true end-to-end service, Py and
Q) must communicate with each other; in that case
some translation of protocol messages is required. In
the conventional approach [9, 20], peers P; and Qg are
replaced by a gateway-converter (Fig. 3), which trans-
lates messages received from P, via Py and forwards
them to @, via @n, while also performing the reverse
translation in the other direction. Such a converter is
typically envisioned as a shared rescurce, supporting
simultaneous conversions between many pairs of users;
as such, it must deal with buffering and resource allo-
cation issues on both sides.

Figure 3: Gateway-type converter

The gateway-converter is a potential bottleneck for
trans-network communications. In general, translation
of messages between Py and @; will require mainte-
nance of some state information in the converter; this

553

makes the gateway node an additional point of failure
for the communication between Py and @;. As a prac-
tical matter, such state information should be located
in a single node, so adding more gateways at a given
network boundary cannot increase reliability for any
particular communication.

The above problems are multiplied when the P and Q
networks are not adjacent. If conversion is performed
at network boundaries, a message traveling from P,
to @ must be translated at each intervening network.
(With a “half-gateway” approach, in which each pro-
tocol is translated first to a common intermediate form
and then to the next network’s protocol [7], each inter-
vening network adds two translations.) Each additional
converter on the path also adds another point of fail-
ure to the conversion system. These and other issues
related to gateway-converters are discussed in [16].

Fig. 4 shows a different approach, in which the trans-
lation of protocol messages of Py and @; does not
take place at the network boundary. The lower-level
problem—provision of logical connectivity between P,
and @Q;—is solved separately, resulting in an internet-
work service through which Py and Q; can exchange
messages directly. This lower-level problem may be
solvable without requiring translation of messages if
the services Py and @Qn are not end-to-end in na-
ture [2, 3). The most common approach is encapsu-
lation, i.e. adding a sublayer that concatenates the
existing services; the canonical example is the DARPA
Internet Protocol [17}. (Note that at some lower level,
some form of gateway between networks will be re-
quired. The point is that it should not contain any
end-to-end functionality.)

The translation of P and @ messages is handled in
Fig. 4 by an adaptor, D, which is colocated with Q.
The defining characteristic of an adaptor is that it en-
ables a peer of one protocol (in this case Q) to simulate
a peer of a different protocol (in this case P;). That is,
the behavior of @, and D, as observed by the user and
the lower-level service, is indistinguishable from the be-
havior of P;. If the service provided by N is adequate
for protocol P to function correctly, it follows that the
system provides the same service as P.

Adaptors avoid many of the architectural shortcom-
ings of gateway-converters noted above. Because an
adaptor resides in the end node, it is not a shared
resource and need not deal extensively with resource-
management issues; instead of serving users through-
out the network, one adaptor serves one peer. State
information for the conversion is confined to the end
nodes, so no additional points of failure are introduced,
and reliability-enhancing features of the lower-level ser-
vice (e.g. alternate routing) can be taken advantage of.



Moreover, the number of adaptors (and translations of
each message) is fixed and independent of the number
of intervening networks between Py and Q1.

(P service)

<=
:—o>
]

BH
L= ——4

(P1)

ro-=--"

N

Figure 4: Adaptor for peer Q

Another advantage of the adaptor approach is its
flexibility. Figure 4 is actually a special case of the
architecture shown in Fig. 5; in this more general case,
two adaptors are used, and both peers are made to sim-
ulate peers of a third protocol. Thus, conversion among
three or more protocols can be achieved by adapting
each to some “target” protocol. The cost to include an
additional protocol is the cost of an adaptor for that
protocol. With gateway-converters, conversion among
multiple protocols involves multiple translations and/or
gateways.

Suppose a basic connection management service, Z,
is implemented by peers Zp and Z; using the service N.
By defining adaptors for a variety of other connection
management protocols, we can provide the service of Z
with peers of any two of those protocols. If P and @) are
other connection management protocols, and we have
adaptors Dy and D;, such that Dy and Py together
satisfy the specification of Zg, and @1 and D, together
satisfy Z;, then we can use Py and @, to implement
the basic service provided by Z (Figure 5).

Figure 5: Conversion between P and @ via Z

Various possibilities exist for the form of P and Q,
and the corresponding adaptors. Both P and @ might
be very similar to Z, in which case the primary func-
tion of the adaptors is to perform syntactic translation
of messages. Such an adaptor requires little internal
state information of its own; this is the most desirable

554

case. If either P or Q is semantically different from Z,
the corresponding adaptor may have to do quite a bit of
work; in particular, the adaptor may have to maintain
some state information. Finally, if P or Q is semanti-
cally very different from Z, no adaptor may be feasible.

It seems that a conversion architecture based on
adaptors is an attractive alternative to gateway-
converters. However, some conditions must be satisfied
in order for the use of adaptors to be feasible. First,
the upper (user) interface of the existing protocol entity
must be similar to that of the entity to be simulated. In
terms of Fig. 4, @1’s upper interface must be adequate
to simulate P;’s. If the interface is defined in terms of
abstract service primitives (e.g., as in [12]), then Q4
must implement those service primitives implemented
by P;. This is not an unreasonable condition if both
protocols are intended to implement the same type of
service.

The second condition is that an adequate lower-level
service must be provided between the endpoints. In
Fig. 4, the service N must be sufficient for protocol P to
function correctly; otherwise we cannot claim that the
conversion service implements the service of P. This
condition suggests that in general, a protocol requir-
ing less of its underlying service is the better choice
as “target” protocol. If @ works with an underlying
service that can lose and reorder messages, while P is
correct only if messages are received in the order sent,
then the P-peer should be adapted to Q.

The third condition for use of adaptors concerns the
interface between the existing peer and the underlying
service. This interface must be explicitly implemented,
and must be sufficiently accessible to allow an adaptor
implementation to be interposed between the peer and
the service. We can think of the service primitives ex-
changed between peer and lower-level service as being
“filtered” through the adaptor module. A facility for
the insertion of such “filters” into a communications
system is a feature of some operating systems.

3 Formal Models

Our work has dealt with the correctness of conversion
systems and methods for reasoning about whether a
conversion between two given protocols is possible [4, 5,
13]. It turns out that, in addition to their architectural
benefits, adaptors also have a significant advantage in
this area.

Consider a class of state machines, which can be in-
terpreted as protocol specifications. The binary com-
position operator || maps machines B and C to B || C,
which models the system formed when B and C inter-
act. The relation sat on machines corresponds to the



relationship between a correct implementation and a
specification: B sat A means that B is an adequate re-
placement for A as a component of any system. Com-
position is monotonic with respect to sat: B sat A
implies (B || C) sat (A || C) for any A, B, and C.

Such a model allows us to reason hierarchically about
protocol architectures. Verifying the correctness of a
protocol comprising peers Py and P; and lower-level
service Py consists in establishing the relationship
(Po || P~ || P) sat Ps, where Pg is the required ser-
vice. Correctness of protocol P is independent of the
particular protocol used to implement the service Py.

In the context of such a formalism, the quotient prob-
lem is the following. Given A and B, find C such that
(B|| C) sat A. Merlin and Bochmann [14] considered
the problem of defining “submodule specifications” (es-
sentially the quotient problem) and gave a solution,
using a model dealing with finite sequences of events
(safety properties). That model, however, is not ade-
quate for progress properties such as absence of dead-
lock. In [4], we showed how protocol converters can be
defined as quotients and gave an algorithm for solving
a class of quotient problems, using a model capturing
both safety and progress properties. As discussed be-
low, the definition of an adaptor as a quotient is simpler
than that of the corresponding gateway converter; this
makes it easier to derive an adaptor algorithmically or
verify the correctness of one obtained heuristically.

Referring again to Fig. 4, D can be defined as the
quotient of P; and Q;; that is, for a correct D we have
(D || @1) sat P;. From the correctness of protocol P,
we have (Py || Pn || P1) sat Ps. If we also know that
N sat Py, then it follows from the monotonicity of
composition that

(Po || N || (D | @1)) sat Ps.

On the other hand, the gateway-converter C of Fig. 3
is defined by the relation

(Poll PN (I C 1| @n || Q1) sat Se

where S, is an explicit specification of the minimum
service acceptable to the users of the conversion. Thus,
solving the quotient problem for D involves only @; and
Py, while the same problem for C' involves five different
specifications, one of which (S.) may not occur in any
of the original systems.

Before presenting an example, we briefly explain our
model, in which services and protocols are specified as
finite-state machines (FSMs). The behavior of a proto-
col component (i.e., a peer or service) is defined in terms
of actions. Actions represent a handshake or exchange
of information across the interface, and correspond to

555

the abstract service primitives used to define commu-
nications services. The “rendezvous” model is used; an
action is not under exclusive control of either side of
the interface, but can occur only when both sides of the
interface are ready for it to occur. Occurrence of an ac-
tion may result in a change of internal state, although
such changes cannot be observed by the environment.

The behavior of a component B is specified as a fi-
nite state machine comprising a finite set £ p of actions,
a finite set Sp of states, an initial state by € Sp, an
external transition relation, and an internal transition
relation. The set £ defines B’s interface. External
transitions define how the state of the component is af-
fected by interaction with its environment; the presence
of an external transition b = b’ means that whenever
the state of the machine is b, the action e is enabled;
if e occurs, the state changes to b’. Internal transitions
b — b’ define state changes that may occur under lo-
cal control; they cannot be observed or prevented by
the environment. In this paper, internal transitions are
present only as a result of composition of FSMs, and
represent hidden interactions between sub-components
of a composite machine.

The machine formed by composing machines B and
C is defined as follows. The set T of actions of (B || C)
is the set of all actions in X5 or T¢ but not in both.
The state set of (B || C) is formed from the Cartesian
product of Sp and Sc¢; states are denoted as pairs
{b,c). More precisely, the state set S is the subset of
Sp x Sc containing all states reachable from the ini-
tial state (bg, co) via a sequence of zero or more exter-
nal or internal transitions of (B || C). The composite
(B|| C) has an external transition {b,¢) = (b’,c') iff
e €X and either (h=b' and ¢ =~ ¢’ in C) or (b = ¥’ in
B and ¢ = ¢’). The internal transition (b, c) — (¥, ¢’) is
present in (B || C) iff(d =¥ ande —¢'inC)or (b — ¥
in B and ¢ = ¢’) or there exists e€ (EpNE¢) such that
b= b in B and ¢ = ¢’ in C. Thus, composition syn-
chronizes and “hides” matching external transtions.

A path of a FSM B is a finite sequence of alternating
states and transitions of B, starting with (and contain-
ing at least) the initial state. A frace is a (possibly
empty) sequence of actions. Each path of B defines a
trace, namely the sequence of actions associated with
its state transitions. A FSM defines a set of paths and
a corresponding set of traces; the latter represents all of
its possible finite behaviors, as they would be observed
by its environment.

For trace t and set X C Xp of actions, the pair (¢, X)
is a refusal of B if and only if there is a path in B
corresponding to ¢ which terminates in a state in which
(i) no internal transition is enabled, and (ii) no action
in X is enabled. We denote the set of all refusals of



B by ref.B. The operational interpretation of a refusal
(t, X) is that B may deadlock after performing ¢ in any
environment in which only actions in X are enabled
after ¢ (see also [10]). Note that ref.B is prefix-closed
for traces and subset-closed for sets of actions, i.e. if
Y C X and (¢, X) € ref.B then (t,Y) € ref.B.

For FSMs B and C, B sat C if and only if ref.B C
ref.C. This definition says that every possible (bad)
behavior of B is possible for C (every trace of B is a
trace of C), and B is guaranteed to do everything C
does (B can refuse X after any ¢ only if C does).!

4 An Example

Turning now to our example, let us consider a simple
connection management service, enabling two users to
reach a “synchronized” state. Such a state is a pre-
requisite for many tasks, including data transfer. We
describe two protocols, P and @, each implementing
the same service. Then we introduce a third protocol,
Z, as the “target” protocol; using adaptors for the P
and Q peers, the service of Z can be provided.

In our simple service, one user (the caller) initi-
ates the communication, while the other (the listener)
may either accept or refuse the request for a connec-
tion. Once established, the connection persists until
the caller requests that it be taken down. The con-
nection service is defined in terms of service primitives
Connect Request (CR), Connect Indication (ci), Con-
nect Response (cs), Connect Confirm (CC), Disconnect
Request (DR/dr), and Disconnect Indication (DI/di)?
Capital letters denote primitives of the caller interface,
lower case denotes those of the listener.

The behavior of the service is specified by the FSM
shown in Fig. 6. When “CR” occurs at the caller, the
listener is notified of the request via “ci.” If the user
accepts (“cs”), the successful open is confirmed with
“CC.” A refused connection (“dr”) results in a “DI”
at the caller. The square state (0) is the closed state,
in which the connection consumes no resources. Upon
reaching the double-circle state, the connection is es-
tablished, and can be used for data transfer or other
purposes. Note that a new connect request will not
be accepted from the caller until after both parties are
informed that the previous connection has ended.

Implementing such a service over unreliable transmis-

1The definitions given here are adequate under the assump-
tion of non-divergence, i.e. no machine has two or more states
reachable from each other via only internal transitions. This as-
sumption is valid for all the machines in this paper. If it does
not hold, the theory becomes more complex (cf. [4]).

2These same primitives are used in defining the connection
management part of the ISO Transport Service [12].

556

sion media, where messages are subject to loss, dupli-
cation, delay, etc., is not a trivial problem. Because of
the possibility of delayed messages, naive protocols are
liable to result in “half-open” connections, in which one
side reaches the “synchronized” state while the other re-
mains in the closed state [15, 19]. Our protocols must
prevent such anomalies without requiring either peer
to maintain information about the state of the other
across connections.

Figure 6: Simple Connection Management Service

In Figures 7-10, actions beginning with ‘-’ or ‘4’
indicate respectively sending or receiving the named
message via the lower-level medium, which provides a
(lossy) channel in each direction. The channels are not
“broken:” a message sent repeatedly will eventually ar-
rive correctly. Timeouts, assumed to be supplied by the
medium, are indicated by “TM,” “tm,” and so forth.
Any message that arrives in a state in which no re-
ception is specified for it is simply removed from the
channel and ignored. In the following, for convenience
we shall refer to the peers themselves as “caller” and
“listener.”

A simple connection management protocol is shown
in Fig. 7. This protocol (P) uses a two-way handshake
in opening the connection, and another two-way hand-
shake in closing it, or after a connection is refused by
the listener. Protocol P is correct (i.e., implements the
service of Fig. 6) if the channels can lose or duplicate
messages but not reorder them. The opening two-way
handshake consists of a C' message from caller to lis-
tener, which is acknowledged by a message y in the
other direction. The caller retransmits C' until either
y or n is received. When disconnection is requested or
the listener refuses a connect attempt, the caller sends
D repeatedly until receiving the acknowledgement d.
Besides ensuring that the connection is not left “half
open,” this second handshake “flushes” any duplicate
C messages from the channel; once the listener receives
D, any subsequent C message indicates a new connec-
tion. Thus, the correctness of P depends upon the fact
that messages cannot be reordered.

A second protocol (Q) providing the same service is
shown in Fig. 8. It is correct if the channels can lose,
duplicate, or reorder messages, provided a bounded life-



Figure 7: Protocol P for order-preserving channels

time for messages is enforced. That is, a certain time
after any message is sent, the sender “knows” that it
has been removed from the channel, either by the re-
ceiver or by the channel itself. Protocol @ uses the same
2-way handshakes as P does for opening and closing,
plus a timeout on closing or refusal. After receiving d
or n, the caller enters a wait state, where it remains
for a time T1, which exceeds the sum of the maximum
message lifetimes for each channel plus the maximum
time it takes a listener to respond to a received mes-
sage. Thus, when the caller re-enters the initial state
the channels are again empty. The listener, after send-
ing d or n, waits until time t2 has elapsed since it last
received a D message; t2 is sufficient to allow any du-
plicate messages from the current connection to drain
from the channel. Together, these delays ensure that
any C message received at the listener indicates a new
connection, and also that no “old” D message is in the
channel when a new C arrives at the listener.
Although @ is correct for channels that can reorder
messages, it constrains the users to wait between con-
nections. This wait can be eliminated if each peer
maintains a local incarnation number that changes with
each connection. By tagging each message with the in-
carnation numbers of its sender and receiver, delayed
messages can be detected and ignored. This tech-
nique is used in the connection management phase of
well-known transport protocols such as TCP and TP-
4 11, 18]. For the sake of efficiency, the per-message
overhead devoted to incarnation numbers is fixed, and
the set of possible values for each incarnation number is
finite. Correct functioning of a multi-incarnation pro-
tocol requires that no message tagged with a particular
incarnation value be in the channel when that value
is re-used. If the channels enforce maximum message
lifetimes as described above, it is sufficient to enforce
a lower bound on the time between uses of any par-
ticular incarnation value; this in turn can be ensured
by placing an upper bound on the rate at which values
are used. (Observe that protocol Q can be viewed as
a special case in which each peer has only one possible

557

incarnation value.)

In the closed state, neither peer “knows” the other’s
incarnation number. In particular, the initial C mes-
sage is tagged with the caller’s incarnation but not the
listener’s, and upon receiving a message C; the listener
cannot tell whether the message is an old one: = may
or may not be the caller’s current incarnation num-
ber. As a result, the initial exchange becomes a 3-way
handshake [19], in which the caller (incarnation u) sends
C,, the listener (incarnation v) responds with yu,, and
the caller confirms its current incarnation by sending a
third message Ayy. Successful completion of a 3-way
handshake thus establishes the connection.

Our third protocol, Z, uses multiple incarnation
numbers and a 3-way handshake. Each peer has two
state variables loc-inc and rem-inc, which keep track of
the local and remote incarnation numbers respectively.
The value of loc-inc changes only when the peer is in the
closed state; rem-inc initially has the value “unknown,”
and is set during the initial handshake. Fig. 9 shows
the caller and listener of Z in a parameterized form:
each state is marked with a pair denoting the value of
loc-inc and rem-inc at that state (a hyphen denotes the
value “unknown” for the remote incarnation). The be-
haviour shown is for the single caller incarnation u and
listener incarnation v. A state (or transition) in which
v appears in the figure represents similar states (transi-
tions) for all possible listener incarnations; similarly u
is representative of all caller incarnations. For example,
if the possible listener incarnation numbers are 0 and
1, the transition labeled +yy, in the caller represents
the two actual transitions +yyo and +yu1, leading to
states 5/u,0 and 5/u,l1 respectively. The symbols u’
and v/ represent respectively the values of the caller
and listener incarnation numbers to be used next after
u and v. The caller state marked 0/u’- is analogous
to state 0/u,-; thus the structure of states 0-15 is re-
peated beginning with state 0/u’, with u’ replacing u.
Similarly, the listener structure repeats beginning with
state 0/v'-. If each peer has two possible incarnation
values, the full caller has 55 states and the full listener



Figure 9: Protocol Z with incarnation numbers

has 42 states.

A normal connection begins as described above, with
a 3-way handshake. Upon receiving the message C,,
the listener sets its rem-inc variable to u, and (if the
user accepts the connection) sends y,, until a response
is received. Upon receiving yy,, the caller sets rem-inc
to v, and sends Ay,. When disconnection is requested,
the caller sends D,,; upon receiving it, the listener in-
forms the user and then responds with dy,. After this
closing 2-way handshake, the caller “waits” until the
timeout T, expires. The purpose of this timeout is
to ensure that any messages from the last use of in-
carnation u’ have drained from the channel when the
caller enters state 0/u’-. (This can be achieved by var-
ious local protocols [15, 19].) Note that this timeout
event may not involve any actual waiting if the required
time has already elapsed when it is encountered, or if
the value «’ has not been used yet. The listener time-
out t,s is exactly analogous, ensuring that no messages
with tag v’ are in the channel when listener enters state
0/v',-.

If the user refuses a requested connection, the listener
responds to Cy, with n, and returns to the closed state.
There are two points to note about this case. First,
the listener sends no message with v in the tag, and
thus need not wait before returning to the closed state.

558

Second, if a duplicate Cy, message is subsequently re-
ceived after the n, has been sent, it will be treated as
a new request, and the connect indication will again be
given to the user. (Indeed, any C message received is
treated as a new request by the listener.) In these cir-
cumstances protocol Z does not implement the service
of Fig. 6, but a somewhat weaker one, in which “ci”
can occur when it is not preceded by a “CR.”3 How-
ever, even if the user accepts such a spurious attempt,
the connection will not persist. In both peers, the nota-
tion z denotes a number other than z; thus, the caller
recognizes any message with tag uv as invalid. Suppose
the listener receives C,, when the caller’s incarnation is
actually u # w. The listener responds with yy,. This
message matches the +y,, transition from state 0 of
the caller, so the caller responds with Dy, and the lis-
tener terminates the connection. The transition +D,
from state 0 in the listener ensures that the caller re-
ceives a d message in response to disconnection, even
when the listener has already reached the closed state.

Suppose now that we wish to convert both P and Q
to the 3-way handshake protocol Z. Adaptors for this
purpose are shown in Fig. 10. The state machine for

3Such spurious connect indications are practically impossible
to avoid, and are not precluded by the ISO Transport Service
and Class 4 protocol definitions [11, 12].



Figure 10: Adaptors Dq (left) and D,

each is similar to the corresponding Z peer; they are de-
picted in the parameterized form described above. The
adaptor Dy is for the P caller, while D, is for the Q lis-
tener. The adaptors were obtained with the algorithm
of [4], with subsequent “trimming” of the machines by
hand.* In the input to the quotient algorithm, caller
and listener of Z were each defined to have two possible
incarnation numbers 0 and 1.

Instead of service primitives at the upper interface,
the adaptor sends and receives messages to/from the
P or Q peer. For example, instead of “CR,” adaptor
Dy has “4+C;” instead of “di,” the listener has —D,
etc. Note that D; provides the t2 timeout event to the
Q listener, but this event does not involve any actual
waiting after t,» occurs—the condition enforced by t,r
obviates the t2 requirement. It can be verified that
(Do || P-caller) sat Z-caller and (D || Q-listener) sat
Z-listener. Adaptors for the P-listener and Q-caller
also exist.

5 Conclusions

We propose the use of adaptors to enable cooperation
between peers of different protocols. Adaptors have
several advantages over other conversion architectures,
especially gateway-type converters: they avoid bottle-
necks at network boundaries, and a message is trans-
lated at most twice on its way from one peer to the
other. Adaptors are well-suited for conversion among
multiple protocols. In addition to these advantages,
the definition of an adaptor as the “quotient” of known
components is simpler than for other converters; it is

4 The algorithm given in [4] solves problems in which the quo-
tient has only one interface, but is easily modified to handle prob-
lems in which the quotient has two interfaces, as for an adaptor.

559

therefore simpler to compute an adaptor algorithmi-
cally or to verify one derived heuristically.

Certain conditions must be satisfied for use of
adaptors to be feasible, including: an adequate
internetwork-spanning service at the.lower level (as pro-
vided, for example, in the DARPA Internet by the
Internet Protocol [17]); implementation of the target
peer’s upper interface primitives by the existing peer,
and an explicit interface between the existing peer im-
plementation and the lower-level service, allowing in-
sertion of the adaptor. These requirements are some-
what stronger than those for more general converters;
that is, nonexistence of an adaptor solution for a given
problem does not necessarily imply that no gateway-
converter solution exists. The conditions, however, do
not seem unreasonably strong.

The adaptor approach to conversion is quite general,
and can be applied at any level in an architecture, sub-
Jject to the above conditions. It seems especially suit-
able for transport protocols, in conjunction with an in-
ternetwork service formed by concatenating individual
network services.

References

{1] J. Auerbach. A protocol conversion toolkit. IEEE
Journal on Selected Areas of Communications,
SAC-8(1), January 1990, pp.143-159.

[2] G. v. Bochmann and P. Mondain-Monval. De-
sign principles for communication gateways. IJEEE
Journal on Selected Areas of Communications,
SAC-8(1), January 1990, pp.12-21.

[3] F. M. Burg and N. D. Iorio. Networking of net-
works: Interworking according to OSI. IEEE Jour-



nal on Selected Areas of Communications, SAC-
7(7), September 1989, pp.1131-1142.

[4] K. L. Calvert and S. S. Lam. Deriving a protocol
converter: a top-down method. In Proceedings of

SIGCOMM ’89 Symposium, Austin, TX, 1989.

K. L. Calvert and S. S. Lam. Formal methods for
protocol conversion. IEEE Journal on Selected Ar-
eas of Communications, SAC-8(1), January 1990,
pp-127-142.

[6] R. Cole. Experience and analysis of network in-
terconnection. IEEE Journal on Selected Areas
of Commaunications, SAC-8(1), January 1990, pp.
49-56.

D. Finert and G. Glas. The SNATCH gateway:
Translation of high-level protocols. Journal of
Telecommunications Networks, 1983, pp.83-102.

7]

[8] P. E. Green, Jr. Protocol conversion. IEEE Trans-
actions on Communications, COM-34(3), March

1986.

1. Groenbak. Conversion between the TCP and
ISO transport protocols as a means of achieving
interoperability between data communications sys-
tems. IEEE Journal on Selected Areas in Commu-
nications, SAC-4(2), March 1986, pp.288-296.

0]

[10] C. A. R. Hoare. Communicating Sequential Pro-

cesses. Prentice-Hall, 1986.

[11] International Organization for Standardization,
International standard 8073. Connection-oriented

Transport Protocol Specification, 1986.

[12] International Organization for Standardization,
International Standard 8072. Transport Service

Definition, 1986.

[13] S. S. Lam. Protocol conversion. IEEE Transac-
tions on Software Engineering, SE-14(3), March

1988, pp.353-362.

[14] P. M. Merlin and G. von Bochmann. On the con-
struction of submodule specifications and commu-
nications protocols. ACM Transactions on Pro-

gramming Languages and Systems, 5(1), Jan 1983.

[15] S. Murphy and A. U. Shankar. Connection man-
agement for the transport layer: service specifi-
cation and protocol verification. Technical Re-
port, Univ. of Maryland Computer Science Dept.,
1989. Preliminary version in Proceedings of ACM
SIGCOMM 88 Symposium, Stanford, CA, August
1988.

560

[16] M. A. Padlipsky. Gateways, architectures, and
heffalumps. DDN Network Information Center,
DARPA Internet Request for Comments No. 875,
September 1983.

[17] J. Postel. Internet Protocol. DDN Network Infor-
mation Center, DARPA Internet Request for Com-
ments No. 791, September 1981.

[18] J. Postel. Transmission Control Protocol. DDN
Network Information Center, DARPA Internet Re-
quest for Comments No. 793, September 1981.

[19] C. A. Sunshine and Y. K. Dalal. Connection man-
agement in transport protocols. Computer Net-
works, 2, 1978.

[20] K. Sy, O. Shiobara, M. Yamaguchi, Y. Kobayashi,
S. Shukuya, and T. Tomatsu. OSI-SNA intercon-
nections. IBM Systems Journal, 26(2), 1987.



