IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 14, NO. 3, MARCH 1988 327

PROSPEC: An Interactive Programming
Environment for Designing and
Verifying Communication
Protocols

CHING-HUA CHOW, MEMBER, IEEE, AND SIMON S. LAM, FELLOW, IEEE

Abstract—PROSPEC is a software environment for designing and
verifying communication protocols. It integrates several tools that im-
plement methods for protocol verification and construction (e.g., fair
reachability analysis, multiphase construction and protocol projec-
tion). The system provides a unified graphical interface to facilitate the
application of these methods and creates an interactive environment
for specifying, verifying and designing communication protocols.
PROSPEC was used successfully to design and verify versions of BSC,
X.21, X.25, and Teinet document transfer protocols.

Index Terms—Analysis and verification, communication protocols,
formal description techniques, formal specification, programming en-
vironment, protocol design, reachability analysis, software tools.

I. INTRODUCTION

OMMUNICATION protocols play an important role

in computer networks and distributed systems. The
increasing complexity and variety of protocols have forced
us to seek powerful methods and tools to facilitate their
design. To avoid errors and ambiguities, numerous for-
mal models and verification methods have been proposed
and applied to the verification and construction of com-
munication protocols.

Among these models, Communicating Finite State Ma-
chines (CFSM) has been shown to be very useful in the
specification [7], analysis [51, 8], [18]-1201, [22], [29],
(321, [34], [36], [371-[39], and synthesis {61, 1111, (171,
[21] of communication protocols. The procedure for mod-
eling and analyzing a communication protocol using this
model typically proceeds as follows.

e First, the protocol is defined as a network of com-
municating finite state machines: each machine in the net-
work has a finite number of states and state transitions
(called nodes and edges respectively herein). Each state
transition of a machine is accompanied by the sending of
a message into a channel or the receiving of a message
from a channel. Channels are assumed to be unidirec-

Manuscript received February 15, 1987; revised October 1, 1987. This
work was supported by the National Science Foundation under Grants ECS-
8304734 and NCR-8613338.

C.-H. Chow was with the Department of Computer Sciences, University
of Texas at Austin, Austin, TX 78712. He is now with Bell Communica-
tions Research, 435 South Street, Morristown, NJ 07960.

S. S. Lam is with the Department of Computer Sciences, University of
Texas at Austin, Austin, TX 78712.

IEEE Log Number 8718692.

tional (delivering messages from one machine to an-
other), error-free, and FIFO. A reliable point-to-point
communication link can be modeled as two unidirectional
FIFO channels. An unreliable point-to-point communi-
cation link or a broadcast channel can be modeled as a
communicating finite state machine which is connected to
other machines by error-free FIFO channels. The network
may have an arbitrary topology.

e Second, the network defined is analyzed to ensure
that its communication satisfies certain correctness prop-
erties such as boundedness [38], freedom from deadlocks,
and freedom from unspecified receptions [32], [311, [36],
[38].

Examples of some realistic protocols that have been
modeled and analyzed using this procedure include: the
alternating-bit protocol [3], the Binary Synchronous pro-
tocol [12], and the call establishment/clearing procedures
in X.21 [29], [36], and in X.25 [18], {30].

With the CFSM model, it is most convenient and efhi-
cient for a human designer to specify finite state machines
(FSM’s) graphically and also to verify (or ‘‘debug’’) his
protocols by looking at graphical representations of reach-
ability graphs. Ideally, when a protocol has been designed
and found to have the desired logical behavior, executable
code can be generated directly from the internal represen-
tation of the protocol’s graphical specification. With this
objective in mind, several graphical tools for protocol de-
sign and reachability analysis have been developed, such
as the one developed at IBM Research [39] and at Bell
Laboratories [1].

We were motivated to develop the programming envi-
ronment PROSPEC for interactive protocol verification
and construction by an additional objective. An inherent
weakness of the CFSM model is the difficulty to manip-
ulate FSM’s with many states and very large (possibly
infinite) reachability graphs. Even if a graph is finite, it
may be too large to display on a screen. Thus a user-
friendly graphical interface in itself is not adequate to
make life easy for protocol designers. The approach of
PROSPEC is to incorporate abstraction and modular con-
struction techniques into the tools presented to protocol
designers. In addition to reducing a protocol analysis/con-

0098-5589/88/0300-0327$01.00 © 1988 IEEE

328 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 14, NO. 3, MARCH 1988

struction problem into several smaller problems, such ab-
straction and modular construction techniques consider-
ably enhance the effectiveness of an interactive graphical
interface. At the same time, the interactive graphical in-
terface facilitates the application of these techniques.

PROSPEC has been developed on a SUN 2/120 work-
station running UNIX®. In addition to a graphical user
interface, the attractiveness of PROSPEC lies in the user’s
ability to do protocol design and verification interactively
and with access to several helpful tools that implement
the methods of projection, multiphase protocol construc-
tion, and some others. In this respect, two features of
PROSPEC are significant. First, a standard internal rep-
resentation of data facilitates the passing of FSM’s and
reachability graphs from one tool to another. Second, each
tool of PROSPEC is associated with a window and to fur-
ther increase the interaction speed, we employ the menu
utility of SUN and group all commands provided by PRO-
SPEC into menus. The menu-selection facility relieves a
user from having to remember all the commands and re-
duces the number of key strokes he or she has to enter for
interaction with PROSPEC [13], [26], [14].

Currently, PROSPEC supports only the CFSM model
and can be used for the design and analysis of protocols
that can be specified as CFSM’s. The CFSM’s generated
by PROSPEC should be considered as a communication
skeleton. To generate executable code, these CFSM’s
need to be augmented with data specification and internal
operations. There are several other protocol design Sys-
tems developed in recent years which use different models.
Blumer and Sidhu designed a software system which uses
a Pascal-like language to specify protocols. Their system
provides software tools to perform reachability analysis,
and is capable of semiautomatic generation of executable
code from a specification [4]. SPANNER is a software
system which allows a designer to use the selection/res-
olution model to formally specify a protocol, and then to
analyze the protocol using either reachability analysis or
simulation [2]. IC* is a development environment that
uses the IC* language (similar to selection/resolution
model) to specify protocols. It analyzes protocols by sim-
ulating the specifications. A protocol prototype can be au-
tomatically generated from its IC* language specification
[16].

In Section II, we describe the protocol verification tech-
niques and the design methodology which are imple-
mented in PROSPEC. In Section III, a brief overview of
the PROSPEC system is presented. In Section IV, the
specification features of PROSPEC are discussed. In Sec-
tion V, we demonstrate the protocol analysis capabilities
of PROSPEC. Four protocols were analyzed: a version of
the IBM BSC call setup protocol, a version of the Telnet
document transfer protocol, and a version of the IBM BSC
data transfer protocol were analyzed by the interactive
reachability analysis tool; a call management protocol was
analyzed by the fair reachability analysis program. In

®UNIX is a registered trademark of AT&T Bell Laboratories.

Section VI, we illustrate how to use the tool that imple-
ments the protocol projection method. In Section VII a
modified version of the BSC protocol is used as an ex-
ample to demonstrate the tool that implements the multi-
phase protocol construction methodology. In Section VIII,
some desirable extensions of PROSPEC are outlined.
Section IX is for concluding remarks.

II. PROTOCOL VERIFICATION AND CONSTRUCTION
TECHNIQUES

In this section we give an overview of several protocol
verification techniques and a construction methodology
which are implemented in PROSPEC.

Reachability analysis is the basic technique for verify-
ing networks of CFSM’s. Starting from a given initial
state, all possible transitions are explored and the reach-
able states are generated. The transitions and the reach-
able states constitute a labeled directed graph, called the
reachability graph, which contains all information about
the logical behavior of a network and can be used to check
whether the network satisfies given safety and liveness
properties.

As the network of CFSM’s becomes complex, the num-
ber of generated states grows very rapidly. This problem
is called state space explosion and several techniques were
proposed to solve the problem. Here we only mention the
techniques that are implemented in PROSPEC.

Fair reachability analysis is an improved technique for
verifying networks of two communicating finite state ma-
chines [31]. Each new state in this analysis is generated
by letting both machines make a single transition. In the
fair reachability graph generated, each arc is labeled with
the two transitions made in the individual machines. The
fair reachability graph is an abstract representation of the
reachability graph. It contains fewer states and transitions
than the reachability graph, and is capable of detecting
deadlocks and unspecified receptions [31], [37], [20] as
well as unboundedness [38], [20]. Since the fair reach-
ability graph does not encode all possible paths can be
executed in a network, it cannot be used to check some
of the liveness properties of the network.

Protocol projection is a method presented by Lam and
Shankar [25] for constructing image protocols. An image
protocol is obtained by aggregating the process states,
messages, and events of the original protocol. An image
protocol is specified like any real protocol, and is con-
structed in such a way that invariant and liveness prop-
erties of the image protocol are also properties of the orig-
inal protocol. Thus, this method can be used to reduce the
analysis of a multifunction protocol to the analyses of sev-
eral smaller single-function protocols. An application of
this method to verify a version of the HDLC protocol is
presented in [33]. Image protocols have also been applied
to specify protocol converters and have been found to be
very useful for reasoning about the correctness of a pro-
tocol conversion [27].

Multiphase protocol construction is a method that ad-
dresses the state space explosion problem from the pro-

CHOW AND LAM: PROSPEC: INTERACTIVE PROGRAMMING ENVIRONMENT 329

tocol construction point of view [12]. The construction of
a multifunction protocol from a composition of single-
function protocols is in general a difficult problem. How-
ever, many real-life protocols can be observed to go
through different phases of behavior. In particular, these
protocols go through their phases one at a time with a
distinct function performed in each phase. For protocols
characterized by this model of multiphase behavior, the
following three-step methodology for constructing a mul-
tifunction protocol is proposed:

e Divide the protocol’s functionality into separate
functions.

e For each function, construct and verify a phase to
perform this function. A phase is a network of commu-
nicating finite state machines that satisfies certain desira-
ble general properties (including proper termination, and
freedom from deadlocks and unspecified receptions) [12].

e Connect individual phases to form the required pro-
tocol. The resulting protocol is guaranteed by the con-
struction method to be a phase and thus satisfies the same
general properties of proper termination, and freedom
from deadlocks and unspecified receptions.

Since the resulting protocols do not have to be verified
from scratch, the multiphase protocol construction meth-
odology also reduces the analysis of a complex multi-
function protocol to the analyses of several smaller pro-
tocols.

III. OverviEw OF THE PROSPEC SYSTEM

PROSPEC has a modular structure. Each important
function of the system is realized by a tool (with the ex-
ception of the fair reachability analysis program). The user
can invoke each tool independently. The hierarchy of tools
within PROSPEC is shown in Fig. 1. PROSPEC also pro-
vides a tool called pdtool to facilitate invocation of the
other tools and the fair reachability analysis program. The
current version (1.1) consists of six tools:

1) The protocol design tool (pdtool) provides an inter-
face between the user and the other tools. After starting
the Suntools window environment, pdtool is invoked by
typing ‘‘pdtool’” in any Shelltool window.

2) The protocol editing tool (petool) provides com-
mands for the user to specify the topology of a protocol
system.

3) The machine editing tool (metool) is for specifying
labeled directed graphs of which CFSM’s constitute a
special case.

4) The state exploration tool (setool) is an interactive
tool for exploring all reachable states of a protocol (given
a finite reachability graph). The reachability graph can be
generated one portion at a time under the user’s direction.
The tool highlights problem states in the graph. The se-
tool also includes all the functions of the metool so that
when errors are discovered, the user can proceed imme-
diately to modify the machines of the protocol.

5) The protocol projection tool (pptool) implements the
method of projections [25]. The user can aggregate ma-
chine states and messages according to some resolution

Protocol
Meru

i ~ s
i Protocol Design Tool | — :fork

Machine

Editin
: Menu
! Machine EditingTooIf
) Protocol v Multiphase
. Projection X [Construction
H Meru ' Meru
Project || Explore Edit Construct || Explore Edit |
1 | Protocol| States |} Machine | : ! iMultiphasej States || Machine |:
| Menu Menu Meru || Menu Menu Meru |
' ' Multiphase

Protocol Projection Tool Conng&cuon

Fig. 1. Structure of the PROSPEC system.

he specifies. The tool constructs the corresponding image
protocol. The image protocol events can be checked to
see if they are well-formed. If not, the resolution of the
aggregation may be reduced and a different image proto-
col constructed. The reachability graph of the image pro-
tocol can be generated within this tool.

6) The multiphase construction tool (mctool) imple-
ments the multiphase protocol construction methodology
[12]. Each protocol, together with an exit set, can be
specified and checked to see if it is a phase. The tool pro-
vides functions to connect phases together to form a larger
protocol (also a phase) and to disconnect them. The in-
ternal details of machines in the resulting protocol are
generated mechanically and the protocol is guaranteed by
the methodology to terminate properly and to be free from
deadlocks and unspecified receptions.

IV. Using PROSPEC 10 SPECIFY PROTOCOLS

In the CFSM model, the topology, the machines, and
the reachability graphs of a protocol are all labeled di-
rected graphs. Only their semantic interpretations are dif-
ferent. With this idea in mind, we built a unified graphical
interface for the user to create and manipulate labeled di-
rected graphs. The same graphical interface is used to cre-
ate and manipulate protocol topologies, machines, reach-
ability graphs, and for input of the user’s design/analysis
decisions to the system. In the following we describe the
specification features provided by PROSPEC.

Operations for Graph Manipulation: For the graphical
interface of PROSPEC to be easy to use, it has to provide
operations to manipulate the labeled directed graphs at
several levels of granularity, i.e., node and edge symbols,
subgraphs, and the graph as a whole. The set of opera-
tions also has to be complete in the sense that at each
granularity level, the user should be able to carry out the
operations of insertion, deletion, and modification. Fig.
2 shows the menu of metool and a DTE machine of the

330

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 14, NO. 3, MARCH 1988

=Callacpt oKInd

+ : receive

CallReq : Call Request

Cnt : Call Connected

Inc : Incomtag Call
Callacpt : Cal11 Accepted
KReq : Clear Request

KInd : Clear Indication
kconf : Clear Confirmation

“achine Editing -
fove node
remove node
change node Tabel
change initfal nodi
place edge

frove edge
remove edge
change edge label
[place subgraph
save subgraph
jrove subgraph
remove subgraph
Create graph

pmove graph

load graph
store graph

radisplay

bin/csh/bin/c:

Fig. 2. An illustration of the machine editing tool.

X.25 call management protocol [18] created using me-
tool. The menu lists all the operations provided by me-
tool. The metool provides commands to store a subgraph
or the whole graph as a file and to retrieve them later on.

Workstation Features: PROSPEC uses the menu-se-
lection facility and mouse pointing device provided by the
SUN workstation. Except for entering names and labels,
all interactions are done using the mouse pointing device.
For example, the selection of an operation is done by first
popping up the menu and the clicking the middle button
of the mouse when the cursor is on top of the correspond-
ing menu item. The position of a new node is specified
by moving the mouse cursor to the desired position and
pressing the left mouse button. This sequence of actions
is called “‘pointing.”” The shape of a new edge is defined
by pointing first at the source node, then at the successive
intermediate points of the edge, and finally at the desti-
nation node. The adjustment of a node position is done
by first pointing at the node and then at the new position.
In all, instead, of typing a tedious sequence of text com-
mands, PROSPEC edits labeled directed graphs in a nat-
ural and efficient manner.

Size of Graph: The tools of PROSPEC use dynamic
memory allocation to request the memory needed for a
newly created component. Therefore the size of the graph
is only limited by the maximum memory space that can
be allocated to a tool by the system. In a virtual memory
system, the size of a graph can be very large.

Zooming Capability: PROSPEC provides zoom in/out
commands to allow the user to select different sizes for
displaying graphs and to focus on a specific area of a
graph.

Example 1—DTE Machine of X.21: Fig. 3 shows the
DTE machine of a version of the X.21 protocol [28] spec-
ified using the metool. Because the structures of DTE and
DCE are quite similar, the DCE machine can be created
by modifying the edge labels of the DTE machine from
sending (— sign) to receiving (+ sign), and vice versa,
and by deleting/inserting a few edges. With the help of
PROSPEC’s editing features, the specification of the X.21
protocol was quite easy. This version of the X.21 protocol
was then verified using the setool and was found to have
some unspecified reception states. It turned out that these
errors were due to some typographical errors in the mes-
sage labels of the DCE machine in [28].

V. UsiNG PROSPEC 1o ANALYZE PROTOCOLS

PROSPEC implements both the reachability analysis
and fair reachability analysis methods. The reachability
analysis function can be invoked from setool, pptool, or
mctool. The fair reachability analysis function can only
be invoked from pdtool. Since the reachability analysis
method implemented by PROSPEC has a built-in inter-
active capability, we call it interactive reachability anal-
ysis. Next we discuss the features of each analysis func-
tion and show how to use them.

CHOW AND LAM: PROSPEC: INTERACTIVE PROGRAMMING ENVIRONMENT 331

-10n -9OR " ~10n

-Goff +80ff

n«%”‘ asotf

Fig. 3. The DTE machine of a version of the X.21 protocol.

A. Interactive Reachability Analysis

In PROSPEC reachability graphs are displayed graph-
ically. This feature provides the user with important vi-
sual information about the structure of a reachability
graph, which is very hard to capture if reachability graphs
are displayed in text form. For example, it is easier for a
user to check paths in a graphical display. During the ver-
ification process, it also indicates whether the state explo-
ration process is expanding or converging.

Since the tools have a built-in interactive capability, the
reachability graph can be generated and displayed portion
by portion as directed by the user. Thus, the user has con-
trol over the direction of the state exploration process. We
refer to this capability as focus exploration.

To facilitate a reachability analysis, PROSPEC high-
lights all *‘problem’” states in the reachability graph, €.g.,
deadlock states, unspecified reception states, proper ter-
mination states, and states that are yet to be explored. The
path from the initial state to a specific state can be shown
by clicking at the specific state. PROSPEC can also show
the execution of a protocol along a path by highlighting
the current executing edges or nodes of the machines at
each execution step. These functions greatly enhance the
debugging capability of PROSPEC.

In PROSPEC, both the reachability analysis function
and the machine editing function can be accessed from the
setool. Therefore, after errors have been found during a

reachability analysis, the machines can be modified very
quickly and then analyzed again.

Example 2—A Version of the IBM BSC Call Setup Pro-
tocol: Fig. 4 shows a version of the IBM BSC call setup
protocol [12] created by PROSPEC. The primary ma-
chine is at the upper left corner of the window. The sec-
ondary machine is at the upper right corner of the win-
dow. By selecting the ‘RG from the initial state’” menu
item the user can generate the reachability graph of this
protocol which is then moved to the lower portion of the
window by using the ‘‘move RG’’ menu item. (Fig. 5
explains the details of the state symbol.) In Fig. 4, the
character string ‘‘P1°” in arc labels identifies the transi-
tions made by the primary machine, while the ° ‘P2”’ string
identifies those made by the secondary machine. Because
of the limited space allocated for displaying a state, ab-
breviation characters are used to represent message names.
A name resolution algorithm is implemented to give each
message a unique abbreviation character. The message ta-
ble is displayed at the upper right corner of the window.
In Fig. 4 two proper terminating states, states 18 and 21,
are highlighted.

Example 3—A Version of the Telnet Document Transfer
Protocol: Fig. 6 shows the analysis result of a version of
the Telnet document transfer protocol [10]. The sender
and receiver machines are shown at the upper left corner
and the reachability graph is shown to their right. 43
reachable states are generated. There are no deadlock

332

cetool 1.1 STATE EXPL

ORATION TOOL FOR PROTOC
ERCE_spear - no

Plsase select the cowmand in middle button menu.

0l DESIGN

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 14, NO. 3, MARCH 1988

Primary

SWACK
+NAK

*HAK oWACK

+ENQ

/

+ACK

.

' message table

Secondary

load protacol

P1-E P2-€
| show protocol
1 2
E store protocol
12 1 ? 2 _, [Fron initial cats
FG from specific state
[T~ .
P2-E P2eE P1-E P14+E show path to specific state
5 show details
3 3
€ show RG
1Z 2 323 |22 2 show message tab.e
€ =
= move KG
7N\ i
/rmz/?z/qu-r P2-W P2-M P1-a_ PIWPL-K stors RG to ~ T1's
= / AY Toad RS from 112
6 7 2 El 10 11 12 13
E A v N rec¢izplay
LR=] N ke I = TN =1 321 (s22 12 12 Exit 10 €97% Mac- ne
E A W N
=
RS \ AN I
onzﬁ’{—a/rz-w PIN Plen PLoW P2-E_ PleN P2-E P2eA P1-E_P2oW__P1-E_"p2eN
P A
14 15 16 17 18 [F|[e . 19 28
a2z s|fs2 1f[3 2y 7 2 7| E=RY =21 E = P
EA 32 EN WwE NE
T—— -
P2-A\P2-V_\\:2‘ﬁi\”'E‘PZ-E‘PIOE\PZ-i P1eW_P1eM P2ew” P2o

Fig. 4. An illustration of

P1: machine on the left
P2 : machine on the right

content of P2's input channel

State # special state mark

D : Deadlock
U : Unspecitied-reception
9 D P : Proper Termination
* ! Visited before
ad
current node of P1-§-3 @.; 7 —f— current node of P2
ef

content of P1's input channel

Fig. 5. Details of the state symbol.

states or unspecified reception states. The highlighted
state, state 11, shows that the input channel of the re-
ceiver needs to have a buffer which can accommodate five
messages. The reachability graph also indicates that the
other channel needs to have a buffer which can store two
messages.)

Example 4—A Version of the IBM BSC Data Transfer
Protocol: Fig. 7 shows a path which leads to a deadlock
state in a version of the IBM BSC data transfer protocol
[12]. The machines are displayed with the nodes corre-
sponding to the highlighted global state highlighted. The
user can click a state (or arc) along the deadlock path, and

the state exploration tool.

the highlighted nodes (or edges) in the machines and
channels provide an animation effect which helps the user
gain insight on what is wrong with the protocol imple-
mentation.

B. Fair Reachability Analysis

In fair reachability analysis, by letting both machines
progress with the same speed, the size of a fair reach-
ability graph is smaller than that of the corresponding
reachability graph. In some cases, a fair reachability graph
has a finite number of states while the corresponding
reachability graph has infinitely many states.

In the current version of PROSPEC, the fair reachabil-
ity analysis program is invoked from pdtool, and the gen-
erated fair reachability graphs are displayed in text form.
Since the displaying window is in vi editing mode, the
user can use vi editing commands to scan the text and
search for any problem states.

Example 5—A Call Management Protocol: Fig. 8
shows a call management protocol and its fair reachability
graph generated by the fair reachability analysis program.
There are only six reachable states in the fair reachability
graph. Note that the number of states in the reachability
graph is infinite, since with asynchronous operation, ma-
chine P1 at node 4 can keep on sending messages to ma-
chine P2.

The analysis shows that there is an unspecified recep-
tion state. In state 1, machine P2 is in node 3, a receiving

zoom) arrow_head: spear _no

CHOW AND LAM: PROSPEC: INTERACTIVE PROGRAMMING ENVIRONMENT

draw: { delicatel Camment)

Tease point to _the state to be detailed.

Hit middle button to exit.

message table

full name

ROPBP

[

1 COE
2 cos
3 coux
[

R

cope
‘__‘ ...e ROEP
0202
n-:’;oano?n-([n l]zu

s
s 2] 10 22 __

TP2e221-3p243P 20301011

JPasafer’
) Bhes] e s
+ Tt | 2] [5em3) [oms
r2t2p24{p1-C 1-\;1-:»{4 2ecpyel
' X3

rie6 20

210
zoom) arrow head: spear _no

Fig. 6. Verification result of the Telnet DTP protocol.

draw: fast Comment)

Tease point to the state to be detailed.

Sender

]

o4
+ACK@ -D -Er -Ls

D - el
~+Tm. +WACK T
-€07
+RVI +ACK1

ot

OACKX D—Er -Ls

-[nu -ENQ
k *WACK~
.nvr e
+ACKS @
PATH 8
g 7
. D
1221 P10 22t

Hit middle button to exit.

Receiver

(ng:r anof3]

~ENQ: / I

OlS
~+ENQ
7
wlACI(T
A «EDT
+RVI +ACK1 *

~ACK1..
:

ENQ
o &r
K ~WACK~
—nvx scor
-acke @

Fig. 7. A deadlock path and details of a deadlock state.

333

334

0 PLO
200m) arvow bead: spear__no
isplaying the machines of the protocol

draw: fast

Comment

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 14, NO. 3, MARCH 1988

-CLEAR

SACPT

—>
G <

-pATA +DATA

The Fair Reachability Graph

ss 01)t)]

state ambiguity amalysis

“CEC.verified.result" line 25 of 48 --52%--

+CLEAR

Protocol Verification Result (pvrtoo) 1.2)
Fair Reachability Analysis: version 1, Oct. 23, 1484

- pl (+RQST) | p2 (-RQST) -=>=s 3
-- pl (-RQST) | p2 (+RQST) ==>ss 2
-~ pl (~RQST) | p2 (-RQST) =>ss 1
st 3[3(_ 23]
- -- pl (-ACPT) | p2 (+ACPT) =>zs 4
ss 4[5¢(_)54]
-~ pi {+CLEAR) | p2 (~CLEAR)-=>ss B
== pl (+DATA) | p2 (-DATA) =) ss
ss 2[2(_)2)]
- pl (+ACPT) | p2 (-ACPT) ==> ss
-- pt {+ROST > | p2 (-RQST) =>es 3
2 54 (4}
-- pl {-CLEAR) | p2 (+CLEAR) ==>=s A
-- plo(-0ATA) 1 p2 (+DATA) srez o %
s 1 {2 (RQST) 3 (RQST)] :
[** unspecified_reception --p2_cannot_accept_RQST
.................................. eeaeTesecenarren

P2

(|-RQSI {0,‘" \%

-ACPY

-CLEAR

A

+ACPT /

S

o

+DATA ~bata

- il

Fig. 8. An illustration of the fair reachability analysis program.

node, and cannot receive message ‘‘RQST’’. That error
results from the misplacement and mislabeling of an edge
in machine P2. The edge from node 2 to node 1 labeled
*“—RQST”’ should be deleted, while an edge labeled
““+RQST’’ should be added from node 3 to node 1.

Here we take advantage of the multiwindow feature of
the SUN system: displaying the graphical representation
of the protocol using setool in one window while display-
ing the fair reachability analysis results in the other win-
dow. Similarly, we can use this feature to compare dif-
ferent protocols.

VI. ProTOCOL PROJECTION

In PROSPEC, protocol projection functions are in-
voked from pptool. The analysis of a protocol via proto-
col projections follows these steps:

1) Based upon the desired safety and liveness proper-
ties to be checked, the user specifies a partitioning of the
state space of each machine and asks PROSPEC to con-
struct an image protocol.

2) The user asks PROSPEC to check well-formedness
of the image protocol events (well-formedness is needed
for liveness properties only). If there is a machine with
events that are not well-formed, the user will specify a
new partitioning of the state space of the machine (with a
higher resolution [25]) and ask PROSPEC to construct a
new image protocol.

3) The user asks PROSPEC to generate the image pro-
tocol’s reachability graph and the user checks to see if the

image protocol satisfies the desired safety and liveness
properties. Both safety and liveness assertions, however,
are restricted to formulas containing references to image
machine states, image messages, and image events; each
reference to x’ in such an assertion is interpreted for the
original protocol as some x whose image is x', where x
denotes a machine state, a message, or an event. (The
reader is referred to [25], [27] for a more detailed expla-
nation.) Because the reachability graph of the image pro-
tocol is smaller than that of the original protocol, the time
needed to analyze the image protocol is less. However,
the image protocol might not have been specified with ad-
€quate resolution for verifying the desired safety and live-
ness properties, in which case the user will have to try a
different image protocol.

Example 6—A Protocol Projection Example: Here we
use the protocol example in [25] to illustrate the use of
pptool. In Fig. 9, the upper part of the window displays
a protocol and its state space partition which has been
specified by the user. Each partition is represented by a
dashed-box. The image protocol is shown in the lower
portion of the screen together with image message tables.
The well-formedness of the image protocol events is
checked by selecting the ‘‘check well-formedness’’ menu
item. It turned out that this image protocol is well-formed.
To verify the image protocol, the *Exit to Explore State’’
menu item is selected to generate the reachability graph.
Fig. 10 shows the reachability graph of the image proto-
col. There is a deadlock state, state 4, and it is high-

335

CHOW AND LAM: PROSPEC: INTERACTIVE PROGRAMMING ENVIRONMENT
Comment

0
zoom) arrow _head: spear no } draw: { delicatel show machine: one by one
artition the state space of P2|

az’ a2}

IMAGE MESSAGE TABLE W21
s = {b2
b1’ »3,b1}

+32”
oject Protoco
v '
aggregate entity states
construct image protocol ’ /
— |check well formedness \\\ /
save image protocal \ /.

<how partition

redisplay /
+a3’ \\\/
-b1”

Feturn
Exit to Ed1t Machine

Exit to Explore States

Fig. 9. An illustration of the protocol projection tool.

sne oy one } (Ci t)

message table

full name

Tool Fu® BF Dol CEL TGN

BEGTIE L FROJELT LN

P1-3 P1-0 . a3’
] L] [1%
1 2
a 2
s20] 2
1
P2+a
3
Lig—=4

hightighting the problem states! Hit middle button to exit.

Fig. 10. Reachability graph of the image protocol.

336 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 14, NO. 3, MARCH 1988

5 L. e T = et -
il izear no) draw: { delicazely BEGE (Comment)

:dmi in the Rachines pratcn

fultiphase Construction
verify & create phase
save phase

place phase

frove phase

Constructing multiphase pratocol : mb
Multiphase mbsc.multiphase loadeg

change phase label
= jphase details

[delote phase

connect phases
delete connection
jconstruct multiphase

perus
11 the

save multiphase
load multiphase
[show multiphase

topology
fol s

PSPEC by
-1

nove multiphase
frultiphase details
frove graph

redisplay

Return

Exit to Edit Machine
Exit to Explore States

the too! thf

L protoco)

Fig. 11. An illustration of the multiphase construction tool.

lighted. A deadlock state in the image protocol implies
that the original protocol can reach the set of states that
have state 4 as their image. And once inside this set of
states, there is no enabled event to take the protocol out
of it.

Note that while the reachability graph of the image pro-
tocol has only seven states, that of the original protocol
has an infinite number of states. The sending loop be-
tween node 3 and node 4 of Machine M1 can send out an
infinite number of messages. The edges labeled with “‘I”’
represent internal transitions.

VII. MuLTIPHASE PrROTOCOL CONSTRUCTION
METHODOLOGY

The multiphase protocol construction methodology is
implemented by mctool. Here we use a version of the IBM
BSC data link protocol [12] as an example to illustrate the
use of mctool. In the BSC protocol, there are three basic
phases: call setup phase, data transfer phase, and call clear
phase. An execution of the protocol will go through these
three phases sequentially. In the call setup phase, when
both machines want to send data, the primary machine
will have the higher priority to send. In the following ex-
ercise, we construct a modified version of the BSC pro-
tocol where scheduling between the two machines is fair.
We achieve this goal by alternating the priority of the ma-
chines.

Example 7—A Modified Version of the BSC Proto-

col: To construct the modified BSC protocol, the three
basic phases together with their exit nodes are first spec-
ified and verified. Then the primary machine of the mod-
ified BSC protocol is constructed by connecting copies of
basic phases together. Fig. 11 shows the main menu of
mctool and the primary machine of the modified BSC pro-
tocol constructed.

Only the initial node and the final nodes of the primary
machine in each copy of a phase are displayed. The user
can select the ‘‘phase detail’” menu item to examine the
details of a phase. Note that the methodology allows us
to neglect the internal structures of phases and to concen-
trate on the interconnection of phases.

Having constructed the multiphase protocol, the user
can select the *‘multiphase detail’’ menu item to generate
the details of the machines. Fig. 12 shows the internal
structure of the primary machine of the modified BSC pro-
tocol.

VIII. ExTteENsioNs To PROSPEC

To make PROSPEC even more useful, several exten-
sions are desirable:

1) Integrate other verification techniques.
There are other verification techniques that can fur-
ther enhance the capabilities of PROSPEC. For ex-
ample, the closed cover technique [22] and the
model checker [15] are two possible candidates.

CHOW AND LAM: PROSPEC: INTERACTIVE PROGRAMMING ENVIRONMENT 337

tool 1.8: MULTIPHACE CONSTRUCTION TUOL FUR PROTULUL DESIGN
G

200m) show machine: .

1T Teft mouse button for other machine, middie button to e

ya

A p— —

(«{(Ffb‘:'
o 74
o df

Aok

B | o
E?‘:L‘m | § m%’. 4

—-acke

Vi
i
i

Constructing multiphase protoco) : mbsc

Please point to the reference point.

penus .
11 the

topotogy
Fol is

hsPEC by

b

the tool th

[protocol

Fig. 12. The primary machine of the modified BSC protocol.

2) Implement tools that generate executable code.
The protocol generated by PROSPEC can be con-
sidered a communication skeleton. Each protocol
machine can be further augmented with data struc-
tures and internal operations. The resulting repre-
sentation can then be used to mechanically generate
executable code.

3) Implement tools for protocol simulation.

After a protocol is constructed and verified by PRO-
SPEC, it is desirable to have a tool for specifying
the network environment in which the protocol is to
be executed, and for carrying out a simulation of the
performance of the protocol.

The tools of PROSPEC have been modified to do other
jobs. The petool has been modified and used as a graph-
ical interface to specify the network topology for an in-
teractive network design tool [23]. Currently, Chow is
modifying PROSPEC to design and analyze finite state
tables that are used to implement services of an experi-
mental telephone network.

I1X. CONCLUSIONS

We have shown how to use PROSPEC to specify and
verify communication protocols. Seven protocol exam-
ples were presented here to illustrate the features of PRO-
SPEC. The DTE machines of X.25 and X.21 protocols
were specified using metool to demonstrate the specifi-

cation capability. A version of the IBM BSC call setup
protocol, a version of the Telnet document transfer pro-
tocol, and a version of the IBM BSC data transfer protocol
were analyzed using setool to demonstrate interactive
reachability analysis and the graphical interface. A call
management protocol was used to illustrate the use of the
fair reachability analysis program. A protocol adapted
from [25] was used to demonstrate pptool which imple-
ments the protocol projection method. A modified version
of the IBM BSC protocol was constructed using mctool
which implements the multiphase protocol construction
methodology.

We found PROSPEC to be useful for specifying and
verifying a variety of communication protocols. The
unified graphical interface and interactive capability of
PROSPEC make it easy to use. They also speed up the
protocol design process. The availability of tools that im-
plement abstraction and modular construction techniques,
in addition to tools that implement interactive reachability
analysis, further increases the effectiveness of the graph-
ical user interface of PROSPEC.

REFERENCES

[1] S. Aggarwal and R. P. Kurshan, ‘“Automated Implementation from
Formal Specification,’” in Protocol Specification, Testing, and Veri-
fication 1V, Y. Yemini et al., Eds. Amsterdam, The Netherlands:
North-Holland, 1985.

[2] S. Aggarwal, D. Barbard, and K. Z. Meth, “‘SPANNER: A tool for

338 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 14, NO. 3, MARCH 1988

the specification, analysis, and evaluation of protocols,”’ IEEE Trans.
Software Eng., vol. SE-13, no. 12, pp. 1218-1237, Dec. 1987.

[3] K. A. Bartlett, R. A. Scantlebury, and P. T. Wilkinson, ‘‘A note on
reliable full-duplex transmission over half-duplex links,”” Commun.
ACM, vol. 12, pp. 260-261, May 1969.

[4] T. P. Blumer and D. P. Sidhu, ‘‘Mechanical verification and auto-
matic implementation of communication protocols,’’ IEEE Trans.
Software Eng., vol. SE-12, no. 8, pp. 827-843, Aug. 1986.

[5]1 G. v. Bochmann, *‘Finite state description of communication proto-
cols,”” Comput. Networks, vol. 2, no. 4/5, pp. 361-372, Oct. 1978.

[6] G. v. Bochmann and C. Sunshine, ‘‘Formal methods in communica-
tion protocol design,”” IEEE Trans. Commun., vol. COM-28, pp.
624-631, Apr. 1980.

[71 G. v. Bochmann et al., **Experience with formal specifications using
an extended state transition model,”” IEEE Trans. Commun., vol.
COM-30, no. 12, pp. 2506-2513, Dec. 1982.

[8] D. Brand and P. Zafiropulo, ‘‘On communicating finite-state ma-
chines,”” J. ACM, vol. 30, no. 2, pp. 323-342, Apr. 1983.

[9] T. Y. Choi and R. E. Miller, ‘‘A decomposition method for the anal-
ysis and design of finite state protocol,”’ in Proc. Eighth Data Com-
mun. Symp., pp. 167-176, Oct. 1983.

{10] T. Y. Choi, ‘‘Formal techniques for the specification, verification and
construction of communication protocols,”’ IEEE Commun. Mag.,
vol. 23, no. 10, pp. 46-52, Oct. 1985.

[11] C. H. Chow, M. G. Gouda, and S. S. Lam, ‘‘An exercise in con-
structing multi-phase communication protocols,”’ in Proc. ACM
SIGCOMM 84 Symp., pp. 493-500, June 1984.

[12] —, **A discipline for constructing multiphase communication pro-
tocols,”” ACM Trans. Comput. Syst., vol. 3, no. 4, pp. 315-343,
Nov. 1985.

[13] C.-H. Chow, ‘‘A discipline for verification and modular construction
of communication protocols,”” Ph.D. dissertation, Dep. Comput. Sci.,
Univ. Texas at Austin, Dec. 1985.

{14] —, *“Using PROSPEC to design and verify communication proto-
cols,”” in Proc. GLOBCOM ’86, Dec. 1986.

[15] E. M. Clark, E. A. Emerson, and A. P. Sistla, ‘‘Automated verifi-
cation of finite state concurrent system using temporal logic,’” in Proc.
10th ACM POPL Conf., 1983.

{16] D. M. Cohen and E. J. Isganitis, ‘‘Automatic generation of a proto-
type of a new protocol from its specification,’” in Proceeding of GLO-
BECOM ’86, Dec. 1986.

[17] M. G. Gouda, ‘‘An example for constructing communicating ma-
chines by stepwise refinement,’” in Proc. 3rd IFIP Workshop Proto-
col Specification Testing, and Verification, H. Rudin and C. H. West,
Eds. Amsterdam, The Netherlands: North-Holland, 1983, pp. 63-
74.

[18] M. G. Gouda and Y. T. Yu, “‘Protocol validation by maximal prog-
ress state exploration,’” IEEE Trans. Commun., vol. COM-32, no. 1,
pp. 94-97, Jan. 1984.

{19] M. G. Gouda and C. K. Chang, ‘‘Proving liveness for networks of
communicating finite state machine,”” 4CM Trans. Program. Lang.
Syst., vol. 8, no. 1, pp. 154-182, Jan. 1986.

[20] M. G. Gouda, C. H. Chow, and S. S. Lam, ‘‘On the decidability of
livelock detection in networks of communicating finite state ma-
chines,”” in Proc. 4th Int. Workshop Protocol Specification, Testing
and Verification, June 1984.

[21] M. G. Gouda and Y. T. Yu, ‘‘Synthesis of communicating machines
with guaranteed progress,”” IEEE Trans. Commun., vol. COM-32,
no. 7, pp. 779-788, July 1984.

[22] M. G. Gouda, *‘Closed covers: To verify progress for communicating
finite state machines,”’ IEEE Trans. Software Eng., vol. SE-10, no.
6, pp. 846-855, Nov. 1984,

[23] C.-T. Hsieh, ‘“Models and algorithms for the design of store-and-
forward communication networks,”” Ph.D. dissertation, Dep. Com-
put. Sci., Univ. Texas at Austin, 1987.

[24] S. S. Lam, ‘‘Data link control procedures,”’ in Computer Communi-
cations, Vol. 1, Principles, W. Chou, Ed. Englewood Cliffs, NJ:
Prentice-Hall, 1983, ch. 3, pp. 81-113.

[25) S. S. Lam and A. U. Shankar, ‘‘Protocol verification via projec-
tions,’” IEEE Trans. Software Eng., vol. SE-10, no. 4, pp. 325-342,
July 1984.

[26] S. S. Lam, C.-H. Chow, M. G. Gouda, and A. U. Shankar, ‘‘Inter-
active verification and construction of communication protocols in
PROSPEC,”’ in Proc. IEEE INFOCOM'86, 1986, pp. 67-75.

[27] S. S. Lam, ‘“‘Protocol conversion,”” Technical Report TR-87-05, Dep.
Comput. Sci., Univ. Texas at Austin, Feb. 1987; see also JEEE Trans.
Software Eng., this issue, pp. 353-362.

[28] C. V. Ramamoorthy, S. T. Dong, and Y. Usuda, ‘‘An implementa-
tion of an automated protocol synthesizer (APS) and its application to
the X.21 protocol,’’ IEEE Trans. Software Eng., vol. SE-11, no. 9,
pp. 886-908, Sept. 1985.

[29] R. R. Razouk and G. Estrin, ‘‘Modeling and verification of commu-
nication protocols in SARA: The X.21 interface,”” IEEE Trans. Com-
put., vol. C-29, no. 12, pp. 1038-1052, Dec. 1980.

[30] R. Razouk, ‘‘Modeling X.25 using the graph model of behavior,”" in
Proc. 2nd Int. Workshop Protocol Specification, Testing and Verifi-
cation, May 1982.

[31] J. Rubin and C. H. West, ‘‘An improved protocol validation tech-
nique,’’ Comput. Networks, Apr. 1982.

[32] L. E. Rosier and M. G. Gouda, ‘‘Deciding progress for a class of
communicating finite state machines,”’ in Proc. Conf. Information
Sciences and Systems, Princeton Univ., 1984.

[33] A. U. Shankar and S. S. Lam, ‘‘An HDLC protocol specification and
its verification using image protocols,”” ACM Trans. Comput. Syst.,
vol. 1, no. 4, pp. 331-368, Nov. 1983.

[34] M. Sherman and H. Rudin, ‘‘Using automated validation techniques
to detect lockups in packet-switched networks,”” IEEE Trans. Com-
mun., vol. COM-30, no. 7, pp. 1762-1767, July 1982,

[35] C. Sunshine, ‘‘Formal techniques for protocol specification and ver-
ification,”” Computer, vol. 12, no. 9, pp. 20-27, Sept. 1979.

[36] C. H. West and P. Zafiropulo, ‘‘Automated validation of a commu-
nications protocol: The CCITT X.21 recommendations,”’” IBM J. Res.
Develop., vol. 22, pp. 60-71, Jan. 1978.

[371 Y. T. Yu and M. G. Gouda, ‘‘Deadlock detection for a class of com-
municating finite state machines,”’ IEEE Trans. Commun., vol. COM-
30, no. 12, pp. 2514-2518, Dec. 1982.

, “‘Unboundedness detection for a class of communicating finite-

[38]

state machines,”’ Inform. Processing Lett., vol. 17, pp. 235-240, Dec.
1983.

[39] P. Zafiropulo er al., ““Towards analyzing and synthesizing proto-
cols,”” IEEE Trans. Commun., vol. COM-28, no. 4, pp. 651-661,
Apr. 1980.

Ching-Hua Chow (S’80-M’86) received the B.S.
degree in electrical engineering from National
Taiwan University in 1977 and the M.A. and
Ph.D. degrees in computer science from the Uni-
versity of Texas at Austin in 1982 and 1985, re-
spectively.

Since 1985, he has been a Member of Techni-
cal Staff in the Network Systems and Services Re-
search Laboratory at Bell Communications Re-
search in Morristown, NJ, where his work
involves specification, verification, and imple-
mentation of network services and communication protocols in an intelli-
gent network testbed called the Modular Integrated Communications En-
vironment (MICE). He is currently investigating the design of a mixed
language distributed service programming environment, multimedia com-
munication system, and the protocol conversion issues between ISDN and
non-ISDN networks. His research interests include computer networks and
protocols, distributed systems, and programming environments.

Simon S. Lam (S’69-M’74-SM'80-F'85), for a photograph and biog-
raphy, see this issue, p. 362.

