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A Lossless Smoothing Algorithm
for Compressed Video

Simon S. Lam, Fellow, IEEE, Simon Chow, and David K. Y. Yau

Abstract— Interframe coding techniques, such as those used
in MPEG video, give rise to a sequence of encoded pictures
whose sizes (in number of bits) differ by a factor of ten or
more. Buffering is needed to reduce fluctuations in the rate at
which video packets are sent to a network connection. In this
paper, we design and specify a lossless smoothing algorithm,
characterized by three parameters: D (delay bound), X' (number
of pictures with known sizes), and H (lookahead interval). We
prove a theorem which guarantees that, if X' > 1, the algorithm
finds a solution that satisfies the delay bound. We present the
algorithm’s performance from a large number of experiments
conducted using MPEG video traces. Lastly, we discuss algorithm
implementation.

1. INTRODUCTION

ECENT developments in digital video technology have

made possible the storage and communication of full-
motion video as a type of computer data, which can be inte-
grated with text, graphics, and other data types. Full-motion
video is a sequential display of pictures. In uncompressed
form, each picture is a two-dimensional array of pixels, each of
which is represented by three values (24 bits) specifying both
luminance and color information. From such uncompressed
video data, a video encoder produces a coded bit stream
representing a sequence of encoded pictures.

In MPEG video [3], for example, there are three types of
encoded pictures: I (intracoded), P (predicted), and B (bidirec-
tional).! Consider the following sequence of encoded pictures,
IBBPBBPBBIBBPBB. . ., where the pattern IBBPBBPBB re-
peats indefinitely. An I picture is intracoded, i.e., it is encoded,
and decoded, without using information from another picture.
For P and B pictures, interframe coding is used such that pieces
of a P picture are obtained from the preceding I or P picture in
the sequence, and pieces of a B picture are obtained from the
preceding I or P picture and the subsequent I or P picture in
the sequence.” A consequence of interframe coding is that an
I picture is typically much larger than a P picture (in number
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!'We use MPEG video for motivation throughout this paper. The algorithm
and theorem presented herein are applicable to compressed video in general.

2Each piece consists of 16 x 16 pixels, called a macroblock.
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Fig. 1. System model for rate smoothing.

of bits), which is much larger than a B picture. Generally, the
size of an I picture is larger than the size of a B picture by
an order of magnitude.

Consider an I picture, which is 200 000 bits long, followed
by a B picture, which is 10 000 bits long, in a video sequence.
(These are realistic numbers from some of the video sequences
we have encoded at a spatial resolution of 640 x 480 pixels;
see Section IV.) Suppose the display rate is 30 pictures/s.
Sending the I picture in 1/30 second over a network con-
nection would require a transmission capacity of 6 Mb/s to be
allocated to the connection. Then during the next 1/30 second,
the transmission capacity required drops to 0.3 Mb/s for the
B picture.

Sending video traffic to a network connection with very
large rate fluctuations would adversely affect the network’s
performance. Consider packet-switching networks that provide
a best-effort service. Even though video traffic can conceptu-
ally be accommodated without much loss in bandwidth utiliza-
tion, it is obvious, and has been demonstrated [11], [12], that
the statistical multiplexing gain of a finite-buffer packet switch
can be improved by smoothing its input flows.? Next, consider
packet-switching networks that provide per-connection service
guarantees. Typically, the service guarantees are provided only
if the rate of packet arrivals to a connection conforms to a flow
specification, or is subject to usage parameter control at the
user-network interface [1], [10].

In this paper, we present an algorithm for smoothing the rate
fluctuations from picture to picture in a video sequence. The
algorithm is lossless because smoothing is accomplished by
buffering, not by discarding some information. The algorithm
can be used for compressed video in general. Its performance,
however, is improved by a lookahead strategy which makes
use of a repeating pattern of picture types in the sequence (such
as the IBBPBBPBB pattern in the above MPEG example).
The objective of the algorithm is to transmit each picture
in the same pattern at approximately the same rate, while

3For a specified buffer overflow probability.
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procedure smooth(H, K: integer; D: real);
var i, h, sum: integer;
depart, time, rate, delay,
lower, upper, lower_old, upper_old: real;
begin i := 0; depart := 0.0; seg_end := false;
repeat i ;== i+ 1;
time := maz(depart, (i — 1+ K) * tau);
{time to begin sending picture 7}
h:=0; sum:=0; lower:=0.0; upper:=co;
repeat
sum = sum + size(i + h, time);
lower.old := lower; upper_old := upper,
lower := sum/(D + (i — 1 + h) x tau— time);
if (time > (K + 1+ k) * tau) then upperi=co
else upper := sum/({(K + i+ h) » tau— time),
lower := mazx(lower, lower_old);
upper := min{upper, upper_old);
h:=h+1;
until (lower > upper) or (h > H);

if (lower > upper) then
if (lower > lower_old)
then rate:=upper
else rate := lower
{lower = lower_old, upper < upper_old}
{h=H}

{upper=upper_old}

else
if (¢ = 1) then rate:=(lower+upper)/2;
{rate for first picture}
else {possible modification here}
if (rate>upper) then rate:=upper
else if (rate < lower)
then rate := lower;
notify(i, rate);
{notify transmitter the rate for picture i}
depart := time + pic_size[i]/ rate;
{departure time of picture i}
delay = depart —(i — 1) x tau {delay of picture i}
until seq_end
end; {smooth}

Fig. 2. Specification of basic algorithm.

ensuring that any buffering delay introduced by the algorithm
is bounded for every picture by a parameter, ), which can be
specified a priori. Thus the algorithm serves as a mechanism
for trading a bounded delay for a smaller peak rate.

The lossless smoothing problem has a relatively straight-
forward solution if all picture sizes in the video sequence are
known a priori (see [8]), such as stored video. We do not make
this assumption. The main contributions reported herein are:
i) the design of an algorithm with no knowledge of the sizes
of pictures that have not yet been encoded, ii) an experimental
demonstration, using a set of MPEG video traces, that the
algorithm is effective—namely, the delay bound is satisfied
for individual pictures and picture-to-picture rate fluctuations
within a pattern are reduced substantially, and iii) algorithm
implementation within the kernel of a workstation.*

Note that encoded pictures of the same type also vary in
size as the scene in a video sequence changes. More bits are
needed to encode pictures of complex scenes and scenes with
a lot of motion (P and B pictures in particular). Because scenes
typically last for many seconds, buffering would not be a good
approach for smoothing such rate fluctuations.

If the rate of a video sequence remains high over a long
duration (e.g., a complex scene), various encoder parameters
can be adaptively controlled to reduce the encoder output rate.
These techniques are said to be lossy because in reducing
the encoder output rate, some information is discarded. These

4 Alternatively, the algorithm may be implemented as part of a video
encoder.
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techniques have been applied to achieve network congestion
control using information feedback from network to encoder
[21, 51, [9].

In this paper, we focus on the problem of picture-to-
picture rate fluctuations, rather than the problems of scene-
to-scene rate fluctuations and network congestion control.
Our algorithm may be used in addition to lossy techniques
proposed for these other problems. The balance of this paper
is organized as follows. In Section II, we describe the lossless
smoothing problem and a straightforward solution when a
delay bound is unimportant. In Section III, the algorithm’s
theoretical basis is stated as a theorem and a corollary.
The algorithm is then designed and specified. In Section
IV, we first describe the MPEG video sequences used in
our experiments. Experimental results are shown to illustrate
the performance and demonstrate the effectiveness of the
algorithm. In Section V, we describe how the algorithm is
implemented in a workstation kernel, using kernel threads [13],
for a proposed flow specification [10]. Section VI has some
concluding remarks.

II. LOSSLESS SMOOTHING

Suppose a video sequence is displayed at the rate of 1/7
pictures per second. 7 is called the picture period. We assume
that the encoding (decoding) time of any picture in the video
sequence is less than or equal to 7 seconds. We use S; to
denote the size of picture ¢4, ¢ = 1,2,3,---, which is the
number of bits encoding picture 4.

Consider a sequence of encoded pictures of sizes, Sy, So,
S3, -+ - produced by a video encoder.’ The size sequence has
large fluctuations as a result of interframe coding, e.g., I
pictures are much larger than P pictures, which are much larger
than B pictures. Assume that in the video sequence, there is a
fixed pattern of picture types, which repeats indefinitely. The
length of the pattern is denoted by V.

The objective of smoothing is to eliminate the rate fluc-
tuations within a pattern. One way to accomplish this is to
buffer one or more pictures (at the sending side of a network
connection) so that each picture within the same pattern can
be trapsmitted at the same rate.

To illustrate, consider an MPEG video sequence with N = 9
and the repeating pattern IBBPBBPBB. Let S;, Siy1, -+, Sits
be the picture sizes of a particular pattern in the sequence.
Thus, the objective of smoothing is to send each picture in
this pattern at the following rate

Si+ Sip1+ -+ Siys
97 ’

That is, the large I picture is transmitted at a lower rate while
the small B pictures are transmitted at a higher rate. Note that
this averaging of rates is carried out on a pattern by pattern
basis to smooth out picture-to-picture rate fluctuations. The
rate of the coded bit stream still fluctuates from pattern to
pattern. Such fluctuations, however, are inherent characteristics
of the video sequence (scene complexity and amount of

31t is possible that the encoder is adaptively controlled. For example, some
lossy technique is concurrently employed to ensure that the size of each I
picture is less than a specified maximum value.
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Fig. 3. Four MPEG video sequences.

motion), which cannot be reduced without sacrificing visual
quality.

We will refer to the above method as ideal smoothing.®
The ideal method has two disadvantages. First, if the video
sequence is generated by a live capture (using a camera), the
size of each picture is not known until it has been captured,
digitized, and encoded. The pictuares in the same pattern would
have to be buffered until all have been encoded—and the rate
calculated for the pattern—before the first picture in the pattern
can be transmitted. In this case, the buffering delay would be
very large, and unacceptable for interactive video. Second,
the ideal method described above does not pay attention to
buffering delays of individual pictures. In particular, it is not
possible for a video application to specify an upper bound on
such delays.

In the next section, we design an algorithm for smoothing
compressed video with the objective that the delay incurred by
each picture in the video sequence is less than D), a parameter
that can be specified a priori.

III. THE ALGORITHM

Both the system model and the algorithm described in this
section can be used for compressed video in general. The

6This method is similar to the CBR video rate controller [4].
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presence of a repeating pattern in an MPEG video sequence
is used to estimate the sizes of pictures that have not been
encoded; the MPEG assumption is not needed in the system
model, nor in the algorithm.

A. System Model

The model for rate smoothing is a FIFO queue (with some
modifications). Input to the queue is from the output of an
encoder (see Fig. 1). At time ¢, let A(t) denote the output rate
of the encoder (same as input rate of the queue) in bits/s. We
do not know A(t) as a time function. It suffices to assume that
the S; bits encoding picture 7 arrive to the queue during the
time interval from (i — 1)7 to i7.

The server of the queue represents a channel (physical or
logical) which sends the bits of picture ¢ to a network at the
rate of r; bits/s. This rate is calculated for picture ¢ by an
algorithm (to be designed and specified) whenever the server
can begin sending picture 4.

The algorithm has three parameters that can be specified:

K required number of complete pictures buffered in queue

before the server can begin sending the next picture
(0 < K < N); specifically, the server can begin sending
picture ¢ only if pictures i through ¢+ K —1 have arrived
(each has been completely encoded);
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D maximum delay specified for every picture in video
sequence (seconds);

H lookahead interval, in number of pictures, used by
algorithm.

Note that if K is specified to be N, the algorithm has
knowledge of all picture sizes needed for ideal smoothing.’

The delay of a picture is defined to be the time of arrival of
its first bit to the queue to the time of departure of its last bit
from the queue. (The delay, so defined, includes the picture’s
encoding delay, queueing delay, and sending delay.) Note that
the delay bound D) must be specified such that

D>(K+1)r (1)
in order for the bound to be satisfiable.

The case of K = 0 means that the server can begin sending
the bits of picture ¢ buffered in the queue before the entire
picture ¢ has arrived. We allow K = 0 to be specified for
the algorithm. However, using K = 0 in an actual system
gives rise to two problems. First, buffer underflow is possible
unless the encoder is sufficiently fast. Second, the algorithm
can ensure that picture delays are bounded by D only if K > 1
(actually, if and only if K > 1; see Theorem 1 in Section
1I-B).

The parameter, H, is for improving algorithm performance
by looking ahead (even though only the pattern is known, but
not necessarily picture sizes). Its meaning will become clear
in Section III-C.

We next define the following notation:

d; departure time of picture ¢ (the server has just sent the

last bit of picture 1);

t; time when server can begin sending picture .

Additionally, at time ¢;, the algorithm calculates the rate
r;. To simplify notation, and without loss of generality, the
calculation is assumed to take zero time. The following
equation defines the meaning of parameter K

t; = max{d;_q,(1 — 14+ K)7}. 2)

That is, the server can begin sending picture ¢ only after picture

1—1 has departed and, if K > 1, pictures ¢,7+1, -, i—1+ K,

have arrived (i.e., encoded and picture sizes are known).
The departure time of picture ¢ is

d; = t; + (Si/r:) 3)
and the delay of picture 1 is
delay, = d; — (i — 1)r. 4)

Note that in an actual system, the encoding of picture
i—1+ K may be complete at time y, such that (¢ — 2+ K)7 <
y < (i— 1+ K)7. Also the first bit of picture ¢ may arrive at
time «, such that (i — 1)7 < z < ir. We use ( — 1 + K)7 in
(2) and (¢ — 1)7 in (4) because A(¢) is unknown. If either =
or y were known and used instead, the delay of each picture
may be smaller than the value calculated using (2)—(4), but
the difference would be negligible.

7Some modification is needed to ensure that the delay of each picture is
less than D.
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B. Upper and Lower Bounds on Rate

We present an upper bound and a lower bound on the rate
r; that can be selected by an algorithm for sending picture ¢
at time ¢;, for all <. The lower bounds are used to ensure that
the delay of each picture is less than or equal to D. We say
that the algorithm satisfies delay bound D if for i = 1,2, --

delay, < D.

The upper bounds on rates are used to ensure that the
server works continuously. If rates are too large, then the
server may send bits faster than the encoder can produce them,
forcing the server to idle, i.e., the server cannot send the next
picture because the queue does not have K complete pictures.®
We say that the algorithm satisfies continuous service if for
1= 1,2,---

t1;+1 = d1

It might be argued that the delay bound is a more important
property than the continuous service property. However, there
is no need to choose, because Theorem 1 below shows that
both properties can be satisfied. An assumption of Theorem
1 is that S; is known at time ¢;, which can be guaranteed by
specifying K to be greater than or equal to one. If .S; is not
known at time ¢; (i.e., K is specified to be zero), it is easy
to construct examples such that the delay bound cannot be
satisfied.

Theorem 1: If S, is known at ¢;, and »; is selected for
¢t =1,2,---,n such that conditions (5) and (6) hold

Si

" DrG-Ur-4 >
Si . A
m_m ift; < (i+ K)r (6)
then for ¢ = 1,2, .-, n, the following hold
delay, < D %)
tigy < it +D )
tiv: = d;. )]

Theorem 1 is proved by induction on n. The proof is given
in the Appendix.

We use 77 and ¥ to denote the lower bound in (5) and the
upper bound in (6), respectively. For these upper and lower
bounds, we say that a bound is well defined if its denominator
is positive; see (5) and (6). In Theorem 1, (8) guarantees that
the lower bounds are all well defined. As for the upper bounds,
many in (6) may not be well defined. These are defined as
follows

¥ =00 ift; > (i + K)T.

Because of (1), the following corollary is immediate.
Corollary 1: For all 1 = 1,2,---,n,

L U
ry <r;.

(10)

Corollary 1 implies that both the delay bound and the
continuous service property can be satisfied.

8For K = 0, buffer underflow may occur.
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C. Lookahead to Improve Algorithm Performance

Theorem 1 requires that the rate for picture ¢ be chosen from
the interval [rF, 7Y}, which may be large if D > (K + 1)7.
This flexibility can be exploited to reduce the number of rate
changes over time. Suppose the sizes of pictures 7, 7 + 1,
i +2,--- are known. The algorithm can be designed to find a
rate for sending pictures i through ¢ + h, for as large a value
of h as possible.

In our system model, however, the size of picture j, j >
i + K — 1, may not be known at time #;. Specifically, for
K = 1, it is likely that S;, j > 4, has to be estimated.
Fortunately, Theorem 1 requires only S; to be known at ;.
Sizes of pictures arriving in the future may be estimated
without affecting Theorem 1.

In what follows, we derive a set of upper bounds and a
set of lower bounds from S;, S; 11,542, -, where S;, § >
1 + K — 1, may be an estimate. There are many ways to
estimate the size of a picture from past information. In the
experiments described in Section IV, the size of picture j, if
not known at #;, was estimated to be S;_ . This is a simple
estimate which uses the fact that pictures j — N and j are of
the same type (I, B, or P) in MPEG video. They are about
the same size unless there is a scene change in the picture
sequence from j — N to j.

If all pictures in the future are sent at the rate r;, the
(approximate) delay of picture ¢ + h,h = 0,1,2,- -+, is

h
Lot _ (1 4 pyr

t; + (1D
Ty
Requiring the above to be <), we have
Zh —0 Si+m
P > 1r— 12
T‘D—l—(z—-l—i—h)T—ti a2)

where the lower bound on 7; will be denoted by r¥(h).
The (approximate) departure time of picture < + h is

Efn—(] SH'm
dipp = t; + =2=——.
T

The continuous service property requires that d; 5 > (i +h+
K)7, which can be satisfied by requiring

e < Efn:USH-m
= (Z—}-h-}—K)T—tl

where the upper bound on 7; will be denoted by r!(h) if
t; < (i 4+ h+ K)7; else, ¥ (h) is defined to be oc.

Note that rZ(0) and 77 (0) are equal to the lower bound
and upper bound rV, respectively, given in Theorem 1. Also,
only 7F(h) and 7¥ (h) for h = 0,1,--+, K — 1 are accurate
bounds; the others, calculated using estimated picture sizes,
are approximate.

A strategy to reduce the number of rate changes over time
is to first find the largest integer A* such that

< i U
(h) < ogmhlgnh* r; (h).

ift, <(i+h+K)r (13

max rF (14)

0<h<hr *

The rate r; for picture ¢ is then selected such that for A =
0,1,---,h"

riL(h) <r < rfj(h)
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Note that for K > 1, the selected rate satisfies

rF=rE0) <r; <r7(0) =Y.
Therefore, the hypothesis of Theorem 1 holds and the delay
bound D as well as the continuous service propetty are
satisfied even though picture sizes (namely, S;, j > 1) are
estimated.

To minimize delay, we would like to use K = 1 in the
algorithm, in which case most picture sizes are estimated.
For this reason, the smoothing algorithm in Section HI-D is
designed with a parameter H which can be specified. Instead
of searching for the largest h* satisfying (14), the search is
limited to a maximum value of H — 1. For MPEG video,
we conjecture that there is no advantage in having H greater
the size of a pattern () because picture sizes are estimated
using past information. We conducted experiments to study
this conjecture and found that it is supported by experimental
data; the results are presented in Section IV.

D. Algorithm Design and Specification

The smoothing algorithm is designed using (2)—(4),
(12)—-(14), Theorem 1, and Corollary 1. A specification of
the basic algorithm is given in Fig. 2. The following are
assumed to be global variables:

pic_size: array [index] of integer;

seq_end: boolean;

tau: real;

The value of pic_size[:] is S; in the system model, the value
of tau is the picture period, and seq_end, initially false, is set
to true when the algorithm reaches the last picture of a video
sequence.

There are three functions in the specification: max, min, and
size. In particular, size(j,1) returns, at time ¢, either the actual
size of picture j or an estimated size (in number of bits). For
the experimental results presented in Section V, we used the
following simple estimation based upon the fact that a fixed
pattern of N picture types repeats indefinitely in each video
sequence

if(t > j * tau) then return pic_size[j]

else return pic_size[j — N].

For the initial part of a video sequence, where pic_size[j—N|
is not defined, each I picture is estimated to be 200000 bits,
each P picture 100000 bits, and each B picture 20000 bits.
These estimates are far from being accurate for some video
sequences. But by Theorem 1, they do not need to be accurate.

Lastly, we use notify(j, r) to denote a communication prim-
itive which notifies a transmitter that picture j is to be sent
at rate r.

Note that the inner repeat loop calculates the bounds in
(14). The loop has two exit conditions. The exit condition,
(lower > upper), corresponds to h* in (14) being less than
H — 1; when this happens (called early exit), it can be proved
that one of these two conditions holds:

 lower > lower_old and upper = upper_old
« lower = lower_old and upper < upper.old
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Fig. 4. Rate as a function of time for four delay bounds (Drivingl sequence, basic algorithm).

The selection of r; in each case is designed to minimize the
number of rate changes over time.

The second exit condition corresponds to ~A* in (14) being
larger than or equal to H — 1 (called normal exit), in the
algorithm, the search for h* stops at h = H — 1 because
the lookahead interval is limited to H pictures. Upon normal
exit, r; is selected to be the same as r;_, i.e., no rate change
unless the current value of rate is larger than upper or smaller
than lower. This selection strategy is designed to minimize
the number of rate changes.

We also investigated a variation of the basic algorithm such
that the moving average calculated using

rate := sum/(N * tau) (15)

is selected for r; (unless the moving average is larger than
upper or smaller than lower). To modify the algorithm, the
assignment statement in (15) replaces the comment “{possible
modification here}” in procedure smooth. The modified algo-
rithm produces numerous small rate changes over time, but
its rate r(t), as a function of time, tracks the rate function
of ideal smoothing more closely than the basic algorithm. In
particular, the area difference (a performance measure defined
in Section IV) is smaller.

IV. EXPERIMENTS

To show that the smoothing algorithm is effective and
satisfies the correctness properties given in Theorem 1, we
performed a large number of experiments using four MPEG
video sequences. Some of our experimental results are shown
and discussed below. For all experiments, the picture rate is
30 pictures/s.

A. MPEG Video Sequences

1) Drivingl (N = 9) and Driving2 (N = 6): This video
was chosen because we thought that it would be a difficult one
to smooth. There are two scene changes in the video. Initially,
the scene is that of a car moving very fast in the countryside.
The scene then changes to a close-up of the driver, and then
changes back to the moving car. This video is encoded twice,
using different coding patterns, to produce two MPEG video
sequences. Note, from Fig. 3, that the scene changes give
rise to abrupt changes in picture sizes. In particular, P and
B pictures in the driving scenes are much larger than P and
B pictures in the close-up scene. The pictures were encoded
with a spatial resolution of 640 x 480 pixels.

2) Tennis (N = 9): This video shows a tennis instructor
initially sitting down and lecturing. He then gets up to move
away. There is no scene change in the video. But as the
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instructor gets up, his motion gives rise to increasingly large
P and B pictures. These changes in picture sizes are gradual.
However, there are two isolated instances of large P pictures
in the first half of the sequence. The pictures were encoded
with a spatial resolution of 640 x 480 pixels.

3) Backyard (N = 12): There are also two changes of
scene in this video. Initially, the scene is that of a person
in a backyard. The scene changes to two other people in
another area of the backyard, and then changes back to the
first person. The backgrounds of both scenes are complex with
many details. While there are movements, the motion is not
rapid. The pictures were encoded with a spatial resolution of

352 x 288 pixels.

B. Performance of the Basic Algorithm

For the Drivingl sequence, Fig. 4 shows bit rate as a
function of time for K = 1, H = 9, and four values of
the delay bound D, in seconds. In each case, we compare
the rate function from the basic algorithm, denoted by r (%),
with the rate function from ideal smoothing, denoted by R(t).
From Fig. 4, we see that the “smoothness” of 7(t) improves as
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the delay bound is relaxed. (We will define some quantitative
measures of smoothness below.)

For D = 0.1, r(t) does not look smooth at all, even
though it is a lot smoother than the rate function A(t) of
the MPEG encoder output. (Without smoothing, the largest I
picture would require over 7.5 Mb/s to send in 1/30 second.)
Note that the improvement in smoothness from D = 0.2 to
D = 0.3 is not significant. Therefore, D = 0.2 would be an
excellent parameter value to use if a delay of up to 0.2 second
(which includes encoding delay) is an acceptable price to pay
for a peak rate of about 3.5 Mb/s.

For the Tennis sequence, the results are very similar. Fig. 5
shows 7(t) and R(t) for K = 1, H = 9, and two values of
the delay bound D.

Note that the smoothed rate function of the Drivingl se-
quence varies from a maximum of about 1 Mb/s to 3 Mb/s.
These variations are due to differences in the content and
motion of scenes. The smoothed rate function of the Tennis
sequence varies from a maximum of about 1.5 Mb/s to 3 Mb/s.
The peak rate is about the same in the two video sequences
because they were encoded with the same spatial resolution
(640 x 480) and same quantizer scale (4 for I, 6 for P, and
15 for B).
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For the Drivingl sequence, Fig. 6 shows the delays of
pictures for two comparisons. In the upper graph, we compare
these three cases:

1) D=0.1, K=1, H=29, basic algorithm.

2) D=03, K =1, H =29, basic algorithm, and

3) ideal smoothing.
As shown, the delays of pictures are bounded by 0.1 second

and 0.3 second as specified for the basic algorithm. For ideal
smoothing, picture delays are large, due to the requirement that
pictures in the same pattern are buffered until all have arrived
before the first picture in the pattern can be transmitted.

In the lower graph of Fig. 6, we compare these three cases:

) K=1,H =9, D = 01333 + (K + 1)/30, basic
algorithm,
2) K =9 H =9, D = 01333 4+ (K + 1)/30, basic

algorithm, and

3) ideal smoothing.

For K = H = N =9, the smoothing algorithm does not
estimate picture sizes. In this case, the basic algorithm is very
similar to ideal smoothing.®

A comparison of the delays for the two cases, K = 1 and
K =9, shows the desirability of using K = 1. The slack in
the delay bound is chosen to be the same, 0.1333 second, so

°They are not identical, because ideal smoothing as described in Section IT
does not try to keep the delay of each picture less than a specified bound D.
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that the smoothness of r(¢) is about the same in both cases
(see discussion on Fig. 9).

No “delay bound violation” has been observed in any of our
experiments where K > 1. This is not surprising, since the
absence of delay bound violation is guaranteed by Theorem
1if K > 1. For K = 0, however, we did observe some
delay bound violations when the slack in the delay bound was
deliberately made very small.

Different quantitative measures can be defined to charac-
terize the effectiveness of smoothing. We use four of them to
study algorithm performance as each of the parameters, D, H,
K, varies. The first measure is defined as follows:

S Ir(t) = R(t+ (N — K)7)]* dt
foT R(t+ (N - K)r)dt

Area difference =

(16)

where T denotes the time duration of the video sequence.
Note that with ideal smoothing, picture 1 begins transmission
(N — K)T second later than if the basic algorithm were used.
Therefore the rate function from ideal smoothing is shifted by
this much time in (16). Only the positive part of the difference
between r(t) and R(¢) is used in (16) because of the following:

/T[r(t) —R(t+ (N - K)7r)]dt = 0.
0
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We use three other measures

1) the number of times r(¢) is changed by the algorithm
over [0,77,

2) the maximum value of r(t) over [0,T], and

3) the standard deviation (S.D.) of r(t) over [0, 7.

Fig. 7 shows the four quantitative measures as a function
of delay bound D for the four MPEG video sequences. All
four measures indicate that as the delay bound is increased
(relaxed), the rate function r(¢) becomes more smooth. The
Backyard sequence appears to be the easiest to smooth. For the
three MPEG video sequences encoded at a spatial resolution
of 640 x 480 pixels, the maximum smoothed rate is about
3 Mb/s. For the Backyard sequence encoded at a spatial
resolution of 352 x 288 pixels, the maximum smoothed rate
is about 1.5 Mb/s, which is about the target rate of the MPEG
standard. The maximum (smoothed) rate versus D curves in
Fig. 7 represent a valuable design tradeoff made possible by
our lossless smoothing algorithm.

Fig. 8 shows the quantitative measures as a function of the
lookahead interval, H, for the four MPEG video sequences. In
Section III-C, we conjectured that because most picture sizes
are estimated using past information, there is no advantage in
having H larger than the size of the repeating pattern (N). Our
experimental data support this conjecture. In Fig. 8, the area
difference, standard deviation of rate, and maximum rate do
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not show any noticeable improvement for values of H larger
than N. In fact, the number of rate changes increases as H
increases.

K should be as small as possible to reduce picture delay.
Theorem 1 requires K > 1. We conducted experiments to
investigate whether there is any improvement in smoothness
of r(t) from using K > 1. Fig. 9 shows that there is a small
improvement as K increases, but barely noticeable. Note that
the delay bound is D = 0.1333+ (K +1)/30, with a constant
slack of 0.1333 for all cases. We conclude that K = 1 should
be used.

V. APPLICATION AND IMPLEMENTATION

We first discuss how to apply the lossless smoothing al-
gorithm at a particular user-network interface, namely, the
proposed flow specification in [10]. Algorithm implementation
in a workstation kernel is then briefly described.

The relevant parameters in the flow specification [10] are
the following:!®

1) maximum transmission rate, rmax (bits/s),

2) token bucket rate, p (bits/s), and

3) token bucket size, o (bits).

10The parameters in [10] are specified in bytes and bytes/s. We use bits and
bits/s herein to be consistent with the parameters in Sections III and IV.
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The maximum transmission rate specifies a bound on how
fast successive packets may be sent to a network connection.
The token bucket parameters specify the following leaky
bucket constraint: The amount of data sent to the network
connnection, over any arbitrary time interval ¢, cannot exceed
o+ pt.

Consider a video application sending the packets of a video
sequence to a network connection. The lossless smoothing
algorithm can be used to assist in controlling the rate at
which video packets arrive to the network comnection such
that the flow specification is satisfied. From Fig. 7, note that
the maximum rate of a smoothed MPEG sequence decreases
as D is increased from 0 to 0.2 second and levels off beyond
0.2 second. Thus the lossless smoothing algorithm can be
used to trade an increase in picture delay for a decrease in
maximum transmission rate. However, the algorithm alone
may not be sufficient to satisfy an arbitrary r.,,, constraint
in a flow specification. The video encoder parameters (spatial
resolution, temporal resolution, quantizer scale, etc.) must be
chosen a priori such that the r,,, constraint is satisfiable, i.e.,
the maximum rate curve of the smoothed video sequence, such
as those in Fig. 7, dips below 7., as D is increased.

To satisfy the leaky bucket constraint for an MPEG video
sequence, it is necessary to bound the size (number of bits) of
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the largest picture in the video sequence such that, for all ¢

Si§0+p(D—KT). a7

In general, it is necessary that, for any n consecutive pictures
in the sequence, n > 1, for all ¢

(Si+Siy1+ 4+ Sipn—1) <o+p(D+(n—K—-1)7). (18)

Thus for a particular choice of D, the video encoder may need
to employ lossy techniques to enforce an upper limit on the
size of pictures.

The lossless smoothing algorithm can be implemented as
part of a video encoder (as described in [4]). Our current
implementation of the algorithm, however, is in the modified
kernel of a Sparc 10 workstation (running SunOS 5.3, the
operating system component of Solaris 2.3). Our modified
kernel was designed and implemented to provide efficient
support and rate-based flow control for distributed multimedia
[13]. In particular, the user process of a video application is
allocated a send queue (implemented using buffers co-mapped
to both user and kernel space) which is periodically served by
a kernel thread. Lossless smoothing is implemented as part of
the kernel thread. Since the kernel thread executes periodically
(rather than continuously as assumed in Section III), the rate
r; is measured in bytes/period and is enforced (approximately)
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once per period when the kernel thread executes. A typical
value for the scheduling period is 10 ms in our current
implementation.

VI. CONCLUSION AND RELATED WORK

As part of our research project on the design of efficient
operating system support and network protocols for distributed
multimedia, we studied MPEG video. We found that interframe
coding techniques, such as those specified by MPEG, give rise
to a coded bit stream in which picture sizes (in number of bits)
differ by a factor of ten or more. As a result, some buffering is
needed to smooth the picture-to-picture rate fluctuations in the
coded bit stream; otherwise, the large rate fluctuations would
make it very difficult to allocate a communication channel with
appropriate quality-of-service guarantees.

Our algorithm is designed to satisfy a delay bound, D, which
is a parameter that can be specified by a video application.
The algorithm is characterized by two other parameters, K,
the number of pictures with known sizes, and, H, a lookahead
interval for improving algorithm performance. We have proved
a theorem which states that if K > 1, then our algorithm
satisfies both the delay bound D and a continuous service
property.

Although our system model and algorithm, as well as The-
orem 1, were motivated by MPEG video, they are applicable
to any compressed video. We make use of the assumption
that there is a fixed pattern of picture types, which repeats
indefinitely in the video sequence, to estimate picture sizes.
Such size estimates are used in a lookahead strategy to improve
algorithm performance.

The problem of smoothing was analyzed by Ott et al. [8],
where picture sizes in a video sequence are assumed to be
known a priori. The parameter K is absent in their model, and
there is no notion of a repeating pattern [8]. From a practical
point of view, K is a crucial parameter for any smoothing
algorithm. Furthermore, Theorem 1 shows that there is no need
to assume all picture sizes to be known a priori. Instead, we use
a fixed pattern with estimated picture sizes in our algorithm.

We conducted a large number of experiments using four
MPEG video traces to study the performance of our algorithm.
We found that the algorithm is effective in smoothing rate
fluctuations, and behaves as described by Theorem 1. Exper-
imental data suggest that the following choice of parameters
provides a smooth rate function: X = 1, H = N, and D =
0.2. The delay bound includes the encoding delay of each
picture. A larger delay bound does not seem to provide any
noticeable improvement in the smoothness of the resulting rate
function. In conclusion, the lossless smoothing algorithm is an
effective mechanism for trading an increase in bounded delay
for a decrease in the peak transmission rate.

Lastly, we note that the lossless smoothing algorithm was
not designed to smooth rate fluctuations from scene to scene
in a video sequence, and is not intended to be the only means
of source control to alleviate network congestions. To address
these other problems, various lossy techniques [2], [5], [9] will
have to be used in addition to lossless smoothing.
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APPENDIX
PROOF OF THEOREM 1

The proof is by induction on n.
Base Case: n = 1

)t =Kr [do =0,i=1in (2)]
2) > A n = = gassumption, i=1in (5), step 1]
I amrm— =T

[assumption, ¢ = 1 in (6), step 1]
We need to prove (7), (8), and (9). ’

4) r& is well defined [step 2 and (1)]

5) delay, = t; + (S1/m1) [t=1in 4)]
<t1+D-Kr [steps 2 and 4]
=D [step 1]
6) to = max{di,(1+ K)7)} [+ =2in (2)]

7) di =dclay; < D
8) to<D+7

9) 7V is well defined
10) dy >t 47

[¢ =1 1in (4) and step 5]
[steps 6 and 7, (1)]
[T > 0, step 3]
[(3), steps 3 and 9]
1) dy > (1+K)r [steps 1 and 10]
12) to = d; [i =2 in (2), step 11]
Steps 5, 8, and, 12 demonstrate that (7), (8) and (9) hold for
i = 1. Proof of base case is complete.
Induction Step:
13) Theorem 1 holds for s = 1,2,---,m = 1. [n =m — 1]
It suffices to prove that if r,, is selected using (5) and (6) for
i = m, then (7), (8), and (9) hold for ¢ = m.
14) r,Ln is well defined [step 13,4 =m ~ 1 in (8)]
15) delay,, = tm + (Sm/Tm) — (m —=1)7  [(3) and (4)]
<tpm+D+(m—1)7 =ty —(m—-1)7
[¢ = m in (5), step 14]

=D
16) tmy1 = max{d,,, (m + K)7} [t =m+1in (2)]
17 dp, =t,, + (Sm/’r‘m) [z = m in (3)]
<tm+D+(m—1)1—t, [ = min (5), step 14]
=D+(m-1)r <mr+D

18) (m+ K)r<mr+ D [by (1)}
19) typ1 <mr+D [steps 16, 17, and 18]
20) dyy 2t > (m+ K)r [case of t,, > (m + K)T]
21) U is well defined [case of t,,, < (m + K)7]

22) dpm = tm + (Sm/Tm)
Ztm + (m+ K)7 =t
(m+ K)r

23) tm+1 = dp

[i = m in (6), step 21]

[t =m + 1 in (2), steps 20 and 22]
Steps 15, 19, and 23 demonstrate that (7), (8), and (9) hold
for 4 = m. Proof of induction step is complete. 0
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