IEEE TRANSACTIONS ON SOFTWARE ENGINEERING. VOL. 16, NO. 7. JULY 1990 755

A Relational Notation for State Transition Systems

SIMON S. LAM, reLLow, 1EEE, aAND A. UDAYA SHANKAR, MEMBER, IEEE

Abstract—The relational notation has two basic constructs: state for-
mulas that represent sets of states, and event formulas that represent
sets of state transitions. A relational specification consists of a state
transition system, given in the relational notation, and a set of fairness
assumptions. We present a theory of refinement of relational specifica-
tions. Several refinement relations between specifications are defined.
To illustrate our concepts and methods, three specifications of the al-
ternating-bit protocol are given. We also apply the theory to explain
‘‘auxiliary variables.’”” Other applications of the theory to protocol
verification, composition, and conversion are discussed. Our approach
is compared with the approaches of other authors.

Index Terms—Auxiliary variables, communication protocols, dis-
tributed systems, fairness, projection mapping, refinement, specifica-
tion, temporal logic.

I. INTRODUCTION

HE concepts of srate and state transition are funda-

mental to many formalisms for the specification and
analysis of systems. The situation in a physical system
can usually be described by the values of a set of vari-
ables. For example, a state description of a spacecraft
would include its spatial coordinates, its mass, and its ve-
locity, among others. The state of a physical system
changes in the course of time. Such changes are called
state transitions. In modeling such a system, the state de-
scription is assumed to contain sufficient information such
that the future behavior of the system is determined only
by its present state, and not its past history. (Such models
are said to be Markovian.)

The most general state transition systems would allow
states described by continuous variables. We shall not be
that general. Let us consider state transition systems spec-
ified by a pair (S, T'), where S is a countable set of states
and T is a binary relation on S. Each element of T defines
a state transition. The system is deterministic if T is a
function or a partial function; that is, for each state s, in
§ there is at most one state s; in S such that (s;, s;) is in
T. Otherwise, the system is nondeterministic. Given (S,
T) and an initial condition on the system state, a sequence

Manuscript received August 30, 1988: revised August 1, 1990. Rec-
ommended by A. N. Habermann. The work of S. S. Lam was supported
by the National Science Foundation under Grant NCR-8613338 and by a
grant from the Texas Advanced Research Program. The work of A. U.
Shankar was supported by the National Science Foundation under Grants
ECS-8502113 and NCR-8904590.

S. S. Lam is with the Department of Computer Sciences. the University
of Texas at Austin, Austin, TX 78712.

A. U. Shankar is with the Department of Computer Science and the
Institute for Advanced Computer Studies, University of Maryland. College
Park, MD 20742.

IEEE Log Number 9036079.

of states < sg, 51, - * - > is said to be a path if s, satisfies
the initial condition and, fori = O, (s;, 5;+,)isin T.

The sets S and T are adequate for the specification and
analysis of some systems, e.g., connection management
protocols in CCITT Recommendations X.21 and X.25.
For most systems, however, their specification, and pos-
sibly their analysis also, would benefit from having some
structure in S and in 7. Towards this goal, many models
and notations have been developed using a state transition
system as their foundation. We name just a few: differ-
ence equations, Markov chains, programming languages,
communicating finite state machines (CFSMs), Petri nets,
and various temporal logics. Each was designed for a spe-
cial-purpose application. Some are intended primarily for
specification, such as many programming languages [2],
[10]. Some are intended for the numerical generation of
paths, such as difference equations and CFSMs. Some are
intended for the calculation of path probabilities and state
probabilities from a given set of state transition probabil-
ities, such as Markov chains and stochastic Petri nets.
Some are intended for formal reasoning about system be-
haviors, such as temporal logics and some programming
languages {4], [5], [14], [25], [27].

The CFSM model is widely used for protocol specifi-
cation in practice [9], [28], [35]. Because CFSMs are
analyzed by a numerical generation of all paths, the CFSM
model is applicable to the analysis of just a small number
of protocols. Why is it widely used by practitioners de-
spite this shortcoming? The answer may be that most en-
gineers (and programmers) are familiar with the concepts
of state and state transition. Thus they are accustomed to
operational reasoning based upon state transitions [26].
The same is not true for reasoning methods of other for-
malisms. Even for temporal logics, whose underlying
models are state transition systems, the need to master a
new notation presents a barrier to the majority of engi-
neers. For the formalisms of CSP and CCS, the additional
requirement of reasoning with event traces will likely re-
strict the accessibility of these formalisms further despite
their mathematical elegance [8], [21].

We hasten to say that while operational reasoning based
upon state transitions allows engineers to grasp intuitively
and quickly what a protocol does, it is often unreliable
and should be avoided by the protocol’s designer in ver-
ification.

The subject of this paper, a relational notation for spec-
ifying state transition systems, evolved during the course
of our research on modeling time-dependent distributed
systems as well as methods for protocol construction [32]-
[34]. We hope that protocol engineers will find the nota-

0098-5589/90/0700-0755$01.00 © 1990 IEEE



756 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING. VOL

tion and the accompanying proof method to be easy to
learn because states and state transitions are represented
explicitly. Instead of individual states and state transi-
tions, we work with sets of states and state transitions.
Our objective is to retain much of the intuitive appeal of
the CFSM model, but none of its limitations.

Note that the task of constructing a protocol to satisfy
a given specification is still nontrivial and requires inge-
nuity and insight from the protocol’s designer. To per-
form this task, the notion of what it means for 4 to im-
plement B, or for B to be a faithful abstraction of 4, where
A and B denote system specifications, is a very useful one.
We have found the relational notation to be very conve-
nient for formalizing this notion.

The balance of this paper is organized as follows. Sec-
tion IT is on our notation. Section III is on how we specify
a system. Section IV is on our proof method, which is
based upon a fragment of linear-time temporal logic. In
Section V, additional notation and assumptions needed to
specify message-passing networks are given, and the proof
method is extended to handle unreliable channels. In Sec-
tion VI, we present a theory of refinement of system spec-
ifications based upon the use of projection mappings. In
Section VII, we use the theory to explain auxiliary vari-
ables. In Section VIII, three specifications of the alter-
nating-bit protocol are given to illustrate our concepts and
results. In Section IX, we compare our concepts and
methods with related work by other authors, and mention
several nontrivial applications of our work.

II. ReLaTiONAL NOTATION

A state transition system is specified by a set of state
variables, v = {v(,v,, - - - },asetofevents, e, e, - - -,
and an initial condition, to be defined below. For every
state variable, there is a specified domain of allowed val-
ues. The system state is represented by the set of values
assumed by the state variables. The state space S of the
system is the cartesian product of the state variable do-
mains.

Parameters may be used for defining groups of related
events, as well as groups of related system properties. Let
w denote a set of parameters, each with a specified do-
main of allowed values.

Let o' denote the set of variables { v’: v € v}. In spec-
ifying an event, we use v and »’ to denote, respectively,
the system state before and after an event occurrence. In-
stead of a programming language, the language of predi-
cate logic is used for specifying events. Such a language
consists of a set of symbols for variables, constants, func-
tions, and predicates, and a set of formulas defined over
the symbols [20]. We assume that there is a known inter-
pretation that assigns meanings to all of the function sym-
bols and predicate symbols, and values to all of the con-
stant symbols that we use. As a result, the truth value of
a formula can be determined if values are assigned to its
free variables.

The set of variables in our language is v U v’ U w.
We will use two kinds of formulas: A formula whose free

16. NO. 7. JULY 1990

variables are in v U w is called a state formula. A for-
mula whose free variables are in v U v’ U w is called an
event formula.

A state formula can be evaluated to be true or false for
each system state by adopting this convention: if a param-
eter occurs free in a state formula, it is assumed to be
universally quantified over the parameter domain.

We say that a system state s satisfies a state formula P
if and only if (iff ) P evaluates to true for s. A state for-
mula P represents the ser of system states that satisfy P.
In particular, the initial condition of the system is speci-
fied by a state formula. A system state that satisfies the
initial condition is called an initial state. In the following,
the letters P, Q, R, and I are used to denote state formu-
las.

Events are specified by event formulas. Each event
(formula) defines a ser of system state transitions. (These
sets may overlap.) The union of these sets over all events
defines the binary relation T of the transition system. Some
examples of event definitions are shown below:

ee=0v, >2A0v5€e{l,2,5}

e =v>0Av ;=5

where ‘="’ denotes ‘‘is defined by.’’ In each definition,
the event name is given on the left-hand side and the event
formula is given on the right-hand side. For convenience,
we sometimes use the same symbol to denote the name of
an event as well as the event formula that defines it. The
context where the symbol appears will determine what it
means.

Convention: Given an event formula e, for every state
variable v in v, if v’ is not a free variable of e then each
occurrence of the event e does not change the value of v;
that is, the conjunct ' = v is implicit in the event for-
mula.

For example, consider a system with two state variables
v; and v,. Let e; above be an event of the system. Note
that o] is not a free variable of e,. By the above conven-
tion, the event formula that defines e, is in fact v, > v,
ANvy+v3=5ANv) =,

If a parameter occurs free in an event definition, then
the system has an event defined for each value in the do-
main of the parameter. For example, consider

es(m)=v, > v, A0, +0v5=m

where m is a parameter. A parameterized event is a con-
venient way to specify a group of related events.

We next introduce the notion of the enabling condition
of an event. An event (formula) defines a set of ordered
pairs (s, s"), where s € Sand s’ € S. Let the ordered pairs
shown in Fig. 1 be those defined by some event. The en-
abling condition of this event is defined by the three states
shown inside the shaded area of Fig. 1. (A formal defi-
nition is given below.)

An event can occur only when the system state satisfies
the enabling condition of the event. In any system state,
more than one event may be enabled. The choice of the



LAM AND SHANKAR: RELATIONAL NOTATION FOR STATE TRANSITION SYSTEMS 757

Fig. 1. An illustration of an event formula and its enabling condition.

next event to occur from the set of enabled events is non-
deterministic.' When an event occurs, we assume that the
state variables of the system are updated in one atomic
step.

Formally, the enabling condition of an event formula
e, to be denoted by enabled(e), is given by

enabled(e) = v'[e]

which is a state formula. Consider the following event
formula as an example:

e, =v,>0Av=1A0v; =0.

Suppose the domain of each state variable is the set of
natural numbers. We have

enabled(e,) = 3v}3vi[e,)

which is v; > v,, because the expression 3v;3v5{v] = 1
A v; = 0] is true.

For readability, we write many event formulas in the
following separable form:

e = guard N action

where guard is a state formula and action is an event for-
mula. We must keep in mind that for guard to be logically
equivalent to enabled (¢), the two conjuncts in the sepa-
rable form must satisfy the condition:

guard = 3v'[action].

Otherwise, part of the enabling condition of e is specified
by action.

In summary, the relational notation has two basic con-
structs: state formulas and event formulas. A state for-
mula defines a set of system states. An event formula de-
fines a set of system state transitions.

As an example, consider the following model of an ob-
ject moving in two-dimensional space. Imagine that the
object is an airplane flying from Austin to Dallas. There
are two state variables: y is the horizontal distance from
Austin along a straight line between the two cities, and z
is the altitude of the airplane. The domain of y is {0, 1,
*++, N} suchthat y = 0 indicates that the airplane is at
Austin airport and y = N indicates that the airplane is at
Dallas airport. The domain of z is the set of natural num-
bers such that z = 0 indicates that the airplane is on the
ground. The initial condition is y = 0 A z = 0, indicating
that the airplane is on the ground at Austin airport. The

'The choice is not strictly nondeterministic if the system specification
includes fairness assumptions for some events (see Section 111 below).

events are defined as follows:
TakeOff =y =0Az=0Ay =1A10<7 =20

Landing = y =N —-1A10 =z <20
Ay =NAZ =0
Fy=1<ys=sN-2A10=2z=<20
Ay ' =y +1
FlyHigher = 1 =y = N—-1A10=2<20
N =z+1
FlyLower = 1 <=y = N—-1A10< 2z =20

ANz =2z —1.

III. SYSTEM SPECIFICATION

A system can be specified in many ways, in many no-
tations. In this paper, we consider two related ap-
proaches. In the first approach, a system is specified by
defining a state space, and giving a set of requirements
each of which is an assertion of a desired system property.
Two classes of system properties are of interest to us in
this paper, namely, safety properties and progress prop-
erties. In particular, we will use safety assertions of the
form,

P is invariant
and progress assertions of the form,?
P leads-to Q

where P and Q are state formulas for the state space de-
fined.

In the second approach, a specification consists of a
state transition system given in the relational notation.®
The two approaches are related in the following sense. A
specification consisting of a state transition system imple-
ments a specification consisting of a set of requirements
iff all of the requirements are properties of the state tran-
sition system.

We use the airplane example in Section II to illustrate
the two classes of system properties. A safety requirement
of the airplane example may be stated as follows. The
airplane is in a specified portion of the air space if it is
not at one of the airports. This is formalized by the as-
sertion

y# O0Ay# N= 10 < z < 20 is invariant.

Safety properties of a state transition system are deter-
mined by its finite paths. The following definitions apply
to state transition systems specified in any notation.

“In writing assertions containing leads-ro, we adopt the convention that
its binding power is weaker than any of the logical connectives in state
formulas.

*And some fairness assumptions. The meaning of fairness is introduced
below and can be ignored for now. In general. a specification may consist
of a state transition system together with a set of safety requirements and
progress requirements. Such a general approach subsumes both approaches
herein. See [13], [34].




758 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING. VOL. 16, NO. 7. JULY 1990

Definition: A system state s is reachable iff there is a
finite path from an initial state to s.

Definition: P is invariant for a state transition system
iff every reachable state of the system satisfies P.

If a parameter occurs free in the state formula P, then
P is invariant for a state transition system iff, for every
allowed value of the parameter, P is invariant for the sys-
tem.

A progress requirement of the airplane example may be
stated as follows. The airplane, initially at Austin, even-
tually arrives at Dallas. This is formalized by the asser-
tion

Yy=0Az=0Ieadstoy =NAz=0.

Let us first define the meaning of P leads-to Q for a
sequence of states 0 = <s,, 5, - - + >. The sequence
may be finite or infinite.

Definition: P leads-to Q for ¢ iff the following holds:
if some state s; in o satisfies P then there is a state s;ing
(J = i) that satisfies Q.

Before defining ‘P leads-to Q for a specification,’” we
next introduce the concept of fairness and two fairness
criteria.

Note that a state transition system specified in the re-
lational notation has the additional concept of named
events. In any system state, several events may be en-
abled. Strict nondeterminism in choosing the event to oc-
cur next allows the possibility that some events never oc-
cur even though they are enabled continuously (or
infinitely often). In the airplane example, for instance,
there are many infinite paths that correspond to system
executions in which the event Fly is continuously enabled
but never occurs. Such unfair behavior is undesirable and
should be disallowed by the system specification.

One way to disallow certain unfair behaviors is to refine
the state transition system specification to include an event
scheduler. In the airplane example, for instance, we can
keep a count of the number of times FlyHigher and
FlyLower have occurred since the last occurrence of Fly
or TakeOff; also, FlyHigher and FlyLower are disabled
whenever the count exceeds some threshold value. Such
a specification requires an additional state variable and
various modifications of event actions. The specification,
moreover, leaves little flexibility to system implementors
who might have a different, perhaps better, solution to the
event scheduling problem.

Instead of specifying event scheduling explicitly, fair-
ness assumptions can be included as part of a system spec-
ification. Different criteria of fairness abound in the lit-
crature. The one that we use most often is weak fairness,
also called justice [19]. Informally, the meaning of an
event having weak fairness is the following: if the event
is continuously enabled in a system execution, it eventu-
ally occurs. (A more precise definition is given below.
The strong fairness criterion is also defined below and
used in subsequent sections.) For example, the airplane
specification satisfies the progress requirement stated
above, if the events TakeOff, Fly, and Landing are sched-

uled in such a way that each event has weak fairness; the
other events in the example do not have to be fairly sched-
uled.

Generally, to satisfy a given set of progress require-
ments, only some of the events in a specification need to
be fairly scheduled. To facilitate implementation, a spec-
ification should include fairess assumptions that are as
weak as possible. Very often, fairness assumptions can
be weakened by defining a new event to be the disjunction
of a set of events already defined, e.g.,

ey = Bm[e3(m)]
es = e Ve

and showing that only the new event needs to be fairly
scheduled, and not the individual events in the set.

For events defined by a parameterized formula, such as
e3(m), we have to be especially careful. Suppose the do-
main of m is infinite. In this case, fair scheduling of e;(m)
for every allowed value of m may or may not be a phys-
ically meaningful assumption.

At this point, we note that the set of paths is not ade-
quate for defining fairness criteria for events. Specifi-
cally, each state transition ina path, say (s;, $;), may be
due to the occurrence of any of several events. Therefore,
the path may correspond to many possible system execu-
tions.

To define fairness criteria for events, we represent a
system execution by a path in which each transition is
labeled by the name of the event whose occurrence caused
the transition. We refer to such a labeled path as a behav-
ior.

Consider an event e and an infinite behavior B; we de-
fine two fairness criteria:

® Event e has weak fairness for infinite behavior B iff
e either occurs infinitely often or is disabled infinitely
often in 8.*

® Event e has strong fairness for infinite behavior B iff
the following holds: e occurs infinitely often in 8 if it is
enabled infinitely often in S.

It is easy to see that if 8 satisfies the strong fairness
criterion for event e, then it also satisfies the weak fair-
ness criterion for event e. (The converse does not hold.)
The weak and strong fairness criteria are the only ones
used in this paper. Thus, when we say that a specification
includes a fairness assumption for event e, we mean that
event e has either weak fairness or strong fairness.

For a given specification consisting of a state transition
system and a set of fairness assumptions, the allowed be-
haviors of the specification are defined as follows:®

*The following definition is equivalent: event ¢ has weak fairness for
infinite behavior 8 iff for some state S in B and for all i = k. if state 8
satisfies enabled (e ) then there is some state s;in B (j = k) such that the
transition from s;tos;, | is labeled ¢.

*This definition is motivated by the specification of a program module
to satisfy its interfaces: specifically. some interface events may be con-
trolled by the environment and not controllable by the module [13], [18).
For this reason. an allowed behavior is not necessarily maximal, as in [19].



LAM AND SHANKAR: RELATIONAL NOTATION FOR STATE TRANSITION SYSTEMS 759

* A finite behavior of the state transition system is an
allowed behavior of the specification iff every event that
has a fairness assumption in the specification is disabled
in the last state of the behavior.

e An infinite behavior of the state transition system is
an allowed behavior of the specification iff every fairness
assumption of the specification holds for the behavior.

Definition: P leads-to Q for a behavior 3 iff P leads-to
Q for the sequence of states in 3.

Definition: P leads-to Q for a specification iff P leads-
to Q for every allowed behavior of the specification.

If a parameter occurs free in P or Q, then P leads-to Q
for a specification iff, for every allowed value of the pa-
rameter, P leads-to Q for the specification.

In Section IV below, we present some inference rules
for proving the two kinds of assertions introduced above.
Before doing that, we digress and discuss two issues in
system specification that are practically significant but not
really needed for the theoretical development in the bal-
ance of this paper.

The first issue has to do with the necessity of leads-to
assertions. An alternative way to state that a system is
making progress or doing useful work is by assertions of
real-time behavior. To do so, we can use some state
variables to represent values of clocks and timers in the
system. The requirement that an event must occur within
a certain duration of time is stated as an invariant asser-
tion. In particular, clocks are not allowed to reach certain
values without the event having occurred; that is, clock
ticks are events whose occurrences must preserve the real-
time requirements of the system. In addition to proving
that the real-time requirements are invariant, we must also
prove that clock values are unbounded [33]. (This ap-
proach was also suggested by Lamport [17].)

The second issue is the use of auxiliary variables in a
specification. Some of the state variables in ¥ may be aux-
iliary variables, which are needed for specification and
verification only, and do not have to be included in an
actual implementation (this notion will be made more pre-
cise in Section VII). For example, an auxiliary variable
may be needed to record the history of certain event oc-
currences.® Informally, a subset of variables in » can be
considered auxiliary if they do not affect the enabling con-
dition of any event nor do they affect the update of any
state variable that is not auxiliary [24]. To state the above
condition precisely, let u be a proper subset of v, and u’
= {v':v e u}. The state variables in u can be considered
auxiliary if, for every event e of the system, the following
holds:

e = vuiu'le].

To see why auxiliary variables do not have to be in-
cluded in an actual implementation of a specification,
suppose there is an observer and it can only see nonaux-
iliary variables. The above condition ensures that the set

®What we call auxiliary variables here are also known as history vari-
ables. Abadi and Lamport [1] defined another kind of auxiliary variables
called prophecy variables.

of ‘‘observable behaviors’” of the specification is the same
whether or not auxiliary variables are part of the system
state. We will elaborate on this explanation in Section VII
after the theory of refinement and projection has been pre-
sented.

IV. ProoF RULES

Consider a specification consisting of a state transition
system given in the relational notation and a set of fair-
ness assumptions. Let e denote an arbitrary event and Ini-
tial denote a state formula specifying the initial condition.

Notation: For an arbitrary state formula Q, we use Q'
to denote the formula obtained by replacing every free
state variable v in Q by v’.

Invariance Rules: For a given specification, P is in-
variant if one of the following holds:

o Jnitial = P and, foralle, PNe = P'.

¢ For some R, R is invariant and R = P.

In applying the first invariance rule, if / is invariant for
the specification, we can replace P A ¢ = P’ in the rule
with IAI' AP A e = P'. Also, we follow this conven-
tion: for p and g being formulas with free variables, p =
q is logically valid iff p = g is logically valid for all val-
ues of the free variables.

For convenience, if P is invariant for a specification,
we refer to the formula P as an invariant property of the
specification or, simply, an invariant.

Definition: For a given specification in which event ¢;
has weak fairness, P leads-to Q via e; iff

)PAe = Q,
ii) foralle, PAe = P'Vv Q', and
iii) P = enabled (e;) is invariant.

Definition: For a given specification in which event ¢;
has strong fairness, P leads-to Q via e; iff

)PAe = Q'
ii) foralle, PAe = P’V Q', and
iii) P leads-to Q V enabled(e;).

If I is invariant for the specification, it can be used to
strengthen the antecedent of every logical implication in
the above definitions; that is, replace P by I A I’ A P.
Also, if the event formula defining ¢, has a free parameter,
then P leads-to Q via e; holds iff each part of the appli-
cable definition holds for every allowed value of the free
parameter.

Leads-to Rules: For a given specification, P leads-to Q
if one of the following holds:

e P = (is invariant. [Implication ]
¢ For some event ¢; that has fairness,
P leads-to Q via e;. [Event]
e For some R, P leads-to R and R leads-to Q.
[ Transitivity ]
e P=3meM[P(m)]and

vm € M:P(m) leads-to Q. [ Disjunction ]

Note that there are actually two Event rules, one for
events that have weak fairness and one for events that have



760 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING. VOL. 16. NO. 7. JULY 1990

strong fairness, to be referred to as the weak and strong
Event rules, respectively. In the Disjunction rule, m de-
notes a parameter with domain M; also, m does not occur
free in Q. A special case of the Disjunction rule is the
following: P leads-to Q if P, leads-to Q, P, leads-to Q,
and P = P, V P,.

What we have presented above is a fragment of linear-
time temporal logic.” In the next section, we consider
message-passing networks with unreliable channels. An
additional leads-to rule is presented there. But before
doing so, we give some examples to illustrate applications
of the above rules.

In the first example, let ; denote an event that has weak

fairness in a given specification. Let count (e;) be an aux-
iliary variable that counts the number of occurrences of ¢;
from the beginning of system execution. Specifically, let
the value of count(e;) be zero initially. Add count (¢;)’
= count(e;) + 1 as a conjunct to the formula that defines
;. Add count(e;)’ = count(e;) as a conjunct to the for-
mulas that define other events. The following progress as-
sertion states a consequence of the weak fairness assump-
tion for e;. It can be easily proved using the weak Event
rule and leads-to-via-event definition.

enabled(e;) N count(e;) = k
leads-to count(e;) = k + 1 V —enabled(e;)

As other examples, we prove two lemmas that are used
in Section VI.

Lemma 1: For a given specification,
Py leads-to (Q V P,) if

i) Py leads-to (Q V P,), and
ii) Py leads-to (Q V P,).

Proof:

ii) 0 =0QVP, (by weakening Q = Q)
iv) Q leads-to (Q vV P,)
(by Implication rule on iii))
v) (QV Py) leads-to (Q V P,)
(by Disjunction rule on iv) and ii))
vi) Py leads-to (Q v Py)
(by Transitivity rule on v) and i)).
Q.E.D.

Lemma 2: For a given specification, if I is invariant -

and P A I leads-to Q, then P leads-to Q.
Proof:

I=(P=(PAI)) (fromIANP = PAI).
i) P = (P A1) is invariant.

(by second invariance rule on i))

iii) P leads-to P A I. (by Implication rule on ii))

7Essemially a derivative of the work in [19], {27]. A proof that the in-
variance and leads-10 rules are sound is straightforward and is omitted. The
reader is also referred to [4] for a comprehensive treatment of proof rules.

The proof is complete by applying the Transitivity rule
to iii) and the leads-to property in the lemma’s hypothe-
sis.

Q.E.D.

V. DISTRIBUTED SYSTEMS

The relational notation and proof method introduced
above are not dependent on whether a distributed or cen-
tralized system is being specified. The relevant assump-
tion we have made is that event actions are atomic; con-
sequently, concurrent actions in different modules of a
system are modeled by interleaving them in any order.

We next consider distributed systems that are message-
passing networks. In particular, the network topology is
a directed graph whose nodes are called entities and whose
arcs are called channels. For each channel i, there is a
state variable that represents the channel state, given by
the sequence of messages traveling along the channel. Er-
rors that can occur to messages travelling along a channel
are specified by introducing events whose occurrences can
update the channel state.® The events of a channel can
access (read or update) only the channel state variable and
auxiliary state variables of the system.

Each entity in a distributed system is specified by a set
of state variables and events. Every nonauxiliary state
variable in the set is assumed to be local to the entity; that
is, it can only be accessed by events of the entity.® Entity
events can also access auxiliary state variables of the sys-
tem, as well as state variables representing channels that
are connected to the entity.

For clarity in writing specifications, channel state vari-
ables are accessed by entities only via send and receive
primitives that are defined for the channels. For example,
let z; be a state variable representing channel i that is a
channel with unbounded capacity. Let m denote a mes-
sage. Define

Send;,(m) = z) =z, @ m
Rec,(m) =z, =m @ 2/

where @ denotes the concatenation operator. Note that
Rec;(m) is false if z; is empty. Primitives for channels
with a finite capacity can be similarly defined. Such a
primitive is simply an event formula that has m, z; and
z/ as free variables; thus the names Send;(m) and Rec,(m)
are introduced primarily to improve the readability of
events in a system specification.

For a given message m, an event whose occurrence

*If a channe! is assumed to be error-free. then no event is introduced for
the channel and it behaves like a FIFO queue. If messages traveling along
a channel can be duplicated and arbitrarily reordered. it might appear that
representing the channel state by a bag of messages is more appropriate. It
is easy to see. however, that there is no loss of generality in representing
the channel state by a sequence of messages.

Actually. a nonauxiliary state variable of one entity can be read by
another entity provided that the value read affects the update of auxiliary
variables only.



LAM AND SHANKAR: RELATIONAL NOTATION FOR STATE TRANSITION SYSTEMS 761

sends message m along a specified channel is called a send
event of m. An event whose occurrence receives message
m from the channel is called a receive event of m. If a
message symbol m occurs free in a formula that defines a
send event or a receive event for the channel, the domain
of m is assumed to be known; for notational brevity, it
will not be explicitly shown.

To prove that a message-passing network has useful
progress properties, we need two assumptions. First, we
assume that the system specification includes ‘‘adequate’’
receive events in the following sense.

Receive Events Assumption: For message m that is sent
along channel i, let {e,(m)} denote the set of receive
events of m. For every message and every channel, the
set of receive events in the specification satisfies

m = Head(z;) = ih[enabled(e,,(m))] is invariant

for the specification, where z; is the channel state vari-
able, Head is a function whose value is the first element
of z; if z; is not null; otherwise, Head returns a null value
(that is not an allowed message value).

For distributed systems with unreliable channels that
can lose or reorder messages, a second assumption is
needed, namely: the unreliable channels have some min-
imal progress property. (Otherwise, the channels may be
so unreliable that they do not really exist.) Such an as-
sumption should be as weak as possible such that it can
be satisfied by most physical communication links. The
following is adapted from [6].

Channel Progress Assumption: If messages in a set M
are sent infinitely often along a channel, then they are
received infinitely often from the channel.

Informally, if messages in set M are sent repeatedly
along a channel, one of them is eventually received. The
channel progress assumption can be viewed as a fairness
assumption. For a system with unreliable channels, an in-
finite behavior is an allowed behavior of the specification
only if the channel progress assumption holds for the be-
havior.

Before stating another rule for proving leads-to asser-
tions, we define a new leads-ro-via relation between state
formulas. In the following definition, m denotes a mes-
sage, e, denotes a receive event of messages in set M for
a given channel, and count(M) denotes an auxiliary
variable whose value indicates the total number of times
messages in M have been sent along the channel since the
beginning of system execution.

Definition: For a given specification, P leads-t0 Q via
M iff

i) foralle,, vme M[P A e,(m) = Q'],
ii) foralle, PAe = P'v Q’, and
iii) P A count(M) = k
leads-to Q V count(M) = k + 1.
Given the channel progress assumption, we have the fol-

lowing leads-to rule (in addition to the ones presented in
Section 1V).

Leads-to Rule: For a given specification, P leads-to Q
if

e for some M, P leads-to Q via M. [ Message |

We next give a few general observations about the use
of our notation and proof method for specifying distrib-
uted systems.

First, each nonauxiliary state variable in a distributed
system, other than channel state variables, is local to some
entity and can be accessed by any event of that entity.
Suppose we want to refine the entity into a network of
entities. To do so, we may have to make some of the non-
auxiliary state variables of the entity into auxiliary vari-
ables and also introduce new state variables (more on re-
finement in the next section).

Second, specific applications of our proof rules may be
very simple for events that access a small subset of state
variables. In applying the first variance rule, for instance,
if none of the free state variables in P is updated by event
ethen P A e = P’is trivially satisfied. While most events
in a distributed system access a small subset of state
variables, the above observation is applicable to any sys-
tem specification. Note that information on the subset of
state variables accessed by an event is available from the
syntax of the event definition.

Lastly, in applying leads-to rules to prove a progress
property, we must be careful to avoid circular reasoning.
A good practice is to present the proof as a sequence of
leads-to properties: Ly, L;,  *+ , L,,. Suppose L, is the
desired property. To prove L; in the sequence by a leads-
to rule, or a lemma, that uses another progress property
L;, we require that L; precedes L; in the sequence.

VI. REFINEMENT AND PROJECTION OF RELATIONAL
SPECIFICATIONS

Throughout this section, we consider specifications A
and B, each consisting of a state transition system and a
set of fairness assumptions. We introduce two relations
between A and B: A is a refinement of B, and A is a well-
formed refinement of B. Before defining what they mean,
we mention two possible applications for motivation.
First, A is the specification of a multifunction communi-
cation protocol and B is the specification of a smaller pro-
tocol that implements just one of the functions of 4 [31].
Second, A is the specification of a program module and B
is the specification of its user interface. '’

The refinement relations are useful for composing sys-
tem specifications, as well as for constructing proofs of
system properties, in a hierarchical fashion. (We will
elaborate on applications in Section IX). In general, we
proceed as follows. Suppose B is given or is specified first,
and some desirable properties have been proved for B. We
would like to derive 4 from B such that somie or all of the
desirable properties proved for B are guaranteed, by sat-

"“Actually, a small extension to the theory presented in this section is
needed for interfaces: see |13].



762 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING.

isfying certain conditions, to be properties of A. That is,
they do not have to be proved again for A.

To define the refinement relation, let ¥, and V; denote
the state variable sets of A and B, respectively. Specifi-
cally, let V, be the set {v), v5, - -+ , v,} and Vj the
subset {v(, v5, * -, v,}, where m < n. That is, in
deriving A from B, every state variable in B is kept as a
state variable in 4 with the same name and the same do-
main of values. (This is not a restriction, as we shall see,
because such a state variable can be made into an auxil-
iary variable in A.) Since Vj is a subset of V, there is a
projection mapping from the states of A to the states of B,
defined as follows: those states in A having the same val-
ues for {v,, v5, - - -, v, } are mapped to the same state
in B. We further require that every parameter in B is a
parameter in A with the same name and same domain of
values. Given the above requirements, any state formula,
say P, of B is a state formula of 4 and can be interpreted
directly for 4 without any translation. The interpretation
is this one: if state r of B satisfies P then any state of A
whose image is ¢ under the projection mapping satisfies
P.

For clarity, we assume that A and B have finite sets of
state variables and parameters. The domain of a state
variable (or parameter) may be countably infinite.

Let {a;} denote the set of events of A, and {b,} the
set of events of B. We first provide conditions for an event
in specification A4 to be a refinement of events in specifi-
cation B. An informal explanation then follows.

Event g; in A4 is a refinement of events in B if, for some
invariant R, of A, one of the following holds:

Ry A a; = 3k[b;]  (event refinement condition)

Rinai=vi=v,Avs=0v,A - A0, =0

m

(null image condition).

Very often, a; is the refinement of a single event in B.
In this case, to check that g; satisfies the event refinement
condition, it is sufficient to show that, for some b,, either
a; = bk OTRA ANa;, = bl«"

Informally, the meaning of event a; being a refinement
of events in B is the following. For every state transition
defined by a; that is observable in the state space of B, the
same observable state transition is defined in B. More pre-
cisely, if a; can take 4 from state s, to s, then there is
some event b, that can take B from state t, to 1,, where t,
and 7, are the images of s, and s,, respectively, under the
projection mapping. This condition can be relaxed by in-
troducing an invariant property R, of A, in which case the
condition has to hold only for each (s,. s,) pair such that
sy and s, satisfy R,. Note that the invariant R, introduced
will have to be proved separately to be a property of A.

The null image condition says the following. Event a;
is a refinement of events in B if none of its state transitions
are observable in B under the projection mapping, namely,
ty = t, for all s, and s, reachable in A such that (s,, s,)
is defined by a,. This can be checked very simply by not-

VOL. 16, NO. 7. JULY 1990

ing that the action of a; does not update any state variable
belonging to V.

Suppose specification B is given, and specification A4 is
to be derived from B. The invariant properties needed to
guarantee events in 4 to be refinements of events in B
often arise naturally in the following manner. Suppose we
want to replace a state variable x in B by two state vari-
ables y and z in A: also, x is to become an auxiliary vari-
able in A. To prove a; = b;, where b, contains x as a free
variable, a state formula specifying the relation between
X, v, and z in A must be included as a conjunct of R,.
Note that this relation encodes the same information as
the multivalued possibilities mapping of Lynch and Tuttle
[18]. For the special case of the relation being a function,
the function is just like the state functions used by Lam-
port [14]. We provide an example to illustrate this obser-
vation.

Example: Let x be a state variable of B. Its domain is
the set of natural numbers. The following event is defined
in B:

by = even(x) Ax' = x + 1

where even (x) is true iff x is an even number. In deriving
A from B, suppose we introduce a variable y with domain
{0. 1} to replace x, and the following event is defined:

a;,=y=0Ay =1Ax"=x+ 1.

Event a, is a refinement of b, given that y = x mod 2 is
invariant for A. Note that x can be made into an auxiliary
variable of A4 so that it does not have to be included in an
actual implementation of A4.
We next consider the refinement of messages. Let M be
a set of messages that can be sent along a channel in B.
In deriving A from B, the message set M can be refined
as follows. Each message m in M is refined to a nonempty
set N,, of messages in A. For two distinct messages i and
JinM, we requlre N; N N; = . For message m in B and
message n in A, we say that n is a refinement of m, or m
is the image of n, if and only if n € N,,. Let N denote the
set of messages that can be sent along the same channel
in A,
N = U NIII U NH(“
meM

where N, is a set of new messages, if any. Such new
messages are not observable in the state space of B and
are said to have a null image in B. Note that the receive
events assumption must be satisfied by specification A for
all messages in V.

Example: In B, the message set for some channel con-
sists of the message ack only. In A, the message set for
the same channel is refined to {ackO, ackl, nak}, such
that ack is the image of ack0 and ackl, and the new mes-
sage nak has a null image.

If N is different from M for a channel, then the channel
state variables in 4 and B have different domains for the
same channel. The projection mapping from channel states
in A to channel states in B is defined as follows [12]. Let



LAM AND SHANKAR: RELATIONAL NOTATION FOR STATE TRANSITION SYSTEMS 763

y = <ny, ny, -+ > be a sequence of messages repre-
senting a channel state in A. The image of the channel
state, denoted by image (y), is the sequence obtained by
replacing each message in y by its image in B and deleting
null images from the resulting sequence.

Given the above definition of projection mapping for
channel states, a state formula of B, say P, can be inter-
preted for 4 as before, namely: state s of A satisfies P iff
the image of s in B satisfies P. In this case, however, a
translation between the message sets N and M is needed
to interpret state formulas of B for A.

For a channel with message set N in 4 and message set
M in B, let y denote the channel state variable in 4, and
x the channel state variable in B. The send and receive
primitives in B are

Send(m) = x' =x@mand Rec(m) =x=m@ x'.
_ The primitives for the same channel in A4 are
Send(n) =y =y@nandRec(n) =y=n@y'.

For send and receive events in 4 to be refinements of
events in B, it is necessary that send and receive primi-
tives in A are refinements of send and receive primitives
in B for the same channel. To show that such send and
receive primitives satisfy the event refinement condition,
let x be an auxiliary state variable of A. For every mes-
sage n in N with a non-null image m in M, add the con-
junct x’ = x @ m to the formula defining Send(n), and
the conjunct x’ = Tail(x) to the formula defining Rec(n).
It is easy to see that x = image(y) is an invariant of A,
and that this invariant property ensures that the send and
receive primitives satisfy the event refinement condition.
Note that the relation between x and y defined by the in-
variant encodes the same information as the projection
mapping defined between channel states in A and channel
states in B.

Let Initial, and Initialy be state formulas defining the
initial conditions of specifications 4 and B, respectively.

Definition: A is a refinement of B if and only if every
event in 4 is a refinement of events in B and Initial, =
Inifialg.

We say that B is an image of A under the projection
mapping if and only if A is a refinement of B; that is, the
relation image is the inverse of the relation refinement by
definition. In some applications, we are first given 4, and
B is to be derived from A. For example, let A be some
multifunction communication protocol. To prove that A
has certain desirable properties, the following approach
may be taken. Derive from A, single-function protocols
that are images of A. Prove that these single-function pro-
tocols have the desirable properties, and infer that A has
the same properties by the lemmas and theorems pre-
sented below.

Recall that P is a state formula of specification B iff
every free variable of P is either in V or is a parameter
of B.

Theorem I: Let specification 4 be a refinement of spec-

ification B. If P is invariant for B then P is invariant for
A, where P is an arbitrary state formula of B.

Proof: Let Ry denote a state formula that satisfies the
first invariance rule for B and Rz = P. Let R, be an in-
variant of A that makes events of A satisfy the event re-
finement condition or the null image condition. First, from
Initial, = Initialg and Initialy = Ry, we have Initial, =
Rp. Second, for every event a; of A4 that satisfies the event
refinement condition, we have

RB/\RA/\H,' = RB/\(EIk[b,\])
- R

For every event a; of A that satisfies the null image con-
dition, we have

RB/\RA/\ai:RB/\U[:UI/\Ué:Uz
AN Ul’n = Uy
= Rp.

Thus, Ry is invariant for A by the first invariance rule.

Given that Rg = P holds, the proof is complete by the

second invariance rule. Q.E.D.
For a given specification, the following property

forall evente, PAe = P'V Q'

is called P unless Q, which is a safety property [4]. If A
is a refinement of B, the following lemma says that every
unless property of B is also an unless property of A.

Lemma 3: Let specification 4 be a refinement of spec-
ification B. If P unless Q holds for B then P unless Q
holds for A, where P and Q are arbitrary state formulas
of B.

A proof of Lemma 3 is immediate by applying the event
refinement and null image conditions. We next consider
leads-to properties of B and provide various sufficient
conditions for some, or all, of these properties to be prop-
erties of A. We first state a useful lemma, which is the
PSP theorem in [4].

Lemma 4: For a given specification, if P unless Q holds
and Q, leads-to (5, then

P A Q, leads-to Q V (P A Q,) for the specification.

A proof of Lemma 4 is given in the Appendix. (Note
that our inference rules and fairness assumptions are dif-
ferent from those of Chandy and Misra [4].)

Suppose we have proved that P leads-to Q for B. The
proof may be direct, by an application of the Implication
rule or the weak Event rule, or it may consist of a se-
quence of leads-to properties. We present below various
conditions under which we can infer P leads-to Q for A,
where P and Q are state formulas of B.

First, if the proof is by an application of the Implication
rule, we immediately have P leads-to Q for A by Theorem
1. Next, consider the weak Event rule. Suppose P leads-
to Q via b; for B, where b; has weak fairness. To guarantee




764 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING. VOL. 16, NO. 7. JULY 1990

that P leads-to Q for A, we may apply Lemma 5, 6, or 7,
where P and Q are assumed to be known. Or we may
apply Lemma 8, where P and Q can be arbitrary state
formulas of B. Proofs of these lemmas are given in the
Appendix. In the balance of this section, R, denotes some
invariant of 4.

Lemma 5: Let specification 4 be a refinement of spec-
ification B, and b; an event that has faimess in B. If P
leads-to Q via b; for B, then P leads-to Q for A if there is
some event in A, denoted by a;, that has weak fairness, is
a refinement of b;, and

RyANP = QV enabled(a;).

The last condition in Lemma 5 can be weakened if event
a; has the following noninterference property in A: for all
eventa;, i # j,

R4 N enabled(a;) A a; = enabled(a;)'.

Lemma 6: Let specification A be a refinement of spec-
ification B, and b; an event that has fairness in B. If P
leads-to Q via b; for B, then P leads-to Q for A if there is
some event in A, denoted by a;, that has weak fairness
and the noninterference property, is a refinement of b;,
and

Ry A P leads-to Q V enabled(a;) for A.

However, if event g; has strong fairness in 4, the non-
interference property is not needed. We have the follow-
ing result.

Lemma 7: Let specification A be a refinement of spec-
ification B, and b; an event that has faimess in B. If P
leads-to Q via b; for B, then P leads-to Q for A if there is
some event in A, denoted by g;, that has strong faimess,
is a refinement of b;, and

R, A P leads-to Q V enabled(a;) for A.

Now, suppose we want to guarantee that if P leads-to
Q via b; for B, then P leads-to Q for A, for arbitrary state
formulas P and Q. We need conditions that do not make
use of P or Q.

SWF Condition: For event b; that has weak fairness in
B, an event in A, denoted by a;, is a well-formed refine-
ment of b; if

® a;is a refinement of b;

] RA N enabled(b;) = enabled(a;), and

® a; has weak fairness.

The conditions in SWF are simple and easy to use. It
has been our experience, in specifying communication
protocols and concurrency control protocols, that many
events can be refined to satisfy SWF. Such an event is
said to be a strongly well-formed refinement. But some-
times, SWF cannot be satisfied. or b; has strong fairness
in B. We provide a second condition.

WF Condition: For event b; that has fairness (weak or
strong) in B, an event in A4, denoted by a;, is a well-formed
refinement of b; if

®gisa reﬁnement of b;

* R4 A enabled (b)) leads-to enabled(a;) for A, and

S -

* cither a; has weak fairness and the noninterference

propeny, or a; has strong fairness.

Lemma 8: Let specnﬁcatlon A be a refinement of spec-
ification B, and b; an event that has weak fairness in B. If
P leads-to Q via b for B, then P leads-to Q for A if there
is some event in A that is a well-formed refinement of b,.

Note that Lemmas 5-7 are proved for an event b that
has fairness (weak or strong) in B. Lemma 8 is proved for
an event b; that has weak fairness in B; the more general
result for an event b; that has strong fairness in B is in-
cluded in Theorem 2 below. For some applications, it is
desirable that every leads-to property of B is a leads-to
property of 4. A sufficient condition is the following.

Definition: Specification A is a well-formed refinement
of specification B (or B is a well-formed image of A) if
and only if

® A is a refinement of B, and

* for every event b; that has fairness (weak or strong)

in B, there is an event in A that is a well-formed re-
finement of b;.

Theorem 2: Let specification A be a well-formed re-
finement of specification B. If P leads-to Q for B then P
leads-to Q for A, where P and Q are arbitrary state for-
mulas of B.

A proof of Theorem 2 is given in the Appendix. As an
example, let us now consider a refinement of the airplane
specification in Section II. Let the system variables y and
z be augmented by a third state variable x, with domain
over all integers, so that we will be reasoning about tra-
jectories of the airplane in three-dimensional space. Ini-
tially, x = 0. Five events, labeled by *, are defined in
terms of events of the 2-variable specification as follows:

TakeOff * = TakeOff Ax =0 A —10 < x' < 10
Landing* = Landing A —10 = x < 10Ax' =0
Fly* = Flyn -10 < x < 10

FlyHigher* = FlyHigher A —10 < x < 10
FlyLower* = FlyLower A —10 < x < 10.

It is easy to see that the above events are refinements of
corresponding events in the two-variable specification.
Add the following two events:

FiyLeft = 1 =y <= N—-1A10<z=<20A
“0<x=10AXx =x—-1
FiyRight =1 <= y<s N-1A10<z<20A

“-0=x<10AXx" =x+ 1.

The two new events are also refinements because they
are null-image events whose occurrences are not observ-
able in the two-variable specification. Hence, the new
three-variable specification is a refinement of the two-
variable specification. Like the two-variable specifica-
tion, the events TakeOff *, Fly*, and Landing* have weak
fairness. It is easy to show that these events satisfy the
SWF condition given the following invariant require-



LAM AND SHANKAR: RELATIONAL NOTATION FOR STATE TRANSITION SYSTEMS 765

ment:
Ri=(y=0Az=0=x=0)

Al=sysN-1= —10 =x < 10).

The above is easily shown to be an invariant of the three-
variable specification. Thus invariant and progress prop-
erties of the two-variable specification are also properties
of the three-variable specification. Once proved for the
two-variable specification, they do not have to be proved
again for the three-variable specification.

In summary, we have given several conditions to en-
sure that some or all of the properties of specification B
are properties of specification A. Of these conditions, the
well-formed refinement relation between two specifica-
tions is the strongest. (Its semantics is essentially the same
as the simulation or implementation relation of other au-
thors [1], [15], [16], [18].) For some applications, such
a condition may be too strong to be useful. For these ap-
plications, it may be enough to ensure that only safety
properties of B are preserved in A4, or safety properties and
some specific progress properties of B are preserved in A.
In this case, only those events that are needed in the proof
of the desired progress properties of B have to satisfy the
WF or SWF condition. In fact, the weaker conditions in
Lemmas 5-7 can be used instead.

In general, the SWF condition should be regarded as a
“‘shortcut.”” For a given event, the SWF condition is
checked first. If it is too strong and cannot be easily sat-
isfied, then one of the weaker conditions is used.

In refining the events of B to get events of A, the event
refinement and null image conditions are generally easy
to satisfy. However, if some state variables in B are re-
placed by new state variables in 4 (and made into auxil-
iary variables in A) then finding an invariant that specifies
the relation between the old and new state variables may
be nontrivial. This problem is the same as finding a mul-
tivalued possibilities mapping from the states of A'to the
states of B, as in [18].

VII. AUXILIARY VARIABLES

We can now give a rigorous explanation of auxiliary
variables. Consider a specification 4 consisting of a state
transition system and some fairness assumptions. Let the
initial condition of A be denoted by Initial ; and its events
by {a;}. Suppose the set v of state variables of A is par-
titioned into two sets, u and x, such that an observer can
only see the state variables in x. In this case, the observ-
able behaviors of A are behaviors of a specification C de-
rived from A as follows. The state variables in C are the
ones in x. The initial condition of C is

Initial- = 3u[Initial ;).
The events of C are defined by
C; = Vuiu'[a,-]

for every event g; of A that does not have a null image in
the state space of C. Event c; has a fairness assumption in

C if and only if event a; has the same fairness assumption
inA."

Suppose the state variables in u have been shown to be
auxiliary variables of specification 4. In Section III, we
assert that auxiliary variables, introduced for specification
and verification, do not have to be included in an actual
implementation. The meaning of the assertion is this: in-
stead of implementing specification 4, we implement
specification C which does not have the auxiliary vari-
ables in u. (Note that x may contain other auxiliary vari-
ables that are not in u.) We next discuss how properties
of C are related to properties of A.

By the definition of auxiliary variables, every event g,
of A that does not have a null image in the state space of
C satisfies a; = VYu3u'[q;]. Thus we have a; = c;, which
is a form of the event refinement condition. Also, we have

Initial, = 3u|Initial ;]
= lnl”alC

Thus specification C is an image of specification 4 under
the projection mapping. Additionally, we have

enabled(c;)

Ix'VYuiu'[a;)

4

Yuix' 3w’ [a;}

i

Yuiv'[a;].

Since variables in u do not occur free in enabled(c;). we
have

vu(enabled(c;) = 3v'[a;])
which is, by our convention,
enabled(c;) = v'[q;]
= enabled(a;).

Thus, if event a; has weak fairness, ¢; and a; satisfy the
SWF condition. If event g, has strong faimess, c; and a;
satisfy the WF condition. And we have the following re-
sult.

Corollary I: Specification C is a well-formed image of
specification A.

From Corollary | and the results in Section VI, we
know that properties of C such as, P is invariant, P unless
Q and P leads-to Q, are also properties of A, where P and
Q are arbitrary state formulas of C (that is, variables in u
do not occur free in P or Q).

Actually, we know' more about specification C than
what is in Corollary 1. For specifications A and C given
above, we have the following results.

Theorem 3: Let p denote an arbitrary state formula of
A. If p is invariant for A, then 3u{ p] is invariant for C.

Corollary 2: P is invariant for C if and only if P is

"'Specifically. it is assumed that there is no event of A that has fairness
in 4 and a null image in C. (We cannot think of a reason for having such
events.) Given a finite number of such events, this assumption is not nec-
essary. It is made to simplify the proof of Lemma 12 in the Appendix.




766 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING. VOL. 16. NO. 7. JULY 1990

invariant for A, where P is an arbitrary state formula of
C.

Theorem 4: P leads-to Q for C if and only if P leads-
to Q for A, where P and Q are arbitrary state formulas of
C. -

Proofs of the above results are given in the Appendix.
Let p and g denote arbitrary state formulas of A. It can be
easily shown that if p unless q holds for A then Ju[p]
unless 3u[q] holds for C. (See Lemma 11 in the Appen-
dix.) However, if p leads-to q for A, it does not follow
that 3u[ p) leads-to 3ulq] for C. (There are counterex-
amples.)

Auxiliary variables play an important role in our meth-
odology for refining specifications. Let us revisit a sce-
nario considered in Section V1. In the process of refining
a specification B, suppose we want to replace a state vari-
able x by two new state variables y and z. In our meth-
odology, we first derive a specification A4 to be a refine-
ment of B. Specification A4 has all three state variables x,
y, and z. The events of A are then refined such that state
variable x is an auxiliary variable of A. Lastly, specifi-
cation C without the auxiliary variable x is derived from
A as a well-formed image. A nontrivial example can be
found in Section VIII where three specifications of the
alternating-bit protocol are given.

We next consider the special case of channel state vari-
ables. In modeling communication protocols, the mes-
sages that are sent along a channel can be represented by
a set of message types [33]. Each message type is a tuple,
for example, (data, cn). Each element of the tuple, called
a message field, has a specified domain of allowed values.
In the above example, the domain of data is a set of al-
lowed sequences of bits; the domain of cn may be the set
{0, 1}. The set of messages represented by a message
type is the cartesian product of the domains of its mesage
fields.

In specifying communication protocols, it is sometimes
convenient to use auxiliary message fields. For example,
consider the message type (data, cn, n) where n is a nat-
ural number. Think of n as the unbounded sequence num-
ber of a message while cn is the corresponding cyclic se-
quence number that is actually implemented. (Unbounded
sequence numbers are needed for specification and
proofs.) Since unbounded sequence numbers are not prac-
tically implementable, the message field n should be aux-
iliary in the same sense as an auxiliary variable.

Adding a new field, such as n, to a message type, such
as (data, cn), changes the domain of the channel state
variable z;. To ensure that the new field is auxiliary, in
the above sense, we can use the following reasoning.
Imagine that the channel state variable consists of two
variables z; and u;, where z; represents the channel state
and u; represents the sequence of n message fields asso-
ciated with messages of type (data, cn) in z;. The mes-
sage field n is auxiliary iff u; is an auxiliary variable of
the system specification; informally, u; does not affect the

enabling condition of any event nor does it affect the up-
date of any nonauxiliary state variable.

VIII. SpecCIFICATION EXAMPLES

To illustrate the various concepts and results presented
in this paper, we give three specifications of the alternat-
ing-bit protocol, each consisting of a state transition sys-
tem and a set of fairness assumptions. Specification AB,
uses state variables and message fields with unbounded
domains (i.e., natural numbers). We prove that AB, has
the desired safety and progress properties of the alternat-
ing-bit protocol. (Applications of our leads-to Message
rule are illustrated in the proof.) Specification AB, is de-
rived by adding binary-valued state variables and message
fields to AB,. We prove that AB, is a well-formed refine-
ment of AB,. Therefore, safety and progress properties
proved for AB, are also properties of 4B,. Furthermore,
we show that those state variables and message fields with
unbounded domains are auxiliary in AB,. Specification
AB, is obtained from AB, by deleting the auxiliary state
variables and message fields. AB; is a well-formed image
of AB,. AB- is most suitable for implementation because
it is the smallest (i.e., its sender has four states, its re-
ceiver has two states, and only modulo-2 sequence num-
bers are used in its messages).

For all three specifications of the alternating-bit proto-
col, consider the network configuration in Fig. 2, where
entity 1 is the sender and entity 2 is the receiver of data
blocks. Assume that the channels are lossy; that is, if the
channel state variable z; is not null, then a loss event is
enabled whose occurrence deletes an arbitrary message in
z;. (Recall that the channel progress assumption has to be
satisfied.) Initially, both channels are empty.

Notation: Let guard be a state formula and action an
event formula such that guard = enabled (action). Let y
be the subset of state variables such that the variables
{ y':y ey} occur free in action. Define the event formula

guard — action = (guard A action)

V (—guard Ny =y).

Note that if guard is false, none of the state variables in
y is updated by the above event formula.

A. Specification AB,

Let DATA denote the set of data blocks that can be sent
in this protocol. Let narural denote the set of natural num-
bers {0, 1, - - - }. Entity 1 sends only one type of mes-
sages, namely, (D, data, n) where D is a constant de-
noting the name of the message type, the domain of the
message field data is DATA, and the domain of the mes-
sage field n is natural. Entity 2 sends only one type of
messages, namely, (ACK, n) where ACK is a constant
denoting the name of the message type, and the domain
of the message field n is natural. Below, we use a Pascal-



LAM AND SHANKAR: RELATIONAL NOTATION FOR STATE TRANSITION SYSTEMS 767

Channel 1

Entity 1

Entity 2

Fig. 2. Network topology.

Channel 2

like notation to define state variables and their domains.
We use empty to denote a constant not in DATA.

* Entity 1 state variables:

produced: sequence of DATA, initially null.
s :natural, initially 0.
sendbuff: DATA U empty, initially empty.

¢ Entity 1 events:

Produce(data) = sendbuff =empty
A produced'=produced@data
A s'=s+1 A sendbuff'=data

SendD = sendbuff + empty
A Send(D, sendbuff, s—1)
RecACK(n) =  Recy,(ACK, n)

N ((sendbuff +empry A s=n)
— sendbuff'=empry).

* Entity 2 state variables:

consumed: sequence of DATA, initially null.
r:natural, initially 0.

* Entity 2 event:

RecD(data,n) = Rec (D, data, n) A\ Send,(ACK, r)
A (r=n—
(consumed’ = consumed@data
A r'=r+1)).

Note that the events RecACK(n) and RecD (data, n)
satisfy the receive events assumption in Section V. (The
enabling condition of RecACK (n) is simply Head(z,) =
(ACK, n).) The desired invariant property of the alter-
nating-bit protocol is /, below.

Notation: For a sequence seq, we use |seq| to denote
the length of the sequence. For channel state variable z,,
we use <D, n> to denote a sequence of zero or more
copies of the (D, produced(n), n) message, where pro-
duced(n) is the nth element of produced for n = 0, 1,
* » - . For channel state variable z,, we use < ACK, n >
to denote a sequence of zero or more copies of the (ACK,
n) message.

Invariant Properties:

Iy = consumed is a prefix of produced
I, = |produced|=s A |consumed | =r
I, = (sendbuff =empty A r =s)

V (sendbuff =produced(s—1) A (r=sV r=s—1))

I, = sendbuff =empty
=>=<D,r—1> AN 2,=<ACK, r>
I, = sendbuff #empty A s=r+1
=2z=<D,r-1>@<D, r>
A 2= < ACK. r>
Is = sendbuff #empty N\ s=r

=2zz1=<D,r-1>
NZ2=<ACK, r—1>@< ACK, r>.

Let/ = I,y ANL AT AL A L Tt is straightforward
to show that / satisfies the first invariance rule. (In apply-
ing the rule, keep in mind that the loss event of each chan-
nel is in the set of events.)

The desired progress property of the alternating-bit pro-
tocol is Ly below. To prove L, five additional leads-to
properties are given. For brevity, we use (D, n — 1) to
denote the message (D, produced(n — 1), n — 1).

Progress Properties:

Ly = sendbuff #empty A s=n
leads-to sendbuff=empty A s=n

L, = sendbuff #empty A s=n A r=n—1
leads-to sendbuff #empty N s=n A r=n

L, = sendbuff Fempty A s=n A r=n
leads-to sendbuff =empty A s=n A r=n

. Ly = sendbuff #empty AN s=n A r=n—1
A count(D, n—1)=k
leads-to count(D, n—1)=k+1
V (sendbuff #empty A s=n A r=n)

L, = sendbuff #empty A\ s=n A r=n
A count(ACK, n)=1
leads-to count(ACK, n)=1+1
V (sendbuff=empty A s=n A r=n)

Ls; = sendbuff #empty A s=n A r=n
A count(ACK, n)=1 A count(D, n—1)=k
leads —to
count(D, n—1)=k+ 1
V count(ACK, n)=1+1
V (sendbuff =empty A s=n A r=n).

Proof of Ly: Assume that SendD has weak fairness
in specification AB,.

L; holds via event SendD.

L, holds via message set { (D, n — 1)}, using L;.

Ls holds via event SendD.

L, holds via message set {(D, n — 1)}, using Ls.

L, holds via message set { (ACK, n)}, using L,.
By Implication, Transitivity and Disjunction rules on L,
and L,, we get

sendbuff#empty A s=n A (r=nV r=n—1)
leads-to sendbuff=empty N s=n.



768 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING. VOL. 16. NO. 7. JULY 1990

L, follows from the above property and /, by Lemma 2.
Q.E.D.
From the above proof, we see that specification 4B,
requires a fairness assumption for event SendD only. The
other events do not have to be fairly scheduled. (Of
course, the channel progress assumption is needed and it
can be viewed as a fairness assumption.)

B. Specification AB,

AB, is derived from 4B, by adding binary-valued state
variables cs and cr. The state variables s and r are made
into auxiliary variables. Also, a modulo-2 sequence num-
ber field cn is added to each message type. The message
field n is also made auxiliary.

¢ Entity 1 state variables:

produced, s, and sendbuff as in AB,.
cs: {0, 1}, initially 0.

¢ Entity 1 events:

Produce*(data) = Produce(data)
A cs'=(cs+1) mod 2

SendD* = sendbuff +empty
A Send\(D, sendbuff, s—1, (cs—1) mod 2)

RecACK*(n, cn) = Rec(ACK, n, CR)
A ((sendbuff +empty N cs=cn)
— sendbuff' =empty).

* Entity 2 state variables:

consumed and r as in AB,.
cr: {0, 1}, initially 0.

* Entity 2 event:

RecD*(data,n, cn) = Rec (D, data, n, cn)
A Send>(ACK, r, cr)
A (cr=cn —
(consumed’ = consumed@data
Ar'=r+1
A cr'=(cr+1) mod 2)).

Note that the events RecACK * and RecD * satisfy the
receive events assumption in Section V. In order for AB,
to be a well-formed refinement of AB,, we require that
SendD * has weak fairness.

Proposition: AB, is a well-formed refinement of AB,.

Proof: Event SendD * is a well-formed refinement of
SendD because it satisfies the SWF condition. Since
SendD is the only event that has a fairness assumption in
AB,, it is sufficient to prove that the other events in AB,
satisfy the event refinement condition. (Note that the ini-
tial condition of AB, implies the initial condition of AB,.)

Clearly, Produce* (data) satisfies the event refinement
condition because Produce (data) is one of its conjuncts.
For RecACK *(n, cn) to be a refinement of RecACK (n),

it is sufficient that the following is invariant:
Ry = [Head(z,)=(ACK, n, cn) A sendbuff+ empty
Acs=cn| = s=n.

For RecD *(data, n, cn) to be a refinement of RecD (data,
n), it is sufficient that the following is invariant:

R, = Head(z,)=(D, data, n, cn) A cr=cn = r=n.

Our proof that R, and R, are invariant for 4B, is as
follows. Define

R, = cs=smod 2 A cr=r mod 2

Ry = (D, data, n, cn) € 7, = cn=n mod 2

R, = (ACK, n, cn) € z, = cn=n mod 2.

We first prove the following for AB, (proofs are given
below):

1) R, A Ry A R, is invariant.

2) 1/\R2/\R3/\R4 = R()/\R].

Next, we show that 1) and 2) imply that R, A R, is
invariant for AB,, as follows. Let e* denote an event in
AB, and e the corresponding event in AB,.

I'ANRy, NRy ARy A e*

= IANRyAR Ae* [from2)]

=IANe

[by event refinement condition ]

= [I'  [lis invariant for AB,].

Also, the initial condition of 4B, implies the initial con-
dition of AB| which satisfies 1. Thus, [ is invariant for AB,
by the first invariance rule. From 2) above, R, A R, is
invariant for AB, by the second invariance rule.

Note that because of message refinement, the interpre-
tation of I3, I, and I (conjuncts of 7) requires a trans-
lation from messages in AB, to messages in AB,, using
the projection mapping for channel states defined in Sec-
tion VI. Specifically, given the projection mapping, < D,
n > denotes a sequence of zero or more copies of the (D,
produced(n), n, i ) message, while < ACK, n > denotes
a sequence of zero or more copies of the (ACK, n, i)
message, where i is a parameter with domain {0, 1}.

To complete a proof of the proposition, we give proofs
of 1) and 2) assumed above.

Proof of 1): Each of the conjuncts in R, A Ry A R,
satisfies the first invariance rule for AB,, as follows:

The initial condition of 4B, satisfies R,.

R, A e = R, holds for e=Produce*(data) and
e=RecD*(data, n, cn).

R, is not affected by any other event.

The initial condition of AB, satisfies R;.
Ry A Ry A SendD* = R;.



LAM AND SHANKAR: RELATIONAL NOTATION FOR STATE

Ry N RecD*(data, n, cn) = R;.
R; is not affected by any othér event.

The initial condition of 4B, satisfies R,.
Ry A Ry A SendACK* = R).

Ry N RecACK *(n, cn) = Rj.

R, is not affected by any other event.

Proof of 2): Specifically, we prove that I, A Iy N s
AR, AR; = R, and L Al AN Is ARy, AR, = Ry hold for
specification AB,. We give below a detailed derivation of
the latter; a derivation of the former is similar, and is
omitted.

Assume the antecedent of Ry, namely,

Head(z,) = (ACK, n, cn)
A sendbuff + empty A cs = cn.

From I, I, I5, and R,, we know that X, Y, or Z holds,
where

X = s=r+1 A Head(z,)=(ACK, r, r mod 2)
Y = s=r A Head(z,)=(ACK, r—1, (r—1) mod 2)
Z = s=r A\ Head(z,)=(ACK, r, r mod 2).

From R,, we have s mod 2 = cn, which implies =X A
Y. Hence Z holds, which implies s = r = n. And the
consequent of R, holds. Q.E.D.

Since AB, is a well-formed refinement of AB,, the in-
variant and progress properties proved above for AB, are
also properties of AB,.

Now, consider the state variables produced, consumed,
5, and r, and the message field n in each message type of
specification AB,. They are not practically implementable
because their domains are unbounded. It is easy to see that
the events of 4B, satisfy the condition for auxiliary vari-
ables for s and r, i.e., their values affect neither the ena-
bling condition nor the updates of the other state variables
for each event. To see that the same condition is satisfied
for message field n, rewrite the receive events of AB, in
the following form:

RecACKs(cn) = 3n[RecACK*(n, cn)]
RecDs(data, cn) = 3n[RecD*(data, n, cn)].

The above receive events satisfy the receive events as-
sumption in Section V. Note that the safety properties of
AB, do not depend on how the receive events are repre-
sented. Because none of the receive events has a fairness
assumption, the progress properties of AB, also do not
depend on how the receive events are represented. It is
now easy to see that the events of 4B, satisfy the auxiliary
variable condition for the message field n.

C. Specification AB,

AB; is derived from AB, by deleting the auxiliary vari-
ables produced, consumed, s, and r, and the auxiliary

TRANSITION SYSTEMS

769

message field n, in the manner described in Section VII.
By Corollary 1, AB; is a well-formed image of AB,.

¢ Entity | state variables:

sendbuff and cs as in AB,.

¢ Entity 1 events:

Produce**(data) = sendbuff =empty

A cs'=(cs+1) mod 2
N sendbuff ' =data

SendD ** = sendbuff + empty

N Send\(D, sendbuff, (cs—1) mod 2)
RecACK**(cn) = Recy(ACK, cn)
A ((sendbuff + empty A cs=cn)
— sendbuff'=empty)

* Entity 2 state variables:
cras in AB,.
® Entity 2 event:

RecD**(data,cn) = Rec (D, data, cn)
A Send,(ACK, cr)
A (cr=cn—= cr'=(cr+1) mod 2).

Specification AB; includes a weak fairness assumption
for event SendD **. Note that the events RecACK ** (cn)
and RecD ** (data, cn) satisfy the receive events assump-
tion in Section V. Invariant and progress properties of AB;
are inferred from those of AB, by applying Theorems 3
and 4 in Section VII.

We first apply Theorem 3. From 3s, r, produced, con-
sumed[I N Ry A R, A R, A Ry A R,], we infer that the
following state formulas are invariant for AB;:

sendbuff=empty = cr=cs
sendbuff=empry
= 31=<D, cr—1> A z,=< ACK, cr>
sendbuff #empry A cs=(cr+1) mod 2
= z=<D,cr-1> @ <D, cr>
N 2,=< ACK, cr >
sendbuff+ empty A cs=cr
= z=<D, cr—1>
NZ2=<ACK, cr—1> @ < ACK, cr>
where
<D, cr — 1> denotes a sequence of zero or more
copies of the (D, data, (cr — 1) mod 2) message for
some data in DATA,
<D, cr> denotes a sequence of zero or more copies
of the (D, sendbuff, cr) message,

<ACK, cr — 1 > denotes a sequence of zero or more
copies of the (ACK, (cr — 1) mod 2) message, and



770 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING. VOL. 16. NO. 7. JULY 1990

< ACK, cr > denotes a sequence of zero or more cop-
ies of the (ACK, cr) message.

The following progress property of AB, can be derived
from L, by applying the Disjunction theorem in [4],

sendbuff# empty leads-to sendbuff=empty.

Applying Theorem 4, the above progress property is a
property of AB;.

IX. DiscussioNs AND RELATED WORK

The basic constructs for specifying systems in the re-
lational notation are state formulas and event formulas. A
state formula defines a set of system states. An event for-
mula defines a set of system state transitions. Addition-
ally, parameters may be used for defining groups of re-
lated events, as well as groups of related system
properties. We believe that our notation is easy to learn
because states and state transitions are represented explic-
itly. Our objective is to retain much of the intuitive appeal
of the CFSM model, but none of its limitations. Our proof
method was also designed to use a minimal amount of
notation with the goal that it will be accessible to protocol
engineers.

The v’ notation for specifying events as formulas in v
U 2’ is not unique to our work. The same notational de-
vice is used by various other authors [7], [14], [29].

Prototypes of the relational notation and the proof
method presented in this paper were described in [32],
[33]. Our proof method is based upon a fragment of lin-
ear-time temporal logic [4], [14], [19]. [25], [27]. Moti-
vated by examples in communication protocols, we intro-
duced two ‘'small extensions to the body of work cited
above. Fir'st; we defined the P leads-to Q via M relation.
The resulting leads-to Message rule for unreliable chan-
nels is a very useful one for communication protocols.

Second, we advocate the approach of stating fairness
assumptions explicitly for individual events as part of a
specification, noting that for many systems not all events
need be fairly scheduled. This contrasts with the approach
of a blanket assumption that all events in a system are
fairly scheduled according to some criterion. While this
approach is not new (see [27]), our definition of the al-
lowed behaviors of a specification differs from the defi-
nition of fair computations of [27] in that an allowed be-
havior may not be ‘‘maximal.”’ Specifically, every fair
computation of Pnueli [27] is an allowed behavior in our
model but not vice versa. Our definition of allowed be-
haviors is motivated by the specification of interfaces of
program modules [13], [18].

We refer to a state transition system given in the rela-
tional notation together with a set of fairness assumptions
as a relational specification. In Section VI, we present a
theory of refinement and projection of relational specifi-
cations. The theory has been adapted to relational speci-

fications from our earlier work on protocol projections.
The relation 4 is a well-formed refinement of B, for two
specifications A and B, is by definition the inverse of the
relation B is a well-formed image of A introduced in [12].

Other authors have defined similar relations between
specifications: A implements B, A simulates B, A satisfies
B, etc. [1], [15], [16], [18]. Informally, the meaning of
every one of these relations is the following: every exter-
nally visible behavior allowed by A is also allowed by B.
(There are some differences in how behaviors and observ-
able behaviors are defined.) Our definition of A4 is a well-
formed refinement of B is essentially the same. We differ
from the others in how the above definition is applied.
First, instead of using it directly, we introduced the re-
lational notation as a specification formalism. In our ex-
perience, the event refinement, WF and SWF conditions,
expressed in the relational notation, are very convenient
to use. Second, suppose some state variables in B are re-
placed by new state variables in A. Our approach, based
upon the use of projection mappings, is to find an in-
variant that specifies the relation between the new and old
state variables. The approach of Lynch and Tuttle [18] is
to find directly a mapping from the states of A to the states
of B. The relation to be found is the same one in each
approach. The approaches differ in how the relation is
represented. In [1], Abadi and Lamport investigated con-
ditions for the existence of such mappings.

For many applications, we found the above relations,
well-formed refinement, implements, etc., to be too strong
to be useful. In refining a specification B to 4, it is seldom
the case that every progress property of B must be pre-
served in A. In most cases, only some specific progress
properties of B are to be preserved. The conditions given
in Section VI are designed for such use. In our theory, ~
the refinement relation between two specifications is the
weakest. (Only safety properties of B are preserved.) It is
always used. The well-formed refinement relation is the
strongest. It is seldom used.

Chandy and Misra [4] defined the relation A is a super-
position of B. In their approach, A is obtained from trans-
forming B by repeated applications of two rules. This ap-
proach is attractive because the rules are syntactic and are
thus very easy to use. But because the rules are syntactic,
the class of specifications that can be derived by applying
these rules is much smaller than the class that can be de-
rived as well-formed refinements. Specifically, it is easy
to see that if A is a superposition of B then A is a well-
formed refinement of B. The converse does not hold.

While the relational notation and proof method in this
paper are applicable to state transition systems in general,
their development has been motivated primarily by pro-
tocol systems. The ideas and methods in this paper have
been applied to the specification and verification of sev-
eral nontrivial protocols, which are briefly described be-
low.

The first application was the verification of a version of



LAM AND SHANKAR: RELATIONAL NOTATION FOR STATE TRANSITION SYSTEMS 771

the High-level Data Link Control (HDLC) protocol stan-
dard with functions of connection management and full-
duplex data transfer. Instead of verifying such a multi-
function protocol in its entirety, smaller image protocols
were obtained by projection and then verified [31]. Prop-
erties of the multifunction protocol were inferred from
properties of the image protocols.

Murphy and Shankar demonstrated how a complete
transport protocol with functions of connection manage-
ment and full-duplex data transfer can be composed from
protocols specified for the individual functions. Because
the multifunction protocol is a refinement of instances of
the single-function protocols, safety properties of the sin-
gle-function protocols are preserved in the multifunction
protocol. Proofs of progress properties of the multifunc-
tion protocol were obtained in a hierarchical manner [22],
[23].

The well-formed image relation between specifications
was also applied to the protocol conversion problem. Sup-
pose a converter (translator) is interposed between two
entities, say E, and E,, that implement different commu-
nication protocols, say A, and A,, respectively. Whenever
the converter receives an A, message sent by entity E,, it
translates the message to an 4, message which is deliv-
ered to E,. (The converter may delete the message instead
of translating it.) Similarly, A, messages sent by E, are
translated into A, messages which are delivered to E,. The
well-formed image relation was used to define what it
means for a protocol converter to achieve inter-
operability between E| and E, [3], [11].

The theory presented in this paper has already been ex- -

tended in several ways. We mention two of them below.

First, in deriving a specification 4 from specification B,
we found that it is preferable to go through a succession
of intermediate specifications, B, B,, - - - . To facilitate
such a heuristic search, we defined a weaker form of the
refinement relation, called conditional refinement. A step-
wise refinement heuristic was developed based upon con-
ditional refinement. The heuristic was applied to the spec-
ification of sliding window protocols for the transport
layer where channels can lose, duplicate, and reorder
messages, and the protocols use cyclic sequence numbers
[30], [34]. It was also applied to the specification of con-
nection management protocols for the transport layer [22],
[23].

Second, an extension to our theory herein is also needed
to specify program modules and their interfaces. To get
simple conditions for composing modules, we impose a
hierarchical relationship between modules that interact via
an interface. The theory extension was to define what it
means for a program module to offer an upper interface
to a user, and to use a lower interface offered by another
program module. It was applied to prove that specifica-
tions of two database modules, using a two-phase locking
protocol and a multiversion timestamp protocol, satisfy a
serializable interface specification [13].

APPENDIX

Lemma 4: For a given specification, if P unless Q holds
and Q, leads-to 5, then

P A Q, leads-to Q V (P A Q) for the specification.

Proof of Lemma 4:
1) Let 0 = < s, 5y, - - > be the sequence of states
in an allowed behavior.
2) Let s; satisfy P A Q, for some i.
3) For some j = i:s; satisfies Q,.
4) X or Y holds, where

X = forall k = i:s, satisfies P

(Q, leads-to Q,)
(P unless Q)

Y = for some n > i:s, satisfies Q, and

for all k € [i. .n — 1]:s, satisfies P.

5) If X holds or Y holds for n > j, then
s; satisfies P A Q5. 3,4
6) If Y holds for n =< j, then s, satisfies Q. 4)
The lemma follows from steps 1, 2, 5, and 6. Q.E.D.
Lemma 5. Let specification 4 be a refinement of spec-
ification B, and bj an event that has fairness in B. If P
leads-to Q via b; for B, then P leads-to Q for A if there is
some event in A, denoted by a;, that has weak faimess, is
a refinement of b;, and
Ry NP = QV enabled(a;).
Proof of Lemma 5: 1Tt is sufficient to prove that
P A —Q leads-to Q via a; for specification A

by proving parts i)-iii) of the leads-to-via definition for
an event that has weak fairness. From the lemma’s hy-
pothesis, Part iii) is clearly satisfied.
Proof of part i):
RyAPAN QN a,
= PAb;  (event refinement condition)
= Q"
Proof of part ii):
Case 1: For event a;, i # j, that is a refinement of
events in B,

R,APA-QAa
= (RyAPAa)
= P A (3k[&])
= (Q'VP)=Q' V(P'A Q).

Case 2: Forevent a;, i # j, that has a null image in B,

(event refinement condition )

RA/\P/\ _|Q/\a,‘
= P'AN Q'

-Q'V(P'AQ).  gEb.



772

Lemma 6: Let specification 4 be a refinement of spec-
ification B, and b; an event that has fairness in B. If P
leads-to Q via b; for B, then P leads-to Q for A if there is
some event in A, denoted by a;, that has weak fairness
and the noninterference property, is a refinement of b;,
and

R, A P leads-to Q V enabled(a;) for A.
Proof of Lemma 6: We first prove that
P A enabled(a;) leads-to Q via a;

by proving parts i)-iii)} of the leads-to-via definition for
an event that has weak fairness. Part iii) is clearly satis-
fied.

Proof of part i):

R, A P A enabled(a;) A a;
= PAb
= Q.
Proof of part ii):

Case 1: For event a;, i # j, that is a refinement of
events in B,

Ry A P A enabled(a;) N a

= (R4 AP A a;) A (R4 N enabled(a;) A a;)

(event refinement condition)

= P A (3k[b;]) A enabled(a;)’
(event refinement condition and
noninterference property )
= (Q'V P') A enabled(a;)’
= Q'V (P’ A enabled(a;)").
Case 2: Forevent g;, i # j, that has a null image in B,

R, A P A enabled(a;) N a;

(P A a;) A (R4 N enabled(a;) A a;)

4

P’ A enabled(a;)’  (noninterference property )

= Q'V (P' A enabled(a;)").

By Lemma 3, P unless Q holds for A. Applying Lemma
4 to P leads-to Q V enabled(a;) in the lemma’s hypoth-
esis, we have P leads-to Q V (P N enabled(a;)). Apply-
ing Lemma 1 to the last property and P A enabled(a;)
leads-to Q proved above, the proof is complete. Q.E. D

Lemma 7: Let specification A be a refinement of spec-
ification B, and b; an event that has fairness in B. If P
leads-to Q via b; for B, then P leads-to Q for A if there is
some event in A, denoted by a;, that has strong fairness,
is a refinement of b;, and

Ry N P leads-to Q V enabled(a;) for A.

Proof of Lemma 7: We prove that P leads-to Q via
a; by proving parts i)-iii) of the leads-to-via definition for

an event that has strong fairness. From the lemma’s hy-
pothesis, part iii) is clearly satisfied. Proof of part i) is by
the event refinement condition. Proof of part ii) is by
Lemma 3. Q.E.D.

Observation: Let us compare the strong fairness re-
quirement in Lemma 7 with the noninterference require-
ment in Lemma 6. Without noninterference, enabled (a;)
may be falsified before Q becomes true. But by Lemma
3, P unless Q holds for A. This together with the assump-
tion that P leads-to Q V enabled (q;) for A guarantee that
enabled (a;) eventually becomes true again if O does not
become true before then. If Q never becomes true, g; is
enabled infinitely often without occurring, which contra-
dicts the assumption of strong fairness.

Lemma 8: Let specification A be a refinement of spec-
ification B, and b; an event that has weak fairness in B. If
P leads-to Q via b for B, then P leads-to Q for A if there
is some event in A that is a well-formed refinement of b;.

Proof of Lemma 8: Let the well-formed raﬁnement
of b; be denoted by a;. By the leads-to-via definition for
an event that has weak fairness, P = enabled(b;) is in-
variant for B. There are two cases.

Case 1. Event g; satisfies the SWF condition. By Theo-
reml, P = enabled(b ) is invariant for A. By the SWF
condition, P = enabled(q,) is invariant for 4. By Lemma
5, the proof is complete.

Case 2: Event a; satisfies the WF condition. By Theo-
rem!,P = enabled(b ) is invariant for A. By Implication
and Transitivity rules, P leads-to Q V enabled(a;) for A.
By Lemma 6 or Lemma 7, the proof is complete.

Q.E.D.

Theorem 2: Let specification A be a well-formed re-
finement of specification B. If P leads-to Q for B then P
leads-to Q for A, where P and Q are arbitrary state for-
mulas of B.

Proof of Theorem 2: Following [4], we use induction
on the structure of the proof.

Base Case:

® P leads-to Q for B by Implication rule.

Given: P = Q is invariant for B.

By Theorem 1, P = Q is invariant for A. P leads-to

Q for A by Implication rule.

® P leads-to Q for B by weak Event rule.

Given: For some b; that has weak fairness, P leads-

to Q via b;.

By Lemma 8, P leads-to Q for A.

Inductive Step:

® P leads-to Q for B by strong Event rule.

Given: 1) For some b; that has strong fairness, P

leads-to Q via b;.
2) P leads-to Q V enabled(b ) for B
(from definition of 1)
3) P leads-to Q V enabled (b;) for A.
(induction hypothesis)

To prove: P leads-to Q for A.
Proof: Let a; denote the well-formed refinement of

7




LAM AND SHANKAR: RELATIONAL NOTATION FOR STATE TRANSITION SYSTEMS 773

4) enabled (b;) leads-to enabled (a;) for A.
(WF condition)
5) P leads-to Q V enabled(aq;) for A.
(3, 4, Lemma 1)
5) above and the WF condition satisfy the hypothesis
of Lemma 6 or 7, and the proof is complete.
® P leads-to Q for B by Transitivity rule.
Given: 1) For some R, P leads-to R and R leads-to
Q for B.
2) P leads-to R for A.
(induction hypothesis)
3) R leads-to Q for A.
(induction hypothesis)

To prove: P leads-to Q for A.
The proof is immediate by applying Transitivity rule
to properties 2 and 3 in Given.
® P leads-to Q for B by Disjunction rule.
Given: 1) P =3Ime M[P(m)].
2) YVm e M:P(m) leads-to Q for B.
3) vme M:P(m) leads-to Q for A.
(induction hypothesis)

To prove: P leads-to Q for A.
The proof is immediate by applying Disjunction rule
to properties 1 and 3 in Given.
® P leads-to Q for B by Message rule.
Given: 1) For some M, P leads-to Q via M for B.
2) P A count(M) = k leads-to
QV count(M) = k + 1 for B.
(from definition of 1)
3) P A count(M*) = k leads-to
QVcount(M*) =z k+ 1forA
(induction hypothesis)

where M* = U, _y,N,. (Each message m in B is
refined to a nonempty set N,, of messages in A.)

Proof: We prove that P leads-to Q via M* for A by
proving parts i)-iii) of the leads-to-via definition for mes-
sage set M.

Part i): Leta,(n), n € M*, be a receive event in A. It
is a refinement of a set of receive events {b,(m)} in B
for some m € M.

RyAPAa.n)
= P A (3h[by(m)])
= Q"

Part ii): P unless Q holds for A by Lemma 3.
Part iii) is satisfied by property 3 in Given. Q.E.D.

Before proving Theorems 3 and 4, we state and prove
two lemmas. In these lemmas, we use p and g to denote
state formulas of A. P = 3u[p] and Q = Ju[q] are state
formulas of C. We use x to denote a state of C, and the
pair (x, u) a state of A, where u represents the value of
the auxiliary variables in A that are not in C.

Lemma 9: If p = q holds for A, then P = Q holds for
C.

(event refinement condition )

(from 1 in Given)

Proof of Lemma 9:

1) Let x be a state of C that satisfies P.

2) 3u: (x, u) satisfies p. (1, definition of P)

3) 3u: (x, u) satisfies q. (2, hypothesis of lemma)
4) x satisfies Q. (3, definition of Q)

By | and 4, the proof is complete. Q.E.D.
Lemma 10: If p A a; = q' holds for A, then P A ¢; =
Q' holds for C.
Proof of Lemma 10:
1) Let x be a state of C that satisfies P.
2) Let x’ be a state of C such that (x, x') satisfies c;.
3) 3Ju: (x, u) satisfies p. (1, definition of P)
4) 3u3du’: (x, u) satisfies p and
((x, u), (x', u")) satisfies a;.
(2, definition of ¢;)
5) 3u’: (x', u') satisfies q'.
(4, hypothesis of lemma)
(5, definition of Q)

By 1, 2, and 6, the proof is complete. Q.E.D.
Theorem 3: Let p denote an arbitrary state formula of
A. If p is invariant for A, then 3u[ p] is invariant for C.
Proof of Theorem 3: Let r be a state formula of A4
such that » = p and r satisfies 1 and 2 below.

6) x’' satisfies 3u'[q¢'] = Q.

1) Initial, = r.
2) Foralleventa;,, r Aa; = r'.
3) R = 3u[r]land P = 3u(p].

4) Initial- = R. (1, Lemma 9)
5) For all event ¢;, R A ¢; = R'. (2, Lemma 10)
6) R is invariant for C. 4.5)
DHR=P (Lemma 9)
8) P is invariant for C. 6,7
Q.E.D.

Corollary 2: P is invariant for C if and only if P is
invariant for A, where P is an arbitrary state formula of
C.

The if part of Corollary 2 is a consequence of Theorem
3. The only if part of Corollary 2 is a consequence of
Corollary 1 and Theorem 1.

Lemma 11: If p unless q holds for A then 3u[ p] unless
3u{q] holds for C, where p and g denote arbitrary state
formulas of A.

Proof of Lemma 11:

1) Foralleventa,pAa, = p'Vgq'
‘ (hypothesis of lemma)
2) For all event ¢;, 3u[p] A ¢; = Quip Vv q])’).
({ Lemma 10)
3) Foralleventc;, 3u[p]l Ac; = (Qu[p]lV 3ulq])'.
(predicate calculus)
Q.E.D.

Corollary 3: P unless Q holds for C if and only if P
unless Q holds for A, where P and Q are arbitrary state
formulas of C.

The if part of Corollary 3 is a consequence of Lemma



774 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING. VOL. 16. NO. 7. JULY 1990

11. The only if part of Corollary 3 is a consequence of
Corollary 1 and Lemma 3.

To give a proof of Theorem 4, we first make this ob-
servation:

enabled(a;) = enabled(c;) holds for specification A
which is proved as follows.

1) a; = Yuilu'la;].

(definition of auxiliary variables)
2) ¢, = Yuilu'|a;]. (definition of C)
3) Let (x, u) satisfy enabled (a;).

4) 3x'3u’: ((x, u), (x', w')) satisfies a; 3)
5) vu,3u): ((x, u,), (x', uy)) satisfies a;. (1)
6) (x, x") satisfies c;. 5.2
7) x satisfies enabled(c;). 6)

The observation follows from steps 3 and 7 above. This
observation is used in the following lemma.

Lemma 12: Let behy = < Xgy, ¢;\, X\, Cir, * " * > TEP-
resent an allowed behavior of C where, for all j, x; de-
notes a state and c;, denotes an event of C. There exist ug,
u,, * -+ such that

behy = <(xg. Ug), @y, (X1, uy), ap, **° >

is an allowed behavior of 4.

Proof: We first prove that there exist ug, u,
such that beh, is a behavior of A. The proof is by induc-
tion over the state transitions in behc.

Base case: By the definition of Initialc, there exists u
such that (x,, u,) satisfies Initial,.

Inductive step: Assume that there exist ug, . U
such that < (x, 4o), a;,, * * * , a;, (x;, u;) > is a behav-
ior of A. By the definition of events in C, if (x;, x;; )
satisfies ¢;, ,, then

Vujauj+|: ((x,, uj), (xj'+|, uj+|)) satisfies Qi s
where j = 0. Hence,

< (x()v uO)v i, ", aiﬁ (xj’ uj)’ a‘:;*l’ (x_i+|, uj+|) >

is a behavior of A.

We next prove that beh, is an allowed behavior of A.
Suppose beh, is not an allowed behavior because it vio-
lates the fairness assumption of some event a;. By steps 3
and 7 in the above observation, we can infer that behc
violates the fairness assumption of ¢;. This contradicts the
lemma’s hypothesis that beh is an allowed behavior. By
the definition of specification C, 4 has a fairness assump-
tion for an event if and only if C has the same assumption
for the image event. Therefore, all fairness assumptions
of individual events are satisfied by beh,,.

Suppose beh, is not an allowed behavior because it vi-
olates the channel progress assumption for some message
set N. That is, count (N ) increases without bound on beh 4
and no state transition in beh , is labeled by a receive event
a,(n) for any n € N. Let M denote the set of messages in
specification C that are images of messages in set N. By
the definition of auxiliary message fields in Section VII,
each message in N is a refinement of some message in M.

Therefore, each message in N has a non-null image in M
and count (M) increases without bound on beh.. Since
each message in M is the image of some message in N,
no state transition in beh is labeled by a receive event
¢,(m) for any m € M. Thus behc violates the channel
progress assumption for message set M. But such viola-
tion contradicts the lemma’s hypothesis that beh¢ is an
allowed behavior. Therefore, beh, satisfies the channel
progress assumption for any message set in A. The proof
of the lemma is complete. Q.E.D.

Observation: For a specification A that includes strong
fairness assumptions for events and channel progress as-
sumptions for message sets, the auxiliary variables for
counting event occurrences (count (N ), count(e;), etc.)
must be in x and not u.

Theorem 4: P leads-to Q for C if and only if P leads-
to Q for A, where P and Q are arbitrary state formulas of
C.

Proof of Theorem 4: The only if part of the theorem
is immediate from Corollary 1 and Theorem 2. To prove
the if part, let seqc = < X, X;, - * * > be the sequence
of states in an allowed behavior of C. By Lemma 12, there
exist g, u,, * + * such that seq, = < (xo, o), (X, #y),
-+« > is the sequence of states in an allowed behavior
of A.

1) Let x; satisfy P.
2) (x;, u;) satisfies P.
(1, variables in u not free in P)
3) For some j = i: (x;, u;) satisfies Q.
(hypothesis of if part)
4) x; satisfies Q.
(3, variables in u not free in Q)

Steps 1 and 4 imply that P leads-to Q for C. Q.E.D.

ACKNOWLEDGMENT

The final presentation of this paper has benefited greatly
from the constructive criticisms and diligence of the anon-
ymous reviewers. We are also grateful to K. Calvert, M.
Gouda, L. Lamport, J. Misra, A. Singh, and T. Woo for
their helpful comments.

REFERENCES

{1] M. Abadi and L. Lamport, **The existence of refinement mappings,”’
Digital Systems Research Center, Palo Alto, CA, Tech. Rep.. Aug.
1988.

[2] CCITT, Recommendations Z.101 to Z.104. Red Book. Geneva, 1985
(Standard Definition Language).

13] K. L. Calvert and S. S. Lam, **Formal methods for protocol conver-
sion,"” IEEE J. Select. Areas Commun. . vol. 8, no. 1, Jan. 1990.

[4] K. M. Chandy and J. Misra, Parallel Program Design: A Foundation.
Reading, MA: Addison-Wesley. 1988.

[5] E. M. Clarke and E. A. Emerson, *‘Synthesis of synchronization
skeletons for branching time temporal logic,”” in Proc. Workshop
Logic of Programs (LNCS 131).  New York: Springer Verlag, 1981.

6] B. T. Hailpern and S. Owicki. **Modular verification of computer
communication protocols.”” IEEE Trans. Commun., vol. COM-31,
no. . Jan. 1983.

[7] E. C. R. Hehner, “"Predicative programming, part I and part 11"
Commun. ACM, vol. 27, no. 2, Feb. 1984.

[8] C. A. R. Hoare, Communication Sequential Processes.
wood Cliffs, NJ: Prentice-Hall, 1985.

Engle-



LAM AND SHANKAR: RELATIONAL NOTATION FOR STATE TRANSITION SYSTEMS 775

{91 IBM Corp., Systems Network Architecture Format and Protocol Ref-
erence Manual: Architecture Logic, IBM Form No. SC32-3112-2,
1980.

[10] Estelle—A Formal Description Technique Based on an Extended State
Transition Model, ISO/TC97/SC21/WG16-1 N422, Feb. 1985.

[11] S. S. Lam, ‘*Protocol conversion,’” IEEE Trans. Software Eng., vol.
14, no. 3, Mar. 1988.

{12] S. S. Lam and A. U. Shankar, ‘‘Protocol verification via projec-
tions,”” IEEE Trans. Software Eng., vol. SE-10, no. 4, July 1984.

[13] —, *‘Specifying modules to satisfy interfaces: A state transition ap-
proach,”” presented at the 26th Lake Arrowhead Workshop on How
Will We Specify Concurrent Systems in the Year 2000?, Sept. 1987;
full version available as Tech. Rep. TR-88-30, Dep. Comput. Sci.,
Univ. Texas at Austin, Aug. 1988 (revised Jan. 1990).

[14] L. Lamport, ‘“What good is temporal logic?"" in Proc. Information
Processing 83, IFIP, 1983.

[15] —, *‘Specifying concurrent program modules,’” ACM Trans. Pro-
gram. Lang. Syst., vol. 5, no. 2, Apr. 1983,
[16] —, **What it means for a concurrent program to satisfy a specifi-

cation: Why no one has specified priority,”” in Proc. 12th ACM Symp.
Principles of Programming Languages, New Orleans, LA, Jan. 1985.

[17] —, **A simple approach to specifying concurrent systems,”” Com-
mun. ACM, vol. 32, no. 1, Jan. 1989.

[18] N. A. Lynch and M. R. Tuttle, ‘‘Hierarchical correctness proofs for
distributed algorithms,”” in Proc. ACM Symp. Principles of Distrib-
uted Computing, Vancouver, B.C., Canada, Aug 1987; full version
available as Tech. Rep. MIT/LCS/TR-387, Lab. Comput. Sci.,
M.L.T., Apr. 1987.

[19] Z. Manna and A. Pnueli, ‘“Adequate proof principles for invariance
and liveness properties of concurrent programs,’’ Sci. Comput. Pro-
gram., vol. 4, 1984.

{20] Z. Manna and R. Waldinger, The Logical Basis for Computer Pro-
gramming. Reading, MA: Addison-Wesley, 1985.

[21] R. Milner, A Calculus of Communication Systems (LNCS 92). New
York: Springer Verlag, 1980.

[22] S. L. Murphy and A. U. Shankar, **A verified connection manage-
ment protocol for the transport layer,”” in Proc. ACM SIGCOMM '87
Workshop, Stowe, VT, Aug. 1987.

[23] ——, **Service specification and protocol construction for the trans-
port layer,”” in Proc. ACM SIGCOMM ’88 Symp., Stanford Univ.,
Aug. 1988.

[24] S. Owicki and D. Gries, **Verifying properties of parallel programs:
An axiomatic approach,”’ Commun. ACM, vol. 19, no. 5, May 1976.

[25] S. Owicki and L. Lamport, *‘Proving liveness properties of concur-
rent systems,”’ ACM Trans. Program. Lang. Svyst.. vol. 4, no. 3,
1982.

[26] T. F. Piatkowski, “*The state of the art in protocol engineering,’” in
Proc. ACM Sigcomm ’86 Symp., Stowe, VT, 1986.

[27] A. Pnueli, **Applications of temporal logic to the specification and
verification of reactive systems: A survey of current trends,”” in Cur-
rent Trends in Concurrency: Overviews and Tutorials (LNCS 224),
J. W. deBakker er al. Eds. New York: Springer-Verlag, 1986.

[28] K. Sabnani, ‘*An algorithmic procedure for protocol verification,™
IEEE Trans. Commun., vol. 36, no. 8, Aug. 1988,

[29] J. Scheid and S. Holtsberg, Ina Jo Specification Language Reference
Manual, System Development Group, Unisys Corp., Santa Monica,
CA, Sept. 1988.

[30] A. U. Shankar, ‘‘Verified data transfer protocols with variable flow
control,”” ACM Trans. Comput. Syst., vol. 7, no. 3, Aug. 1989; an

abbreviated version appears in Proc. ACM SIGCOMM 86, Stowe,
VT, Aug. 1986.

[31] A. U. Shankar and S. S. Lam, ‘*An HDLC protocol specification and
its verification using image protocols,”” ACM Trans. Comput. Syst.,
vol. 1, no. 4, Nov. 1983.

[32] —, *‘Time-dependent communication protocols,”’ in Tutorial:
Principles of Communication and Networking Protocols, S. S. Lam,
Ed. Washington, DC: IEEE Computer Society, 1984.

[33] —, “‘Time-dependent distributed systems: Proving safety, liveness,
and real-time properties,’” Distributed Comput., vol. 2, no. 2, 1987.
[34] ——, “*A stepwise refinement heuristic for protocol construction,”

Dep. Comput. Sci., Univ. Maryland, Tech. Rep. CS-TR-1812, Mar.
1987 (revised Mar. 1989).

[35] C. H. West, “*A general technique for communications protocol val-
idation,’” IBM J. Res. Develop., vol. 22, July 1978.

Simon S. Lam (5°69-M’74-SM’'80-F’85) re-
ceived the B.S.E.E. degree (with Distinction)
from Washington State University, and the M.S.
and Ph.D. degrees in engineering from the Uni-
versity of California at Los Angeles in 1970 and
1974, respectively.

From 1974 to 1977, he was a research staff
member at the IBM T. J. Watson Research Cen-
ter, Yorktown Heights, NY. Since September
1977, he has been on the faculty of the University
of Texas at Austin, where he is a Professor of
Computer Sciences and holds an endowed professorship. His research in-
terests are in the areas of computer networks, communication protocols,
performance models, and formal verification methods.

Dr. Lam was a corecipient of the 1975 Leonard G. Abraham Prize Paper
Award from the IEEE Communications Society. He organjzed and was
program chairman of the first ACM Sigcomm Symposium on Communi-
cations Architectures and Protocols in 1983. He serves on the editorial
boards of Performance Evaluation and IEEE TRANSACTIONS ON SOFTWARE
ENGINEERING.

A. Udaya Shankar (S’81-M'82) received the
B.Tech. degree in electrical engineering from the
Indian Institute of Technology, Kanpur, in 1976,
and the M.S. degree in computer engineering from
Syracuse University, Syracuse, NY, in 1978, and
the Ph.D. degree in electrical engineering from
the University of Texas at Austin in 1982,
Since January 1983, he has been with the Uni-
versity of Maryland, College Park, where he is
now an Associate Professor of Computer Science.
\Since September 1985, he has been with the In-
stitute for Advanced Computer Studies at the University of Maryland. His
current research interests include the mode!ing and analysis of distributed
systems and network protocols, from both correctness and performance as-
pects.

Dr. Shankar is a member of the Association for Computing Machinery.




