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Abstract—Per-flow congestion control helps endpoints fairly and
efficiently share network resources. Better utilization of network
resources can be achieved, however, if congestion management al-
gorithms can determine when two different flows share a congested
link. Such knowledge can be used to implement cooperative con-
gestion control or improve the overlay topology of a P2P system.
Previous techniques to detect shared congestion either assume a
common source or destination node, drop-tail queueing, or a single
point of congestion. We propose in this paper a novel technique, ap-
plicable to any pair of paths on the Internet, without such limita-
tions. Our technique employs a signal processing method, wavelet
denoising, to separate queueing delay caused by network conges-
tion from various other delay variations. Our wavelet-based tech-
nique is evaluated through both simulations and Internet experi-
ments. We show that, when detecting shared congestion of paths
with a common endpoint, our technique provides faster conver-
gence and higher accuracy while using fewer packets than previous
techniques, and that it also accurately determines when there is no
shared congestion. Furthermore, we show that our technique is ro-
bust and accurate for paths without a common endpoint or syn-
chronized clocks; more specifically, it can tolerate a synchroniza-
tion offset of up to one second between two packet flows.

I. INTRODUCTION

C ONGESTION control has been performed on a per-flow
basis; each flow adjusts its sending rate according to feed-

back regarding the network’s congestion status. The stability of
today’s Internet is mainly due to congestion control, especially
the additive increase/multiplicative decrease approach of TCP.

Better utilization of network resources is achievable with co-
operation between flows. For example, Congestion Manager [2]
examines all flows of the host where it resides and groups flows
passing through the same bottleneck link into a single flow ag-
gregate. By performing congestion control over flow aggregates,
rather than over each individual flow separately, Congestion
Manager can improve fairness and efficiency significantly.
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The recent proliferation of overlay systems poses a new chal-
lenge in cooperative congestion control. There are many ap-
plications of overlay systems that would benefit from coopera-
tive congestion control, including end system multicast [3], file
download from multiple servers, and overlay QoS routing. Such
systems usually consist of a large number of end hosts and uni-
cast flows between them. Unlike flows controlled by Congestion
Manager, these unicast flows have different source and destina-
tion nodes, but still may interfere with each other by sharing one
or more intermediate links. If the system can tell which flows are
sharing a bottleneck link, it can improve overall performance by
changing the overlay topology to avoid such interference.

The basic primitive required for cooperative congestion
control is to decide whether two flows are sharing a bottleneck
link or not. Techniques for inferring shared congestion use two
kinds of information from feedback: packet loss and delay.
Techniques based on packet loss assume bursty packet loss [4],
[5]. Thus, they work well with drop-tail queues and lossy links,
but are slow and inaccurate with low loss rate or with other
queueing disciplines, such as RED. Techniques based on delay
[5], [6] show more robust behavior in such an environment.
They are adequate for the case where two flows have a common
source or a common destination. The major weakness of both
kinds of techniques is that they require that the two tested paths
share an endpoint, usually at the source. Thus, they cannot be
used for general overlay networks.

We propose a novel technique (delay correlation with wavelet
denoising or DCW) to detect shared congestion between two In-
ternet paths. Like previous techniques, it is based on a simple
observation: two paths sharing congested links have high corre-
lation between their one-way delays. However, naive correlation
measurements may be inaccurate, due to random fluctuation of
queueing delay and mild congestion on non-shared links. In our
technique, these interfering delay variations are filtered out with
wavelet denoising, which is a signal processing method to sep-
arate signal from noise.

We evaluate our technique through extensive simulations and
Internet experiments. When two paths have a common source,
for which previous approaches can also detect shared conges-
tion, our technique shows fast convergence with fewer packets.
It takes at most 10 s to reach near 100% accuracy with both
drop-tail and RED queues, while previous techniques often take
longer or fail. We also show that our technique maintains its ac-
curacy without a common endpoint; more specifically, it toler-
ates a synchronization offset between flows of up to one second.

The remainder of this paper is organized as follows. Section II
describes our basic technique using cross correlation. Section III
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Fig. 1. Two paths sharing links.

introduces wavelet denoising and explains how to apply it to
our technique. Section IV addresses implementation issues, and
Section V presents results of simulations and Internet experi-
ments. We conclude in Section VI.

II. BASIC TECHNIQUE

We first present a basic technique to detect shared congestion
using cross correlation. This technique is effective when clocks
of the nodes measuring delay are synchronized and there is only
one point of congestion. With this as a basis, we will develop a
general technique that tolerates a large synchronization offset
and allows multiple points of congestion in Section III.

A. Model

Two paths sharing links on the Internet are illustrated in
Fig. 1. Paths from to and from to
are sharing links between and . Let the one-way delay of
path be , and that of path be . Each of them has
two components: , the delay from to , and the remainder
denoted by or

(1)

A key observation is that the delay of a congested link has
large fluctuations due to queueing delay changes, while the
delay of a link with light load is relatively stable. A persistently
congested link may have stable delay because its queue is
persistently full. However, a measurement study shows that
packet loss processes caused by congestion are better thought
of as spikes rather than persistent congestion periods, and that
loss runs of most spikes are shorter than 220 ms [7]. It confirms
that a congested link shows large fluctuations in delay. In order
to detect shared congestion, we need to determine whether such
fluctuations occur between and .

B. Cross Correlation

Our basic technique is based on the observation that measured
delays of two paths show strong correlation if the paths share
one or more congested links and little correlation if they do not
share any congested links [5]. Suppose that paths and in
Fig. 1 are sharing congested links between and and that
the other links are lightly loaded. Then and will show
strong similarity, since the only strongly varying component
is shared by both paths. On the other hand, if congestion occurs
on links other than the links between and , then and

become independent. We use the cross-correlation coefficient to
measure such similarity. Let and be one-way delay
sequences of paths and , respectively, assuming that each

pair was measured at the same time. Then their cross-
correlation coefficient 1 is defined as follows:

(2)

Note that if both and are constant and
is not constant (shared congestion), and if
is constant and or varies independently (no shared

congestion). Of course, other network effects could make
in the absence of shared congestion, or make

in the presence of shared congestion. We
follow earlier work by assuming that this rarely happens [5];
further Internet experimentation may be required.

One of the properties of the cross-correlation coefficient is
that its value is independent of any constant component of
or and dominated by components with large fluctuations.
It matches well with our purpose to determine if any of the
shared links has large delay fluctuations. Also note that, due
to this property, no clock synchronization between the source
and destination nodes of paths and is required in mea-
suring one-way delay between them. However, clock skew may
affect measurement. We will examine the effects of clock skew
on shared congestion detection in Section V-A2. In this paper,
except for the results presented in Figs. 14 and 23, we assume
that there is no clock skew.

C. Basic Technique Implementation

The basic technique consists of two stages: sampling and pro-
cessing. In the sampling stage, sends to a sequence
of UDP packets with a timestamp, starting at time with its
own clock. Each such UDP packet is called a probe packet.
Probe packets are sent at a constant rate until , where
is the probe interval. On receiving a probe packet, calcu-
lates one-way delay and sends it, with the original timestamp,
back to . Then records the one-way delay together
with the timestamp as a delay sample. Missing samples are lin-
early interpolated from neighboring samples, because if missing
samples are discarded, and are very likely out of synchro-
nization from then on. The sampling stage ends when the last
delay sample from is received (or upon timeout if the last
probe or the reply to it is lost). and also collect delay
samples in the same way.

In the processing stage, the cross-correlation coefficient of
two sequences of delay samples is computed as defined in (2).
The actual procedure to gather delay sequences collected by dif-
ferent nodes is application-dependent. For example, in applica-
tion-layer multicast, a common ancestor node of and
in the multicast tree can gather and process delay sequences.

1Although the cross correlation is a function of two time series and the number
of samples used in computation, we refer to it as���� or simply XCOR
in this paper for brevity.
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Fig. 2. Cross-correlation coefficient between two delay sequences versus syn-
chronization offset.

Fig. 3. Simple topology with a common source.

D. Limitations

Applicability of the basic technique is limited because it
makes two assumptions that generally do not hold for the
Internet.

The first assumption is that the two delay sequences are syn-
chronized. Ideally, the basic technique expects packets mea-
suring and to pass through at the same time. To achieve
this, the endpoints would need precisely synchronized clocks,
and to predict the delays from and to . However,
one-way delays cannot be measured without network support,
and network clock synchronization protocols are not accurate
enough for our purposes, since they still allow errors up to half
of the round-trip time between the nodes [8]. To quantify such
synchronization errors, we define synchronization offset as the
time difference between arrivals of two probe packets at , one
sent by at time with ’s clock and the other by
at time with ’s clock. As the synchronization offset in-
creases, the delay sequences collected by the two nodes show
less and less correlation. Fig. 2 illustrates this; it plots the cross-
correlation coefficient for two paths sharing a congested link as
synchronization offset rises from 0 to 1 s. Each point is the mean
coefficient over 300 simulations; the bars show 5th and 95th per-
centiles. In each simulation, two delay sample sequences were
collected for 100 s on the topology shown in Fig. 3 using ns-2.2

The bandwidth of every link was 1.5 Mb/s, and its propagation
delay was chosen randomly between 20 and 30 ms for each
simulation. The delay sequences represent one-way delays of
two paths, from to and from to . Pareto
ON-OFF constant-bit-rate (CBR) flows were used as background
traffic, so that the congestion level could be controlled easily by
changing the number of flows. The average ON and OFF times
were selected uniformly between 0.2 and 3 s. The CBR rate

2http://www.isi.edu/nsnam/ns/

was selected uniformly between 20 and 40 kb/s, and its Pareto
shape parameter was 1.2. The loss rate of the shared link was
about 10%; the other links did not have any loss. Without syn-
chronization offset, the mean cross correlation between the two
delay sequences is about 0.99. However, the mean cross corre-
lation drops as synchronization offset increases so that a 600 ms
synchronization offset results in half of the mean cross correla-
tion without offset.

The second assumption required by the basic technique is
that queueing delay variation on noncongested links is close to
zero. If such delay variation is not negligible, it confuses the
basic technique and will give an obscure cross-correlation coef-
ficient not close to zero or one. Then it is difficult to determine
the threshold to differentiate shared congestion and independent
congestion cases.

In Section III, we propose wavelet denoising to enhance
the basic technique. It effectively filters out delay variations in
non-congested links and short-term fluctuations that confuse the
basic technique, as well as negative effects of synchronization
offset. With the combination of wavelet denoising and cross
correlation, our new technique can detect shared congestion for
paths with a large synchronization offset and varying delays at
noncongested links. It also determines quickly when there is no
shared congestion.

E. Related Work

Previous approaches to detect shared congestion using probe
packet streams are also based on the assumption of strong cor-
relation between packet delays or losses of two paths that share
a bottleneck. Thus, these approaches have the same limitation
as our basic technique, i.e., two probe packet streams should be
synchronized for such technique to be effective.

Rubenstein et al. proposed two techniques, one based on
one-way delays and the other based on packet losses [5]. These
techniques assume that the paths being probed share a common
end point (either source or destination). The delay-based tech-
nique uses a Poisson process with an average interval of 40
ms to generate a sequence of delay samples. When two delay
sequences are obtained for different paths, an auto-measure

is computed from the delays of pairs of adjacent packets
in the first sequence. A cross measure is computed from
a new delay sequence obtained by merging the two delay
sequences. Only adjacent packet pairs with the first element
in each pair from the first sequence and the second element
in each pair from the second sequence are used in computing

. If , it is inferred that the two paths are sharing a
congested point. In their loss-based technique, and are
conditional probabilities that a packet is lost when its following
packet is lost. In their simulations, the delay-based technique
was always more robust than the loss-based one.

Harfoush et al. [4], [9] proposed a loss-based technique that
outperforms the loss-based technique of Rubenstein et al. In
their technique, a common source sends a packet pair back-to-
back at 15 Hz. The probability that only the second packet is
lost is computed from packet losses. If the probability exceeds
the threshold of 0.4, it is inferred that the paths are sharing a
congested point.
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Fig. 4. Time series of one-way delay of a single-hop path.

A different problem on detecting shared points of congestion
was posed and investigated by Katabi et al. [6]. They consider
a large number of sources that send to a common destination.
The paths form a tree rooted at the destination. Some of the
tree nodes (routers) are bottlenecks such that every path goes
through exactly one of the bottlenecks. They presented a pas-
sive measurement technique, based upon the entropy of packet
interarrival times, to group sources into different clusters, one
for each bottleneck along the way. Another approach to address
a similar problem using the technique of Rubenstein et al. [5]
was presented by Younis and Fahmy [10].

III. WAVELET DENOISING

To provide efficient solutions to network problems, various
types of signal processing techniques have been employed for
modeling [11] and analysis [12]–[14] of Internet traffic. How-
ever, they are mainly used to infer static or long-term network
information from a large set of data collected over a long time
span. In order to obtain dynamic information such as conges-
tion status in a timely manner, techniques capable of online pro-
cessing and fast response are required.

In this section, we first examine the time series of packet delay
in a flow and its characteristics. Based on these characteristics,
we introduce a signal processing technique—wavelet denoising
[15]—that overcomes limitations of the basic cross-correlation
technique in Section II-D. Wavelet denoising takes the original
delay time series, and generates another time series with reduced
interfering fluctuations that might affect cross correlation ad-
versely. Finally, we discuss a procedure to find a wavelet basis
that minimizes negative effects of synchronization offset.

A. Nature of Delay Data in Time and Frequency Domain

Fig. 4 demonstrates an example set of time series of packet
delay for a link with two different congestion levels. The source
and destination nodes were connected through a 1.5 Mb/s link
on ns-2. The delay between them was measured using UDP
packets as explained in Section II-C. The time series in Fig. 4(a)
is the one-way delay under light traffic load (76 ON-OFF CBR
flows, no packet loss) while the time series added in Fig. 4(b) is
the delay under heavy traffic load (92 ON-OFF CBR flows, loss
rate between 2% and 10%). ON-OFF CBR flow parameter set-

Fig. 5. Power spectral densities of time series of delay data for light traffic and
heavy traffic.

tings were identical to those described in Section II-D. The 95th
percentile of loss run length (the number of consecutive packet
losses) for heavy traffic load was about 180 ms, which is close to
the Internet measurement result (220 ms) in [7].3 Observe that
the one-way delay with light traffic is a noise-like waveform
with small amplitude, while the delay with heavy traffic shows
an irregular pulse pattern with larger amplitude. Such pulses re-
sult from network congestion.

The corresponding frequency-domain power spectral densi-
ties of the individual time series, normalized to unity area, are
provided in Fig. 5. In the frequency domain, the delay with heavy
traffic shows larger amplitude at low frequencies than the delay
with light traffic. Such large amplitude components at low fre-
quencies correspond to the irregular pulses in Fig. 4(b), caused
by congestion, while others are introduced by the randomness of
queue behavior, well demonstrated in Fig. 4(a). Therefore, for a
proper assessment of network traffic under congestion via delay
data, it is necessary to reduce the effects associated with random
queue behavior which corrupts the traffic delays in both the time
and frequency domains. In addition, if a synchronization offset is
introduced in delay sampling, the measure of network traffic via
delay will be less reliable.

If we are only interested in extracting the large amplitude
components at low frequencies, a simple low-pass filter seems
to be an intuitive solution. Low-pass filtering would smooth the
delay signals, increasing cross correlation when there is shared
congestion. On the other hand, low-pass filtering may fail to di-
agnose nonshared congestion cases. Consider the extreme case
that there is no congestion on either path. In such a case, near-
zero cross correlation is expected since the delay signals will be
dominated by random queue behavior. However, simple low-
pass filtering may over-smooth the signal, resulting in an in-
appropriately high value of cross correlation. This is because
the frequency spectrum in network delay data varies in a dy-
namic fashion due to the fact that network traffic changes in
time. Therefore, any attempt to mitigate the interference effects
should include an approach based on both time and frequency
(or scale) analysis, e.g., the wavelet transform. Hence, we use
wavelet denoising rather than simple filtering. We will show
an empirical comparison between simple low-pass filtering and
wavelet denoising in Section V-B3.

3Loss run lengths were measured using a Poisson packet stream with a rate
of 50 Hz.
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We will show that wavelet denoising is highly effective for
the purpose of detecting shared congestion. A major advantage
of wavelet denoising is that it preserves the dominant charac-
teristics of one-way delay and filters out nondominant ones in
a time and scale localized manner, thus it can deal with the
time-varying spectrum of network delay data. Therefore, even
when there is no congestion, wavelet denoising preserves strong
transients at high frequencies and thus maintains low cross cor-
relation between denoised signals.

B. Wavelet Transform and Denoising

The wavelet transform is a signal processing technique that
represents a transient or nonstationary signal in terms of time
and scale distribution. Due to its light computational com-
plexity, the wavelet transform is an excellent tool for online
data compression, analysis, and denoising.

Assume that a signal is contaminated by an additive
noise ; then, the measured data are . The
measured time series can be represented as an orthonormal
expansion with wavelet basis as
follows [16]:

(3)

where the wavelet coefficients are calculated from

(4)

Note that is the discrete wavelet transform of at scale
and at translation and represents how is correlated with
the scaled and translated basis function.

Wavelet denoising removes noise components from the noise-
corrupted signal by suppressing those wavelet coefficients that
fall below a threshold. In this paper, the interfering effects such
as synchronization offset and random fluctuations are regarded
as “noise” to be filtered out, and the congestion related informa-
tion is regarded as the original “signal.”

Two cases should be taken into account to achieve robust and
reliable cross-correlation results. When there is congestion, the
slowly varying congestion information (at high scale) should be
extracted from the delay data, which are corrupted by synchro-
nization offset and random queue behavior. Without congestion,
strong random transients should be extracted to ensure a low
correlation. Wavelet denoising is capable of selecting the de-
sired signal while removing others in each case.

Wavelet denoising lets us build a nonlinear approximation
of the signal using the wavelet coefficients of the mea-
sured data . The wavelet coefficients for the measured
data become , where

and . Then,
, an approximation of the signal , is obtained from the

wavelet coefficients of the measured data by suppressing
noise with a nonlinear thresholding function, . In this paper,
we employ a soft thresholding operation on with the fol-
lowing definition [15]:

if
if
if .

(5)

The value of the threshold can be determined by various
methods, and the threshold selection varies with different ap-
plications and the types of background noise (e.g., white or
nonwhite). The typical threshold selection rules for wavelet de-
noising are documented in [17] (and also implemented in the
MATLAB wavelet toolbox [18]). In this paper, we utilize the
most general threshold selection rule which minimizes the max-
imum means square error assuming non-white noise. The selec-
tion of the threshold needs further investigation, but we believe
that the threshold value may depend on the network traffic char-
acteristics. Once the threshold is selected, the denoised signal

is obtained by applying the threshold to the wavelet coef-
ficients in (3).

(6)

Soft thresholding plays a key role in the approximation of
the traffic delay data under congestion. If there is shared con-
gestion, the dominant low-frequency term, which corresponds
to the true traffic congestion information, will exhibit relatively
large wavelet coefficient values at high scale (low frequency) so
that true traffic information will remain after the thresholding
operation. Meanwhile, the high-frequency components, which
can be assumed to be the effects of random queue behavior, will
have relatively small wavelet coefficients at low scale (high fre-
quency) and will be filtered by the thresholding operation. Soft
thresholding also has the effect of smoothing the transient irreg-
ular peaks in the delay data. In the basic cross-correlation tech-
nique, randomly occurring peaks in the delay data could have
a dominant deleterious effect on the cross-correlation value.
Wavelet denoising smooths these irregular peaks, making the
cross-correlation value more robust. On the other hand, when
there is no congestion, delay variations caused by random queue
behavior will have relatively large wavelet coefficient values,
and thus will be preserved by soft thresholding.

C. Selection of Wavelet Basis

The wavelet transform provides a time- and scale-localized
representation of a measured time series; however, the time and
scale resolution of the representation depends on the selection of
a wavelet basis. Hence, in order to get the most robust and reli-
able results from wavelet analysis including wavelet denoising,
it is crucial to select the best basis function for wavelet decom-
position [19]. In this paper, selection of a wavelet basis is con-
fined to be within the Daubechies family of wavelets, which are
widely used due to its simplicity of implementation.

The correlation between a data signal and a wavelet basis
is determined by time and frequency localized characteristics.
Such characteristics of a data signal and wavelet basis can
be represented by the time and frequency localized moments,
which enable the approximation of the individual time-fre-
quency signal elements as a Gabor logon [20]. Then, the trace
of the signal elements on the time-frequency plane is defined
as an elliptic curve as shown in Fig. 6. The time duration and
frequency bandwidth of the data and wavelet basis determine
semimajor and semiminor axes as indicated in Fig. 6. and

are the time duration and frequency bandwidth of the signal,
while and are those of the wavelet basis [19]; the areas, ,
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Fig. 6. Schematic description of localized time–frequency characteristics for a
data signal (horizontally hatched area) and a wavelet basis (vertically hatched
area).

, and , are derived from them. Based on these variables,
we define a metric, instantaneous signal-to-noise ratio (SNR),
to indicate how closely a wavelet basis matches a data signal
on the time–frequency plane.

1) Instantaneous SNR: Fig. 6 provides a schematic descrip-
tion of localized time and frequency characteristics for a data
signal and wavelet basis. The quarter ellipse including and

represents the localized time–frequency characteristics of
the data signal, and the quarter ellipse including and rep-
resents those of the wavelet basis. For the two quarter ellipses
to be well-matched, the size of the common area should be
large while the discrepancy should be small.
To quantify how closely the time–frequency characteristics of
a data signal and wavelet basis match, we postulate a transient
resolution index named “instantaneous SNR” (ISNR) whose di-
mension is dB/s and is given as

(7)

ISNR provides a measure of similarity between the data signal
and wavelet basis within the time frame of the wavelet basis
function.

2) Minimizing Adverse Effects of Synchronization Offset: In
our application, the measured data consist of two parts, slowly
varying congestion information and interference from random
queue behavior and synchronization offset; such interference
can be mitigated by employing a soft thresholding technique in
wavelet denoising. We can further reduce the interference from
synchronization offset by choosing a wavelet basis carefully.

Synchronization offset in the delay data can be interpreted as
the difference of the time-shifted version of delay data and the
original one. Therefore, the synchronization offset depends on
the characteristics of the original data. Hence, the basis
should be chosen to maximize the ISNR of and and
minimize the ISNR of and , where is the delay
changes caused by network congestion and is the interfer-
ence caused by the synchronization offset. Therefore, it suffices
to find the basis that maximizes the difference between the two
ISNRs, which we call the differential ISNR. However, since the
true and are not available directly, an approximation
is required; we used the delay data of a congested path as ,
and the difference between the delay data and its shifted ver-
sion as an approximation of , where

is the maximum possible synchronization error (1 s in this

Fig. 7. Differential ISNR between congestion signal and other noise for
Daubechies wavelets.

paper). More discussion on the maximum possible synchroniza-
tion error is presented in Section IV-C.

In Fig. 7, we plot the differential ISNR for Daubechies
wavelets 2–10. The delay sequences were obtained by re-
peating the simulation used to draw Fig. 4(b) 120 times to
approximate , and the interference is directly com-
puted from . Each point in Fig. 7 is the mean value of the
differential ISNR for the 120 sequences. As shown in the figure,
Daubechies wavelet 6 has the highest differential ISNR, which
implies that it is best matched with congestion information and
least matched with the noise due to synchronization offset on
the time–frequency plane. Therefore, the Daubechies wavelet 6
basis will be employed for wavelet denoising in this paper. Note
that this result is based on the data shown in Fig. 4; other bases
may perform better in different setups, although the Daubechies
wavelet 6 was among the best few in all the setups we tested.

IV. IMPLEMENTATION

The wavelet-based technique has the same sampling stage
as described in Section II-C. The sampling stage produces two
sequences of delay samples, and . The processing
stage uses wavelet denoising to produce new, denoised se-
quences and , as explained in Section III-B. The
cross-correlation coefficient is computed from
and . (The computational overhead of these operations
is very low. We found that when delay samples were collected
at 10 Hz for 100 s for each of two paths, a machine with a
2.53-GHz Intel Pentium 4 CPU took only a few milliseconds to
finish the operations.) As in the basic technique, the procedure
to gather delay sequences for different paths is application-
dependent and beyond the scope of this paper.

There are three issues to discuss in implementing the wavelet-
based technique: the delay sampling rate, synchronization
offset between delay sequences, and the threshold for the
binary decision.

A. Sampling Rate

There is a tradeoff in choosing the sampling rate of a delay se-
quence. High-rate sampling is more accurate but incurs a large
overhead on the network. On the other hand, low-rate sampling
has little overhead while being slow to converge. To investigate
the effect of sampling rate on performance, we performed sim-
ulations with different sampling rates on the topology shown
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Fig. 8. Cross-correlation coefficients for sampling rate of 10 Hz.

Fig. 9. Effect of sampling rate.

in Fig. 3. The sequence of delay samples for each path was
processed with our wavelet denoising method. To minimize ef-
fects from synchronization offset, we used a topology with a
common source. The source nodes were colocated and their
clocks were synchronized. A full evaluation involving synchro-
nization offset will be presented in Section V. Each link had a
bandwidth of 1.5 Mb/s, and ON-OFF CBR flow parameter set-
tings were identical to those in Section II-D. To simulate shared
congestion, we put 100 ON-OFF CBR flows on the shared link,
and 60 on the other two links. With 60 flows, no packet loss was
observed. The loss rate with 100 flows varied between 2% and
12%. For independent congestion, we put 60 ON-OFF CBR flows
on the shared link, and 100 on the others.

Given a sampling rate, an experiment was repeated 500 times
for each of shared and independent congestion. Fig. 8 plots the
cross-correlation coefficient with the sampling rate of 10 Hz as
time elapses. Each curve is the mean cross-correlation coeffi-
cients over 500 experiments, and a vertical bar represents the
interval between the 5th and 95th percentile values at a specific
time.

Fig. 9 plots the mean cross-correlation coefficient over 500
experiments for five different sampling rates. The behavior con-
sistent over all sampling rates is that the coefficients converge
either to one or to zero as more and more samples are collected.
With all sampling rates except 1 Hz, the cross-correlation co-
efficient converges within 10 s. Their variance is also small;
after 5 s, the interval between the 5th and 95th percentile values
with shared congestion never overlaps with the corresponding
interval with independent congestion for every rate but 1 Hz.

Since our technique is implemented in user space, the gran-
ularity of a timer in an operating system kernel should also be
taken into account. Though recent operating systems provide
clock rate of 100 Hz, older ones have only 10 Hz. From the
figure, we conclude that a sampling rate of 10 Hz is fast enough
in convergence and feasible to implement on most operating
systems.

B. Limiting Synchronization Offset

There is a synchronization offset in the two sequences of
delay samples collected. However, using simple techniques, the
synchronization offset between any two paths on the Internet
can usually be limited to 1 s. In Fig. 1, the synchronization offset
of two paths, from to and from to , is caused
by: 1) the difference of the delay from to and the delay
from to and 2) the clock difference between and

. 1) is bounded by the maximum one-way delay on the net-
work and 2) by half the round-trip time between and
since the clocks in these two nodes can be synchronized by ex-
changing packets. So the maximum offset is roughly the max-
imum round-trip time on the network. Measurement studies in-
cluding one by CAIDA4 confirm that round-trip time is less than
1 s for the vast majority of paths on the Internet.

C. Threshold for Binary Decision

Though cross correlation itself is a reasonable measure of
shared congestion, in situations where a binary answer is pre-
ferred, a threshold should be set. Since cross correlation con-
verges to one (or zero) for shared (or independent) congestion
as in Fig. 9, our technique is not sensitive to the threshold in such
cases. However, because synchronization offset reduces corre-
lation of paths sharing a congested link (as shown in Fig. 2),
it is still important to investigate an appropriate value for the
threshold.

When cross-correlation coefficients of delay sample se-
quences with shared and independent congestion are close to
each other, two types of errors may occur: false positives and
false negatives. The former is the case where the technique re-
ports shared congestion when there is no shared congested link,
and the latter is the case where it reports nonshared congestion
when there is one or more congested links shared by two paths.
The error rate of each type can be estimated from distributions
of cross-correlation coefficients for shared and independent
congestion. Then the threshold can be adjusted to minimize the
total cost of errors using Bayesian testing. Our implementation
assumes that the cost of false positive and the cost of false
negative are equal, and minimizes the total error rate, which is
the sum of the false positive ratio and the false negative ratio.
Actual costs may differ from application to application.

To determine the best threshold value, we need an estimate
of the synchronization offset for any two paths on the Internet.
According to measurements by CAIDA, most paths from the F
DNS root server to its customers have a round-trip time of less
than 300 ms. Considering that customer hosts of a DNS root

4Available. [Online]. http://www.caida.org/tools/measurement/skitter
/RSSAC/.
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Fig. 10. Cross-correlation coefficient distributions.

server are close to the server, we take 600 ms as the target syn-
chronization offset to optimize the threshold for. More investi-
gation is needed on the actual distribution of round-trip times
and the relationship between the target offset and the accuracy
of the binary decision.

Fig. 10 shows the distributions of cross-correlation coeffi-
cients with 600 ms synchronization offset. The distributions were
obtained from the same delay sequences used in Section IV-A.
We used the delay samples collected during the first 10 s, with
the sampling rate of 10 Hz. The left histogram represents the
distribution for independent congestion, and the right one for
shared congestion. If we approximate the histograms with
normal distributions, they intersect when the cross-correlation
coefficient (XCOR) is 0.512, which would be the threshold value
that minimizes the total error rate. (The error rate is not sensitive
to the choice of the threshold value as long as the threshold is
between 0.3 and 0.6, because XCOR is rarely close to 0.512.)
We use this value as the threshold in later experiments, unless
stated otherwise. We will investigate the effect of the threshold
on false positive and false negative ratio in Section IV-B.

V. PERFORMANCE EVALUATION

In simulations, we compare our technique against two repre-
sentative techniques: a delay-based approach of Rubenstein et
al. [5] and a loss-based one of Harfoush et al. [4], [9]. Below
we refer to them respectively as MP (Markovian probing) and
BP (Bayesian probing). See Section II-E for descriptions of both
techniques.

We define Positive Ratio as a metric to represent the accuracy
of each technique:

(8)

If an experimental setup involves shared congestion, Positive
Ratio should be close to one; otherwise, it should be close to
zero.

We first compare our technique with MP and BP when paths
share a common source node and have either shared conges-
tion or independent congestion only. Then we investigate how
they perform in more challenging environments involving paths
not sharing a common source or destination and multiple points
of congestion. Finally, we present initial results on the perfor-
mance of our technique on the Internet.

Fig. 11. Topology with a common source.

A. Probing With a Common Source

Both MP and BP assume that there is a common source (or a
common destination for MP). For such a topology, clocks for the
two paths can be synchronized and two samples can be merged
into one in chronological order. This is a critical requirement
for both techniques. In fact, BP requires the stronger condition
that two probe packets with different destinations must be sent
back to back.

Fig. 11 shows a network topology where two paths share a
source node. Each link has a bandwidth of 1.5 Mb/s. A similar
topology was used in simulations for MP [5]. We ran experi-
ments for the following three scenarios depending on the type
of background traffic.

Long-lived TCP flows: A small number of long-lived TCP
flows with different round-trip times are used to cause conges-
tion, and non-congested links are left idle. In shared congestion
cases, a link is chosen from links 1 through 3, and 20 TCP flows
are created to traverse the link. In independent congestion cases,
links 1 through 3 are idle, and the other links have TCP flows,
of which the number is chosen uniformly between 0 and 20.

ON-OFF CBR flows: A large number of ON-OFF CBR flows
are used as background traffic. The congestion level is con-
trolled with the number of such flows. For shared congestion, a
link chosen from links 1 through 3 has 100 ON-OFF CBR flows.
The number of ON-OFF CBR flows on the other links is chosen
uniformly between 31 and 70. For independent congestion, links
1 through 3 have ON-OFF CBR flows between 31 and 70, and the
other links between 61 to 100. The same parameter settings of
ON-OFF CBR flows as in Section II-D are used.

Short-lived TCP flows A large number of short-lived TCP
flows with different round-trip times, created by ns-2’s web
traffic generator, are used as background traffic. The generated
traffic consists of many “web sessions,” in each of which a client
node continually downloads from a server a web page con-
taining multiple objects. For shared congestion, a link chosen
from links 1 through 3 has 250 web sessions created by 25 web
servers and 250 clients. The number of web sessions on the other
links is chosen uniformly between 1 and 25. For independent
congestion, links 1 through 3 have web sessions between 1 and
25, and the other links have web sessions between 151 and 250.

1) Detection Accuracy: Fig. 12 plots Positive Ratio of
each technique over 500 experiments as time progresses when
links are using drop-tail queues. In the legend, DCW refers to
our delay correlation technique with wavelet denoising. With
long-lived TCP background, MP is fast in detecting both shared
and independent congestion, while BP is relatively slow in both
cases. DCW is slightly faster than MP for shared congestion,
but as slow as BP for independent congestion. Overall, every
technique works well and reaches accuracy of over 90% within
10 s.
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Fig. 12. Convergence for a common source and drop-tail queues.

Fig. 13. Convergence for a common source and RED queues.

With ON-OFF CBR background traffic, however, all three tech-
niques are slower in detecting shared congestion than with long-
lived TCP background traffic. For DCW and MP, this is because
noncongested links have small queueing delay fluctuations. For
DCW, such fluctuations add noise to delay samples; for MP, they
change the order in the merged samples and thus decrease .
Nevertheless, since DCW removes most noise through wavelet
denoising, its degradation is not as severe as MP’s. BP expe-
riences the most notable degradation among the three; though
it is the fastest for independent congestion, its Positive Ratio
for shared congestion is still less than 0.6 after 100 s. This is
because our ON-OFF CBR background flows include some with
very short ON/OFF time, while all ON-OFF CBR flows in the sim-
ulations of [4] have relatively long ON time—2 s. BP requires the
probability that both packets in a packet pair are lost to be high
to detect shared congestion. A longer ON time means a queue
remains full for a long time causing both packets in the pair to
be dropped. However, it is less likely with short ON time. That
leaves DCW to be the only technique that reaches 90% accuracy
after 10 seconds with ON-OFF CBR background. Degradation of
BP is even more pronounced with short-lived TCP background,
because a loss period is even shorter in that scenario. As a result,
BP fails to detect shared congestion. On the other hand, DCW
and MP are not affected much.

Fig. 13 presents results from simulations with links using
RED. DCW and MP showed similar performance as with drop-
tail queues. However, BP did not work at all with RED queues.
Its problem with RED was already pointed out using ON-OFF

CBR flows [4], but the problem was more serious in our simu-
lations because their simulation setup had a higher loss rate and
smaller queues, which means that a RED queue’s behavior was
close to that of a drop-tail queue. Neither DCW nor MP had

Fig. 14. Effects of clock skew (the vertical axis does not start from zero.).

such a problem; they maintained performance as good as with
drop-tail queues.

2) Effects of Clock Skew: The clock skew between two hosts
measuring delay may affect the cross-correlation coefficient
value, reducing the Positive Ratio for shared congestion. In
Fig. 14, we plot XCOR with clock skew using the simulation
data for the DCW curve with shared congestion in Fig. 12(b).
To simulate clock skew, a linearly increasing offset was added
to one of the two delay sequences. The value of the horizontal
axis is the maximum time skew, or the offset at the end the mea-
surement (after 100 s). Fig. 14 shows the decrease of XCOR as
the clock skew increases. Nevertheless, XCOR is still close to
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Fig. 15. Topology with no common endpoint.

Fig. 16. Effect of synchronization offset.

0.9 when the maximum time skew is 1 s. As this corresponds
to gaining more than 14 min every day, clock skew is expected
to be much less and thus its effects on XCOR is negligible.

B. Probing With No Common Endpoint

The topology in Fig. 15 is an extended version of that in
Fig. 11. The paths have different source and destination nodes.
Delay samples collected at different nodes cannot be synchro-
nized because of two reasons. First, the clocks of node and
node are not synchronized. Second, the delay from to

is different from the delay from to .
1) Effects of Synchronization Offset: To investigate the ef-

fect of synchronization offset between two paths, we plot, in
Fig. 16, the Positive Ratio for experiments with shared conges-
tion as we increase the synchronization offset for all three types
of background traffic. The original sets of delay samples were
obtained from the two paths on the topology in Fig. 11; the syn-
chronization offset was added to the set of delay samples be-
tween and . Only the overlapping portions were used.
BP is excluded; its Positive Ratio with shared congestion is 0.2
or less even with 10 ms offset [4], due to its requirement that two
packets (for different paths) be sent back-to-back. Because MP
is slower than DCW in Positive Ratio convergence for shared
congestion, MP may exhibit lower performance because of low
accuracy if the number of delay samples is not large. Thus, de-
tection used delay samples belonging to the first 100 seconds of

Fig. 17. Effect of wavelet denoising on cross correlation with synchronization
offset.

the overlapping period to ensure that both MP and DCW had
near-100% accuracy. The Positive Ratio drops to zero between
30 and 70 ms for MP, and between 1 and 2 s for DCW. The
sharp decrease of MP happens in the ms ms interval be-
cause the average probe rate in MP is 25 Hz, equivalent to 40 ms
inter-departure time. Therefore, if the offset exceeds that value,
most packets in a merged sequence are out of order, and the
cross measure becomes low. Though we plot the results for
drop-tail queues only, the results for RED queues are similar.

Next, we examine how wavelet denoising helps our tech-
nique in tolerating a large synchronization offset. The dotted
curve and vertical bars crossing it in Fig. 17 are copied from
Fig. 2, which shows the cross-correlation coefficients without
wavelet denoising. We processed the data used in Fig. 2 with
our wavelet denoising and plotted cross-correlation coefficient
versus synchronization offset. The solid curve represents the
mean cross-correlation coefficients, and the vertical bars indi-
cate the 5th and 95th percentile values. Without wavelet de-
noising, the cross correlation of the delay sequences decays
very fast with increase of synchronization offset; with a 600 ms
offset, the mean coefficient approaches the horizontal line rep-
resenting the threshold (0.512). This means that the cross-corre-
lation technique without denoising is only as good as a random
decision at this point. However, the cross correlation of the delay
sequences after wavelet denoising is less sensitive to the syn-
chronization offset, so that one can properly determine the state
of congestion even with a fair amount of synchronization offset
between the data. On the other hand, for independent conges-
tion, the mean cross-correlation coefficients are not affected by
wavelet denoising and are almost zero regardless of the synchro-
nization offset. It is also confirmed in Fig. 20.

Since synchronization offset may vary during delay measure-
ments, we also performed an experiment with a randomized
synchronization offset. For a given value of average synchro-
nization offset , the actual synchronization offset for a partic-
ular pair of packets in the two sequences of an experiment was
chosen randomly over the interval m . The mean cross-cor-
relation results were almost the same as those in Fig. 17; the
variances were larger due to the presence of randomized syn-
chronization offsets.
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Fig. 18. ROC with and without wavelet denoising.

2) Threshold Value and False Positive/negative: We use the
receiver operating characteristic (ROC) curves to show the ef-
fect of the threshold value on false positive and false negative
ratio in the presence of synchronization offset. ROC is a perfor-
mance test methodology that measures the probability of detec-
tion against the probability of false positive [21]. In our
application, they are defined as follows for a certain threshold
value of cross correlation .

shared congestion

independent congestion

ROC performance can be graphically detected for all possible
values of threshold ; as we move along an ROC curve
from the lower left corner to the upper right corner, the threshold
varies from 1 to . The dashed straight line is the characteris-
tics of the worst case, where the detection probability equals
the false positive probability .

Fig. 18 has two ROC curves drawn using the DCW simula-
tion data for Fig. 12. An offset of 600 ms was added to one of
the delay sequences of each experiment. The dotted curve is an
ROC curve before wavelet denoising, and the solid curve is after
denoising. Since our technique converges in 10 s, delay samples
for thefirst10swereused tocompute thecross-correlationcoeffi-
cient. With wavelet denoising, our technique shows an improved
curve (higher detection probability with the same false posi-
tive probability ) compared with the curve without denoising.

Note that the area under the curve, called the ROC area, pro-
vides a quantitative measure of performance for comparison of
different curves; the area of an ideal curve is 1, while the area of
a random decision maker is . Fig. 19 demonstrates the effect
of wavelet denoising for different synchronization offsets using
ROC area. Two curves show the ROC area with and without
wavelet denoising as the synchronization offset increases. With
tight synchronization, wavelet denoising makes little difference.
As the offset increases, however, the basic technique curve drops
to 0.6 at an offset of 1 second, becoming close to random deci-
sion. On the other hand, the technique with denoising degrades
smoothly, maintaining 0.8 at the 1 s offset.

3) Comparison With Low-Pass Filtering: When congestion
occurs on shared links, wavelet denoising makes cross-correla-
tion evaluation more robust by smoothing delay data curves. We

Fig. 19. ROC performance versus synchronization offset (the vertical axis does
not start from zero.).

Fig. 20. Comparison of low-pass filtering and wavelet denoising for indepen-
dent congestion.

tested a simpler mechanism to achieve this smoothing, namely
a simple low-pass filter. With suitable parameters, a moving av-
erage was able to provide similar improvement as wavelet de-
noising for cases with shared congestion. (We set the span of
the moving average to 1.1 s, which provides the same improve-
ment as wavelet denoising for the experiments of Fig. 17.) The
problem with this filter appears in experiments with independent
congestion. Fig. 20 shows the convergence of the cross-correla-
tion coefficient for the moving average (MA) and DCW when
there is independent congestion in the experiment of Fig. 12(b).
Each point is the mean coefficient over 500 simulations; the
bars show 5th and 95th percentiles. The mean coefficient of the
moving average at 100 s is still 0.6, while that of DCW is almost
zero from the beginning. That is, a simple low-pass filter may
over-smooth transients at small scales, and thus require more
delay samples to detect independent congestion. The ability of
wavelet denoising to preserve strong transients at both small and
large scales is critical for fast convergence in both shared and in-
dependent congestion scenarios.

C. Multiple Points of Congestion

So far, queueing delay variation on noncongested links was
filtered out with wavelet denoising. However, if noncongested
links have significant queueing delay variation, or there is more
than one point of congestion, the delay variation on such links
cannot be eliminated and makes shared congestion detection
more difficult. In fact, it is unclear what ’shared congestion’
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Fig. 21. Positive Ratio for multiple points of congestion.

should mean under such conditions. Therefore, instead of de-
ciding whether a technique detects shared congestion correctly,
we investigate how the technique responds as the degree of
shared congestion changes. One possible metric to represent the
degree of shared congestion is how large the loss rate on shared
links is compared with that on nonshared links. Hence, we de-
fine a new quantity called shared loss rate ratio. Let the loss rate
of the shared portion of two paths be and the loss rate of
the nonshared portion of the first path to be and the second
path . Then, the shared loss rate ratio is defined as follows:

(9)

If and , then becomes 1; if
and at least one of and is not zero, then

becomes 0. If there is no loss at all, then is defined as
0, indicating no shared congestion. Note that is useful only
when the maximum queueing delays of congested links are in
the similar order of magnitude. Otherwise, the one-way delay
variation would be dominated by the queueing delay fluctua-
tions of links with larger queues, and the losses on other links
would not matter. In other words, DCW may fail to detect shared
congestion on links with small delays.

In the following simulation, we used the topology in Fig. 3.
The number of ON-OFF CBR background flows on each link was
chosen uniformly between 81 and 100, resulting in loss rate be-
tween 0% and 12%, and delay samples were collected for 100
seconds. was computed from the actual loss rates of the links.
1000 experiments were classified into ten groups depending on
the interval their belonged to. If of an experiment is in

then it is in the first group, if in then the second,
and so on. If , the experiment is in the same group as
those with in . Positive Ratio [defined in (8)] was cal-
culated over all experiments in the same group. The results for
DCW, MP, and BP are presented in Fig. 21.

Positive Ratio of DCW is only about 0.1 when ,
but 0.8 or larger when . Thus, DCW has a cutoff at

differentiating shared and independent congestion.
MP shows very different behavior. Positive Ratio is 0 for most
intervals, and only 0.1 for the last one. Since we know that Pos-
itive Ratio of MP reaches 1 after 100 s if , this indicates
that MP answers positively (meaning shared congestion) only

Fig. 22. Experimental topology on the Internet.

Fig. 23. Convergence for Internet traces.

when is very close to 1. In other words, MP always gives a
negative answer if there are multiple points of congestion, re-
gardless of the degree of shared congestion. BP gives more and
more positive answers as increase, but does not have any
sharp increase such as DCW has. Therefore, for those applica-
tions requiring a cutoff in shared congestion detection, DCW is
preferred. However, the preferred cutoff value depends on the
application. DCW can be customized for applications with dif-
ferent needs by adjusting its the threshold. Some applications
need to determine whether two paths share all congested links
[22], which corresponds to . In this case, MP would be
a good choice.

D. Internet Experiments

We applied our technique to a large-scale network, the In-
ternet. Our first Internet experiments involved six end hosts.
Fig. 22 shows their abstract topology. Note that each hop in the
figure may consist of multiple physical hops. Three hosts, ,

, and , are located in Austin, TX. The other three hosts,
, , and , are located in Korea, Taiwan, and Hong Kong,

respectively.
Delay samples were collected from the paths from to

and from to between October 28 and November 2, 2003.
We can reasonably conclude that there was no congested link be-
cause no probe packet was lost during measurement. In order to
create a shared bottleneck, we opened 40 TCP sessions between

and . The loss rate was about 5% while they were running.
Since both paths experienced a similar loss rate, we conclude
that the congestion occurred on one of the shared links.

The Positive Ratio for shared congestion and independent
congestion (or no congestion in this case) is shown in Fig. 23.
The delay samples were collected for 15 seconds, and time was
adjusted with measured clock difference between and
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Fig. 24. Results on PlanetLab.

by exchanging packets between them. Each experiment was re-
peated 100 times to calculate the Positive Ratio. The result re-
sembles what we obtained through simulations. The accuracy of
our technique exceeds 80% using the samples for the first 3 sec-
onds, and reaches 98% after 8 s. We also performed experiments
on PlanetLab5 using the topology in Fig. 1. The experimental
setup is similar to the one used in [23]. We selected arbitrary six
nodes, among which two functioned as application-level routers
( and in Fig. 1), forwarding UDP probe packets sent by
and for 150 s per experiment. We verified with traceroute
that the paths from and to as well as the paths from

to and did not share links. Delay samples were
collected from about 100 experiments conducted in August and
September 2006. We assume that there is shared congestion if
the loss rate on the shared path is larger than that of any other
paths. The solid curve in Fig. 24 represents the Positive Ratio for
shared congestion, which converges after 7 s. The Positive Ratio
of the other experiments, plotted as a dotted curve, reaches 0.3
after 30 s and remains as such. Note that the low accuracy in the
latter experiments is in part due to our “conservative” criteria
for shared congestion; even though the shared loss rate is lower
than nonshared loss rates in those experiments, it does not nec-
essarily mean that there was no shared congestion. In fact, visual
inspection of delay traces revealed that there were often indica-
tions of congestion (large delay fluctuations) on the shared path,
even though the shared loss rate was negligible.

VI. CONCLUSION AND FUTURE WORK

Network resources are better utilized when multiple flows co-
operate. However, such cooperation is feasible only when we
can identify flows sharing a congested bottleneck. Previously
proposed techniques had limitations, including a common end-
point and (sometimes) drop-tail routers. But they are not ef-
fective under other conditions, such as RED queueing, mul-
tiple points of congestion, or paths with different sources and
destinations.

We proposed a robust technique based on wavelet denoising
and cross correlation, namely DCW. The denoising process ef-
fectively removes noise and makes our technique more resilient
to synchronization offset, which confuses other techniques.
In simulations with shared congestion, DCW achieves faster
convergence and broader application than previous techniques,
while using fewer probe packets. Experiments on the Internet

5Available. [Online]. http://www.planet-lab.org/

confirmed the simulation results. DCW can also handle a large
number of paths in a scalable manner [24]. We believe that
applications requiring topology construction in the application
layer can benefit from our delay correlation technique with
wavelet denoising.
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