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Abstract— We present a model for specifying real-time protocols that
execute on broadcast bus networks. Protocol entities interact by sending
and receiving binary signals on buses. The actual propagation of these
signals is captured in our model by a set of channel axioms. Protocol
entities are specified by sequential programs. The semantics of a set of
programming constructs, including two novel wait constructs, are defined.
To illustrate our model and verification method, we present a specification
of the Expressnet protocol which was designed for collision-free access
to a unidirectional bus. We discovered a scenario in which collisions
can occur in the original Expressnet. To guarantee collision-freedom, we
provide a modification to the protocol. The modified protocol is shown to
be collision-free. We also derive a bound for its access delay.

Index Terms—Broadcast networks, interval formulas, formal semantics,
programming constructs, real-time systems, specification, timed reacha-
bility graph, verification.

1. INTRODUCTION

O date, almost all protocol specification and verification

methods have been designed for protocols that employ
message-passing over point-to-point communication channels
[1], [6], [7], [12]-[15], [17], [21]. We present in this paper a
model for specifying protocols that execute on broadcast bus
networks. Specifically, we are interested in protocols that rely
upon the implementation of timing constraints to provide their
services—we refer to these as real-time protocols.

Our work is motivated by high-speed broadcast bus networks
for the transport of data, voice, and image traffic. While many
efficient multiple-access protocols have been proposed for these
networks [3]~[5], {19], [20], we are not aware of any model
designed primarily for their formal specification and verification.
Some authors have used state transition diagrams for specifying
broadcast bus networks; such specifications are informal and
too coarse [5], [19], that is, many states and state transitions
are described with important details hidden. Analyses of these
protocols have been ad hoc. Typically, operational reasoning is
used in the analyses. Proofs are based upon space-time diagrams
that provide graphical representations of signal propagations on a
bus. Because each proof is carried out for a specific protocol and
relies heavily on the protocol’s operational details, it is generally
not reusable for a variation of the same protocol.

In our model, the communication mechanism and protocol
entities, called stations, are specified separately. The actual prop-
agation of binary signals on a bus is modeled explicitly by a set
of channel axioms; the basic assumption is that signals propagate
at a constant speed. The semantics of a set of programming
constructs are defined. Two novel wait constructs are introduced,
namely: wait-seq, waiting for a sequence of conditions, and
wait-par, waiting for sequences of conditions in parallel.
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We present a method for proving that protocols specified in
our model have desirable properties. Our method is based upon
the construction of a timed reachability graph (TRG). Each node
in the graph is a global formula that is the conjunction of a set of
interval formulas. An interval formula represents a description of
a station’s state variables over a time interval. We allow the time
intervals of interval formulas in the same global formula to be
different. To reduce the size of an actual TRG representation, we
introduce some interesting aggregation techniques. We also use
induction in our TRG construction so that the number of stations
can be parameterized.

To specify that a protocol makes progress, we make use of the
fact that there is a global clock variable in our model. Instead
of temporal logic assertions, we use real-time assertions of the
form: P(i,t,) = (3t : 0 < ¢, — t; < A : Q(4, 7)) where P and
@ denote interval formulas, ¢ and j denote station indexes, ¢; and
t, denote time parameters, and A is a time constant. A protocol
property is verified by showing that it is satisfied for all ¢; > ¢,,
where ¢, is the starting time of protocol execution.

To illustrate our specification model and proof method, we
specify the Expressnet protocol [19] which was designed to
provide stations with collision-free access to a unidirectional bus.
In applying our proof method, we found a scenario in which
the original Expressnet is susceptible to collisions. We introduce
a protocol modification and show that the modified protocol is
collision-free. We also derive a bound on the access delay of
each station.

Our model can be used for specifying a variety of broadcast
bus configurations. In this paper, the unidirectional bus config-
uration of Expressnet is used throughout for illustration. It is
not hard to see that other network configurations with multiple
buses can be specified by modifying the channel axioms (e.g.,
see [10]). In fact, the assumption of broadcast is not necessary.
For point-to-point channels, channel axioms can be specified
as special cases of the axioms for a unidirectional bus (given
in Section IV-B). There is also no restriction on the network
topology.

The rest of this paper is organized as follows. In Section II,
we describe our specification model. In Section III, we introduce
and specify the original Expressnet protocol. In Section IV,
we present a specification of the Expressnet unidirectional bus.
In Section V, we present our proof method. In Section VI,
we describe a scenario of possible collisions in the original
Expressnet; we then present a protocol modification, together
with safety and progress properties of the modified protocol.
Our conclusions are in Section VII. Formulas that are the
‘‘aggregate’” nodes of a TRG constructed for the modified
Expressnet protocol are given in the Appendix.

II. MopEL AND LANGUAGE CONSTRUCTS

A network is modeled by a set of concurrent processes. There
are three kinds of processes: 1) station processes representing
protocol entities, 2) channel processes representing the commu-
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nication mechanism, and 3) user processes representing users of
protocol entities.

Interprocess Communication: Interprocess communication is
achieved by shared variables. A station or channel process has
both local and shared variables. A user process has only shared
variables (shared with a station process). Such a variable can be
updated by the user process, thus causing a change in the state
of the station process. Other than the specification of such state
changes, user processes are not explicitly modeled.

A variable shared between a pair of processes (a station process
and a channel process, a station process and a user process, or
a pair of channel processes) can be read by both processes, but
can be written by one process only. A shared variable that a
process can update is said to be a write variable of that process.
A shared variable that a process can read but not write is said to
be a read-only variable of that process.

Modeling of Time: The protocols of interest to us rely on
the implementation of certain time constraints by the system.
Real time is modeled by means of a global clock variable, time
variables, and a time event. Using the global clock and time
variables, real-time constraints, such as timeouts and bounded
delays, can be specified. The clock and time variables are
discrete, i.e., they can only have integer values. Occurrence of
the time event corresponds to a clock tick that increments the
global clock variable by 1.

Station Process: A station process is specified by a set of local
variables, a set of shared variables, and a sequential program.
The shared variables can be considered to be ‘‘communication
variables’’; interactions among station processes depend upon
how the values of these variables change over time. That is,
when one of these variables is updated by a station process, it
may affect the state of another station process at a later time; this
is the only way station processes communicate. These vafriables
are divided into two sets: WV (the set of write variables) and
RO (the set of read-only variables). The set of local variables,
denoted by LV, is used for computation internal to the station.
Some variables in the set LV U WV may be auxiliary variables
used solely for stating and verifying properties. (For a definition
of auxiliary variables, see [13].)

Notation

LV set of local variables
wv set of write variables
RO set of read-only variables
{z1, 25,21} subset of LV

{y, 92, Um} subset of WV

€1,€2, "y € expressions

T global clock variable

[ 2820 21 2RI TR TR VPR time parameters

T.10, T A AL Ay, - - integer-valued constants

Or parameters

Timed and Interval Formulas: A state predicate of station j is
a predicate over the state variables of station j, namely: its local
and shared variables, its program counter, and the global clock
variable 7. Let P(j) denote a state predicate of station j. From
P(j), we define the following timed formula:

Pjt) = (r =1) = P(j)

The formula P(j,t) is true if and only if P(j) is true whenever
the global clock value is ¢. (For notational convenience, we use

the same name for the timed formula as that of the state predicate
from which the formula is defined.)

An interval formula is defined from timed formula P(j,t) as
follows:!

F(,t)= (V' it + A, <t <t+Ay: P(G,t)

For given values of t, Ay, and A,, the formula F(j, ) is true if
and only if P(j) is true whenever the global clock value is in
the time interval [t + A;, ¢ + A,]. Note that every timed formula
is an interval formula (where A; = A, = 0).
Other formulas are constructed from interval and timed formu-
las using the logical operators: A (conjunction), V (disjunction),
and — (negation).
Control Predicates: Instead of using a program counter ex-
plicitly, we make use of three control predicates to indicate the
control location within a program. These control predicates are
defined in the notation of [16]. In each station program, certain
statements are labeled. Such labels are surrounded by curly
brackets, “‘{’” and ‘‘}.”” In the following, S refers both to a label
and its associated statement and j denotes a station process. The
control predicates at, in, and after have the following meanings:
at (5, S): true iff control for station j’s program is just before
statement S
(S is the next statement to be executed)

in (j, ) : true iff control for station j’s program is inside S
(S is being executed)

after (j, S): true iff control for station j’s program is imme-
diately after statement S
(S has just finished executing).

Control Axioms: Timed formulas at (7, S,¢), in (4, S,t), and
after (j,5,¢) are defined from the control predicates at (j, S),
in (4,5), and after (j,S), respectively. In our model, it is
possible for a statement to take zero time to execute; thus it
is possible for at (j,5,¢) and after (j,S,¢) to be both true.?
Timing relations among the three control predicates are stated by
the following axioms. Axioms Al-A4 describe the progression
of control during a statement’s execution. Axiom AS states that
if a statement is currently executing, then control must have been
just before that statement at an earlier time or the current time.

Al at (5,5,t) = in (4,5,t) v after (j,S,t)

A2. in (3,5,t) = at (4,5,¢)Vin(j,S,t~1)

A3. in (j,5,t) = in (4, 5,t + 1) V after (j,5,t + 1)

A4 after (j,5,t) = at (j,S,t+ 1) vin (j,5,t - 1)

AS. in (5,8,t) = (It : ¢' < ¢: at (4, 5,¢))

We next define axiomatically language constructs for spec-
ifying station processes. Below, j denotes a station process,
and 5,5, S,,--- denote statement labels in j’s program. C(j)
denotes a state predicate of station j, and C(j,t) is the timed
formula defined from it.

Pascal-like Constructs:

1. {8} S81;5; (sequence of statements)
AG6. after (j,5,,t) & at (5, 5,,t)

2. {S} begin S,;8,;---;S, end (compound statement)
AT7a. at (j,5,t) & at (5, 5,,t)
AT7b. after (j,S5,,t) « after (j,S5,t)

! An interval formula is different from the state predicate of Jahanian and
Mok because the notion of ‘‘system state’” is not used in [9].

2To understand this, consider the following interpretation of at (5, .S, t) and
after (j, S,t): the timed formula at (5, S,t) is true if and only if at (5, 5)
is true for some instant when 7 = t; the timed formula after (5, S,t) is true
if and only if after (j, S) is true for some instant when 7 = t. However, we
cannot use this interpretation because, in our model, a fraction of a time unit
cannot be measured.
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ATc. in(7,5,t)
<~
in(j,5,,t) vin (4,5;,t) V
3. {S}if C then S, else S,
ABa. at (j,S,t) AC(j,t) & at (j,5:,t)
AB8b. at (5, 5,¢) A~ C(j,t) & at (4,5;,1)
AB8c. after (5, 5,,t) V after (j,85,,t) & after (j,5,t)
4. {S} while C do S,
A9a. at (j,5,t) A C(j,t) = at (5,5,,t)
A9b. at (j,S5,t) A~C(j,t) = after (j,5,t)
A9c. after (5,5,,t) = at (5, 5,t)
5. {8} 1, x2, 0 T 1= €1 6,000 60
(multiple assignment).

The multiple assignment statement updates a subset of local
variables in parallel. It assigns e; to z,, e; to z2,---,e, to T,
in one atomic operation. We assume that all expressions on the
right are evaluated first, and then the corresponding values are
assigned to the variables on the left.

In the following axiom, Q(j) is a state predicate of station
process j with no free occurrence of any of the WV and RO
variables or the control location, and Q(j, ¢) is the timed formula
defined from it.

Notation: Q(j,t)[z), 25, - -, T |e1, €2, - - -, €, ] denotes formula
Q(J,t) with each free occurrence of z; replaced by e;, for all ¢.

A10. at (5,5, t) A Q(J, t)[x1, T2, -+, Taler, €, -, €4])

<
after (j,5,6) A Q. ).

So far, we have stated the semantics of some Pascal-like
constructs: assignment, if-then—else and while—do. It is assumed
that the assignment statement does not take any time to execute,
and only local variables can be updated using this statement.
Similarly, the condition-test in the if-then-else and while~do
constructs is assumed to take zero time. We will return to this
point later.

Temporal Constructs
1. set

The set statement is a multiple-assignment statement that is
used to update write variables of a station process in one atomic
operation. It takes one time unit to execute.

{5}

--Vvin(j, S,t)

set Y1, Ym

=€yl

where yi,---,y,, are write variables (at least one of which is
not an auxiliary variable). In the following, P(j) is a state
predicate with no free occurrence of any RO variable or the
control location, and P(j,t) is the timed formula defined from
it.

ALl at (5,8,8) A P(5, )y, Ymler, -+, €]
<~
after (5,5, t+1) A P(j,t+1)
2. wait-seq
Let C,,C,, -, C, be Boolean conditions and T}, T5,- -, T,

be durations of time. Each Boolean condition is a predicate over
RO variables.

{S§} wait-seq (pattern)
where
pattern = C, for Ty; C; for Ty;---; C, for T,.

The wait-seq statement causes a station process to halt and
remain idle until the “pattern” described by the statement is
observed in its entirety (wait-seq stands for wait-for-sequence).
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The formula, match (j, pattern, ), defined below, is true iff
station j observes a match of the pattern at time ¢, namely:
condition C, is observed to be true for a time period Ti,
immediately following which C; is seen to be true for T, and so
on, and the pattern ends at time ¢. Let C;(j,t) denote the timed
formula defined from C;(j).

match (7, pattern, t) =

(V' it =T, <t <t:Co(j,t')NA

(W it — (T + Tomy) <t/ <t =T, : Cusy (5, U ))A

Vit =T+ +T) <t <t—= (T, +-+T):
G5, 1))

Execution of wait-seq terminates as soon as station j has
observed the complete pattern. For this to happen at time ¢, the
inputs (RO variables) should be such that match (j, pattern, t)
is true and station j has been in wait-seq long enough to have
observed those inputs. To specify this last condition, define

control (j,S,u,t) =
(at (7,5,t—wu)V in (j,S,t—u—l))/\
(W it—u<t <t:in (j,5t))A
(W :it—u<t <t: at(jS,t) A-after (5,5,t))

where u is a time parameter representing the duration of time for
which control of station j has been in S.

The formula control (j, S,u,t) is true iff control of station j
has been continuously in statement S throughout a time interval
of length v (starting at time ¢ — u). Control could have just
reached S at time ¢ — u, or could already be in S at time
t—u— 1, and control has remained inside S continuously untill ¢.
If the inputs are such that the pattern begins at the same time as
when control reaches wait-seq, the execution time for wait-seq
is minimum and is equal to len (pattern) —1, where len (pattern)
=T+ +T,.

The semantics of wait-seq can now be defined. In the fol-
lowing axioms, P(j) is a state predicate of station j with no
free occurrence of any RO variable or the control location, and
P(j,t) is the timed formula defined from it. Axiom Al2a states
that control is in wait-seq at time ¢ if and only if control has just
reached the statement at time ¢ or was already in it at time ¢ — 1,
but the termination condition of the statement is not true (either
the pattern has not been matched, or the statement has not been
executing long enough). Axiom Al2b states that execution of
wait-seq will terminate as soon as, and only if, a match for the
entire pattern is achieved. Axiom Al2c states that if control is in
wait-seq at time ¢, the write variables and local variables of the
station process remain the same at time ¢ + 1. Using Al2c and
the control axioms (A1-A5), we can derive the following result:
if P(j) is true when control reaches wait-seq, then it remains
true throughout the statement execution and upon its termination.

Al2a. (at (7,8,t) Vin (5,5,t—1)) A
(= match(j, pattern, t) Vv
- control (7, S, len (pattern) — 1,¢))
=4
in (4,5,t).
control (4, S, len (pattern) — 1,¢) A
match(j, pattern, t)

Al2b.
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&
after (j,S5,1).
Al2c. in (3, S,t) A P(5,t)=P(j,t + 1)
3. wait-par
The wait-par statement is an extension of the wait-seq state-
ment. It allows a station to wait for several conditions in parallel
(wait-par stands for wait-in-parallel).
Define

pattern; = C;; for T; 15 - -; C; iy for T; iy
where n (i) is the number of conditions in pattern,
{S} wait-pair
wait-seq (pattern;) :: label;
|| wait-seq (pattern,) :: label,

|| wait-seq (patternsy,) :: labely,
end-wait-par

The meaning of the wait-par statement is the following.
When control reaches the wait-par statement, start “executing”
all wait-seq statements concurrently. (We will refer to each
wait-seq as a clause of the wait-par statement.) The wait-
par terminates as soon as any one of the clauses completes
execution (“fires”). When that happens, control passes to the
statement following wait-par, and all clauses inside wait-par
are terminated. Associated with each clause is an identifying
““label.”” The label associated with the clause that fired is
implicitly assigned the value true, and all other labels are assigned
the value false. The labels are used to select the piece of code to
be executed after the wait-par statement.

The wait-par statement is kind of similar to Dijkstra’s guarded
command [2]. However, the ‘‘action’” corresponding to each
‘‘guard”’ is stated after wait-par: the only action inside wait-
par is the implicit assignment to labels. Also, unlike a guarded
command, evaluation of guards is nonatomic, and control remains
inside wait-par until one of the guards evaluates to true.

In the case of a guarded command, if two or more guards
evaluate to true, a nondeterministic choice is made. However,
nondeterministic behavior is not desirable for a real-time system.
For this reason, we assign a priority to each clause in wait-par. If
two or more clauses terminate successfully at the same time, only
the label for the clause with the highest priority is assigned the
value true. The clauses within wait-par are listed in decreasing
order of priority, i.e., the clause with a lower index has a higher
priority.

The axioms for wait-par are given below. These axioms are
similar to those for wait-seq. Axiom Al3a states that control
remains within wait-par as long as, and only if, none of the
patterns match. A13b states that wait-par terminates as soon
as, and only if, inputs match (any) one of the patterns. Note that
two or more patterns may achieve a match at the same time,
but only the label with the lowest index is true when wait-par
terminates. Below, timed formula label;(7,t) is true if and only
if label; is true for station j at time ¢.

Al3a. (at (j,5,t)V in(j,S,t—1))A

(VE :: - match(j, pattern,t) v
- control(j, S, len(pattern, ) — 1,¢))
(=4
in (4,5,1).
A13b. control(j, S, len(pattern;) — 1,¢) A
match(j, pattern;, t) A
Vk:1<k<i:
- match(j, patterny, t) v
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- control(j, S, len(pattern, ) — 1,¢))
54
after (j,5,t) A label;(j,t) A
(Vk : k #i: —labelc(4,1)).

In addition to the above two axioms, Axiom Al2c for wait-seq
is also applicable to wait-par.

Special Cases of wait-seq: Two simple forms of the wait-seq
statement are used frequently. They are given special names.
Special cases of the wait-seq axioms are called rules. Apart from
the rules given below, Axiom Al2c is also applicable to these
statements.

1. delay (T)
= wait-seq (true for 7" + 1).

The statement delay (7°) causes a station to halt and remain idle
for time T. It takes time 7' to execute. The rule for the delay
statement is

Al4. at (j,5,t)
=4
V't <t <t+T: in(45,t)) A
after (,5,t+ T)

2. wait (C)
=wait-seq (C' for 1)

where C is a predicate over RO variables only. The statement
wait (C) causes a station to halt and remain idle until the
specified Boolean condition, C, is observed to be true. (If C
is already true when the execution of wait (C) begins, no time
elapses in the execution of wait (C).) The time taken by the
execution of wait (C) is indeterminate, as it depends upon when
C becomes true. The rules for wait (C) are given below. C(7,¢)
denotes the timed formula defined from C(j).

Al5a. (at (5,S,t)V in (j,S,t = 1)) A = C(j,t)
<
in (4,5,t)

Al5b. (at (7,5,t)V in (,5,t — 1)) AC(j,1)
=

after (j,5,t)

In a wait-seq statement, if the time interval for a particular
condition is 1, we will omit the “for 7 clause, i.e., wait-seq
(C, for 1; C, for T,) will be written as wait-seq (C,; C, for
TQ).

Time for “Internal” Computation: We have assumed that the
only statements requiring nonzero execution time are the set and
wait statements. Multiple-assignment statements and condition-
testing for the if-then—else and while—do constructs are assumed
to take negligible time. But this assumption may not always be
valid. For example, the station process may need to execute an
algorithm before updating a communication variable, and the
algorithm may consist of several assignments to local variables. If
the time required to execute the algorithm becomes appreciable,
it has to be accounted for in the station program. This also
applies to the testing of a complex condition, which may require
a significant amount of time to evaluate. In these cases, a delay
statement has to be introduced in the program to account for
the computation time. The delay should be long enough for the
computation to be completed. In general, such delays will depend
upon the processor on which the program is run.
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Channel Processes: For a given network, specification of the
channel processes depends solely on the network configuration,
and is independent of the protocol to be implemented by the
station processes. We illustrate our model of channel processes
by specifying the unidirectional bus system (UBS) configuration
of Expressnet, which consists of a single cable folded as shown
in Fig. 1. (The bus is folded to achieve broadcast, i.e., so
that a signal transmitted by a station can be received by all
stations.)

The channel process specification consists of a description of
the state of the channel, and some transition rules describing
how the channel state changes with time. A bus is divided into
segments, the length of a segment being the distance of signal
propagation in one time unit. The segments are numbered 1to V,
and stations are numbered 1 to M, with the numbers increasing
along the direction of signal propagation. The function loc(p)
denotes the location of station p on the bus, i.e., the segment
number of the cable where station p is connected. We assume
that the first station is connected to the left-most segment, and
the last station to the right-most segment, i.e., loc(1)= 1 and
loc(M) = N.

The state of a channel consists of the state of each segment,
i.e., the presence or absence of a signal in each segment. Thus
the state of the channel at any given time is described by
specifying the portion(s) of the channel carrying a signal at that
time. Transition rules are stated which describe how the state
of each segment changes with time. The transition rules capture
the propagation of signals, transmitted by one or more stations,
along the channel.

In spite of its simplicity, this channel model is quite useful: it
can model simultaneous transmissions by two or more stations,
and can model the presence of several messages in the channel.
A variety of broadcast networks with multiple buses can be
specified; e.g., see [10].

The UBS configuration (Fig. 1) is modeled by an outbound
channel process (for the out-bound bus) and an inbound channel
process (for the inbound bus). The status of the out-bound
channel is represented by an array called out-bus, and that of the
in-bound channel by an array in-bus. The element out-bus (s)
represents the status of the out-bound bus at segment s, and
in-bus (s) that of the inbound bus at segment s.

out-bus, in-bus: array [1---N] of Boolean

out-bus (s): true, if a carrier is present on the out-bound bus

at segment s
false, otherwise
in-bus (s) true, if a carrier is present on the in-bound bus at
segment s
false, otherwise

III. THE EXPRESSNET PRrOTOCOL

In this section, we illustrate our model by specifying the Ex-
pressnet protocol [19]. First, we give an informal description of
the Expressnet protocol in Section III-A. A formal specification
follows in Section III-B.

A. Description of Expressnet

Expressnet belongs to a class of access protocols designed
to exploit the directionality of signal propagation in a bus to
provide collision-free, bounded-delay access to a shared bus.
Several other configurations and access protocols have also
been proposed for broadcast bus networks to achieve these
goals [3]-[5], [19], [20]. Note that in broadcast bus networks,
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Fig. 1. UBS with a single folded cable.

stations are connected to buses via taps. Since taps are passive
elements, unlike repeaters in a ring which are active elements,
these networks are somewhat less susceptible to node and link
failures than rings. Conceptually, they employ a token-passing
mechanism that is implicit and efficient, thus incorporating
advantages of both bus and ring networks.

Topology of Expressnet: Expressnet is based on the UBS
architecture (Fig. 1). Each station transmits on the out-bound
channel and receives on the in-bound channel. Each station also
has the ability to sense the presence of transmissions by stations
on the upstream side of its transmitter. The in-bound and out-
bound channels are connected by a connector. The end-to-end
propagation delay along the in-bound or out-bound channel is
denoted by T.. The propagation delay along the connector is 7.
The propagation delay between the out-bound and in-bound taps
for each station is fixed and equal to 7, +T... The detection delay,
i.e., the time taken by a station to detect the presence or absence
of a carrier on a bus, is d.

Train of Transmission Units: A transmission unit (TU) consists
of a preamble followed by an information packet. Information
packets may be of fixed or variable size. The preamble is for
synchronization at the receivers. It is sufficiently long for a
receiver to detect the presence of the transmission unit, and
to synchronize bit and packet boundaries. Stations that have
packets to send transmit their TU’s in a round-robin fashion.
The succession of TU’s transmitted in the same round is called
a train.

Events EOC,,, and EOT;,: Boolean variables c;, and coy are
used to indicate the presence of a carrier on the in-bound and
out-bound channels, respectively. If ¢;, is true, the station senses
a carrier on the in-bound channel. Similarly, ¢, indicates that
the station senses a carrier on the out-bound channel.

Next, we define channel events EOC,,, (for end-of-carrier) and
EOT;, (for end-of-train). An EOC,,, event is said to occur when
coue Changes from true to false. In defining the EOT;, event, we
make use of the fact that consecutive TU’s in a train are separated
by a gap of d + 1 time units. Therefore, an EOT;, event occurs
when ¢;, changes from true to false, and remains false for d + 2
time units.

Elements of the Access Mechanism: The basic access mecha-
nism in the Expressnet protocol is the attempt-and-defer method.
Whenever a train is in progress on the outbound channel, each
station that has a packet to send tries to transmit a TU as follows.
Immediately following the detection of an EOC,, event, station
p starts transmission of its TU. Simultaneously, it monitors the
outbound channel (on the upstream side of its transmission tap)
for the presence of a carrier. If another station, ¢, with index
lower than that of p, has also started transmission after detecting
the same EOC,, event, station p will detect a carrier within
the first d seconds of its own transmission. If that happens,
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station p immediately aborts its current transmission, deferring
to the one from the upstream station. Otherwise, it completes the
transmission of its TU.

Apart from the basic access mechanism, the protocol has two
more components:

1) After all stations that have a packet to send have trans-
mitted their TU’s in the ongoing round, each station executes
a procedure to start a new train. This consists of transmitting,
following the detection of an EOT;, event, an unmodulated signal
for duration d, called the locomotive. (By virtue of the Expressnet
topology, locomotives transmitted by different stations overlap
exactly in time.)

2) If a station determines that the network is ‘‘asleep,” it un-
dertakes a cold-start procedure. This comprises the transmission
of an unmodulated signal, called pilot, until a carrier is observed
on the inbound channel.

B. Specification of Expressnet

Station process p shares variables talk and cq With the
out-bound bus process, and variable ¢;, with the in-bound bus
process. The in-bound bus and the out-bound bus processes share
variable out-bus (V).

When station p starts transmitting a signal on the bus, it
sets variable talk to true; talk is set to false at the end of the
transmission. talk affects the state of the outbound-bus, and can
be considered to be output of the station process (it is a write
variable).

During its operation, station p continuously monitors the
two buses, and takes actions based on the status of each bus.
Therefore, ¢, and ¢;, can be considered to be inputs to the
station process (they are read-only variables).

While executing the access protocol, a station process transmits
other signals besides the information packet itself. For clarity and
ease of stating and verifying the desired property of collision-
freedom, it is useful to distinguish the various signals transmitted
by the station: pilot, locomotive, preamble, and packet. We
introduce four auxiliary variables in the program to indicate the
signal that is being transmitted. (Recall that auxiliary variables
are used for specification and verification only, and do not have
to be implemented.) These variables are: tx-pilot, tx-loco, tx-
preamble, and tx-packet. Each variable is set to true for the
duration that the station is transmitting the corresponding signal.
Note that the variable talk indicates the transmission of a signal
of any type. Hence, talk is true if any one of the transmit
variables is true.

Variables packet-to-send, request-to-wake-up, and request-
to-sleep are RO variables shared between the station process
and a separate user process. Whenever packet-to-send is true,
it indicates that the user process needs to transmit a packet.
request-to-wake-up and request-to-sleep indicate that the user
process wishes to wake up or sleep, respectively. The integer pa-
rameter tx-delay denotes the time used for a packet transmission.

Channel Events: Occurrences of various channel events are
detected by conditions over time intervals.

1) To ascertain that an EOC,,, event has occurred (coy has
changed from true to false), a station has to observe cou to
be true for one time unit and false for one time unit. Thus, it
detects an EOC,, event one time unit after end-of-carrier
actually occurs.

2) Two consecutive TU’s are separated by a gap of duration
d + 1 time units (sum of the delay to detect EOC,,, and
the detection delay). Event EOT;, actually occurs when ¢;,
changes from true to false and there is a gap greater than
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d+1 in length on the inbound bus. But to detect the EOT;,
event, a station has to observe ¢;, to be true for one time
unit, and false for d + 2 time units.

3) The time gap between two consecutive trains, defined as
the time between the end of the last TU in a train and
the beginning of the locomotive of the subsequent train,
is T. + T. + 2d + 2. A station detects the net to be
““asleep’’ if does not observe a signal on the in-bound bus
for T. + T, + 2d + 3 time units.

Station Program: The program for a station implementing the

Expressnet protocol is given in Fig. 2. The initial value of each
Boolean variable is false.

IV. SPECIFICATION OF UNIDIRECTIONAL Bus

In this section, we first introduce the notion of detection delay.
Then, we state axioms for the channel processes of the UBS
configuration, and some useful lemmas derived from them.

A. Detection Delay

The specification of a station process given in Section III
makes use of the shared variables c¢;, and c,,. These variables
indicate the channel states as sensed by the station. But there is
an inherent delay between the time a channel condition actually
becomes true, and the time it is sensed to become true by the
station. For Expressnet, this time delay is the carrier-detection
time, d, introduced in Section IIL

We define the following timed formulas for the in-bound and
out-bound buses and for station j. These are used to characterize
the detection delay.

out-bus (s, t) = true, if a signal is actually present at segment
s of the out-bound bus at time ¢
false, otherwise
in-bus (s, t) = true, if a signal is actually present at segment
s of the in-bound bus at time ¢
false, otherwise
cin(4, t) = true, if station j senses a carrier on the in-bound
channel at time ¢
false, otherwise
cou(, t) = true, if station j senses a carrier on the out-bound
channel at time ¢
false, otherwise

The following axioms relate the actual and sensed signals:
CA.1 ¢y(y,t) & in-bus (loc (j),t —d)
CA.2 cou(j,t) & out-bus (loc (j),t — d).

B. Axioms for the Channel Processes
We first define the following timed formula for station j:
talk (j, t) = true, if station j is transmitting a signal at
time ¢
false, otherwise.
The following axioms define the transition rules for the UBS
channel processes.
1. For the out-bound bus:
CA3(Vs,t:1<s<N:
out-bus (s,t)
-
out-bus(s — 1,t — 1) v
(3 : loc(z) = s —1:talk (i,t—1))).
CA.4 (Vt :: out-bus (1,t) & false)
2. For the in-bound bus:
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while true do
begin
{S1} wait (request-to-wake-up);
{S2} wait-par
walit (¢, ) :: awake
|| wait-seq (not ¢, for T
end-wait-par:
if asleep then
begin
set tx-pilot, talk :
{83} wait (cin );
set tx-pilot, talk :
end;
{S4} while not request-to-sleep do
begin
{Ss} wait-par

e+ Tet+ 2d + 3)
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(* Check if net is awake *)

asleep

(* Cold Start *)

= true, true;

false, false;

wait-seq (¢i, ; not ¢;, for d + 2) :: eot

|| wait-seq (coy ; not Cout ) i

end-wait-par;

eoc

if eot then
begin (* Start a new train *)
set tx-loco, talk := true, true;
delay (d - 1)
end;
{Se} if not packet-to-send then
begin
if eot then
set tx-loco, talk := false, false;
end
else
begin (* Attempt to transmit packet *)

set tx-loco, tx-preamble, talk := false, true, true;
delay (d);

{S7} if cou then

(* Defer to upstream station *)

set tx-preamble, talk := false, false

else
begin (* Complete transmission of TTU *)
set tx-preamble, tx-packet, talk := false, true, true:
delay (tx-delay — 1);
set tx-packet, talk := false, false
end

end
end
end

Fig. 2. Station program for Expressnet.

CAS (¥s,t:1<s<N:

in-bus (s, t) & in-bus (s — ¢, ¢ — 1))
in-bus (1,¢)

<

(out-bus (N,t —T.) v talk (M, t — T.))).

CA6 (Vt ::

C. Basic Lemmas for Channel Processes
Using the axioms stated above, the following lemmas can

proved [11]. In the following, pdelay,; denotes the propagation
delay from the transmit port of station i to the transmit port of 7.
For Expressnet, it is the same as the propagation delay between
their receive ports. Since the bus is unidirectional, it is defined

only if ¢ is upstream of 7, that is, ¢ < j.

Lemma C.1 states that any two stations observe the same
sequence of events on the inbound channel, with a delay equal

to the propagation delay between them.

Lemma C.1:
Miti<j:a(t) e ¢ (i,t — pdelay,,)) A
<Vk k>7 0 q(t) & ci"(k,t+pdelayjk)>.

For notational convenience, we define another term,
ifi<j
ifi>j.

delay;; = pdelay,;,
— 1 x pdelay,;,

From now on, we will use delay, ; instead of pdelay, ;. With this
notation, Lemma C.1 can be restated as follows:
be an(i,t) & Cin (]‘7t + delay”)-

Lemmas CMR.1-CMR 4 state timing relations between events
at different points along a channel and their effects at remote
points. These lemmas, called communication rules, are used in
our verification method described below (see Section V-C).

Lemmas CMR.1 and CMR.2 relate the instant when a station
transmits a signal to the time when a signal is detected on the
outbound channel.

Lemma CMR.1:

talk (¢,t) = (Vj :

Lemma CMR.2:

(Vi 1<i<j: talk (4,6 — delay,; — d))= —cou (5, t).

1< ] S M : Cout(j7t +delay11 + d))
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Lemmas CMR.3 and CMR.4 are analogous to Lemmas CMR.1
and CMR.2, and state similar timing relations for the inbound
channel.

Lemma CMR.3:

talk (z,t) = (V5 =

Lemma CMR.4:

(Vi = —talk (i,t - (TE +T.+d+ delayij))): i (4, 8)-

The stations interact with each other only indirectly via the
in-bound and out-bound buses. The effect of the activity of one
station (starting or stopping transmission) is detected by each of
the other stations as a change in the state of a bus. The detection
is made at another station after a time delay that is equal to the
propagation delay between the two stations plus the detection
delay, d. Our model captures these timing relations.

cn(dyt + T + T. + d+ delay;;)).

V. VERIFICATION METHOD

In Section V-A, we present two types of protocol properties
of interest to us in this paper. For a given protocol, our proof
technique is based upon the construction of a timed reachability
graph (TRG) for the protocol. Sections V-B—V-D are concerned
with the representation and construction of TRG’s. Techniques to
reduce the size of an actual TRG representation are described in
Section V-E. In Section V-F, we describe how to prove protocol
properties using a TRG.

A. Types of System Properties

In this section, we give the general form of two types of
protocol properties of interest to us. In the following, P(i,t)
and Q(j,t) denote interval formulas of station processes i and
j, respectively. The total number of station processes is denoted
by M.

Safety Properties: One type of properties we use is:

P(i,¢) = Q(j,t + Liy)

where, for each pair of station processes ¢ and 7, L,; is an integer
constant (possibly negative) that depends only upon the topology
of the system. For example, L,; is equal to the propagation delay
between stations ¢ and j in Expressnet. Note that the above
property relates the states of station processes at different time
instants that are dependent on the network topology. It imposes
a restriction on station process states, and we refer to it as a
safety property.

Progress Properties: The following property of progress within
bounded delay is also used:

P(i,t)) = (Fty : 0<ta—t; <A : Q(f,t2))

where A is a constant denoting some bound. The property states
that whenever interval formula P is true for station ¢, interval
formula @ will become true for station j within a bounded delay.
In the special case of ¢ = j, the property states that station 4
makes progress within a bounded delay (this is stronger than
saying ‘‘process ¢ eventually makes progress’’ using temporal
logic).

B. Local and Global Formulas
The state of station process 7 is described by a local formula
that is the conjunction of the following set of formulas:
* a station formula SF(i,t) describing the state of the station
process over a time interval. Specifically, SF(i,t) is a
conjunction of interval formulas, each of which is defined
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from a state predicate with no free occurrence of any RO
variable shared with a channel process.

* a channel formula CF(i,t), for every RO variable shared
between station process 7 and a channel process, describing
the value of the shared RO variable over a time interval.
Specifically, CF(i, ¢) is a conjunction of interval formulas,
each of which is defined from a predicate on the shared RO
variable and global clock variable 7.

For station process 4, let SF(z, ¢) denote its station formula, and
{CF, (i,t),---,CF,(i,t)} denote its set of channel formulas.
The local formula describing station process ¢ is defined to be

LF(,) = SF(i,£) A CFy(i,t) A --- A CF,. (i, 1)

Convention: If the station formula or a channel formula is
missing in the definition of a local formula, the missing formula
is assumed to be true.

A global formula is defined to be the conjunction of the
local formulas for all station processes (indexed by 1,---, M),
namely,

GF, () =LF (1,t) A--- A LF (M, 1)

where the time parameter ¢, the same for each local formula,
is a free variable. Conceptually, a global formula represents a
description of the states of all station processes in the network.
In fact, interval formulas within the global formula provide
descriptions of subsets of state variables over different time
intervals.

Let GF,(¢),:--,GF(t) be global formulas. Then, the con-
junction GF,(t) A --- A GF(¢) is also a global formula.

Notation: We will use an optional subscript to distinguish
between different station formulas of the same process. Thus,
SF(i, t) denotes some station formula of process 4, while SF; (¢, t)
and SFi(i,¢) denote two different station formulas of process .
The same convention will be used for channel formulas as well.

C. Transition Rules

Each node in the TRG for a real-time protocol is a global
formula. Starting from a global formula describing the initial
condition of the protocol, the TRG is constructed using two types
of transition rules, communication rules and control flow rules.
The application of a transition rule to derive one global formula
from another corresponds to an arc in the TRG. In what follows,
we first introduce the two types of rules, and then illustrate their
applications to some examples.

Communication Rules: Communication rules are stated in the
following general form:

CMR  SF(1,u— Ly;) ASF(2,u— Lyj) A=+ A
SF(M,u — Lyy;)
=
CF(j, v)

where u is a free-occurring time parameter, and some of the sta-
tion formulas in CMR may be true. For Expressnet, the commu-
nication rules are precisely the channel Lemmas CMR.1-CMR 4
stated in Section IV-C. Lemmas CMR.1 and CMR.3 model the
transmission of a signal by station ¢ that is subsequently detected
by station j after a propagation delay of L,; (different values for
inbound and outbound channels). Lemmas CMR.2 and CMR 4
model the combined effect of multiple stations on another station:
for instance, CMR.4 states that if all stations are not transmitting
a signal, then no signal will be detected on the in-bound bus.
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Control Flow Rules: The sequential program specifying the
behavior of a station process is transformed into a set of control
flow rules. To obtain these rules, the program is first analyzed
to identify input locations in the program. Input locations are
defined to be those places in a station program where RO
variables are read. Thus, input locations are precisely those places
where the program behavior may be affected by inputs from
the station’s environment (its user process, and channel states as
sensed by the station).

Input locations can be found in the following:

* wait-seq and wait-par statements

* multiple-assignment and set statements

* condition tests within if-then—else and while~do statements

For input locations found in wait-seq and wait-par statements,
control flow rules are obtained from Axioms A12a and A12b, and
Al3a and A13b. (These rules may be refined by applying Axiom
Al2c¢.) For input locations found in multiple-assignment and set
statements, control flow rules are obtained from Axioms A10
and All.

Having identified input locations in a station program, the
axioms of Pascal-like constructs are applied to the program to
identify the flow of control from one input location to another.
The behavior of the station program between two input locations
is characterized by a control flow rule (derived as described
below). The rule specifies how the state of the station process
evolves over a time interval. Specifically, consider the logical
sequence of statements S,,41, Sz, - S,_; between two input
locations in statements S,, and S, shown below. Suppose there
is no input location in statements S,,,;, Sp.2,- -+, Sn_1, which
are treated as a composite statement.

{Sm-1} statement,,,

{5..} statement,,,

{(r =t,) APOST,.(4,t0)}
{Sm+1} statement,,
{7 =t1 + Api1) APOST 01 (j, t0)}
{Smi2} statement,,, ,,
{S.1} statement,, _;
{r=t+8nn+-+A) A
POST,._ (4, %)}
{8.} statement,,
{Sp11} statement,, _,

In the above, POST; (4, t,) is an interval formula that describes
the state of the station during the execution of statement; and
A; is the time taken to execute statement,; POST; (Jyto) and A;
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are obtained from the axioms in Section II defining statement;.
The following control flow rule is derived for the composite
statement:

after(j, S,.,t:) APOST,,(j, %)

=

at(j, Sn,ty + At + -+ Apiy) A
POST,.1(j,t0) A -+ - APOST,_(j, %)-

A single control flow rule is specified for the composite
statement because between S,, and S, the flow of control
depends entirely upon the station’s local and write variables.

For example, in the Expressnet station program given in Fig.
2, the statements labeled Sy, - - -, S; have input locations. In fact,
for the sake of clarity, only statements having input locations are
labeled (once input locations and control flow rules have been
obtained, labels of other statements can be removed).

Control flow rules have the following general form:

CFR SF,(i,u) A F(i,u) = SF(i,u)

where «u is a free-occurring time parameter, F (i, u) is a formula
constructed from interval formulas of station z, and SF, (3, u)
and SF (i, u) are station formulas of station i that satisfy a time
continuity property, i.e., the beginning of the time interval in
SFy(4,u) is before, at, or immediately following the end of the
time interval in SF,(%,u) Note that the conjunction of SF; (i, u)
and SF (¢, u) provides a description of the station state over the
union of the two time intervals.

Informally, a control flow rule specifies the following: the
‘‘internal’’ state of station process ¢ over a time interval, together
with its inputs over various time intervals, determine the internal
state of station process ¢ over the ‘‘next’’ time interval. Note that
each station program is deterministic and sequential. Therefore,
during program execution, the behavior of a station over the next
time interval is specified by precisely one control flow rule.

For the Expressnet station program in Fig. 2, thirty control
flow rules are obtained (see Appendix A).

D. Timed Reachability Graph

For a given protocol, the communication rules and control
flow rules are first specified. The initial condition of all station
processes is described using an initial global formula.

Consider a global formula, namely,

GF,(t) = LF(1,t) ALF(2,t) A --- ALF(M, t)-
A control flow rule of the form
SF;(4,u) A F(i,u) = SFy(i,u)

is said to be enabled by GF,(¢) if and only if there exists a
substitution for every free time parameter in SF;(i,u) A F(4, )
such that

LF(3,t) = (SF;(i,u) A F(i,u))[ule(t)]

where the expression e(t) is substituted for u. (For notational
convenience, it is assumed that v is the only free time parameter
in SF;(¢,u) A F(i,u). Some control flow rules have a second
free time parameter.) If a control flow rule is enabled by GF,(¢),
application of the rule results in a new station formula, namely,
SF(4,u)[ule(t)]. A new global formula is obtained either by
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conjoining the new station formula to LF(i,¢), or using it to
replace the old station formula in LF(i,t).

When a control flow rule of station z is not enabled by GF,(t)
it is sometimes because some channel formulas specified in the
antecedent of the control flow rule are missing in the local
formula LF(z, ¢) within GF;(¢). To supply the missing channel
formulas, we apply communication rules to GF,(t) and possibly
other global formulas along the path from the initial global
formula to GF,(t). Application of a communication rule also
requires a substitution of any free time parameter in the rule as
described above (but the time continuity property need not be
satisfied).

Observe that the only source of nondeterminism in our protocol
model is input from user processes. (This is because user
processes are not explicitly modeled.) For a given global formula,
if a station is at a control location where there is no user input,
there is exactly one control flow rule that determines the future
behavior of the station. On the other hand, if the station is at
a control location where user input is possible, then multiple
control flow rules are applied, one for each possible value of the
user input. Each rule application, if it is enabled, results in a new
station formula and thus a new global formula, and corresponds
to an arc in the TRG.

In Expressnet, the shared variables for user input are: request-
to-wake-up (in statement S, ), request-to-sleep (in statement S,),
and packet-to-send (in statement Sg). To illustrate the application
of control flow rules, consider the following global formula for
the Expressnet protocol. It is labeled as F1 in Appendix B.

F1: (V5 in(j, S, t) A talk(j, 6 — 1) A

VWt sty — 1<t <t+ Ty : —en(d,t'))

We now show some of the intermediate steps in the derivation
of formula F5 in Appendix B. In global formula F1, the local
formulas for all stations are the same. The control in each station
is in an input location (S).). Consider the local formula for
station k. There are two possible input values, true and false
for the RO variable request-to-wake-up. The station formula for
k in F1 can be written as

f1: in(k,S;,to—1) A ~talk (k,to— 1) A
( request-to-wake-up (k,t,) V
- request-to-wake-up (k,tg)).

For the input value false, applying control flow rule CFR.3
(in Appendix A) to station formula f1, we get the following new
station formula:

£2: in(k, Sy, t) A - talk (k, ).

For the input value true, applying control flow rule CFR.4 (in
Appendix A) to station formula fI, we get the following new
station formula:

f3: after (k,Si,t) A - talk (k,t).

In applying each rule, we substitute ({, — 1) for the time
parameter v in the control flow rule to obtain the new station
formula.

Therefore, the formula describing station k in the formula that
represents F1’s successor in the TRG can be written as:

f4: (in(k,S,,t) v after (k,S,,t)) A — talk (k, to).
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The same rules can be applied to all stations, and we obtain
the following new formula from F1:

f5 : (V.] B (ln (.71 Slvtﬂ) \ after (jvSlytO)) A
- talk (5, o) A

(V' sty — 1<t <to+Ty : - e (5,1)))

Note that the above formula is actually a disjunction of global
formulas, and it represents a set of nodes in the TRG.

Termination of TRG: Let m and n denote two nodes in the
TRG. Node n is said to be a repeat of node m if they are
specified by global formulas GF,(t) and GF,,(t), respectively,
that satisfy the following conditions:

T.1 GF,.(t) contains sufficient information such that no
descendent of node m in the TRG is derived from
information contained in an ancestor of node m

T.2 for every station, there is precisely one control flow rule
enabled by GF,,(t)

T3 GF,(t) = GF,.(t) [t|t + A}, for some constant A
where t is a free time parameter, and A represents a time shift
between the two nodes.

If node n is a repeat of node m, the protocol behavior follow-
ing node n is the same as the protocol behavior following node
m, except for the absolute time; this is because transition rules
are independent of the absolute time. Therefore, we can terminate
a path when a repeat node is generated. TRG construction for a
given protocol terminates when every path is terminated.

In Appendix B, we provide a representation of the TRG
constructed for Expressnet (as modified in the following section).
In general, there is no guarantee that TRG construction terminates
for a given protocol.

E. Reduction Techniques for Representing TRG

Suppose the TRG of a given protocol is finite. However, if
each rule application is represented as a distinct arc in a graph,
the graph would be extremely large. To reduce the size of an
actual TRG representation, various techniques can be employed.
These techniques fall into four categories.

Aggregation of Nodes: We can represent a set of nodes (global
formulas) by a single aggregate node. The formula of the
aggregate node is a disjunction of the global formulas in the set.
In particular, we use existential quantification over the station
index in a global formula to represent an aggregate node. There
are many examples of such formulas in Appendix B.

Concurrent Application of Sequences of Control Flow Rules:
Suppose node m follows node n in the TRG. The formula of
node m may be derived from the formula of node n by applying
a sequence of control flow rules to station ¢, for all <. For each
station, we can proceed with control flow rule application as
long as one such rule is enabled (keeping in mind that branching
occurs at any control location where there is user input). For each
station, we stop if no control flow rule is enabled. If we have
stopped for all stations, then we apply communication rules to
strengthen the global formulas of node m so that control flow
rules become enabled for some stations.

Pariitioning an Aggregate Node: When a new channel formula
needs to be derived, some communication rules are applied to
global formulas in an aggregate node. In TRG construction,
we may generate an aggregate node such that a particular
communication rule is not enabled for all global formulas in the
aggregate node. When this happens, it is convenient to partition
the aggregate node into smaller (aggregate) nodes, such that
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the communication rule becomes enabled for the set of global
formulas in one of the partitions.

For example, node 9 in the TRG is partitioned into nodes 10
and 11. Node 10 corresponds to the case in which no station
is ready, and none will transmit a signal. Node 11 corresponds
to the case in which at least one station is ready, and all ready
stations will transmit a preamble. Rule CMR 4 is applied to node
10 as part of the derivation of node 12. Rule CMR.3 is applied
to node 11 as part of the derivation of node 25.

We may also partition an aggregate node into smaller successor
nodes for other reasons. In particular, we partition an aggregate
node if one or more of the successor nodes leads to a repeat
node. For example, node 13 is partitioned into node 15 and node
16. Node 15 leads to node 17, which repeats node 7, and node
16 leads to node 18, which repeats node 1.

Use of Induction in TRG Construction: In constructing the
TRG of the modified Expressnet protocol for M stations, where
M is a parameter, we make use of induction in the following
manner. Observe that in each round of transmissions, the protocol
behavior is the same for each transmission except for the index
of the transmitting station. We exploit this fact to reduce the size
of TRG representation. Instead of generating an entire path until
a repeat node is obtained (in fact, this is not doable if M is a
parameter), we ‘‘factor’” out the repetitive part and treat it as a
separate subgraph. The actual TRG contains multiple instances
of this subgraph, one for each value of station index.

In the TRG for modified Expressnet, nodes 26-33 represent
a subgraph which describes the protocol behavior during packet
transmission by station m, where m is the index of the trans-
mitting station.

F. Proving Properties

Recall that each application of a control flow rule results in a
new station formula with the time continuity property . Because
of the time continuity property, the conjunction of all global
formulas along a path in the TRG provides a description of
the state of every station in the network over continuous time.
Protocol properties are proved by showing that they are invariant
over time for every path in the TRG.

For example, consider a safety property of the form:

P(ivt) = Q(jat'f' Li])

where P(4,t) and Q(j,¢ + L;;) are timed formulas. To prove the
safety property for given values of 7 and j, we consider every
path of the TRG. Let F,;;(¢) denote the conjunction of all global
formulas in a given path, where the global clock variable 7 is
shown explicitly. For time value t', we use F,(t') to denote
the formula derived from Fp,,(7) by assigning the value ¢’ to 7.

To prove the above safety property, we check that one of the
following holds for all t' > t, where ¢, is the starting time of
protocol execution:

e Foan(t) = - P(i,t).

* Foau(t') = P(3,t') and

Fon(t' + L) = Q(,t' + Lyj).

VI. EXPRESSNET PROPERTIES

First, we state the desired properties of Expressnet. Next, we
show that the original protocol is susceptible to collisions, and
propose a modification to it. Finally, we prove that the modified
protocol is collision-free and derive a bound on its access delay.

IEEE TRANSACTIONS ON COMPUTERS, VOL. 40, NO. 4, APRIL 1991

A. System Properties

For Expressnet, the safety property of interest is freedom from
collision, i.e., the packet portion of a station’s transmission does
not overlap with any other transmission. The progress property
of interest is that each station gets a chance to transmit a packet
within a bounded delay.

Notation: For every Boolean variable v of station j, the timed
formula defined from it is denoted by v(j,t).

Collision Freedom: The property of collision-freedom is stated
below as P.1. The predicate tx-packet(é) is true if station 4 is
transmitting a packet, and predicate talk(z) is true if station ¢ is
transmitting any signal.

P.1 tx-packet (i,¢) => (Vj : i # j : —talk (j,¢ + delay,;))

If station ¢ transmits a packet at time ¢, the signal will
reach the transmit port of station j, downstream of it, at time
t + delay, ;. Therefore, station j should not transmit any signal
at time ¢ + delay,;. If a station, k, upstream of ¢ transmits a
signal at time ¢ — pdelay, ;, the signal will reach ¢’s transmission
port at time ¢. Therefore, k should not transmit a signal at time
t + delay,, (recall that delay,, = —pdelay,;).

Bounded Delay: A station that has a packet to send can be
guaranteed to transmit the packet only if it remains awake long
enough to do so. Thus, the bounded-delay property should be
stated as a conditional property. We first define W (3,¢;) which
represents a “wakefulness” condition: if station ¢ has a packet to
send at time ¢;, it will not be asked by its user process to go to
sleep unless it has finished transmitting that packet.

Timed formula pts(z, t) is true iff the variable packet-to-send
is true for station ¢, and the interval formula packet-sent(s, t) is
true if station ¢ completes transmission of its packet at time ¢.
Below, P, is a parameter denoting the time taken by station i to
transmit a packet.

packet-sent (i,t) =
(V¢ : t— P, <t <t : tx-packet (s,t'))

W(i,t) =
(Vty : t2 >t @ pts(3,61) A
(V¢ : t; <t <ty :
=
(Vt' i t, <t <ty

- packet-sent (i, "))

: - request-to-sleep (i,¢')))

The bounded-delay property is stated below.

P.2 pts(i,t) AW(,t)
=
(3t, : 0< ¢, — t; < Bound : packet-sent (i,t,))

That is, if station ¢ has a packet to send at time ¢, and it
satisfies the “wakefulness” condition, then it will transmit its
packet within a bounded delay given by “Bound.”
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B. Scenario for Collision in the Original Protocol

The Expressnet protocol as specified in [19] does not guarantee
collision-free access to the bus. Consider the following scenario.
Stations j, 7, and 5 (1 < j < r < s < M) are awake and have
finished transmitting their packets in the ongoing round. In time,
each of them detects an EOT;, event and transmits a locomotive
of length d units. Assume that stations 1 through 7 do not have
a packet to transmit by the time they finish transmitting their
locomotives. They will stop transmission, and will start waiting
for the next EOT,, or EOC,, event. If station s has a packet
to send immediately following the locomotive, it proceeds to
transmit its preamble. At the end of the preamble, s will detect
the out-bound bus to be idle, thereby concluding that no station
upstream of it is going to transmit a packet in the current round.
Therefore, it starts transmitting its packet.

Because of detection delay, 7 will detect the end of j’s
locomotive (incorrectly) as an EOC,, event d time units after
it completes its own locomotive transmission. If by then it has
received a packet to transmit, station 7 will start transmitting
its preamble and packet, which will collide with the packet
transmission of station s. This violates the desired property of
collision-freedom. The above scenario is formally stated and
proved as a theorem in [11].

C. Modified Expressnet Protocol

We now propose a modification to the Expressnet protocol to
make it collision-free.

Modification: Tn order to rectify the problem, it is sufficient
that the end of locomotive is not confused with the end of a
packet. Since the EOC,, event itself cannot be prevented from
occurring, we ensure that a station “does not observe” that event.
To this end, we propose the modification below.

Following a locomotive transmission, if a station does not have
a packet to send, it waits for d 4+ 1 time units before checking
for the next EQC,, or EOT;, event. This ensures that the end
of the locomotive will not be seen as an EOC,, event by any
station. Note that if a station receives a packet to transmit after
it has had a chance to transmit in the current round, the packet
will have to wait till the next round.

In fact, the above modification prevents only active stations
from detecting the end of locomotive. (A station is said to
be active if it is executing the while loop labeled S;, which
corresponds to a ‘‘regular round”” of the protocol; otherwise,
it is said to be inactive.) A station, which was inactive when
EOT,, occurred, could become active before the locomotive has
gone past its transmit port, and detect the end of locomotive as
an EOC,, event. But as shown in [11], this cannot happen if
the network parameters satisfy the condition: T, + T, > d. Since
detection delay is typically much smaller than the end-to-end bus
propagation delays, we expect this condition to be true. Hence-
forth, we assume that this condition is satisfied by the network.

Remark: Our modification does not increase the delay incurred
by any packet at any station {except for those packets which, if
transmitted, would cause a collision). This is because the time
spent in this wait is less than the delay until the next EOT;, or
EOC,, event.

Modified Station Program: The only change in the program is
in the then clause of statement Sg. The rest of the program is
the same as given in Fig. 2. We give in Fig. 3 the segment of
the station program corresponding to the regular round only. The
cold-start procedure is the same as that for the original protocol
in Fig. 2.
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D. Proofs of Properties for the Modified Protocol

The modified Expressnet protocol is verified using the method
described in Section V.

Description of the TRG: Using the method described in Sec-
tions V-D and V-E, a timed reachability graph (TRG) is con-
structed for the modified Expressnet protocol (see Appendix and
Fig. 4). The derivation of each (aggregate) node in the graph is
by proving a lemma. (See [11] for lemmas and their proofs.)

We take advantage of the fact that all station programs
in Expressnet are identical to reduce the size of the graph;
specifically, a set of nodes is aggregated into a single node by
existentially quantifying over station index in a global formula
(nodes 3, 5-11, 14, 15, 17, 20-22, 24, 25, 31 and 33 of TRG
in Appendix).

Time parameter #, represents the starting time of protocol
execution. Node 1 represents the dormant state of the network:
every station is asleep at time ¢, — 1 and the in-bound channel is
idle for the interval from t, — 1 to to + Ty. If no station receives
a request to wake up from its user process (represented by node
2), the network will remain dormant at time ¢, (node 4). If some
station receives a request (node 3), it will wake up at time %,
(node 5). Nodes 6-9 describe the protocol behavior during cold
start.

Following the end of pilot-transmission (node 9), if there is a
ready station following pilot-transmission (node 11), a train will
start immediately following the pilot, with a gap of d+1 between
the pilot and the first packet. Node 25 represents the condition
for the leftmost ready station to transmit a packet successfully.
On the other hand, if none of the stations is ready to send a
packet (node 10), the network is in the state prior to the start of
a regular round (node 12).

If in the state prior to the start of a regular round some station
is awake (node 14), a regular round will start (node 19) and
all active stations will transmit a locomotive (node 20). If all
stations are asleep (node 13), then either the network will return
to the dormant state (node 18), or some station will wake up and
undertake cold-start (node 17).

If there is a ready station following locomotive-transmission
(node 22), the leftmost ready station will satisfy the condition for
transmitting a packet (node 24). If no station is ready following a
locomotive (node 21), the “train” is empty and the network will
return to the state prior to the start of a regular round (node 23).

Nodes 26-33 constitute an induction step in the TRG con-
struction. Node 26 represents the induction hypothesis that a
station, say m, satisfies the condition for packet transmission.
It will transmit a packet without collision (nodes 27 and 28).
If at the end of packet transmission (node 29), there are some
ready stations downstream (node 31), then the leftmost of these
stations will satisfy the condition for packet transmission (node
33). If at the end of a packet transmission by station m, no station
downstream of m is ready to transmit (node 30), the network will
return to the state at the start of a regular round (node 32).

The formula of node 24 (also node 25 and node 33) implies
the formula of node 26. (We use a solid line and an arrow in
Fig. 4 to indicate ‘‘implication.”’)

Each repeat node is labeled by an asterisk (*) and a dashed line
is used to indicate the node being repeated. Specifically, node 4
repeats node 1 with a time shift of one unit. Node 32 repeats
node 12 (start of a new train): the time shift is the length of a
train plus the intertrain gap. Node 23 also repeats node 12: the
time shift is the length of a locomotive plus the intertrain gap.
Node 18 repeats node 1 (dormant state), and node 17 repeats
node 7 (start of pilot transmission).
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{S4} while not request-to-sleep do

begin
{Ss} wait-par
wait-seq (Cin; not cip for d + 2) :: eot
|| wait-seq (Cout : NOt Cout ) i3 €OC
end-wait-par:
if eot then
begin (* Start a new train *)
set tx-loco, talk := true, true;
delay (d - 1)
end;
{Se} if not packet-to-send then
begin
if eot then
begin
set tx-loco, talk := false, false;
delay (d) (* MODIFICATION for collision-freedom *)
end
end
else
begin (* Attempt to transmit packet *)
set tx-loco, tx-preamble, talk := false, true, true;
delay (d);
{S§7} if coue then (* Defer to upstream station *)
set tx-preamble, talk := false, false
else
begin (* Complete transmission of TU *)
set tx-preamble, tx-packet, talk := false, true, true:
delay (tx-delay - 1);
set tx-packet, talk := false, false
end
end
end

Fig. 3. Modified station program for Expressnet (regular round only).

as discussed in Section V-F. To determine if the state predicate
in a station interval formula of process ¢ implies each of the
predicates: tx-packet(z), - tx-packet(s), or talk(z) we make use of
the following invariants for a station program. These invariants
can be easily proved.

PIL1 talk (¢,t) & tx-pilot (i,t) V tx-loco (%,t) V
tx-preamble (i,%) V tx-packet (i,t)

PI.2 wx-pilot (i,¢) V tx-loco (¢,t) V tx-preamble (i, )
=
- tx-packet (7, t).

Using these invariants, we see that for each node in the TRG,
except for node 27, tx-packet(s) is false for the entire interval
of the station formula of process ¢ in the node, for every i.
Therefore, the collision-freedom property is trivially satisfied for
these nodes.

In node 27, the following interval formula is part of the station
formula of station m. Let P,, be a constant denoting the time
taken by station m to transmit a packet:

Fig. 4. Timed reachability graph of modified Expressnet.

Collision Freedom: The property of collision freedom (stated

(V' : &5 +delay,,, + d+ 2 < t' < t;+delay,,, + P, +d+1:

in Section VI-A) is proved by examining each node in the TRG, tx-packet (m, t'))
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In node 28, which follows node 27 in a TRG path, the
following interval formula is part of the station formula of each
station & (k # m):

(Vt': t; +delay,, +d+2 <t <t;+delay, +P.+d+1:

- talk (k, t))

Thus, for every value of ¢’ when station m is transmitting a
packet, every other station, &, is not transmitting a signal at time
t' + delay,,,.

Therefore, the collision-freedom property is satisfied along
every path of the TRG for all time.

Bounded Delay: To calculate the maximum delay from the time
a station receives a packet to the time of successful transmission
of the packet, we distinguish two cases: 1) delay of the first packet
after the station wakes up, and 2) delays of subsequent packets.

The bounded delay property is proved by examining all
paths in the timed reachability graph. Since packet-to-send can
become true at any time, we have to consider the longest path
from any node to the node in which the station transmits a packet
(node 27).

Delay of the first packet: The worst case delay for the first
packet is when the station receives the packet at the same time it
receives the request to wake up, and the net is asleep (node 5).
We consider both paths from node 5 to node 27. Nodes 5-9 are
common to both paths and correspond to station ¢ waking up,
detecting the net to be asleep, and transmitting a pilot.

Following node 9, one path to node 27 is via node 10. In this
case, no station downstream of station i is ready to transmit a
packet immediately after pilot transmission. Station ¢ waits for
a regular round to start (node 19) and gets a chance to transmit
its packet after all stations upstream of it have had a chance to
transmit. For station ¢, the worst case delay for the first packet
along this path is given by

Bound; (1) =t X (Pyax +2d+2) +3x (T. + T.) + 5d + 4

where P, is the maximum packet-transmission time over all
stations. Bound,(7) is largest for ¢ = M.

The second path from node 9 to node 27 is via node 11. In this
case, station 7 waits for all stations downstream of it to transmit
their packets, and for a new round to start (node 19). Station ¢
gets a chance to transmit in the second round after all stations
upstream of it have had a chance to transmit. The worst case
delay along this path is given by

Boundy; = M X (Ppax +2d+2)+ 3 x (T, + T,.) + 5d + 4-

Bound, is independent of the station index, and is the same
as Bound, (i) for i = M.

Delay of a subsequent packet: The worst case delay is when
a station receives a packet to transmit as soon as it has finished
transmitting the previous packet (node 27). Since a station can
transmit only one packet in every round, it has to wait until the
current round is over (node 32) and the next round starts (node
19), before it gets a turn to transmit again (node 27). In this case,
the maximum delay is given by

Bounds = M X (Ppax +2d+2)+ T, + Ty + 2d-

Note that the worst case delay for subsequent packets is the
same for all stations.
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Remark: Properties of the modified Expressnet protocol are
proved under very general assumptions. We have made no
assumption as to which stations are awake or asleep, the time
when a station wakes up or goes to sleep, or which stations have
packets to send in any given round.

VII. ConcLusioNs

As illustrated by our analysis of the Expressnet protocol,
timing bugs are hard to catch. To improve our confidence in
the implementation of a real-time protocol, a careful analysis
of time-dependent interactions between station programs should
be carried out using a formal method. In this paper, we have
presented a specification model and a formal analysis method.

Our model and method have certain desirable characteristics.
First, our specifications are modular. That is, communication
rules for channels and control flow rules for station programs
are derived separately. Second, much of our analysis is reusable.
Specifically, our proofs of timing relations for a particular bus
network configuration are independent of station programs; they
are not affected by changes in station programs. Furthermore,
our proofs of protocol properties are independent of the number
of stations and their positions on a bus.

Our reasoning is based upon the construction of a timed
reachability graph using communication rules for channels and
control flow rules for station programs. Protocol properties are
proved by showing that they are invariant over time along every
path in the TRG. While such a reasoning method is by no means
simple—indeed, considerable human ingenuity is required—it is
systematic and more reliable than what is available.

APPENDIX A
ConTrOL FLOW RULES OF MODIFIED EXPRESSNET
Notation
Ty =Te+T.+2d+2
EOC (i, t) = cout (5,1 —1) A = cous (4, 1)

EOT (i,t) = cin (i t—-d -2) A
(Vi t-d-1 <t <t:=cin(iy b))

CFR.1. at (i, S1, u1) A - request-to-wake-up (i, u) A
- talk (7, u1)
=
ill (i, S], lh) A = talk (1, ul)

CFR.2. at (i, S1, u1) A request-to-wake-up (i, u1) A
- talk (4, uy)
=
after (i, S1, u1) A - talk (4, u;)

CFR.3. in (7, S1, u1) A - request-to-wake-up (7, uy +1) A
- talk (4, uy)
=
in (1, Sy, g + 1) A - talk (‘l, Uy +1)

CFR 4. in (¢, Sy, u1) A request-to-wake-up (7, ug +1) A
= talk (¢, u1)
=
after (7, S1, ur +1) A = talk (i, u1 +1)

The above four rules are derived from Axioms Al2a-b. CFR.1
and CFR.2 have been refined by adding the same conjunct,
= talk (2, u; ), to both sides of each rule. Axiom Al2c has been
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used to refine CFR.3 and CFR.4. From rule CFR.3 and using = ,
induction on time, we derive the following (aggregate) control at (i, S, u1) A = talk (i, w)
flow rule. CFR.19. at (i, Ss, u1) A - request-to-sleep (i, u1) A
- talk (2, u1)
1o . . =
CFR.3'. in (l, S1, ul) A - talk (2, ul) A at (t, Ss, “1) A - talk (i, Ul)
(Vt' 1 uy < t' < ug: - request-to-wake-up (i, t') ) .
= CFR.20. at (i, Ss, ul) A - talk (l, ul) A
(W iug S <up:in(i, S, ¢) A - talk (4, t)) (V' iuy <t Sup: ~EOC (5, ¢) ) A
(Vt' tuy+d+1 <t <uy: 2 EOT (4, 1))
=

(V' tug <t <wug:in(i, Ss, t') A

which will be used instead of CFR.3. Note that time parameter A
- talk (4, t') )

u, is free in CFR.3’ . Some of the following control flow rules

have been derived similarly using induction on time. CFR.21. in (3, S5, w1) A = talk (¢, u1) A
(V' tug <t/ gt
CFR.5. after (i, S, ul) A - talk (i, ul) - EOC (i, t’) A = EOT (i, tl) )
= =
at (i, Sa, ul) A - talk (i, up) (Vt/ cu <t < ug:
. . P
CFR.6. at (i, S2, u1) A = cin (6, w1) A - talk (i, u) in (i, S5, 1) A —talk (i, ')
= . CFR.22. in (i, S5, u1) A - talk (5, u1) A
in (i, Sz, u1) A - talk (4, u1) EOC (i, uy+1) A
CFR.7.in (i, S5, w1) A = talk (3, u1) A = cin (4, ur+1) A - (EOT (i, u1+1) A L
(3t cu-Ty <t <wuy:at(i Sz, t)) (V' tup-d-1 <t/ <wuy:in(i, S5, 1) ))
=> = )
in (4, So, w1 +1) A —talk (i, uy +1) aftefk(i, Ss, u;+1) A eoc (3, up+1) A
= talk (4, u; +1
CFR8. (Vt' iuy <t/ < ug+Ty :in (4, S, t') ) A ( 1/ ) o !
= cin (G, w +Ty) A - talk (4, u1) CFR.23. (V¥ :uy <t' < u1+d+'1 cin (4, S5, t') ) A
= - talk (i, ul) A EOT (1, ’U1+d+2)
after (¢, Sa, uy +7,) A asleep (i, u1 +Ty) A =
2 thk((,- T 2 p (0w +Ty) after (i, S5, uy+d+2) A eot (i, up+d+2) A

= talk (4, u; +d+2)

CFR.9. at (3, Sz, A ¢in (3, u1) A - talk (4, u .
at (i, 52, m) in (4 1) @ w) CFR.24. after (i, S5, u1) A eot (7, uy)

=
] ke (3, A - talk (g, =
after (i, Sz, u1) A awake (i, uy) (3, u1) (Wt un <t < utd : txloco (i, £) ) A
CFR.10. in (i, Sa, ul) A Cin (i, uy + 1) A - talk (i, ul) at (i, Se, Uy +d)
=

CFR.25. after (i, S5, u1) A eoc (i, u1) A = talk (4, u;)
=
at (1, SG, U.l) A - talk (l, ul)

CFR.26*. at (i, Se, u1) A eot (¢, u1) A - pts (t', u)

after (i, Sz, u1 +1) A awake (i, u+1) A
- talk (i, u1 +1)

CFR.11. after (i, S2, u1) A awake (i, u1) A — talk (i, u1)
=

R . =
at (i, Sg, 1) A~ talk (i, w) (Ve tuy <! Suy+d+1: ~talk (5, ¢) ) A
CFR.12. after (i, S, u1) A asleep (4, u1) at (i, Sq, ur +d+1)
- (G, o w+1) A taepilot (i, s +1) CFR.27. at (i, S5, u1) A eoc (i, ur) A = pts (i, 1) A
= talk (7, u;)
CFR.13. at (i, S3, u1) A = cin (4, u1) A tx-pilot (Z, uy) =
= at (i, Sy, u1) A —talk (4, ug)

in (i, S5, u1) A txepilot (3, u1) CFR.28. at (i, Ss, u1) A pts (i, u1)

CFR.14. in (i, S3, u1) A tx-pilot (4, u;) A =
(W tup <t <up:-ein (4, 1)) (V' :uy <t <uy+d+1: tx-preamble (i, t') ) A
= at (i, Sz, vy +d+1)
(Vt! tuy <t <up:in (i, S5, t') A . .
tx-pilot (i, t') ) CFR.29. at (i, S7, u1) A cCout (i, u1)
=
CFR.15. at (4, S3, u1) A cin (3, ul) A tx-pilot (i, ul) at (i, Sa, U1 +1) A - talk (l, U1+1)
$ . .
after (i, Sz, u1) A tx-pilot (¢, uy) CFR.30. at (i, S7, u1) A = cout (i, u1)
=
CFR.16. in (i, S3, u1) A cin (3, u1+1) A tx-pilot (3, u1) (V' uy < t' < up+ P txpacket (i, ') ) A
= at (i, Sy, us + P, +1) A —talk (i, v+ P, +1)

after (i, S3, uy +1) A tx-pilot (i, u; +1)
CFR.17. after (i, S3, uy)

= * For the original protocol, the corresponding control flow rule is:
at (2, Sq, ur+1) A - talk (3, up +1
() Say 1) Gutl) OCFR.26. at (i, Se, w1) A eot (i, u1) A - pts (i, m1)
CFR.18. at (i, S4, u1) A request-to-sleep (i, u1) A =

- talk (4, ug) at (i, Sy, us +1) A - talk (i, vy +1)
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APPENDIX B
TIMED REACHABILITY GRAPH OF MODIFIED EXPRESSNET

Notation

to : Free time parameter. Denotes the starting time of protocol execution.

t1, ta, ta, t4 : Time parameters, defined for notational convenience.
(Each is defined as the sum of o and a constant.)

Ta=Te+Tc+4d

wi; = t; + delayy;

vij = u; + delayy;

P;j = packet transmission time for station j

inactive (j,t) = (at (4, S1,t) Vin(j, S1,t) V after (4, S1,t) Vin (4, Sz, t)) A —talk (4, )
idle (j, t) = (inactive (j, t) V at (4, Ss,t) Vin(j, Ss, t)) A -talk (4, t)

ready (j,t) = at (j, Se, t) A pts (4, 1)

quiescent (j,1) = (V' 1t -T, <t/ <t:-ein (4, ¥))

loco-sent (j, t) (Vt' :t-d <t <t: txloco (j,1))

preamble-sent (j,t) = (V' :t-d <t <t: tx-preamble (j, ) )

post-pilot (g, v1g) = (Vi (V' tvy; <t/ vy +d:idle (j, ') ) A cin (4, v15 + Ta) A
(Vt/:vljstlsvlj-i-Td-}-d-{-l:
- EOT (j, t) A — quiescent (,%'))) A
(Vi1 <j <q:=EOC(j, vy +d+1)) A
(Viig <j <M:BOC (j,vi; +d+1))

Pre-RR (u1) = (Vj = (in (4, S1, v1j) V at (j, S5, v15) V
in (7, 5, v17)) A
Cin (j,vlj) A (Vt’:vlj <t’§vlj+Td+d+2:—\c;n (j,t')) A
(W iy <t <wvj+d+2: v cou (5, 1))

(3k :: after (k, S5, vix) A eot (k, viz) ) A
(Vj :: (after (7, Ss, v15) A eot (j, v1)) V
(V' tvy; <t <y +2d+1:idle(4,¢))) A
(Y4, ¥ 1 vy; <t < vy + Tq: = EOT (j, ') A — quiescent (j, ') )

Tnit-RR. (u1)

clear-packet (r, uy) =
(Vj:1 <j <r:-ready (j, v1;) ) A ready (r, v1,) A
(Vj :: (ready (j, vij) A preamblesent (j, vi; + d +1) A at(j, Sz, wi;j+d+1)) V
( —~ ready (j, v1j) A
(V' vy <t <wvj+d+1:-talk(G,¢)) Addle(j,v; +d+1))) A
(Vj, t' vy <t < vy + Ty~ EOT (§, t') A — quiescent (j, ¢') )
Bl (j, v1j) = preamble-sent (j, vi; + d + 1) A
(V' tvyj +d+2 <t/ <wvyj + P; +d+1: tx-packet (j,t') ) A
idle (5, vy + Py +d +2)
B2 (j,v;) = (Vk:1 <k <j:
(Vv <t <oip+d+1:~talk (b, ¢'))) A
(Ve:j £k:
(Vv +d+2 <t <wvp+ Pj+2d+ 1:idle (k, t)))

B3 (jv;) = (Vk, 't <t/ Svye + Py +Ta+2d+2:
- EOT (k, t) A - quiescent (k, t') )
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Indices ¢ and m have the following meaning:

¢ : Left-most station to transmit a pilot (same in formulas F9 through F11).

m : Station that has finished transmitting its packet. Used in the induction step
(same in formulas F26 through F33).

Note that m and ¢ are free variables of TRG. Therefore, properties proved using the TRG are valid for all
possible values of m and ¢. The time parameter ¢o occurs free in all formulas F1 through F25. Formulas
F26 through F33 correspond to the induction step, and time parameter ts occurs free in them.

Formulas describing (aggregate) nodes of the TRG

F1

F2
F3
F4
F5

Fé

F7

<V] tH in(], S1, to — 1) A - talk (], to~1) A
(V¢ ito-1 <t/ <to+T4g:-Cin G, 1))
F1 A (Vj :: - request-to-wake-up (j, to) )
F1 A (3j :: request-to-wake-up (4, to) )
(Vj:in (4, Si,t0) A —talk (G, o) A (V' ito St/ <to+Ta:ocin (4, t)))
(V] I ( in (], S1, to) V after (], 51, ia) ) A - talk (], io) A
(Villto St’gto+TdZ—10in(j,tl))> A
{3j :: after (j, S1,t0) )
(Vi o (VY 1 tg < ¥ < to + Ty : inactive (j, t') ) A
(V' : 1o St'(to-%-T, tmen (G, )Y A
(Fj = (V' ito St <to+ Ty :in(j, Sz, ') ))
(3k, t1 :to + Ty — delayyp <ty Sto+ Ty :
(after (k, Sz, wig) A asleep (k, wig) A - talk (k, wyx)) A
(Vi o (V' 19 + Ty < t' < wyj : inactive (j, t') ) A
(Vt’ LWy <t < wyj + T4 : ™ Cin (],t/))>)

In the following formulas, ¢, is existentially quantified over the range:

F8

F9

to+ Ty -Te <t1 <to + T

(VJ i (3111 D wy; <u < wyj + Ty :
(Vt' : wy; <V < uy :inactive (4, t') V
) , (after (j, Sz, t')l A asleep (j, t') A —talk (j, ) ) ) A
(Vt' iuy <t Swy; + Ta:in (4, Sa, t') A tx-pilot (j,¢') ))) A
(3k o (V' wie <t < wig + Ty:in (k, S5, t') A tx-pilot (k, ') ))

(3Jq :: post-pilot (g, wi, + Ty + 1) ) A (Vj :: = tx-packet (5, wy; + Ty + 1))

In the following formulas, t; = ¢; + Ty + 1

F10
F11

F12

i m

]

FO A (Vi:q <j <M :-aready (j, wy; +d+1))
FO A (3j:q <j <M :ready (j, wz; +d+ 1))

Pre-RR (t2 + Td) A (V], t: waj < t < wy; + Tq : — talk (], t’) )

In the following formulas, {3 = t5 + Ty.

F13
F14

F12 A (V] ;in (], S1, lD3j) )
F12 A (3] :: at (], Ss, ‘wsj) Vin (], Sk, w;«;j) )
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F15

F16
F17

F18

F19

11

il

F13 A (3]&7, u ttg <uy <tz + delaygas :
after (k, S1, vig) A - talk (k, vie) A
(V], t: wz; < t < vy ¢ in (], 51, i/) A - talk (], t') ))

F13 A (Vj, ' i wa; <t < t3 + delayiar @ in (5, S1, t') A - talk (5, ) )
7

(Jk,ug 1 ta+ Ty <us < t3+Tg+delaykM:
( after (k, Sa, var) A asleep (k, var) A — talk (k, vax) ) A
(Vj = inactive (§, va; — 1) A (Vt' v <t <wgj + Ty:—cin (4, ) )))
(Vj::in (4, S1, ta + delayipr) A
(Vl’ tt3 + delay\pr <t/ < t3 + delayipr + T4 » Cin (], i') ) A
(VY s wa; <t < t3 + delayiny : - talk (5, ) ))

Init-RR(t3+d+2) A (Vj, i’:w3j St'Swaj +d+2: —\talk(j, t'))

In the following formulas, t4 = ts + d + 2.

F20

F21
F22
F23
F24

F25 =

i

(3k :: loco-sent (k, war + d) ) A
(Vj 2 ( (loco-sent (j, waj +d) A at(j, Se, waj +d) A eot (j, waj +d)) V
(V' twy; S Swyj+2d+1:0dle (G, t'))) A '
cin (4, waj + Tg + d) A
(V' i waj <t < waj + Ty +d: ~EOT (j, t') A - quiescent (4, t') })

F20 A (Vj: - ready (j, wa; + d) )

F20 A (3j :: ready (j, waj + d) )

PreRR (ta+ Tu+d) A (Vj, ¢ twgj+d <t <waj + Ty +d: ~talk (5, ))
(3k :: clear-packet (k, wax + d) )

{3k :: clear-packet (k, wax + d + 1))

The following formulas correspond to the induction step.

F26
F27
F28
F29

clear-packet (m, t5 + delayim)
clear-packet (m, t5 + delayim) A Bl (m, wsm)
Bl (m, wsm) A B2 (m, wsm) A B3 (m, wsm)

= post-pilot (m, wsm + Pm +d + 1)

In the following formulas, t¢ = t5 + P, + d + 1.

F30
F31
F32
F33

1l

il

F29 A (Vji:m <j <M :-ready (j, wej + d+ 1))

F29 A (3j:m <j <M :ready (j, ws; +d + 1))

Pre-RR (26 + Ty) A (V4,1 :we; < t' < wej + Tg : — talk (4, t') )
( 3k :: clear-packet (k, wer + d + 1))
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