IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 14, NO. 3, MARCH 1988 353

Protocol Conversion

SIMON S. LAM, FELLOW, IEEE

Abstract—Consider the problem of achieving communication be-
tween two processes across a network or an internetwork. To address
this problem, we first formalize the notion of logical connectivity be-
tween processes in a protocol architecture; logical connectivity is a nec-
essary condition for conversion-free communication. We then formu-
late the problem of constructing a protocol converter to achieve
interoperability between processes that implement different protocols.
We present a formal model, based upon the theory of protocol projec-
tion [8], for reasoning about the semantics of different protocols and
conversions between them. The correctness of a conversion is a con-
sequence of the correctness properties of image protocols obtained by
projections. Two kinds of converters are presented: memoryless con-
verters and finite-state converters. Lastly, we illustrate the construc-
tion of some finite-state converters with examples.

Index Terms—Communication protocols, computer networks, inter-
networking, protocol architecture, protocel conversion, protocol pro-
jection, protocol verification.

I. INTRODUCTION

TH the proliferation of network architectures and

communication protocols, it becomes increasingly
difficult to ensure that users connected to different net-
works can communicate. It may be argued that the solu-
tion to this problem is simply to agree upon one world-
wide standard protocol architecture, say Open Systems
Interconnection [18], or one internetworking protocol, say
TCP/IP or X.25/X.75, to be used by all suppliers of hard-
ware and software [2], [4], [17]. In a recent article, Green
[5] reviewed the protocol conversion problem from the
architectural point of view, reviewed current ad hoc so-
lutions, and argued convincingly that protocol conver-
sions will be a permanent fact of life. He gave two main
reasons. First, it is already too late to try to get everyone
to adhere to the same standard. There is an installed base
of over 20 000 IBM SNA networks, over 2000 DECnet
networks, several hundred DoD TCP/IP networks, as well
as many other vendor-specific networks. Second, conver-
gence to a global standard implies that all tradeoffs are
understood and all inventions are made and assimilated,
which is obviously not the case in the relatively young
field of computer communications.

Even in the absence of significant architectural mis-
matches, achieving interoperability between different
variants of the same protocol is a nontrivial task. Many
protocol standards developed with the intention of foster-

Manuscript received February 15, 1987; revised October 1, 1987. This
work was supported by the National Science Foundation under Grants ECS-
8304734 and NCR-8613338.

The author is with the Department of Computer Sciences, the University
of Texas at Austin, Austin, TX 78712.

IEEE Log Number 8718695.

ing compatibility ended up as families of different stan-
dards [1], [2]. A standard as basic as RS-232 has many
variants [11]. The data link protocol standard HDLC has
many siblings: SDLC, ADCCP, LAP, LAPB, LAPB
Multilink, etc. Even HDLC itself defines, in addition to
a basic repertoire of commands and responses, a wide va-
riety of optional capabilities for implementors to pick and
choose from (thus fostering incompatibility between in-
dependently implemented versions of the protocol) [7].

To date, there have been a few protocol conversions
attempted [S], [6]. Subsequent to the state-of-the-art re-
view of this subject by Green, some formal models for
protocol conversion have been proposed [9], [12]. How-
ever, there is no general theory for understanding the pro-
tocol conversion problem. When is a conversion needed?
What is meant by a correct conversion? Or a useful con-
version? How do we construct a converter? In this paper,
we attempt to provide some (but not all) of the answers
to these questions.

In Section II, we present conditions for determining
whether protocol conversion is needed, and where it is
needed, in a given protocol architecture in order for a pair
of processes to communicate. In Section III, we formulate
the problem of constructing a converter to achieve inter-
operability between processes that implement different
protocols. The theory of protocol projection is reviewed.
Image protocols obtained by projections are shown to be
useful for reasoning about the semantics of different pro-
tocols and conversions between them. The correctness and
functionality of a converter are inferred from properties
of image protocols. Two kinds of converters are pre-
sented: memoryless converters and finite-state converters.
We illustrate our method with some examples of finite-
state converters between the alternating-bit protocol and
a nonsequenced protocol for data transfer.

II. LocicaL CONNECTIVITY

Two processes P, and P, are said to interoperate if they
implement the same protocol. Interoperability implies that
each process ‘‘understands’’ the syntax and semantics of
the messages it receives from the other process. For a
communication protocol, interoperability also implies a
data transfer service provided by the processes to other
processes.

Suppose that processes P, and P, implement, or speak,
protocol P, while processes @, and Q, speak protocol 0
whose function is similar to that of P. Can P, and O,
interoperate? Or @ and P,? One approach to achieve in-
teroperability is to construct a converter process C, (Gy)

0098-5589/88/0300-0353$01.00 © 1988 IEEE



354 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 14, NO. 3, MARCH 1988

as an intermediary between processes P, and O, (Q; and
P,). The converter accepts the messages of one protocol
from one process, interprets them, and delivers to the
other process messages of the other protocol that are se-
mantically equivalent. In particular, the network of three
processes (P, Cy, Q,), or (Q;, C,, P,), provides some
useful function, such as a data transfer service to other
processes. In this case, we say that P, and @, interoperate
via C;, and Q, and P, interoperate via C,. Note that we
have deliberately left undefined the level of useful func-
tion for a protocol conversion to be considered successful.
The functional requirement of a protocol conversion can
be specified formally like the functional requirement of
any protocol and is to be determined by the designer of
the protocol.

The problem of achieving interoperability between pro-
cesses is addressed in Section III. Consider now two pro-
cesses, say P, and P,, that exchange messages through a
network or an interconnection of networks. How do we
determine if protocol conversion is needed to achieve
communication between P, and P,? The rest of this sec-
tion is devoted to stating some conditions for determining
where protocol conversion is needed, if it is needed, in a
given protocol architecture in order for two processes to
communicate.

The protocol architecture of a network, or an intercon-
nection of networks, can be represented by an undirected
graph (V, A), where V is a set of vertices and 4 is a set
of arcs specified as unordered pairs of vertices. Each ver-
tex represents a process] which speaks one or more pro-
tocols; in layered architectures, for example, a process
may speak interface protocols to processes in upper and
lower layers, as well as peer protocols to other processes
in the same layer. Edch arc represents a pair of physical
channels for processes at the two vertices of the arc to
send messages to each other. In real networks, physical
channels may be internode communication links or they
may be intranode channels provided by some interprocess
communication facility. We will not distinguish them.

We pose the following problem. Given a protocol ar-
chitecture specified as described above and two pro-
cesses, P; and P, in the architecture, how do we check
if protocol conversion is needed for P, and P, to com-
municate? The following conditions are clearly necessary
for conversion-free communication between P, and P,:

1) P, and P, interoperate, and

2) processes and physical channels in the architecture
collectively provide a data transfer service for delivering
messages sent by P to P, and messages sent by P, to P,.

Condition 1) is satisfied if P| and P, implement the same
protocol; otherwise, protocol conversion is needed to
achieve interoperability between P, and P,. Both condi-
tions 1) and 2) would be sufficient, as well as necessary,
if the data transfer service provided by the architecture

'What we call a process may be implemented either as a sequential pro-
cess or a network of processes.

meets the functional specifications for message delivery
between P, and P,.

Given a graph representation of a protocol architecture,
condition 2) cannot be easily checked. We next introduce
two weaker conditions, namely, physical connectivity and
logical connectivity. Physical connectivity is a necessary
condition for logical connectivity, while logical connec-
tivity is a necessary condition for conditions 1) and 2)
above. Logical connectivity and physically connectivity
between a pair of processes can be checked algorithmi-
cally.

Definition: P; and P, are physically connected in a pro-
tocol architecture if, and only if, they are the head and
tail of a sequence of processes in the architecture wherein
adjacent processes are directly connected by physical
channels.

If P, and P, are not physically connected, some phys-
ical channels and processes will have to be added to the
architecture to complete the physical path.

Definition: P, and P, are logically connected in a pro-
tocol architecture if, and only if,

1) P, = P, (each process is logically connected to it-
self), or

2) P, and P, interoperate and are directly connected by
physical channels, or

3) P, and P, interoperate and there exist processes P,
and P,_, such that P, and P, are logically connected, P,
and P,_; are logically connected, and P,_, and P, are
logically connected, where P, and P,_, may be the same
process. (See Fig. 1.)

Logical connectivity is a stronger condition than phys-
ical connectivity and is useful for checking if there are
processes along the physical path between P, and P, which
must interoperate but which do not implement a common
protocol. (Hence protocol conversion is needed to make
these processes interoperate.) The recursive nature of the
definition makes it easy to check logical connectivity be-
tween process pairs in a protocol architecture represented
as an undirected graph. Application to a layered protocol
architecture is especially easy. In Figs. 2-4, we illustrate
the definition of logical connectivity by considering sev-
eral internetwork architectures.

Fig. 2 illustrates the basic architecture of X.25/X.75
internetworks [2]. [17]. The two user processes in the hosts
are logically connected if, and only if, they interoperate,
the X.25 processes in the hosts are logically connected
and, in each host, the user process interoperates with the
X.25 process. The X.25 processes in the hosts are logi-
cally connected if, and only if, the X.25 processes in net-
works 1 and 2 are logically connected. The X.25 pro-
cesses in networks 1 and 2 are logically connected if, and
only if, the X.25 and X.75 processes are logically con-
nected. Logical connectivity between the X.25 and X.75
processes in each network requires that the X.25 and X.75
protocols are sufficiently close to each other for the pro-
cesses to interoperate.

Fig. 3 illustrates the basic architecture of TCP/IP in-
ternetworks [4]. The two user processes are logically con-



LAM: PROTOCOL CONVERSION

Fig. 1. Logical connectivity definition.

user
process

host k—— network 1 ————  network 2 —| host

Fig. 2. Basic architecture of X.25/X.75 internetworks.

user
process

Fig. 3. Basic architecture of TCP/IP internetworks.

} Host A |

(b

Fig. 4. An illustration of mutual encapsulation. (a) Logical connectivity
between two TCP processes. (b) Logical connectivity between two BSP
processes.

nected if, and only if, they interoperate, the TCP pro-
cesses are logically connected and, in each host, the user
process interoperates with the TCP process. The TCP
processes are logically connected if, and only if, the IP
processes in the hosts-are logically connected and, in each
host, the TCP process interoperates with the IP process.
Finally, the IP processes in the hosts are logically con-
nected because there exists an IP process (in a gateway
node) to which each host IP process is logically con-
nected. Such logical connectivity between two IP pro-
cesses requires that each IP process interoperates with
each network it is connected to (by some network inter-

355

face protocol), > as shown in Fig. 3; note that logical con-
nectivity between different pairs of IP processes can be
provided by networks with very different protocol archi-
tectures.

Fig. 4 illustrates the method of mutual encapsulation to
achieve logical connectivity in an interconnection of net-
works where some hosts implement one internetwork pro-
tocol, say the IP protocol of Darpa, some hosts implement
another internetwork protocol, say the Pup protocol of
Xerox, and some hosts implement both internetwork pro-
tocols [16]. Fig. 4(a) illustrates how to achieve logical
connectivity between two TCP processes by having the
Pup processes provide logical connectivity to two of the
IP processes. Fig. 4(b) illustrates how to achieve logical
connectivity between two BSP processes by having the IP
processes provide logical connectivity to two of the Pup
processes. Note that at host A, the Pup and IP processes
must interoperate with both net C and net D by the re-
spective network interface protocols. The Pup and IP pro-
cesses must also interoperate with each other by two in-
terface protocols, one for the IP process to access the Pup
protocol and the other for the Pup process to access the
IP protocol.

Given that two processes, say P, and P,, are connected
in a protocol architecture, there are generally additional
requirements which must be satisfied by protocols in the
physical path between P, and P, in order for P, and P, to
communicate. (Logical connectivity is a necessary but not
a sufficient condition.) Consider the configuration in Fig.
1. Let P, and P, interoperate by protocol Ly, P, and P,
interoperate by protocol L,, P,_; and P, interoperate by
protocol L,, and P, and P,_, interoperate by protocol L;.
The protocols L, L,, and L; provide a data transfer ser-
vice to P, and P,.

The service data units of different protocols have size
constraints which need to be checked. In order for pro-
tocol messages of L, to be delivered from P, to P, and
from P, to P,, each of the protocols, L, L,, and L;, must
provide a data transfer service with sufficiently large ser-
vice data units. Suppose the service data units of L; are
too small. Then to achieve communication between P, and
P,, two processes will have to be inserted between P, and
P, and between P,_; and P, to implement a protocol that
provides the functions of segmentation and reassembly of
messages.

Also, the protocols Ly, L,, L,, and Ly may have depen-
dencies that must be satisfied. For example, if the pro-
cesses Py, P,, P,_, and P, implement the routing function
in the network layer of a protocol architecture, then Ly,
L,, L,, and L; must necessarily be the same routing pro-
tocol. Another example: if L, is the X.25 protocol then
L, and L, must be either the X.25 or X.75 protocol.

Lastly, given two processes that are logically connected
in an architecture, the data transfer service provided to
them may not meet the functional specifications that are
required for their interoperation. A good example is the

2A network can be viewed as a process.



356 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 14, NO. 3, MARCH 1988

one discussed by Green [5] about the use of an X.25 vir-
tual circuit as a data link in an SNA path. An extra pro-
tocol layer was added on top of the X.25 layer to provide
(among other things) packet sequence numbers that have
the same meaning as SNA’s link-level SDLC sequence
numbers. Green refers to such insertion of an extra pro-
tocol layer into a layered protocol architecture as protocol
complementing. (Adding the IP protocol layer in host and
gateway nodes to achieve logical connectivity across a
TCP/IP internetwork, as shown in Fig. 3, is also protocol
complementing according to Green [5].)

III. CONVERSION TO ACHIEVE INTEROPERABILITY

Suppose two user processes are physically connected
but not logically connected in an architecture. By the def-
inition of logical connectivity, either the two user pro-
cesses do not interoperate or there exist some processes
in the architecture which implement different protocols but
which must interoperate to provide logical connectivity
between the user processes. In each case, protocol con-
version is needed to achieve interoperability between some
processes that implement different protocols.

A. The Correctness Problem

In what follows, we shall introduce a formal model that
can be used for specifying conversions and for reasoning
about the correctness of conversions. We consider pro-
tocols in which processes interact by exchanging mes-
sages. Protocol mismatches in this context refer to differ-
ences in the syntax and semantics of messages that are
sent and received in different protocols. The conversion
problem can be stated as follows. Consider two protocols
P and Q (see Fig. S5). In the first protocol, the sets of
messages that can be sent by entities P, and P, are M, and
M,, respectively. In the second protocol, the sets of mes-
sages that can be sent by entities O, and Q, are N, and
N,, respectively. Now suppose we want P, to interoperate
with @, with the help of a protocol converter C, as shown
in Fig. 6(a). (The converter may be a process or a pro-
tocol layer in the path between P, and @,.) One task of
the converter is to perform syntax transformations of mes-
sages that P, and Q, can send to each other. But how does
the converter map messages in M, and N, into N, and M,,
respectively? Messages that are related by the mapping
have to be semantically equivalent in the two protocols.
What does semantic equivalence mean? And how does
one check it? Obviously, the level of functionality that
can be achieved by the protocol conversion is determined
by the sets of semantically equivalent messages.

B. Protocol Verification and Projection

The semantics of messages in a message-passing pro-
tocol such as P or Q can be found in the reachability graph
of the protocol. To avoid the generation of reachability
graphs (which may be infinite for many protocols), we
propose the use of image protocols for reasoning about
semantic equivalence. Before proceeding further with the

M

)=

—
M2
(a)
Ny
@+
—
(b)

Fig. 5. Protocols P and Q
My N,
— —

------ ------
— —
Mz N2
(@
Ny M,

— —
______ C el
o= =

N2 M2

(b)
Fig. 6. Protocol conversions.

conversion problem, we shall digress and give an over-
view of the theory of protocol projection. The following
presentation is new and hopefully is more enlightening
than that in [8]. The reader is referred to [8] for additional
definitions and details.

Our discourse shall be based on the abstract state ma-
chines model for protocols. Consider Fig. 5(a). Let S,
(S,) denote the set of states of process P, (P,). S; and S,
may be finite or infinite. (Thus our model is applicable to
protocols specified by state variables and a programming
language notation, as in [14].) Each process is event-
driven. Events of P, are specified for sending messages
in M; and for receiving messages in M,. Additionally,
some events not associated with the sending and receiving
of messages but whose occurrences cause state transitions
in P, may also be specified. These are called internal
events and they are used to model timeouts and the pro-
tocol’s interaction with its user processes which are not
explicitly modeled. Events of P, are similarly defined. If
the channels can have errors, then they are modeled as
processes; errors are modeled by specifying internal
events for these channel processes.

The state of the protocol is described by the four-tuple
(81, §5; my, m,) where s, is the state of P, and m, is the
sequence of messages in the channel from P, to P,; s, and
m, are similarly defined. Let G denote the global state
space of the protocol. When the protocol is in state g, a
set of events are enabled; the occurrence of one of these
enabled events, chosen nondeterministically will take the
protocol to some state & in G. Events are considered to be
indivisible. Only one event may occur at a time. Concur-
rent events may occur in any order.

Given a set G, of initial states, define a path in G to be
a finite or infinite sequence of states and events denoted
by

eQ el €2

0:8 T T & T & T ...

where gg € Gy, event ¢; is enabled in state g;, and the oc-



LAM: PROTOCOL CONVERSION

currence of e; takes the protocol from state g, to state g;.1.
Also, ¢ is finite and terminates in g only if no event is
enabled in state g;. (What we call a path here is often
referred to as a computation in the distributed program-
ming literature.)

We denote by S (P) the set of paths of protocol system
P. We have adopted the approach that 8 (P) specifies the
semantics of P. (This approach is espoused by researchers
who advocate the use of linear time temporal logic to ex-
press properties of time sequences [101, [13].)

So far in this paper, the meaning of “‘specifying’” a
protocol for a set of processes to interoperate has been
deliberately vague. The existence of such a protocol im-
plies that the processes ‘‘understand the meanings of each
other’s messages.”’ Specifying the message sets of P, and
P, as well as the events of P, Py, and the channels defines
operationally the protocol’s behavior. It is generally use-
ful to specify a protocol functionally in addition to defin-
ing its behavior operationally. The functional specifica-
tion of a protocol can be in the form of invariant and
liveness assertions about the behavior of the protocol. In-
variant assertions are specified by state formulas. A state
formula is a formula written in some first-order language
that describes a property of a protocol state; a state for-
mula is evaluated at a single state to yield a truth value.
An invariant assertion holds for a protocol if the state for-
mula evaluates to true over all reachable states of the pro-
tocol system. Liveness assertions are specified by tem-
poral formulas. A temporal formula is a formula
constructed from state formulas and one or more temporal
operators. A temporal formula is interpreted over individ-
ual paths in the set 8(P). A liveness assertion holds for
a protocol if the temporal formula is satisfied by every
path in $(P). (See [13] for an excellent treatment of this
subject.)

It will not be necessary for us to adopt a language for
state formulas or for temporal formulas in this paper. Our
objective herein, as well as in [8], is not to specify and
verify properties of specific protocols. The set 8 (P) will
be an adequate vehicle for reasoning about semantic
equivalence of different protocol systems. The reader is
referred to [10], [15] for some examples of languages for
state formulas and temporal formulas.

We are now in a position to introduce the concept of
the resolution of a protocol that is central to the theory of
projections. Consider again the protocol in Fig. 5(a).
Since the protocol state is the tuple (s, 555 my, m,), the
resolution of the protocol is, roughly speaking, given by
the number of states in S; and S, and the number of mes-
sages in M, and M,. Suppose the protocol performs many
functions, but we are only interested in verifying an as-
sertion about the protocol’s performance of one or a sub-
set of its functions. Then, in the verification, the obser-
vation resolution of the protocol can be much smaller than
the protocol’s actual resolution. This gives rise to the idea
of constructing an image protocol with a resolution lower
than that of the original protocol for verifying the asser-
tion.

357

Let P’ denote an image protocol of P and P; denote a
process of P’ (i = 1 and 2). Process P/ has a set of states
S! obtained as follows. Partition S; of process P; in some
fashion. Each partition subset of states in S; defines a sin-
gle state in S;. (We shall sometimes refer to this operation
as aggregation.) Given an assertion to be proved, exactly
how to do the partitioning of S, and S, requires ingenuity
and insights into the meanings of the process states. If the
state of P; is specified by the values of a set of state var-
iables, then one way to realize a partitioning of §; is by
retaining in the image protocol a subset of the state vari-
ables in the original protocol. Generally, the meanings of
state variables in protocols specified by a programming
language are more self-evident than the meanings of states
in state machines. (See [8], [14] for illustrations.)

Aggregating states in S; to define states in S induces an
equivalence relation on the message sets M, and M,. Spe-
cifically, two messages in M, are equivalent if their re-
ceptions cause identical state changes in the image state
space S5; a similar definition applies to messages in M,.
Furthermore, messages in M; whose receptions do not
cause any state change in the image state space of the
receiving process are said to have a null image. Let E be
the set of all events specified for protocol system P. The
aggregation of states in S; and messages in M;, fori = 1
and 2, also induces an equivalence relation on E. Events
that are equivalent in E are also aggregated in order to
form the event set E’ for the image protocol P’. There are
some more definitions and details necessary for defining
the following mappings to construct image protocol P’:

S, — S i=1,2

M- M =12

E—-FE

We refer the reader to [8] for these definitions and details.
Elements in the sets S/, M/, and E’ of the image protocol
will be referred to as images of elements in the sets S;,
M,, and E, respectively, of the original protocol. Note,
however, that some elements in M; and E may be mapped
to null images which are not included in the sets M; and
E'. Lastly, it is important to note that an image protocol
is specified like any other protocol, i.e., it can be imple-
mented.

By its very definition, an image protocol has a resolu-
tion lower than that of the original protocol. Given an
image protocol, suppose that a second image protocol is
obtained by partitioning Sj and S; of the first image pro-
tocol. Then, the second image protocol has a lower res-
olution than the first. Thus, we can talk about a sequence
of image protocols with decreasing (or increasing) reso-
lution.

For a global state g = (sy, 55, m,, my) of protocol P,
the image of g is defined to be g’ = (s, 3, m), m;) where
each process state in g is replaced by its image, and each
message in m; in g is replaced by its image; also, null
images are not included in m/. For a path g € $(P), the



358 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 14, NO. 3, MARCH 1988

image ¢’ of ¢ is obtained as follows: first, each state in ¢
is replaced by its image; second, any consecutive occur-
rences of the same image state in the resulting sequence
is replaced by a single occurrence of the image state.

Suppose we replace every path in 8 (P) by its image.
In particular, all paths having the same image are treated
as equivalent and replaced by a single image path. The
resulting set of paths is said to be the projection of $ (P)
to be denoted by proj[ S (P)].

proj[ 8 (P )] represents the behavior (semantics) of the
protocol system P as observed by someone who cannot
distinguish between process states, messages, and events
having the same images (the observation resolution is
lower than that of protocol P ). There are fewer properties
of protocol P that such an observer can verify, because of
the lower resolution in its observations. Specifically, it
can only interpret state formulas and temporal formulas
that contain references to elements of sets S;, M/ and E’
rather than elements of S;, M;, and E. Such observations
are useful as long as the resolution offered by S}, and M;,
and E’ is adequate for the assertion to be verified. Unfor-
tunately such an observer cannot really interpret the state
and temporal formulas without knowing $(P) since
proj[S(P)] is obtained from 8 (P) by definition.

The objective of constructing a separate image protocol
system P’ is to allow the low resolution observer to inter-
pret its formulas by observing the behavior of the image
protocol system, i.e., observing $(P'). Obviously, one
would like to employ an image protocol with the lowest
resolution possible (yet adequate for proving the given as-
sertion).

Let R (P) be the set of reachable states of protocol P.
Let proj[R,(P)] be obtained by replacing each set of
global states in R;(P) that have the same image by the
image state. It is proved that for any image protocol P’
constructed as defined in [8],

proj[R,(P)] < R,(P"). (*)

Image Protocol Property 1: If an invariant assertion
holds for image protocol P’, it also holds for protocol P.

This property is an immediate consequence of result
(*). However, keep in mind that the invariant assertion
is restricted to state formulas containing references to ele-
ments of §/ and M| rather than S; and M,.

For the observer to make correct interpretations of tem-
poral formulas (to determine if they are satisfiable by P)
by observing the behavior of P, it is necessary and suf-
ficient that

proj[$(P)] = S(P'). (**)

The following three conditions (A1)-(A3) are sufficient
for condition (**) to hold [8]. (A1) and (A2) are assump-
tions about the protocol system P.

(A1) Paths in 8(P) satisfy the following fairness as-
sumption: An event enabled infinitely often in
path ¢ will occur infinitely many times in ¢ [13].

(A2) Each message sent into a channel will eventually
be received or deleted.

The following condition is a requirement of the image
protocol system P':

(A3) Each event in the image protocol is well-formed.

The definition of a well-formed event in an image pro-
tocol is given in [8]. It is useful to note that checking
events to be well-formed does not require any knowledge
of S(P) or $(P'). Also, (A3) can always be satisfied by
increasing the resolution of the image protocol.

Image Protocol Property 2: Given (A1)-(A3), a live-
ness assertion holds for image protocol P’ if, and only if,
it holds for protocol P.

This property is an immediate consequence of (**).
Again keep in mind that the liveness assertion is restricted
to temporal formulas containing references to elements of
S/, M, and E'.

When we infer that protocol P has invariant and tem-
poral properties proved for protocol P’, we should inter-
pret the assertions as follows. Each reference to x’ in an
assertion is interpreted as some x whose image is x', where
x denotes a process state, a message, or an event. Since
some messages and events have null images which are not
included in M] and E’, an assertion about a sequence m’
of messages should be interpreted as some sequence m
whose image is m’; a similar interpretation applies to a
sequence of event occurrences.

It is beyond the scope of this paper to define an asser-
tion language for protocol verification. Instead of speci-
fying formal rules for interpreting assertions about image
protocol P’ to describe the behavior of protocol P, we
give a few examples for illustration:

1) event e’ eventually occurs interpreted as some event
e, whose image is e', eventually occurs.

2) state g' is reachable interpreted as some state g,
whose image is g', is reachable.

3) the number of messages in the channel is bounded
by 3 interpreted as the number of messages in the channel
with nonnull images is bounded by 3.

4) event e’ takes the protocol from state g' to state h'
interpreted as some sequence of events e, e, . . ., €,
whose image is e', takes the protocol from some state g,
whose image is g', to some state h, whose image is h'.

C. Memoryless Converters

Consider a protocol that is an image protocol of proto-
col P and also an image protocol of protocol Q. Such a
protocol is called a common image protocol of P and Q.
We can now state a simple approach to solving the pro-
tocol conversion problem formulated earlier: find a com-
mon image protocol of P and Q having the highest reso-
lution. (By contrast, in protocol verification, we desire an
image protocol with the lowest resolution adequate for
proving an assertion.) Suppose such an image protocol
common to both protocols P and Q is found. Let us con-
sider the protocol conversion in Fig. 6(a). What C, pro-



LAM: PROTOCOL CONVERSION

vides is a mapping function. A message sent by P; with
a nonnull image, say m’ in Mj, is transformed by C; into
a message in N, with image m' for delivery to Q,; simi-
larly, messages in N, are mapped into M,. What this con-
version accomplishes is an implementation of the image
protocol. If this image protocol is one common to both P
and Q with the highest resolution, then it implements the
most functionality that is common to both P and Q.
Since image protocols P’ and Q' are identical, we have

proj[R,(P)] S R,(P') = R(Q")
proj[R,(Q)] < R(P') = R(Q")

By image protocol property 1, invariant properties of P’
(= Q') are also invariant properties of P and of Q. If all
events in both P’ and Q' are well-formed, then we have

proj[S(P)] = 8(P') = 8(Q") = proj[$(Q)].

By image protocol property 2, liveness properties of P’
(= Q') are also liveness properties of P and of Q.

Thus the correctness of the conversion is well-defined.
It is also a meaningful and rigorous definition of correct-
ness. The advantage of this approach is that it is possible
to establish semantic equivalence without having to gen-
erate any of the reachability graphs.

This approach requires a heuristic search for an image
protocol with useful properties. Note that an image pro-
tocol common to both P and Q can always be found. Spe-
cifically, if we aggregate the set of states in each process
in Fig. 5 to a single state, we have an image protocol
common to P and Q. But it is an image protocol with no
useful property. Any difficulty in the heuristic search,
however, may not necessarily be the fault of the method;
it could be due to the fact that the protocols P and Q have
very little in common to begin with. Obviously, the job
of synthesizing a conversion will be easier if protocols P
and Q are quite similar to each other, such as, they are
variants of the same protocol.

Consider those messages in M, (N,) with a null image
in the common image protocol. It is not necessary for P;
(Q,) to be aware that it is interacting with a partner im-
plementing a different protocol and that null-image mes-
sages should not be sent. The conversion can be made
transparent to Py (Q,) by having the converter intercept
null-image messages sent by P; (Q,) and simply discard
any such message received.

n

D. Finite-State Converters

Suppose processes Py and Q, interoperate via a mem-
oryless converter. The common image protocol, how-
ever, may not have enough functionality for a particular
application. One way to add functionality to the protocol
in Fig. 6(a) is to add a state machine in C;. An example
we have tried is that of a conversion between a version of
IBM’s BSC protocol and an alternating-bit (AB) protocol
[3]. BSC has the same basic structure as AB but differs

359

from it in a number of details. In particular, BSC data
messages do not carry a sequence number (0 or 1). But in
an AB receiver, a sequence number is expected in each
data message received. The common image protocol will
not have a sequence number in its data messages. As a
result the common image protocol does not have the de-
sired logical property of the AB protocol. This shortcom-
ing can be remedied by having a state machine in the con-
verter that inserts a sequence number into each message
that it sends to the AB receiver. In this case, the set of
messages sent by the converter has a higher resolution
than the set of messages it receives.

Consider the protocol system in Fig. 6(a) consisting of
P,, C;, and Q,, the channels between P, and C;, and the
channels between C, and Q,. We shall refer to this pro-
tocol system as C = (P, Cy, @) = ((Py, Cc)), Q) =
(Py, (C1, 02)).

Consider Fig. 7. Let Q. denote the network processes
inside the rectangle in Fig. 7(a); the network Q. can be
viewed as a single process that is interacting with Q. A
state of Q. is defined by the tuple (s, 5, My, My ) where
s, is the state of Py, s, is the state of C), and m, and m,
represent the sequences of messages in the channels from
P, to C, and C, to P, respectively. Events for sending
messages in N, and events for receiving messages in N,
that are defined for C;, define send and receive events of
Q.. Internal events of Py and C; define internal events of
Q.. Furthermore, send and receive events of P, and C,
associated with messages in M; and M, define internal
events of Q..

Similarly, the network P, in Fig. 7(b) can be viewed as
a single process interacting with P;.

Next we address the correctness problem of a finite-
state converter. Suppose an image protocol C' of the (Q.,
0,) network in Fig. 7(a) has been found and is identical
to an image protocol Q' of protocol Q. Then we have

N

proj[R,(C)] € R(Q") = R(C")
proj[R,(Q)] < R(Q") = R(C")

Thus an invariant property of Q' (= C’) is also an in-
variant property of Q and of C. If both C’ and Q' have
well-formed events, then

in

proj[8(Q)] = 8(Q") = 8(C") = proj[$(C)]-

And a liveness property of Q' (= C’) is also a liveness
property of C and of Q.

Next, suppose an image protocol C” of the (Py, Pc)
network in Fig. 7(b) has been found and it is identical to
an image protocol P’ of protocol P. Correctness results
analogous to those for C’ and Q' can now be stated for
C" and P’'.

Since P’ and Q' are in general different, the external
users of the protocol (P, C;, Q,) may not ‘‘see’’ the
same protocol service (as in the case of a memoryless con-
verter). The external user connected to P sees the pro-



360 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 14, NO. 3, MARCH 1988

QC
My Ny
— —
M2 N2
(a)
™ Ny
— —
O EE-G
— —
M, N,

()
Fig. 7. Two views of the protocol system C = (P, C,, Q,).

tocol service of P’ while the external user connected to
0, sees the protocol service of Q. (See example below
for an elaboration of this observation.)

E. Examples of Finite-State Converters

Consider the protocols for data transfer in Figs. 8 and
9. The alternating-bit (AB) protocol is shown in Fig. 8.
The protocol in Fig. 9 does not employ any sequence
numbers and is referred to as the nonsequenced (NS) pro-
tocol. In Figs. 8 and 9, a transition labeled with a plus
sign denotes receiving a message from the incoming chan-
nel. A transition labeled with a minus sign denotes send-
ing a message into the outgoing channel. In Fig. 8, A0
and A1 denote ack messages and DO and D1 denote data
messages, with sequence numbers O and 1, respectively.
In Fig. 9, a denotes an ack message while d denotes a
data message.

The channels in the protocol model are assumed to be
FIFO queues. Message loss and timeout events are mod-
eled by the addition of some state transitions associated
with virtual messages (7m and Ls in the AB protocol and
tm and Is in the NS protocol denoting ‘‘timeout’’ and
““loss,’” respectively). Possible loss of a data message is
modeled by specifying a pair of transitions -data and -loss
in parallel. Possible loss of an ack message is modeled by
specifying a pair of transitions -ack and -timeout in par-
allel. The event +timeout denotes a timeout occurrence;
note that premature timeout occurrences are not allowed
by this model, i.e., a timeout occurs only if either a data
message or an ack message has been lost.

Initially, each process is in state 1 and all channels are
empty. The reachability graphs of both protocols are rel-
atively small. In fact, for both protocols the number of
messages in all channels is bounded by 1. The AB pro-
tocol provides FIFO delivery of data with no loss and no
duplication. However, when a timeout occurs in an NS
sender, it does not know whether a data message was lost
or its ack was lost. If the NS sender always retransmits
old data whenever a timeout occurs, then the NS receiver

P (AB sender)

P, (AB receiver)

Fig. 8. The alternating-bit (AB) protocol.

+tm (g

Q (NS sender)

d -1s

Q, (NS receiver)

Fig. 9. The nonsequenced (NS) protocol.

will provide FIFO delivery of data with no loss but it will
sometimes deliver the same data more than once to its
user.

A converter process C, for P, and Q, is shown in Fig.
10. Note that messages in the AB and NS protocols have
distinct names (NS message names are in lower-case char-
acters only while AB message names employ upper-case
characters.) Therefore we do not have to label the sender
or the receiver of each message in Fig. 10.

To show that C, is correct and to determine what ser-
vices are provided by the network (P,, C;, Q,) to the
users of Py and Q,, we need to construct the processes P,
and Q. as described in Section III-D. Before doing so,
observe that every one of the finite-state machines, P,
C,, and Q,, has only two kinds of nodes; sending nodes
in which only send events can occur, and receiving nodes
in which only receive events can occur. Given that each
machine is initially in state 1, it is easy to show that the
network (P;, Cy, Q,) has the following invariant prop-
erty:

1) one machine in the network is in a sending node and
all other machines are in receiving nodes and all channels
are empty, or

2) one channel has exactly one message and all other
channels are empty and all machines are in receiving
nodes.

Because of this invariant property, finite-state machines
for Q. and P, can be constructed very easily. We have
constructed them but have omitted them here for the sake
of brevity.



LAM: PROTOCOL CONVERSION

5
+DO
y 2
-is FO| +tm
. -Tm
—22L
4 3 Reze o °
+D1 +D
+Ls -Tm

Fig. 10. Converter C, for P, and Q,.

We found that the protocol O = (Q;, @) is itself an
image protocol, with well-formed events, of (Q., @)
Further, the protocol P = (P, P,) is also an image pro-
tocol, with well-formed events, of (P,, P,). In Fig. 11,
we have shown P, with its states partitioned so that when
each partition subset is aggregated, the image of P, is
identical to P,. The details of partition subsets with mul-
tiple states have been omitted. Each tuple (s, S5, my, my)
in Fig. 11 denotes a state of P, where s, denotes the state
of C,, s, denotes the state of @, m, denotes the channel
from C, to Q,, and m, denotes the channel from Q, to C,.
The notation ‘*-’” indicates an empty channel.

Note that the conversion is transparent to both P and
0,, such that P, thinks that it is interacting with P, while
Q, thinks that it is interacting with Q,. Is P, really pro-
viding the service of the AB protocol to its user, ie.,
FIFO delivery of data with no loss and no duplication?
How can this be true, when the user connected to Q, is
only getting the service of the NS protocol, i.e., FIFO
delivery of data with no loss but possible duplication?

The explanation for this apparent contradiction is as
follows. The AB protocol service assumes reliable chan-
nels between P, and its user. In the (P, P.) = (P, (Cy,
0,)) network, however, this assumption is no longer true.
When an ack from Q, to C; is lost, C, retransmits a du-
plicate data message to Q,. These are internal event oc-
currences in P, which are not observable at the resolution
of P, and P,.

In this example, there is an easy way to improve the
service provided by (P, C|, @,). Note that the NS pro-
tocol will provide FIFO delivery of data with no loss and
no duplication if the acks sent by Q, are never lost (reli-
able outgoing channel from Q,). This can be accom-
plished by placing converter C, in the same node as Q, s0
that they interact via some reliable interprocess commu-
nication facility instead of across unreliable communica-
tion lines.

In Fig. 12, we show a converter C, for 0, (NS sender)
and P, (AB receiver). It is also easy to show that the pro-
tocol O = (Q,, Q,) is itself an image protocol, with well-
formed events, of (Q,, (C,, P,)), and the protocol P =
(P,, P,) is itself an image protocol, with well-formed
events, of ((Q;, C3), Py).

361

(5,1,-,-) 2,1, -,-)
) !
-Tm +Ls
at -l )
8, 1,-,-)
-Tm ( (—Al) +D1
+DO -A0 | -Tm
7,1,-,-)
3,1,-,-)
T “D1
. +Ls -Tm
T
(4,1,-,-) 6,1,-,-)

Fig. 11. Image of P, = (Cy, 01).

Fig. 12. Converter C, for Q, and P,.

IV. CONCLUDING REMARKS

We have addressed two distinct aspects of the protocol
conversion problem. First, we gave a definition of logical
connectivity between processes in a protocol architecture.
Logical connectivity is a necessary condition for conver-
sion-free communication between processes across a net-
work or an internetwork.

We then addressed the problem of achieving interoper-
ability between processes that implement different proto-
cols by means of a protocol converter. We presented a
formal model, based upon the theory of protocol projec-
tion, for specifying conversions and for reasoning about
the correctness of conversions. The construction of finite-
state converters was illustrated with an example involving
processes that implement the alternating-bit protocol and
a nonsequenced protocol for data transfer.

It is worthwhile noting that protocol conversion to
achieve interoperability is different from protocol com-



362 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 14, NO. 3, MARCH 1988

plementing (discussed in Section IT), which is another kind
of protocol conversion [5]. A protocol converter to
achieve interoperability between two processes is imple-
mented either as a process or as a lower-layer protocol in
the physical path between the processes. Protocol com-
plementing on the other hand, inserts an extra protocol
layer on top of the processes that require ‘‘complement-
ing’’; in this case, the users of the complemented pro-
cesses must subsequently interface with the inserted pro-
tocol layer. In conversions to achieve interoperability, the
user interfaces of the processes requiring conversion are
not affected. The two approaches to protocol conversion
achieve different objectives and both approaches will find
useful applications in internetworking environments.

ACKNOWLEDGMENT

This paper has benefited greatly from the constructive
comments of the anonymous reviewers. Comments re-
ceived from P. Green of IBM Research, Yorktown
Heights, NY, and K. Calvert and M. Gouda of the Uni-
versity of Texas at Austin are also gratefully acknowl-
edged.

REFERENCES

[1} ANSI/IEEE Standards for Local Area Networks, 1EEE Standards
802.2, 802.3, 802.4, 802.5, 1984.

[2] ‘‘Draft revised CCITT recommendation X.25,”” ACM Comput. Com-
mun. Rev., Jan./Apr. 1980.

[3] K. Calvert and S. S. Lam, ‘‘An exercise in deriving a protocol con-
version,”” in Proc. ACM SIGCOMM Workshop, Stowe, VT, Aug.
1987.

[4] ‘‘DoD standard internet protocol and DoD standard transmission con-
trol protocol,”” ACM Comput. Commun. Rev., Oct. 1980.

{5] P. Green, ‘‘Protocol conversion,’’ IEEE Trans. Commun., vol. COM-
34, no. 3, pp. 257-268, Mar. 1986.

[6] 1. Groenback, ‘‘Conversion between TCP and ISO transport protocols
as a method of achieving interoperability between data communica-
tions systems,’” IEEE J. Select. Areas Commun., vol. SAC-4, no. 2,
pp. 288-296, Mar. 1986.

{71 S. S. Lam, ‘““Data link control procedures,’’ in Computer Communi-
cations, vol. 1, W. Chou, Ed. Englewood Cliffs, NJ: Prentice-Hall,
1983, pp. 81-113.

[8] S. S. Lam and A. U. Shankar, ‘‘Protocol verification via projec-
tions,”’ IEEE Trans. Software Eng., vol. SE-10, no. 4, pp. 325-342,
July 1984.

»

[9]1 S. S. Lam, “‘Protocol conversion—correctness problems,’” in Proc.
ACM Sigcomm '86 Symp., Stowe, VT, Aug. 1986, pp. 19-29.

[10] Z. Manna and A. Pnueli, ‘‘Adequate proof principles for invariance
and liveness properties of concurrent programs,”’ Sci. Comput. Pro-
gram., vol. 4, pp. 257-289, 1984.

{117 J. E. McNamara, Technical Aspects of Data
tions. Maynard, MA: Digital Equipment Corp., 1977.

[12] K. Okumura, ‘‘A formal protocol conversion method,’” in Proc. ACM
SIGCOMM '86 Symp., Stowe, VT, Aug. 1986, pp. 30-37.

[13] A. Pnueli, ‘‘Applications of temporal logic to the specification and
verification of reactive systems: A survey of current trends,’” in Cur-
rent Trends in Concurrency: Overview and Tutorials (Lecture Notes
in Computer Science, vol. 224), J. W. deBakker et al., Eds. New
York: Springer-Verlag, 1986, pp. 510-584.

f14] A. U. Shankar and S. S. Lam, ‘‘An HDLC protocol specification and
its verification using image protocols,”” ACM Trans. Comput. Syst.,
vol. 1, no. 4, pp. 331-368, Nov. 1983.

[15] —, “‘Time-dependent distributed systems: Proving safety, liveness,
and real-time properties,”’ Distributed Comput., vol. 2, pp. 61-79,
1987.

[16] J. F. Shoch, D. Cohen, and E. A. Taft, ‘‘Mutual encapsulation of
internetwork protocols,’” Comput. Networks, pp. 287-300, 1981.

[17] M. S. Unsoy and T. A. Shanahan, ‘‘X.75 internetworking of Datapac
and Telenet,”” in Proc. 7th Data Commun. Symp., 1981, pp. 232-
239.

[18] H. Zimmerman, ‘‘OSI reference model-The ISO model of architec-
ture for open systems interconnection,”’” IEEE Trans. Commun., vol.
COM-28, no. 4, pp. 425-432, Apr. 1980.

Communica-

Simon S. Lam (S’69-M’74-SM’80-F’85) re-
ceived the B.S.E.E. degree (with Distinction)
from Washington State University, Pullman, in
1969, and the M.S. and Ph.D. degrees in engi-
neering from the University of California at Los
Angeles in 1970 and 1974, respectively.

From 1974 to 1977, he was a Research Staff
member at the IBM Thomas J. Watson Research
Center, Yorktown Heights, NY. Since September
1977, he has been on the faculty of the University
of Texas at Austin, where he is a Professor of
Computer Sciences and holds the Second David Bruton Jr. Centennial Pro-
fessorship. His research interests are in the areas of computer networks,
communication protocols, performance modeling, and the specification and
verification of distributed systems.

Dr. Lam received the 1975 Leonard G. Abraham Prize Paper Award
from the IEEE Communications Society. He currently serves on the edi-
torial boards of three journals, IEEE TRANSACTIONS ON COMMUNICATIONS,
Performance Evaluation, and PROCEEDINGS OF THE IEEE.




