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A Theory of Interfaces and Modules
I—Composition Theorem
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Abstract—We model a system as a directed acyclic graph where
nodes represent modules and arcs represent interfaces. At the
heart of our theory is a definition of what it means-for a module
to satisfy a set of interfaces as a service provider for some and
as a service consumer for others. Our definition of interface
satisfaction is designed to be separable; i.e., interfaces encode
adequate information such that each module in a system can be
designed and verified separately, and composable; i.e., we have
proved a composition theorem for the system model in general.

Index Terms—Specification, verification, interfaces, modules,
composition, decomposition, composition theorem, separable de-
sign.

I. INTRODUCTION

ONSIDER the design of a system to provide services
to users. Suppose the system is to be constructed as
a collection of interacting modules. Our system model is a
directed acyclic graph where nodes are modules. Each module
is a service provider and may also be a service consumer. Each
arc in the graph, say, from module M to module N, represents
an interface through which M uses services provided by V.
Additional interfaces, called system interfaces, through which
modules provide services to users of the system are specified.
The concepts of interfaces and modules are well known.
To construct any large system, it is desirable that different
modules in the system can be designed and implemented sep-
arately by different persons (teams). To maintain the system,
it is desirable that module implementations can be modified
whenever technology changes or better solutions are found.
Our concepts of service providers and consumers are mo-
tivated by communication network protocols. For example, a
routing protocol provides the service of unreliable end-to-end
packet delivery to a transport protocol. Using this service, the
transport protocol offers a reliable end-to-end byte delivery
service to various applications.
Of interest in this paper is the development of a formal
method to support system design such as described above. At
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the heart of every formal method is a definition of what it
means for a module (or system) to satisfy its specification. In
our model, a module is specified by its interfaces. The main
contribution of this paper is a definition of what it means for a
module to satisfy its interfaces as a service provider for some
interfaces and as a service consumer for others. Our definition
of interface satisfaction has two properties.

» Separable—The modules in a system can be designed and
verified separately. That is, the designer of a module can
demonstrate that the module satisfies its interfaces without
knowledge of the module’s environment (in particular,
without knowing how other modules in the system are
implemented).

* Composable—The proof obligations are to show that each
module in a system satisfies the module’s interfaces.
When modules are composed to form the system, a
composition theorem (to be presented) guarantees that
the collection of interacting modules satisfies the system
interfaces.

Although composability is a well-known property, our notion
of separability has not been discussed in the literature. (We
coined the term separable when we wrote this paper.)

We found that to formulate a satisfaction definition that is
both separable and composable, there are conflicting demands.
In particular, proving a composition theorem is facilitated by a
“strong” notion of satisfaction. But the notion may be so strong
that separable design of individual modules is impossible
or very difficult to do. In Sections II and IV, we present
an example to illustrate why a generally accepted notion of
satisfaction [3], [15], [16] is too strong, making it difficult to
achieve separability.

We found that the notion of satisfaction can be—and should
be—weakened by making use of information that for each
module, some interface events are not under its control. Such
weakening gives rise to a definition of satisfaction that is
both separable and composable. Weakening the notion of
satisfaction, however, makes it much more difficult to prove
the desired composition theorem, but it has been proved. (See
Section V and the Appendixes at the end of this paper.)

Most concurrency theories, such as CSP [5], CCS [16],
and I/O automata [15], have been designed for composing
processes that interact as peers; i.e., there is no distinction
between service provider and consumer, and any process
in a system can interact with any other process. In this
regard, our system model is less general. However, such
generality is not important in a large number of application
domains of interest to us. In particular, the development
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of our theory was originally motivated by layered systems,
e.g., communication network protocols. Layering, such as that
described by Dijkstra {4] more than two decades ago, has
been applied to the design and implementation of not only
communication network protocols but also operating systems
and other large complex systems. It is surprising that a formal
method tailored to the needs of layered systems has not been
formulated and that an appropriate composition theorem has
not been proved.

In applying our theory, a module in our system model should
be interpreted broadly as a subsystem (rather than narrowly
as a process). For example, in modeling the protocols of a
communication network, a module would represent a protocol
(e.g., data link, transport, routing) that is composed of a set of
peer processes. It is the entire set of peer processes that is the
consumer and provider of services. Note that a protocol layer
of a communication network is generally made up of a set of
protocols. For example, in the transport layer, there can be dif-
ferent protocols (e.g., TCP, TP4, UDP), each of which would
be represented by a distinct module in our system model.

The balance of this paper is organized as follows. In Section
II, we explore informally the semantics of interfaces using
a vending machine example, and motivate the key concepts
of our theory. In Section III, we present our definition of
what it means for a module to satisfy interfaces as a service
consumer and as a service provider. In Section IV, we revisit
the vending machine example, and use it to illustrate concepts
and ideas introduced in the first three sections as well as how
our notion of satisfaction differs from the generally accepted
notion. Our composition theorem is presented in Section V.
The concept of module implementation and theorems relevant
to this concept are presented in Section VI. Proofs of our
theorems and lemmas are presented in four appendixes.

In this paper, we are concerned only with semantics—in
particular, semantics of the service offered by a provider to a
consumer across an interface. Upon this semantic foundation,
different languages for specifying interfaces and modules, as
well as proof methods, may be developed. In a companion pa-
per [12], we present one such proof method for interfaces and
modules specified in the relational notation [9]. Applications
of our theory and method can be found in [8] for concurrency
control protocols, in [13] for access control protocols, and in
[19] for communication protocols.

II. EXPLORING INTERFACE SEMANTICS

A physical interface occurs where a module and its environ-
ment interact. For different kinds of physical interfaces, such
interactions take on a variety of physical forms. For a vending
machine, an interaction may be the insertion of a coin. For a
workstation, an interaction may be the striking of a key on a
keyboard. For a communication protocol, an interaction may
be the passing of a set of parameter values. For a hardware
circuit, an interaction may be the changing of voltages on
certain pins.

Semantically, we model interface interactions between a
module and its environment as discrete event occurrences. An
interface event occurs only when both the module and envi-
ronment are simultaneously executing the event (simultaneous

External views as specifications.

participation). Such an occurrence is observable from either
side of the interface. An interface is specified by a set of
sequences of interface events; each such sequence defines an
allowed sequence of interactions between the module and its
environment. This semantic view of an interface is akin to the
specification of a process in CSP [5], CCS [16], and LOTOS
[2], or the specification of an I/O automaton [15].

Let S denote the specification of a module M. A widely
accepted notion of satisfaction is the following [S, p. 59]:
Every possible observation of the behavior of M is described
by S. Many definitions of M satisfies S in the literature
are based upon this notion (see [3], [7], [14], [15] for
examples). But due to the use of different models, specific
definitions differ in many ways: (1) in whether interface
events or states are observable, (2) in whether observations
are finite or infinite sequences, (3) in the formalism for
specifying these sequences, and (4) in the condition under
which interface events can occur.

Using this widely accepted notion of satisfaction, a straight-
forward way to define satisfaction for our model is to adopt the
paradigm of an external observer: Every module is viewed by
an observer situated in its environment. From the viewpoint of
the observer, the module is enclosed by a physical interface,
which is semantically specified by S, a set of sequences of
interface events.

In what follows, we first illustrate this paradigm with an
example. We then discuss why the property of separability is
difficult to achieve with this paradigm.

A. Observer as Paradigm

Consider the design of a vending machine that is made up
of two modules, a control module and a storage module. (See
Fig. 1.) The control module has the following specification,
in CSP notation [5]:

CONT = (coin — request — response — choc — CONT).
The intent of the designer can be stated as follows. A customer
comes up to the vending machine and inserts a coin. Having
accepted the coin, the control module sends a request to the
storage module. Having got the request, the storage module
responds by releasing a chocolate to the control module, which
then dispenses the chocolate to the outside of the vending
machine. The storage module has the following specification:

STOR = (request — response — STOR).

Let VM denote the parallel composition of CONT and STOR
with interactions between the two modules being hidden.

VM = (CONT || STOR)\{request, response}
= (coin — choc — VM).
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V' M represents the allowed interaction sequences between
the vending machine and its environment. Note that these
allowed interaction sequences (as well as those between the
control and storage modules) are not explicitly specified.
Instead, they are derived from the module specifications,
CONT and STOR, which have been specified first. (This
approach of system design is said to be compositional.)

Suppose that VM satisfies the intended property for a
vending machine. Let M denote a module that implements
CONT, and N a module that implements STOR. (See Fig.
1.) At this point, not only do we need a satisfies relation
between a module and its specification, but we also desire
a composition theorem that allows the use of local reasoning
only; that is, if we show that M satisfies CONT and that
N satisfies STOR, the theorem guarantees that the composite
system, consisting of M interacting with N, satisfies VM.

A candidate for the satisfies relation is observational equiv-
alence [16], which has been proposed for use with LOTOS
specifications of computer network protocols. However, it is
obvious that observational equivalence, being a symmetric
relation, is much stronger than what we need. (We need only
show that a module satisfies its specification, but not vice
versa.) A better candidate would be an implementation relation
from the theory of CSP [3], stated informally as follows [2]:

P is an implementation of S iff

(I1)P can execute only events that S can execute, and

(I2)P can refuse only events that S can refuse
where P denotes a module and S its specification. For reasons
given below, however, the conditions I1 and I2 are still
stronger than what they should be for our purposes.

B. Events Controlled by Environment

Consider module M in Fig. 1, which implements CONT.
Module M participates in the execution of four events,
coin, choc, request, and response. In applying the implementa-
tion relation to M and CONT, all four events are treated in the
same way. However, there is clearly an intuitive distinction
between the events {choc, request}, of which module M has
control, and the events {coin, response}, of which module M
does not have control.

Consider an occurrence of the event coin, requiring insertion
of a coin by a customer in the environment of the vending
machine and participation by module M to accept the coin.
Note that the initiative to insert a coin can be taken only by
a customer in the environment; hence, the environment has
control of the coin event.

In addition to initiative, control of an event also includes
a notion of responsibility; e.g., the coin inserted by the
customer must be a genuine coin. For the specification CONT
given, the implementation relation is unsatisfactory, because
it requires module M to have perfect discrimination of coins.
Specifically, for a module and CONT to satisfy the implemen-
tation relation, the module must accept only coins and refuse
anything that is not a (genuine) coin.

Similarly, consider the event response that is under the
control of module /N, but not under the control of module M.
If module M fails to dispense a chocolate because module N

does not respond to a request from M, or if the response of
module N is something other than a chocolate, then module
M should not be considered as failing its specification.

For this example, the implementation relation is so strong
that it is not practical to design a module M such that M
and CONT satisfy the implementation relation, unless the
designer of module M has knowledge that vending machine
customers will always insert genuine coins and that module
N will always release a chocolate when requested. But such
knowledge means that the design of M is not separable.

C. How to Achieve Separability

We have information that the events {coin , response}
are not under the control of module M. Such information,
however, is not used in the definition of the implementation
relation or, as far as we know, in the definition of any other
satisfies relation for models in which interfaces are specified
by event traces.!

To achieve separability for the implementation relation, the
specification CONT must be rewritten to include such informa-
tion. This may be carried out as follows. Add two events to the
interface between module M and vending machine customers:
large, representing any object larger than the size of a coin,
and small, representing any object smaller than or equal to
the size of a coin. The set {coin, large, small} represents
the universe of all possible inputs from vending machine
customers. Similarly, add an event error to the interface be-
tween modules M and N such that the set {response , error}
represents the universe of all possible inputs coming from
module V. Rewrite CONT such that the responses of module
M to all possible input sequences from its environment are
fully specified—a nontrivial task.

Clearly, CSP is sufficiently expressive for specifying how
a module responds to all possible sequences of inputs from
its environment. The moral of the story here, however, is not
about expressiveness, but something else, namely: In designing
a module, we have information that certain interface events are
controlled by the module’s environment. Rather than putting
this information into interface specifications, we make use of
this information in our definition of interface satisfaction.?
The benefit is that we need specify only intended sequences
of interface interactions, and, as will be shown later, our
definition of interface satisfaction is composable as well as
separable.

D. Decomposing a System Specification

Conceptually, to design a system that is a collection of inter-
acting modules, there are two basic approaches. Let S denote a
system specification, and let{S;} denote specifications of indi-
vidual modules in the system. In a compositional (bottom-up)
approach, module specifications {.S;} are specified first, and S
is derived from them. If S does not have the intended system

! The work of Kay and Reed [6] is an exception that recently came to our
attention. The goal of their Rely and Guarantee method is similar to ours, but
the method is being developed for a different model, namely, Timed CSP.

2See safety constraints in our definitions of M offers I and M using L offers
U in Section L. These constraints are similar to, but weaker than, I1 and 12.
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Fig. 2. Interface I constraining behaviors of both A7 and V.

properties, the module specifications {S,} are redesigned. This
procedure is repeated until S has the intended properties. In a
decompositional (top-down) approach, the system specification
S with the intended properties is given first, and module
specifications {S;} are to be derived from S.

Global reasoning is needed to derive S from {S;} in the
compositional approach, and to derive {S;} from S in the
decompositional approach. Decomposing a system specifica-
tion S into a set {S;} of module specifications is facilitated
for a directed acyclic graph model where modules interact as
service providers and consumers, rather than as peers. For
this model, S corresponds to a composition of the system
interfaces offered to users of the system. Other interfaces in
the system can be derived from S by a top-down approach
as follows. Consider any interface U in the system. To design
the subsystem that provides the services of U, we may assume
that certain services are provided through a set of interfaces
{L;}. That is, the subsystem is decomposed into a module
that uses the services of {L;} to provide the services of U,
and a set of modules that provide the services of {L;}.

E. Contract as Paradigm

Our interfaces differ in several ways from module specifica-
tions based upon the paradigm of an external observer [2], [5],
[15], [16]. In our model, each module in a system is specified
by a set of interfaces that it uses and by a set of interfaces
it offers, rather than by a single external view. Each interface
is like a legal contract between two parties, i.e., between two
modules or between a module and the system environment.

In our design approach, the service of an interface is
specified first. More specifically, consider Fig. 2. The set
of allowed interaction sequences representing interface I is
specified first. Specifications of modules M and N are to
be derived from I. (This conforms to the decompositional
approach discussed above.)

Note that the same set of interaction sequences representing
1 constrains the behaviors of both M and N. This is like
a legal contract between two parties: The same document
contains the entire bilateral agreement and is interpreted by
each party to determine its privileges and obligations. For
example, consider a loan agreement between a debtor and a
creditor. The identity of either the debtor or the creditor may
change. (E.g., a house is sold, and its mortgage is assumed by
the buyer.) The loan agreement remains in force for as long as
it is honored by its debtor and creditor, whose actual identities
over time might have changed.

We refer to interface I, illustrated in Fig. 2, as a two-sided
interface because, like a bilateral agreement, I encodes all
information that the designers of M and N need to know, and
the same [ is to be satisfied by both M and N—albeit that the
obligations of service provider and service consumer are not
the same. Each event in interface [ is specified to be under the

control of M or N. We make use of this information to define
what it means for a service provider and a service consumer
to satisfy an interface. (See Section IIL.)

The notion of control is not new. (See [14], [15].) For
example, in the theory of I/O automata [15], the events of each
automaton are partitioned into events under its control and
events controlled by the automaton’s environment. However,
this information is not used in defining its satisfies relation.?
Instead, each automaton is required to be input-enabled; i.e.,
every input event, controlled by its environment, is enabled to
occur in every state of the automaton. With this requirement,
the responses of an automaton to all possible inputs must be
specified for every state of the automaton (either explicitly
or implicitly). Moreover, the class of interfaces that can be
specified by I/O automata is restricted. For example, a module
with a finite input buffer such that inputs causing overflow are
refused cannot be specified.

F. Obligations of Service Provider and Consumer

Consider Fig. 2. In general, interface I can be satisfied only
if M and N cooperate with each other in some manner. In
order to design each module separately, terms of the required
cooperation must be completely encoded in I.

For illustration, we consider some special cases; i.e., the
terms of cooperation are in the form of a set of guarantees
that a module must ensure, given that the other module satisfies
a set of assumptions, where assumptions and guarantees are
assertions of safety or progress. (For this section, assumptions
and guarantees are stated informally, and only very simple
ones are illustrated. See Part II of our report [12] for a
general and more rigorous presentation of safety and progress
assertions in our method.)

A safety assertion is a statement that something bad never
occurs. Examples of some safety assumptions and guarantees
for M and N are shown below.

(S1) M never executes e; = N never executes es.

(S2) N never executes ea = M never executes e;.

(The consequent of S1 is a guarantee of N, given an
assumption about M, which is the antecedent of S1. Similarly,
the consequent of S2 is a guarantee of M, given an assumption
about NV, which is the antecedent of S2.)

A progress assertion is a statement that something good
eventually occurs. Examples of some progress assumptions
and guarantees for M and N are shown below.

(P1) M eventually executes e3 = N eventually executes

ey4.

(P2) N eventually executes e4 = M eventually executes

€3.

Suppose that M and N are designed individually and
it has been proved that N satisfies S1 and P1 and M
satisfies S2 and P2. To infer that the composite system
of M and N satisfies the guarantees—more generally, to
prove a composition theorem—we must take care that circular
reasoning is not used. The possibility of circular reasoning in
composing processes has been addressed by other researchers.
For processes that communicate by CSP primitives, Misra and

3The specification of an I/O automaton is defined to be its external view,
and the satisfies relation is the usual one for external views.
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Chandy gave a proof rule for assumptions and guarantees that
are restricted to safety properties [17]. Using different models,
Pnueli [18] presented a proof rule and Abadi and Lamport
(1] presented a composition principle, both of which are
more general in that the class of assertions includes progress
properties (albeit that the class is still restricted).

In summary, we know the following: Safety assumptions
and guarantees can be composed without circular reasoning.
(For S1 and S2, this is intuitively evident.) But with progress
assumptions and guarantees, such as P1 and P2, circular
reasoning is involved.

We define our notion of interface satisfaction such that
circular reasoning is avoided in a straightforward manner.
Specifically, each interface in our model is between a service
provider and consumer. Therefore, we need assert only that
the provider eventually performs a service, given that the
consumer eventually does something good. E.g., for a vending
machine, if eventually a customer inserts a coin, then the
vending machine eventually dispenses a chocolate. Thus, if
N is the service provider and M is the service consumer
of interface I in Fig. 2, only P1 is meaningful (but P2 is
not). Since our composition theorem applies to systems that
are modeled by a set of modules organized as the nodes of a
directed acyclic graph, circular reasoning is avoided.

G. Our implements Relation

In the next section, we formally define M offers I and M
using L offers U, where M denotes a module and I,U and
L interfaces. These definitions embody our semantics of a
module satisfying interfaces as a service provider and as a
service consumer. Given all of the interfaces offered and used
by a module, the module can be designed separately. However,
having derived a module, say, M, that satisfies all of its in-
terfaces, it is useful to have an implements relation to facilitate
additional refinements of M; in the manner described below.

Suppose that M; has been designed such that M; offers
I and M; using L offers U for some interfaces I, U and
L. Subsequently, M, is derived from M; by a series of
refinements. The implements relation should be defined such
that it is as weak as possible and yet allows the following to
be inferred: If M, implements M, then (i) My offers I and
(ii) M> using L offers U.

Consider Fig. 2. Having derived modules M; and N; that
cooperate to satisfy I, our implements relation is then used in
the same way as the implementation relation [2], [3] described
above. It is a weaker relation, however, because its definition,
given in Section V below, is similar to that of M offers I.

III. DEFINITION OF INTERFACE SATISFACTION

We first define some notation for sequences. A sequence
over E, where E is a set, means a finite or an infinite
sequence (eg, €1, - ), where e; € E for all i. A sequence over
alternating E and F, where E and F are sets, means a sequence
(eo, fo, €1, f1,- ), where e; € E and f; € F for all i.

Definition: An interface I is defined by:

 Events(I), a set that is the union of two disjoint sets,

Inputs(I), a set of input events, and
Outputs(I), a set of output events.

« AllowedEventSeqs(I), a set of sequences over Events(I),
each of which is referred to as an allowed event sequence
of I.

By definition, output events of I are under the control of
the service provider of I, and input events of I are under the
control of the service consumer (user) of I. For interface I,
define SafeEventSeqs(I) to be the following set:

{w : w is a finite prefix of an allowed event sequence of I }

which includes the empty sequence.

Definition: A state transition system A is defined by:

* States(A), a set of states.

o Initial (A), a subset of Stares(A), referred to as initial
states.

» Events(A), a set of events.

o Transitions 4(e), a subset of States(A) x States(A), for
every e € Events(A). Each element of Transitions 4(e) is
an ordered pair of states referred to as a transition of e.

A behavior of A is a sequence o = (sg, €p, $1, €1, - ) OVer
alternating States(A) and Events(A), such that sq € Initial(A)
and (s;, si+1) Is a transition of e; for all <. A finite sequence
o over alternating States(A) and Events(A) may end in a state
or in an event. A finite behavior, on the other hand, ends in
a state by definition. The set of behaviors of A is denoted by
Behaviors(A). The set of finite behaviors of A is denoted by
FiniteBehaviors(A).

For e € Events(A), define enabled 4(¢) to be the following
set of states:

{s : for some state ¢, (s,t) € Transitions s(e)}.

An event e is said to be enabled in a state s of A iff
s € enabled 1(e). An event e is said to be disabled in a state
s of A iff s ¢ enableds(e).

Definition: A module M is defined by:
o Events(M), a set of events that is the union of three
disjoint sets:
Inputs(M), a set of input events,
Outputs(M), a set of output events, and
Internals(M), a set of internal events.
+ sts(M), a state transition system with
Events(sts(M)) = Events(M).
o Fairness requirements of M, a finite collection of subsets
of Outputs(M)UInternals(M ). Each subset is referred to
as a fairness requirement of M.

By definition, a module has control of its internal and
output events, but its input events are under the control of
its environment.

Convention: For readability, the notation sts (M) is ab-
breviated to M wherever such abbreviation causes no am-
biguity, e.g., States(sts(M)) is abbreviated to Srates(M),
enabled4(ar)(e) is abbreviated to enabledys(e).

Let F be a fairness requirement of module M. F is said to
be enabled in a state s of M iff, for some e € F, e is enabled
in s. F is said to be disabled in state s iff F' is not enabled
in 5. In a behavior o = (sg, €9, 81, €1, -, Sj,€j, ), WE say
that F occurs in state s; iff ¢; € F. An infinite behavior o
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of M satisfies F' iff F' occurs infinitely often or is disabled
infinitely often in states of o.

For module M, a behavior o is an allowed behavior
iff for every fairness requirement F of M: o is finite
and F' is not enabled in its last state, or o is infinite and
satisfies F. Let AllowedBehaviors(M) denote the set of
allowed behaviors of M.

Notation: Let o be a sequence over a set F'. For any set E,
proj(o. E) is the sequence over E obtained from o by deleting
all elements that are not in E.

We are now in a position to formalize the notion of a
module offers an interface. Consider an interface /. Let o be
a sequence over a set of states and events.

Definition: o is allowed wrt I iff:
proj(o. Events(I)) € AllowedEventSeqs(I).

Definition: o is safe wrt I iff one of the following holds:

« o is finite and proj(o, Events(I)) € SafeEventSeqs(I);

+ o is infinite and every finite prefix of o is safe wrt I.

In what follows, we use last(c) to denote the last state
in a finite behavior o, and @ to denote concatenation of two
sequences. For sequences consisting of a single element, say, e,
the sequence notation < e > is abbreviated to e for simplicity.

Definition: Given a module M and an interface 7,
M offers I iff the following conditions hold:

« Naming constraints:
Inputs(M) = Inputs(I) and
Outputs(M) = Outputs(I).
» Safety constraints:
For all o € FiniteBehaviors(M),
if o is safe wrt I, then
Ve € Outputs(M):
last (o) € enabledys(e) = o@e is safe wrt I, and
Ve € Inputs(M):
o@e is safe wrt I = last (o) € enableds(e).
» Progress constraints:

For all ¢ € AllowedBehaviors(M),
if o is safe wrt I, then o is allowed wrt I.

Note that module M is required to satisfy interface [
only if its environment satisfies the safety requirements of I.
Specifically, for any finite behavior that is not safe wrt I, the
two Safety constraints are satisfied trivially; for any allowed
behavior of M that is not safe wrt I, the Progress constraint
is satisfied trivially. That is, as soon as the environment of M
violates some safety requirement of I, module M can behave
arbitrarily and still satisfy the definition of M offers I.

The two Safety constraints can be stated informally as
follows. First, whenever an output event of M is enabled
to occur, the event’s occurrence would be safe; i.e., if the
event occurs next, the resulting sequence of interface event
occurrences is a prefix of an allowed event sequence of I.
Second, whenever an input event of M (controlled by its
environment) can occur safely, M does not block the event’s
occurrence.

For an input event of M whose occurrence would be unsafe,
module M has a choice: It may block the event’s occurrence
or let it occur.

Consider next a module M that offers interface U and uses
interface L. The environment of M consists of the user of U
and the module that offers L. In what follows, we use “o is
safe wrt U and L” to mean “o is safe wrt U and o is safe
wrt L.”

Definition: Given module M and interfaces U and L,
M using L offers U iff the following conditions hold:
« Naming constraints:
Events(U) N Events(L) = 0,
Inputs(M) = Inputs(U) U Outputs(L), and
Outputs(M) = Outputs(U) U Inputs(L).
« Safety constraints:
For all o € FiniteBehaviors(M),
if o is safe wrt U and L, then
Ve € Outputs(M):
last (o) € enabledy;(e) = o@e is safe wrt U and
L, and
Ve € Inputs(M):
Qe is safe wrt U and L = last(o) € enabledy(e).
* Progress constraints:
For all o € AllowedBehaviors(M), if o is safe wrt
U and L, then
o is allowed wrt L = o is allowed wrt U.

The definition of M using L offers U is similar to the
definition of M offers I in most respects. The main difference
between the two definitions is in the Progress constraints.
For module M using interface L, it is required to satisfy the
progress requirements of interface U only if the module that
offers L satisfies the progress requirements of L.

Note that M using L offers U reduces to M offers U
when L is a null interface; i.e., Events(L) is empty, and
AllowedEventSeqs(L) has the null sequence <> as its only
element.

IV. VENDING MACHINE EXAMPLE

To illustrate our definition of interface satisfaction, we return
to the vending machine example introduced in Section II.

Notation: For a string o and positive integer n, o™ denotes
the string «@a@ - - - @ where o appears n times. o denotes
the empty string <>. a® denotes the string a@q@ - - - where
« appears infinitely often.

The user interface of the vending machine, denoted by U,
has the following events,
+coin insertion of coin by customer
+large insertion of object larger than coin by customer
+small insertion of object smaller than or same size as

coin by customer

—choc dispensing of chocolate by machine
—coin rteturn of coin by machine
—small return of small object by machine
where the character + is used in names of events controlled
by the environment, and the character — is used in names of
events controlled by the machine. Specifically, we have

Inputs(U) = {+coin, +small, +large}
Outputs(U) = {~choc, —coin, —small}.
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Aside from this distinction of events, the specification of U is
the same as VM in Section II. See the equation below:

AllowedEventSeqs(U)
= {a" : a = (+coin, —choc),

and n is 0, a positive integer or oo }.

Note that only the intended interface interaction is specified,
namely, if someone inserts a coin, then the machine will
eventually dispense a chocolate.

We now design a control module, called M, that offers the
service of interface U while using the service of a storage
module through interface L. The events of interface L are as
follows:

—request  signal from module M to storage module

+response release of a chocolate from storage module to
module M

+error signal from storage module to module M

where the character + is used in names of events controlled

by the storage module, and the character — is used in names

of events controlled by module M. Specifically, we have

Inputs(L) = {—request}
Outputs(L) = {+response, +error}.

Aside from this distinction of events, the specification of L is
the same as STOR in Section II:

AllowedEventSeqs(L)
= {b" : b = (—request, +response)

and 7 is 0, a positive integer or co}.

Again, only the intended interface interaction is specified,
namely, if module M makes a request, then the storage module
will eventually respond with a chocolate.

A. Designing a Control Module

Numerous designs of module M can be specified such that
M using L offers U is satisfied. Fig. 3 shows one specified
as a communicating finite state machine. Its input events
are +coin, +small, +large, +-response, and +error. Its output
events are —choc, —coin, —small, and —request. It has one
internal event (not named) whose occurrence is associated
with a state transition from ILLEGAL to HALT. Its fairness
requirements are {—choc} and {~request}. Note that the other
output events, —coin and —small, and the internal event are
not required to be fairly scheduled. Note also that the events
+large. +small, +-error, —coin and —small do not appear in
the allowed event sequences of U and L. Thus, any occurrence
of these events would be unsafe.

Let us examine the behavior of module M as specifed in
Fig. 3. Note that there is no state transition associated with
the event +/arge, which means that the module must always
block the insertion of large objects by customers.

When the module is in state READY, both +coin and
+small are enabled to occur. Suppose that a customer inserts
a small object that is not a coin. Having accepted the object,
the module may behave in different ways. In particular, the
small object may be a counterfeit coin, say, a well-made one.

Fig. 3.

A control module.

In this case, the module may be fooled into dispensing a
chocolate. Alternatively, the module may detect that the object
accepted is not a genuine coin (state transition from READY
to ILLEGAL). Subsequently, it may either return the object
or halt.

Note that module M is designed to behave correctly (—choc
following +coin) if the storage module behaves correctly
(+response following —requesr). Moreover, it is possible
that module M behaves correctly (—choc following +coin)
after the storage module has behaved incorrectly (+response
following +error following —request).

The behavior of module M as specified in Fig. 3 appears to
be reasonable. However, it would not satisfy interfaces U and
L if we were to adopt the usual notion of satisfaction in [3], [5],
[15], [16].4 In particular, module M has observable behaviors
at interfaces U and L that are not in AllowedEventSeqs(U) and
AllowedEventSeqs(L), respectively, unless the following is
known to be true: Vending machine customers will never insert
small objects, and the storage module will always respond
correctly. But such knowledge implies that the design of
module M is not separable.

On the other hand, module M as specified above satisfies
M using L offers U. (A proof is given below.) In particular,
the interfaces U and L encode all information that a designer
needs to specify a correct module M. That is, the design of
M is separable.

There are many ways to modify the specification of M
in Fig. 3 to make it more realistic. For example, we might
allow module M to accept +coin and +small in all states and
specify how module M responds to the insertion of coins and
small objects when it is in states other than READY. Such
modification of the specification in Fig. 3 would not affect the
set of behaviors of M that are safe wrt to U and L, and the
modified specification would still satisfy M using L offers U.

In general, interfaces U and L, as specified above, admit
many different designs of module M that are all deemed
correct. If some of these designs are deemed undesirable, they
can be ruled out by modifying the allowed event sequences
of U and L.

Keep in mind that for each interface, only the intended inter-
action sequences between the service provider and consumer
of the interface are specified. We believe that such specifica-

4There is another difference in [15], namely, the restriction that every input
must be enabled in every state of an automaton. The blocking of events +/arge,
+small, +coin, +error, and +response by module A/ in various states cannot
be specified.
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tions are natural. Moreover, with our definition of interface
satisfaction, such specifications encode adequate information
for separable module design.

B. Proof of Satisfaction

To illustrate our definition of M using L offers U, we provide
a proof that the specification of M shown in Fig. 3 satisfies
the interfaces U and L given. It is easy to see that the
Naming constraints are satisfied. Also, every behavior of M
corresponds to a path in Fig. 3 starting from state READY.

To show that the Safety constraints are satisfied, let o denote
a finite behavior of M that is safe wrt U and L. Note that
neither +small nor +error can appear in o. From Fig. 3, it is
clear that o must be a finite prefix of (READY) @a®°, where
« = (+coin, ACCEPTED, —request, WAITING, +response,
DISPENSING, —choc, READY). Also, being a behavior, o
ends in a state. It is sufficient to show that for o ending in
each of the four states, the two Safety constraints are satisfied.

» o ending in state READY—No output event is enabled
in READY. Hence the first Safety constraint is satisfied
trivially. The only input event e such that c@e is safe wrt
U and L is +coin, and the event is enabled in READY.
Hence, the second Safety contraint is satisfied.

* o ending in state DISPENSING—The only output event
enabled in state DISPENSING is —choc, and 0@( —choc)
is safe wrt U and L. Hence, the first Safety constraint
is satisfied. There is no input event e such that oQe is
safe wrt U and L. Hence, the second Safety constraint is
satisfied trivially.

For o ending in state ACCEPTED or WAITING, the proof is
similar to that given above and is omitted.

To show that the Progress constraints are satisfied, we
consider the set of behaviors of M that are safe wrt U and L.
This set is made up of the infinite behavior (READY) @Qa°,
where « = (+4coin, ACCEPTED, —request, WAITING,
+response, DISPENSING, —choc, READY), and all of its
prefixes that end in a state.

Module M has two faimess requirements {—request} and
{—choc}. The infinite safe behavior is an allowed behavior of
M because —request and —choc each appears infinitely often
in it. For this allowed behavior, the observable event sequence
at interface L is a™ where a = (—request, +response), and
the observable event sequence at interface U is b>° where b =
(+coin. —choc). Hence, the Progress constraint is satisfied.

Of the finite safe behaviors, those ending in state READY
or WAITING are allowed behaviors of M, because in these
states, neither —choc nor —request is enabled.

Of the finite allowed behaviors ending in state READY,
the observable event sequence at interface L is a”, and the
observable event sequence at interface U is b, where n
is a non-negative integer. Hence, the Progress constraint is
satisfied.

Of the finite allowed behaviors ending in state WAITING,
the observable event sequence at interface L is b"@(—request),
where n is a non-negative integer. Each such behavior is
not allowed wrt L. Hence, the Progress constraint is satisfied
trivially. (That is, module M is required to offer the service of

U only if it interacts with some module that offers the service
of L))
We have proved satisfaction of M using L offers U.

V. COMPOSITION THEOREM

We first define how modules are composed.
Definition: A set of modules {M; : j € J} is compatible
iff Vik € J.j # k:
Internals(Mj;) N Events(My) = 0, and
Outputs(M;) N Outputs(My) = 0.
Convention: For any set of modules with distinct names,
{M, : j € J}, it is assumed that for all j,k € J,j # k,
Internals(M;) N Events(My) = 0.

The above convention can be ensured by, for instance,
including the name of each module as part of the name of
each of its internal events. Thus, to check that a set of modules
{M; : j € J} is compatible, it suffices to check that their
output event sets are pairwise disjoint.

Notation: For a set of modules {M; : j € J}, each state
of their composition is a tuple s = (¢; : j € J), where
t; € States(M;). We use tmmage(s, M;) to denote ¢;.

(Note that the ordering of module states in the tuple is
arbitrary. In fact, the state of the composite system can
be represented by an unordered tuple, provided that for all
i,J € J,States(M;) N States(M;) = (. This requirement can
be ensured by including the name of each module as part of
its state.)

Definition: Given a compatible set of modules {M; : j €
J}, their composition is a module M defined as follows:

o Fvents(M) defined by:

Internals(M) = U Internals(M;)
j€T

U i ( U Outputs(M;))

jeJ

N (| Inputs(M;) )]

Jj€J

Outputs(M) = UOutputs(MJ) - Ulnputs(MJ)
i€t jeJ

Inputs(M) = Ulnputs(Mj) - UOutputs(Mj)
j€J j€J

» sts (M) defined by:
States(M) = [ ] States(M;)
JjeJ

Initial(M) = [ ] Initial(M;)
jeJ
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Transitions s (e), for all e € Events (M), defined by:
(s.t) € Transitionsp(e) iff, Vj € J,
if e € Events(Mj), then
(image (s, M;), image(t, M;)) € Transitionsys, (€),
and
if e & Events(M;),
then image(s, M;) =
image (t, M;).
* Fairness requirements of M
= [U;es Fairness requirements of Mj).

Definition: A set of interfaces {I; : j € J} is disjoint iff

Vik € .1j # k
Events(1;) N Events(I,) = 0.

Theorem 1 (Basic Composition): Let modules, M and N,
and disjoint interfaces, U and L, satisfy the following:

* M using L offers U, and

« N offers L.

Then, M and N are compatible and their composition offers
U.

A proof of Theorem 1 is not given, because the theorem
is subsumed by Theorem 3, which is proved. Since the
composition of any two compatible modules is also a module,
Theorem 1 is easily extended to the following theorem for an
arbitrary number of modules organized in a linear hierarchy.

Theorem 2 (Stack Composition): Let
My, I, My, Ir,---, M,, I, be a finite sequence over alternat-
ing modules and interfaces, such that the following hold:

e I1,I5,---, and I, are disjoint interfaces.

« M offers I.

« For j =2,---,n, M; using I;_; offers I;.
Then, modules {Mj,---, M,} are compatible and
their composition offers 1,,.

Proof: The compatibility of {Mj,---, M,} is obvious.

To show that their composition offers I,, it suffices to establish
the following inductive step, for j = 2,---,n:

If the composition of {Mi,---,M;_1} offers I;_q,
and M; using I;_; offers I;, then the composition of
{Ml, ey, ]‘4]'_17 M]} offers ]j.

But this is implied by Theorem 1, with the composition of
{My,---,M;_1} being N, M; being M, I;_; being L, and I;
being U. ]

Theorem 2 can be used for the design and specification of
layered systems by considering each layer as a module in our
theory. For some complex systems, however, it is desirable
to consider each layer as a set of modules. For example, the
transport layer of a computer network may consist of a set of
different transport protocols (e.g., TCP, TP4, UDP).

We next formulate and prove a composition theorem for a
general model of layered systems.

Definition: The composition of a set of disjoint interfaces,
{1; : j € J}, is an interface I defined by the following:
* Events(I) that is the union of
Inpus(I) = U, ; Inputs(I;), and
Owpuis(I) = U, ¢ ; Outpurs(I;)

s AllowedEventSeqs(I)
= {w : w is a sequence over Events(I) such that
Vj e J:
proj(w, Events(I;)) € AllowedEventSeqs(I;)}

Definition: Given a set {U,,Us,---,U,,,L1,Ls, -+, Ly}
of disjoint interfaces, M using Ly, Ly, --,L,,
of fers Uy, Us,---,U, iff M, using the composition
of {Li,Ly,---,L,}, offers the composition of

{U1,Us,---,U,}. Also, M offers Uy, Us,---
offers the composition of {Uy,Us,---,Uy,}.

Before considering a layered architecture in general, we first
prove the following theorem:

U, iff M

Theorem 3 (Bypass composition): Let modules M and N
and disjoint interfaces {U, L, V'}, satisfy the following:

* M using L offers U

* N offers L,V
Then M and N are compatible, and their composition offers
Uv.

A proof of Theorem 3 is presented in Appendix A; it is quite
long, requiring seven lemmas. Note that Theorem 3 reduces
to Theorem 1 when V is a null interface.

Definition: A layered system with layers 1 through J is
defined by the following:
* Modules, a set of modules with distinct names parti-
tioned into sets
Modules(j),j = 1,---,J, one for each layer
+ Inter faces, a set of disjoint interfaces partitioned into
sets
Inter faces(j),j = 1,---,.J, one for each layer
* For each module M € Modules,U(M), a set of inter-
faces to be offered by M, and L(M), a set of interfaces
to be used by M

such that the following Naming constraints are satisfied:
) Forall j =1,---,.J:
Inter faces(j) = UMeModuzes(j) U(M)
2) For every M € Modules:

a) M € Modules(j)Aj > 1
= L(M) C Ui Inter faces(k)

b) Inputs(M)
= [UrevanInputs(I)] U [Ure paryOutputs(I)]
c) Outputs(M)
= [UrevanOutputs(I)] U [Ure aryInputs(T))]
3) For every pair of distinct modules M and N:
UM)YNU(N) =10
LIM)NL(N) =190
The above Naming constraints ensure that Modules is a
compatible set of modules.

In our model of layered systems, a module in layer j can
use an interface offered by any module in a lower layer,
provided that no other module is using the same interface.
(This requirement is simply a Naming constraint. In fact, a
module can offer services to multiple users concurrently. But
by tagging interface event names with user names, the interface
offered to each user is distinct.) A layered system corresponds
to a directed graph whose nodes are modules and whose arcs
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are defined as follows: For modules M and N in Modules,
there is an arc from M to N iff for some interface I in
Inter faces, N offers I and M uses I. It is not hard to see
that every layered system in our model can be represented by
a directed acyclic graph. Furthermore, every directed acyclic
graph represents a layered system allowed by our model.

Let Services(j) denote the services available to the user(s)
of layer j. Formally,

Services(1) = Interfaces(1)
and for j > 1
Services(j)
= [Interfaces(j)]
U [Services(j - 1) - UI\/IEModulcs(j)L(M)]'

Theorem 4 (Dag Composition): For a layered system, if the
following hold:

* VM € Modules(1) : M offers U(M)

e For j =2,---,JVYM € Modules(j) :

M using L(M) offers U(M)

Then, Ugeqy,... syModules(k) is a set of compatible modules
and their composition offers Services(.J).

A proof of Theorem 4 is given in Appendix B.

VI. IMPLEMENTATION THEOREMS

To define our implements relation between two modules,
we extend the definitions of “safe wrt” and “allowed wrt” as
follows. Let M and N denote modules, and let o be a sequence
over a set of states and events.

Definition: o is safe wrt N iff for
Behaviors(N),
proj (w, Inputs(N) U Outputs(N))
= proj (o, Inputs(N) U Outputs(N)).
Definition: o is allowed wrt N iff for some w €
Behaviors(N),
proj (w, Inputs(N) U Outputs(N))
= proj (o, Inputs(N) U Outputs(N)).
Definition: Given modules M and N, M implements N iff
the following conditions hold:

some w €

« Naming constraints:
Inputs(M) = Inputs(N) and
Outputs(M) = Outputs(N).
+ Safety constraints:
For all o € FiniteBehaviors(M),
if o is safe wrt N, then
Ve € Outputs(M):
last (o) € enableds(e) = o@e is safe wrt N, and
Ve € Inputs(M) :
o@e is safe wrt N = last(o) € enabledps(e).
* Progress constraints:
For all ¢ € AllowedBehaviors(M),
if o is safe wrt NV, then o is allowed wrt N.
Suppose that a module has been designed and shown to
satisfy a set of interfaces. Subsequently, we may want to refine
it to derive new modules. (For an example, see [19].) The

following theorems are useful for justifying such refinement
steps. Their proofs are given in Appendix D.

Theorem 5 (Implementation Replacement): Let M and N
be modules, and I, U, and L be interfaces.
a) If M implements N and N offers I, then M offers 1.
b) If M implements N and N using L offers U, then M
using L offers U.

Theorem 6 (Implementation Transitivity): Let My, Ms, and
My be modules. If M3 implements M, and M, implements
M;, then M3 implements M.

VII. CONCLUDING REMARKS

We view interfaces as being two-sided. Each interface has
a service provider on one side and a service consumer on the
other. Interfaces encode all information that the designers of
modules need to know, so that each module can be designed
and implemented separately. To achieve separability, each
event in an interface is explicitly defined to be under the
control of the service provider or consumer of the interface,
and this additional information is used in our definition of
interface satisfaction.

We characterize our approach of system design as decom-
positional, which was initially motivated by the design of
layered systems. Although a composition theorem, such as the
theorems proved in this paper, is useful for both compositional
and decompositional approaches to system design, our notion
of separability in module design appears to be more important
in the decompositional approach.

The concepts of separability and composability are similar
to goals of object-oriented programming. There is, however,
a nontrivial difference between “objects” and our modules.
In the literature of object-oriented designs, interface specifica-
tions are limited to the use of preconditions and postconditions
for individual operations (routines), as well as invariant as-
sertions—these are safety properties. In our theory, on the
other hand, modules are service providers and consumers (e.g.,
network protocols). The notion of providing a service cannot
be captured by a safety property. Instead, what we need are
progress properties (e.g., a vending machine will dispense
candy) or, more generally, conditional progress properties
(e.g., if someone inserts a coin, the vending machine will
dispense candy).

In practice, modules and interfaces can be specified by using
many different languages. The theory presented in this paper
provides a semantic foundation upon which proof methods
can be developed for various specification languages. For
interfaces and modules specified in the relational notation [9],
we have developed one such proof method [12].
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Appendix A
Proof of Theorem 3 (Bypass Composition Theorem)

Lemma 1. Let/ denote the composition of disjoint interfaces {l;:jel},
and o a sequence over alternating states and events. Then,

(a) ois safe wrt [ iff Vj € J, 6 is safe wrt [;, and

(b) ois allowed wrt [ iff Vj € J, ¢ is allowed wrt I;.

Lemma 1 is an i di e of the definition of the com-

position of a set of disjoint interfaces in Section 4.

Notation. Let M ;1M ; denote the composition of any two
modules My and M .

Notation. For a sequence o over alternating States(M,1Mj;) and
Events (M |IM ), we use image(o,M;), for ie {12}, to denote a
sequence over alternating Stazes (M;) and Events (M;) obtained from © as
follows: First, replace every state s in ¢ by image(s, M;) and delete
every event not in Events(M;). Second, wherever a state ¢ appears as
¢ ive el in the lting sequence, replace the string of con-
secutive ¢ elements by a single 7.

Lemma 2. Let © be a behavior of M 1M, and
F ¢ Qutputs (M;) U Internals (M;) a faimess requirement, where

i € {1,2}. Suppose the following hold:
(a) Ve e Outputs (M;) U Internals (M),

V finite prefix w of ¢ ending in a state:

image (last(w), M;) € enabledp(e)
= last(w)e enabledy a,(e)

{b) o satisfies fairness requirement F of M 1IM, .
Then image (6, M;) satisfies fairness requirement F of M, .

A proof of Lemma 2 is given in Appendix C.
Lemma 3. Fori e {1.2}:
G € Behaviors (M || M 3) => image (G, M;) € Behaviors (M;).

Lemma 3 is an i di quence of the definition of
Transitionsy 1y, (see definition of module position in Section 4).

We proceed to prove Theorem 3.

Notation. We use L+ to denote the composition of L and V, and U+ the
composition of U and V.

From Naming constraints of M using L offers U and N offers L*, we
infer that M and N are compatible. Also, Naming constraints of MIN
offers U+ are satisfied.

It remains to show that Safety and Progress constraints of MIN
offers U* are satisfied. To do so, we need Lemmas 1, 2 and 3. We also
need Lemmas 4-7 which are specific to modules M and N in Theorem 3.

Lemma 4. For any sequence o over alternating States(MIN) and
Events(MIN):

(a) image (o, M) is safe wrt U(L) iff o is safe wrt U(L)

(b) image (o, N)is safe wrt V(L) iff ¢ is safe wrt V(L)

(c) image (o, M) is allowed wrt U (L) iff & is allowed wrt U (L)

(d) image (o, N)is allowed wrt V(L) iff & is allowed wrt V(L) .

Lemma 4 is an immediate consequence of
Evenis (M) 2 Events (U) U Events (L) and
Events (N) 2 Events (V) Events (L)
which follow from Naming constraints of M using L offers U and N offers
L+
The following lemma states that if U+ is not misused, then M and N
do not misuse L* (proof in Appendix C).

Lemma §.

o€ Behaviors(MIN) Ao safe wit U+ = osafe wrt L+.

The following lemma states that if U* is not misused, then, in the
composition MIN, module N does not block any event e controlled by
module M. That s, if e of MIN is disabled in a state s of MIN, then e
of M is disabled in image (s, M) (proof in Appendix C).

Lemma 6.

o € FiniteBehaviors (M\N) A g safe wrt U+

Ae € (Outputs (M) U Internals (M )) A image (last (6).M ) € enabledy(e)
=3 last (o) € enabledyy n(e) .

The following lemma states that if U+ is not misused, then, in the
composition MIN, module M does not block any event ¢ controlled by
module N. Thatis, if e of MIN is disabled in a state s of MIN, then e
of N is disabled in image (s, N) (proof in Appendix C).

Lemma 7.

© € FiniteBehaviors (MIN) A o safe wrt U+

Ae € (Qutputs (N YL Internals (N)) A image (last (6), N) € enabledy(e)
= last (0) € enabledyy\n(e) .

Resuming our proof of Theorem 3, we proceed to prove that Safety
and Progress constraints of M IN offers U™ are satisfied.

Proof for Safety constraints:
(1) o € FiniteBehaviors(MIN) (Assumption)
(2yosafewrt U+ (Assumption)
[We have to prove the following:

Ve € Inputs (U*): c@e safe wrt U+ = last (6) € enabledyy y(e)

Ve € Quiputs (U*): last (0) € enabledyy y(e) = 6@e safe wrt U+]
(3) o is safe wrt L+ (1,2, Lemma 5)
(4) image (o, M ) € FiniteBehaviors(M) (1, Lemma 3)
(5) image (o, M) is safe wrt U and L

. (2, 3, Lemma 1(a), Lemma 4(a))

(6) image (o, N )€ FiniteBehaviors (N) (1, Lemma 3)
(7) image (o, N} is safe wrt L* (3, Lemma 4(b))
(8) e € Inputs (V) A c@e safe wrt U+
= last(0) € enabledyy n(e) (proof follows)
(8.1) e € Inputs (V) (Assumption)
(8.2) 6@e safe wrt U+ (Assumption)
(8.3) c@e safe writ V (8.2, Lemma 1(a))

(8.4) image (0, N)@e safe wrt V
(8.3, Naming constraints of N offers L*)
(8.5) image (o, N)@e safe wrt L+
(7, e & Events (L), 8.4, definition of L +)
(8.6) last (image (G, N)) € enabledy(e)
6,7,8.1, 8.5, second Safety constraint of N offers L*)
(8.7) last (0) € enabledyy (e )
(8.6, e & Events (M), definition of Transitionsy (e ))
[(8) follows from (8.1), (8.2), (8.7).]
(9) e € Inputs (U) A o@e safe wrt U+

= last(0) € enabledyy n(e) (proof follows)
9.1) e € Inputs (U) (Assumption)
(9.2) o@e safe wrt U+ (Assumption)
(9.3) c@e safe wrt U (9.2, Lemma 1(a))
(9.4) image (0, M) @e safe wrt U (9.3, Lemma 4(a))

(9.5) image (o, M)@e safewrt U and L (5,94, ¢ & Events(L))
(9.6) last (image (6, M)) € enabledy(e)
(4,94, second Safety constraint of M using L offers U)
(9.7) last (G) € enabledy y(e) (9.6, ¢ & Events(N))
[(9) follows from (9.1), (9.2), (9.7).]
(10) e € Outputs (V) Alast (G) € enabledyy y(e)

= 0@e¢ safe wrt U+ (proof follows)
(10.1) e € Ouputs (V) (Assumption)
(10.2) last (o) € enabledy n(e) (Assumption)

(10.3) image (last (G), N )€ enabledy(e)
(10.2, definition of Transitionsy n(e))
(10.4) last (image (6, N)) € enabledy(e)  (10.3)
(10.5) image (0, N)@e safe wrt L+
(6,7, 10.1, 10.4, first Safety constraint of N offers L+)
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(10.6) o@e safe wrt L+
(10.7) c@e safe wrt V (10.6, Lemma 1(a))
(10.8) c@e safe wrt U (2, e & Events(U))
(10.9) c@e safe wrt U+ (10.7,10.8)
[(10) follows from (10.1), (10.2), (10.9).]

(11) e € Outputs (U) A last(c) € enabledy y(e)

(10.5, Lemma 4(b))

= o@e safe wrt U+ (proof follows)
(11.1) e € Outputs (U) (Assumption)
(11.2) last (0) € enabledy y(e) (Assumption)

(11.3) image (last (6).M ) € enabledy(e)
(11.2, definition of Transitionsyn(e))

(11.4) last (image (0.M )) € enabledy(e)  (11.3)
(11.5) image (6, M)@e safe wrt U and L

(4,5, 11 .4, first Safety constraint of M using L offers U)
(11.6) o@¢ safe wit U (11.5, Lemma 4(a))
(11.7) o @e safe wrt V (2, Lemma 1(a), e & Events(V))
(11.8) 0@e safe wrt U* (11.6, 11.7, Lemma 1(a))
[(11) follows from (11.1), (11.2), (11.8).]
[Safety constraints follow from (1), (2), (8), (9), (10), (11).]

End of proof for Safety constraints.

Proof for Progress constraints:

(1) o € AllowedBehaviors (MIN) (Assumption)
(2) o safe wrt U+ (Assumption)
[We need to prove that g is allowed wrt U+.]
(3)oissafewrt L+ (1,2, Lemma 5)
(4) image (6, M ) € Behaviors (M) (1, Lemma 3)
(5) image (0, M) is safe wrt U and L (2,3, Lemma 4(a), Lemma 1(a))
(6) image (0, N) e Behaviors(N) (1, Lemma 3)

(7) image (6, N) is safe wrt L+ (2, 3, Lemma 4(b))
{We first prove that
image (0, M) € AllowedBehaviors (M ) and
image (6, N) € AllowedBehaviors (N).)
(8) For every finite prefix w of ¢ ending in a state:
w is a finite behavior of MIN A w safewrt U+ (1,2)
(9) image (o, M )€ AllowedBehaviors (M) (proof follows)
(9.1) F < Outputs (MY U Internals (M )
is a fairness requirement of M (Assumption)
(9.2) F is a faimess requirement of MIN
(9.1, definition of faimess requirements of M|N)
(9.3) o satisfies F of MIN 2,1
(9.4) For every finite prefix w of ¢ ending in a state,
for all e € Quitputs (M Y Internals (M ):
image (last(w), M )€ enabledy(e) = last(w) € enabledyq\n(e)
(8, Lemma 6 with 6 renamed w)
(9.5) image (6, M) satisfies F of M
(1,9.1,93,94, Lemma 2)
{(9) follows from, (4), (9.1) and (9.5).]
(10) image (o, N) € AllowedBehaviors(N) (proof follows)
(10.1) F ¢ Outputs (N) L Internals (N )
is a fairness requirement of N (Assumption)
(10.2) F is a faimess requirement of M [N
(10.1, definition of fairness i of MIN)
(10.3) o satisfies F of MIN (102,1)

(10.4) For every finite prefix w of o ending in a state,
for all € € Quiputs (N)\U Internals (N):
image (last (w), N) € enabledy(e’) = last () € enabledy y(e)
(8, Lemma 7 with ¢ renamed w)
(10.5) image (o, N) satisfies F of N
(1,10.1,10.3, 104, Lemma 2)
[(10) follows from (6), (10.1) and (10.5).]
(11) image (o, N ) is allowed wrt L+
(10, 6, 7, Progress constraint of N offers L*)
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(12) image (o, N) is allowed wrt L
(13) image (o, M ) is allowed wrt L

(11, Lemma 1(b))
(12, Lemma 4(c-d})
(14) image(c, M ) is allowed wrt U/
{4, 5, 13, Progress constraint of M using L offers U)

(15) o is allowed wrt U (14, Lemma 4(c))
(16) image (G, N) is allowed wrt V (11, Lemma 1(b))
(17) o is allowed wrt V (16, Lemma 4(d))
(18) o is allowed wrt U+ (15,17)

[(1), (2), (18) imply Progress constraints.]
End of proof for Progress constraints.

End of proof of Theorem 3.

Appendix B

Proof of Theorem 4 (Dag Composition Theorem)

A set of modules is disjoint iff for every pair of modules M and N in
the set, Events (M) Events (N)=@. Clearly, disjoint modules are com-
patible. To prove Theorem 4, we need two lemmas pertaining to disjoint
modules.

Lemma 8 Let Modules be a set of disjoint modules, and
{1(M): M € Modules } be a set of disjoint interfaces. If M offers I(M)
for every M € Modules, then the composition of {M:M e Modules }
offers the composition of {I(M ). M € Modules }.

A proof of Lemma 8 is given in Appendix C. This is an obvious
result for a set of disjoint modules, each of which offers its services
without being interfered by any other module in the set. This result can be
extended to the following lemma (proof omitted because it is similar to
the proof of Lemma 8).

Lemma 9. Let Modules be a set of disjoint modules, and
{LMY: M € Modules ] U {U(M): M € Modules ] be a set of disjoint in-
terfaces. If M using L(M) offers U (M ) for every M € Modules , then the
composition of (M:M e Modules] using the composition of
{L(M). M € Modules } offers the ition of (U (M): M € Modules }.

We proceed to prove Theorem 4. Naming constraints (1)-(3) in the
definition of our model of layered systems ensure that Modules is a com-
patible set of modules. This can be proved by contradiction as follows.

Assume that the following holds for some event e and distinct
modules M and N in Modules :

X = e e Outputs (M) Outputs (N}

From Naming constraint (2¢), e € Qutputs (M) implies Y| V Y 5, where
Yy = e e Outputs(Iy), for some I, UM)
Yy = e e Inputs(ly), for some I€ L(M)

and e € Outputs (N) implies Z ;v Z,, where

zZ, e € Outputs (K1), for some K€ U(N)
Z, = e < Inputs(K,), for some K€ L(N)

Therefore, we have (Y VY)A(Z;V Z3), which by boolean algebra
is equivalent to (Y1AZ)V(Y 1 AZy)V(YAZ ) V(YA Z,). Because
Interfaces is a set of disjoint interfaces, ¥ A Z; implies /1=K, i.c. they
are the same interface. But this contradicts Naming constraint (3). There-
fore (YA Z,) is false. Similarly, (YA Z;) is false. Therefore, X implies
Y1AZYV (YA Zy).

Assume that Y AZ; holds. Because Interfaces is a set of disjoint
interfaces, Y| A Z, implies that /1=K . But this is not possible for the fol-
lowing reason: 1=K together with e € Inputs(K,), from Z,, imply
e € Inputs (1), which contradicts Y because /npurs (/1) and Outputs (1 1)
are required to be disjoint. A similar argument shows that Y,AZ, is
false.

Let S(j) denote the composition of {I/:[e Services(j)}. Let
Layer(j) denote the composition of [M:M e Modules(j)]. Let
System (1..j) denote the composition of {Layer(k): k€ {1, ---,j}]. We
have to prove that System (1.. J) offers S(J). The proof is by induction.



Modules (1) is a set of disjoint modules because Modules is a set of
disjoint dul For any two dules M and N in Modules (1), UM )
and U(N) are disjoint, because of Naming constraint (3). Also, from con-
dition (a) in the hypothesis of Theorem 4, each M € Modules (1) satisfies
M offers U(M). Therefore, from Lemma 8, we have the base case,
namely:

Layer (1) offers S(1)

Induction step:
If System(1..j~1) offers S (j~1), then System(1..j) offers S(j )

Modules(j) is a set of disjoint modules because Modules is a set of
disjoint modules. For any two modules M and N in Modules (j), inter-
faces U(M ), U(N), L(M) and L(N) are disjoint, because of Naming con-
straint (3) and because Interfaces(j-1) and Interfaces(j) are disjoint.
Also, from condition (b) in the hypothesis of Theorem 4, each
M e Modules (j) satisfies M offers U(M ) using L(M). Therefore, from
Lemma 9, we have the following:

(i) Layer(j) using L offers U,
where
L is the composition of %{ L(M), and
M € Modules (j)

U is the composition of UM).

Me M%'ﬁ‘ult:(j)

The hypothesis, System (1..j-1) offers S(j-1), of the induction step,
can be written as follows:

(ii) System(l..j-1)offersL,V,
where V is the composition of [Services (j—1) - Ld L(M)).
M € Modules ()

From Naming constraints of our model of layered systems and the
above definition of V, interfaces L, U and V are disjoint. Applying
Theorem 3 to (i) and (ii), we infer that System(1..j) offers U, V. But the
composition of U and V is the same as the composition of Services (j).
This establishes the induction step.

End of proof of Theorem 4.

Appendix C
Proofs of Lemmas 2, 5, 6,7 and 8

Proof of Lemma 2

Here we use enabledy, p,(F) to tepresent [Ie € F: enabledy 1)),
and bledy (F) to [BeeF: bledy (e)].

Case 1: g is finite
(1) o is finite {Assumption)
(2) image (0, M;) is finite

(3) last (o) & enabledys 1y (F)

(1, definition of image (5, M;))
(1, b in Lemma 2)
(4) image (last(6), M;) & enabledy,(F) (3.ain Lemma 2)
(5) last (image (0, M;)) & enabledp(F)
(4, 1, image (last (5), M; )=last (image (o, M;)))
(6) image (0, M;) satisfies F of M; 2.5

End of proof for case 1.

In the remaining cases below, which are for infinite &, we assume
that 6=(s ¢, g, 51, €1, - - ). Then condition (a) in Lemma 2 can be res-
tated as the following:

(c) Ve € Outputs(M;) L Internals (M;), Vs € o:

image (sy, M;) € enabledy(e) = sy € enabledy, y (€ )

Case 2: o is infinite and image (S, M;) is finite
(1) o is infinite (Assumption)
(2) image (o, M;) is finite
(3)3n, Vik>n:
e, & Events (M;) and image (s, M;)=last (image (S, M;))
(1, 2, definition of image (5, M,))

(Assumption)
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(4)3j>n: 5, & enabledy, y(F) (bin Lemma 2, 1,3)
(5)3j>n: image(s;, M;) € enabledy (F) 4,c)

(6) last (image (0, M;)) € enabledy (F ) 5.3)

(7) image (0, M;) satisfies F of M; 6.2)

End of proof for case 2.

Case 3: ¢ is infinite and image (G, M;) is infinite

(1) o is infinite (Assumption)

(2) image (o, M;) is infinite (Assumption)

(3) Let proj (o, Evenis (M;))=(e;,, €;,, -+ )  (Assumption)
LetRo=(0, -+ ,io),and R;=fij_1+1, - - ,i;} for j=1,2, - -~

(4) image (o, M)=(1g, €;,, 1), ey )
where V;j20, Vk € R;, image (s, M;)=t;
(2, 3, definition of image (G, M,))
(5) F occurs infinitely often in o
= F occurs infinitely often in image (o, M;) 3.4)
(6) F disabled infinitely often in &
Let F be disabled at states (sg,, Sk, ")
LetJ=(j: 3k e R;]
(7) VI>0: 5, & enabledy p.(F)

(Assumption)

(6, definition of the 5;,’s)
(8) VI>0: image (s, M;) & enabledy (F) (7.0
(9)Vj e J:tj& enabledy (F) (4, definition of J (in 6))
(10) J is infinite ((k1, k2, - - - ) is infinite (from 6),
every R; is finite (from 2, 3))
(11) F of M; is disabled infinitely often in image (o, M;) 4,9,10)
(12) F of M || M, disabled infinitely often in ¢
= F of M; disabled infinitely often in image (o, M;) 6.11)
[(5) and (12) prove that image (0, M;) satisfies F for case 3.
End of proof for case 3.

End of proof of Lemma 2.

Proof of Lemma §

From the definition of ‘safe wrt', it is sufficient to prove Lemma 5 for a
finite behavior 6. The proof is by induction on the length of .

Base case:

Lemma $ holds trivially for ¢ of length 0.

Induction step:
[We assume Lemma 5 for g and show that it holds for 6@ (e, 5).}

(1) 6@ (e, s) € FiniteBehaviors(M (N )

(2)o@(e, s) is safe wrt U*

(3)o@ (e, s) is safe wrt V

{Assumption)
(Assumption)
(2, Lemma 1(a))
[Because of (3), it suffices to show that 6@ (e, s ) is safe wrt L.)
(4) 6 € FiniteBehaviors MIN) [¢))
(5) o is safe wrt U+ )
(6) o is safe wrt L* (4, 5, Induction hypothesis)
(5, Lemma 1(a))
(6, Lemma 1(a))
(9) e & Events (L) = 6@ (e, s ) safe wrt L 8)
(10) last (o) € enabledyy n(e) 1)

(7) o is safe wrt U
(8) o is safe wrt L

(11) e € Inputs(L) = c@ (e, 5 ) safe wrt L
(11.1) e € Inputs (L)
(11.2) image (6, M ) € Behaviors(M)
(11.3) image (5, M) safe wrt U and L
(11.4) image (last(c),.M ) € enabledy(e)
(10, definition of Transitionsy n(e))

(11.5) image (6,.M )@e is safe wrt L

(11.1, 112, 11.3, 11.4, first Safety constraint of M using L offers U)
(11.6) 6@ (e, s) is safe wrt L (11.5, Lemma 4(a))
[(11) follows from (11.1) and (11.6).]

(proof follows)
(Assumption)

(4, Lemma 3)

(7, 8, Lemma 4(a))
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(12) e € Ousputs (L) = 0@ (e, s) safe wrt L (proof follows) Proof of Lemma 7
(12.1) e € Outputs (L) (Assumption) The proof is similar to proof of Lemma 6.
(12.2) image (0, N) € Behaviors(N) (4, Lemma 3) (1) o € FiniteBehaviors(MIN) (Assumption)
(12.3) image (o, N ) safe wrt L+ (6, Lemma 4(b)) (2) o safe wrt U* (Assumption)
(12.4) image (last (6).N) € enabledy(e) (3) e € Outputs (N )y Inrernals (N) (Assumption)
(10, definition of Transitionsyn(e)) (4) image (last (6).N ) € enabledy(e) (Assumption)
(12.5) image (6, N)@e is safe wrt L* [We have to show that last (6) € enabledyyy(e).}
(12.1, 12.2, 12.3, 12.4, first Safety constraint of N offers L*) (5) e & Inputs (M) = last (6) € enabledyyn(e) (proof follows)
(12.6) 6@ (e, 5) is safe wrt L (12.5, Lemma 4(b)) .1 e & Inputs (M) (Assumption)
{(12) follows from (12.1) and (12.6).] (5.2) & Events (M) 6.1.3)
(13)o@ (e, 5) is safe wrt L 9,11,12) (5.3) last (6) € enabledyin(e)
(14) 5@ (e, ) is safe wrt L* G.13) (5.2, 4, definition of Transitionsyn(e))
[1). ). (14) imply induction step.) [(5) follows from (5.1) and (5.3).]
End of proof of Lemma 5. (6) e € Inputs (M) = last () € enabledp y(e) (proof follows)
(6.1) e € Inputs (M) (Assumption)
(6.2) o safe wrt L+ (1,2, Lemma 5)
Proof of Lemma 6
. (6.3) o safe wrt U* and L* 2,6.2)
(1) s € FiniteBehaviors MIN) (Assumption) . .
(6.4) image (o, N) is safe wrt L* (6.3, Lemma 4(b))
(2) o safe wrt U+ (Assumption) ] o )
(6.5) image (o, N )& FiniteBehaviors(N) (1, Lemma 3)
(3) e € Outputs (M )L Internals (M) (Assumption) . .
(6.6) image (o, N)@e is safe wrt L+
(4) image (last(0),M) € enabledy(e) (Assumption)

(6.4,6.5, 4, first Safety constraint of N offers L*)
[We have to show that last(G) € enabledpn(e).]

(6.7) c@e is safe wrt L* (6.6, Lemma 4(b))

(5) e & Inputs (N} = last (0) € enabledyy n(e) (proof follows) (6.8) 6@e is safe wrt U+ (6.3, 3, e & Events (U*))
(5.1) e & Inputs (N) (Assumption) (6.9) 6@e is safe wrt U and L (6.7, 6.8, Lemma 1(a))
(5.2) e & Events(N) (5.1,3) (6.10) image (0, M )@e is safe wrt U and L (6.9, Lemma 4(a))
(5.3) last(G) € enabledys y(e) (6.11) image (o, M) € FiniteBehaviors (M ) (1, Lemma 3)

(5.2, 4, definition of Transitionsy n(e)) (6.12) last (image (o, M)) € enabledy(e)
{(5) follows from (5.1) and (5.3).} (6.10, 6.11, second Safety constraint of M using L offers L)

(6) e € Inputs (N) = last (0) € enabledyy y(e) (proof follows) (6.13) last (6) € enabledyy n(e)

(6.1) e € Inputs (N) (Assumption) (4, 6.12, definition of Transitionsyy n(e))
(6.2) o safe wrt L* (1,2, Lemma 5) [(6) follows from (6.1) and (6.13).]
(6.3) o safe wrt U* and L* 2,6.2) (7) last (c) € enabledy n(e) (5.6)
(6.4) image (o, M) is safe wrt U and L [(1), (2), (3). (4), (7) imply Lemma 7.]
(6.3, Lemma 4(a), Lemma 1(a)) End of proof of Lemma 7.
(6.5) image (o, M) € FiniteBehaviors(M) (1, Lemma 3)
(6.6) image (0, M)@e is safe wrt U and L Proof of Lemma 8

(64,6.5,4, first Safety constraint of M using L offers U) Let X denote the composition of {M: M € Modules ). Let Y denote the

(6.7) 6@e is safe wrt U and L (6.6, Lemma 4(a)) composition of [I(M): M € Modules}. From the disjoincy of the
(6.8) image (o, N) € FiniteBehaviors(N) (1, Lemma 3) modules and Naming constraints of M offers I(M), we infer that Naming
(6.9) image (o, N) is safe wrt L* (6.2, Lemma 4(b)) constraints of X offers Y are satisfied. It remains to prove the Safety and
. Progress constraints of X offers Y.
(6.10) image (0, N )@e is safe wrt L (6.7, Lemma 4(b))
(6.11) image (6, N)@e is safe wrt L* (6.10, ¢ & Events(V)) Proof for Safety constraints:
(6.12) last (image (0, N)) € enabledy(e) (1) 6 € FiniteBehaviors (X ) (Assumption)
(6.8, 6.9, 6.11, second Safety constraint of N offers L*) () osafewrtY (Assumption)
(6.13) last (C) € enabledyy n(e) (3) VM € Modules: image (6, M )€ FiniteBehaviors (M )
(4, 6.12, definition of Transitionsyn(e)) (1, Lemma 3)
[(6) follows from (6.1) and (6.13).) (4) VM € Modules: image (G, M) safe wrt I(M) @
(7) last (0) € enabledp y(e) 5.6) (5) e € Outputs (X )/ last(G) € enabledy(e)  (proof follows)
(1), (2). 3). (4), (7) imply Lemma 6.) = o@e safe wrt Y
5.1) last bled ti
End of proof of Lemma 6. (5.1) last (o) € enabledy(e) (Assumption)
(5.2) e € Outpurs (X) {Assumption)

(5.3) e € Outputs (M), for some M € Modules
(5.2, definition of X )

(5.4) image (last(0), M ) € enabledy(e)
(5.1, definition of Transitionsx(e))
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(5.5) last (image (0, M) € enabledy(e) (623

(5.6) image (o, M)@e safe wrt I(M)
(3,4,53, 5.5, first Safety constraint of M offers I(M))

(5.7) o @e safe wrt I(M)
(5.6, Events (I(M)) ¢ Events (M)

(5.8)c@e safewrt Y
(5.7, e & (Events (Y)—Events (1(M))))

[(5) follows from (5.1), (5.2), (5.8).]

(6) e € Inputs (X)AG@e safe wrt Y (proof follows)
= last(c)€ enabledy(e)
(6.1) c@e safe wrt Y (Assumption)
(6.2) e € Inputs (X) (Assumption)
(6.3) e € Inputs (M), for some M € Modules (6.2, definition of X)
(6.4) o@e safe wrt [(M) (6.1, definition of Y, Lemma 1(a))

(6.5) image (o, M )@e safe wrt I(M)

(6.4, Events(I(M)) c Events(M))
(6.6) last(image (6, M)) € enabledy(e)

(3,4, 6.5, second Safety constraint of M offers I(M))

(6.7) image (last(c), M )€ enabledpy(e)  (6.6)
(6.8) last(0) € enabledy(e)

(6.7, definition of Transitionsy(e))
[(6) follows from (6.1), (6.2), (6.8).]
[(1), (2), (5). (6) imply Safety constraints.]

End of proof for Safety constraints.

Proof for Progress constraints:
(1) o € AllowedBehaviors (X ) (Assumption)
(2)osafewrtY (Assumption)
(3) VM € Modules : image (6, M) € Behaviors(M) (1, Lemma 3)
(4) VM € Modules : image (6, M) safe wrt I(M) @
(5) VM € Modules Ve € Events(M), Vs € States (X):
s € enabledy(e) <> image (s , M) e enabledp(e)
disjoincy of modules, definition of Transitionsx(e))

(6) VM € Modules: image (0, M) € AllowedBehaviors (M )

(5, Lemma 2 with M | being M and M,

being the composition of Modules —(M ]}
(1) YM € Modules : image (6, M) allowed wrt I(M )

(6, 4, Progress constraint of M offers I(M ))

(8) VM € Modules : ¢ allowed wrt I(M) (7, definition of Y)
(9) o allowed wrt Y ®)

[(1), (2), (9) imply Progress constraints.]
End of proof for Progress constraints.
End of proof of Lemma 8.

Appendix D

Proof of Theorems 5 and 6 (Implementation Theorems)

Notation. For any sequence G over the set of states and events of a
module, we abbreviate the notation proj (o, Inputs (N) U Outputs (N)) to
proj[o].

To prove Theorem 5, we need the following lemmas:
Lemma 10. Let M and N be modules and / an interface.
If M implements N and N offers /, then the following holds:

o € Behaviors(M) A o safe wrt] = o safe wit N.

Proof. We apply induction on the length of G.

Base case:
(1) 6=(s o) € FiniteBehaviors (M) {Assumption)
(2) projiol=<> S0}

(3) o safewrt N )

[(1) and (3) imply the base case.]

Induction step:

[We assume Lemma 10 for ¢ and show that it holds for 6@ (e, 5).]

(1) 0@ (e, s ) € FiniteBehaviors(M) (Assumption)

()o@ (e, s) is safe wrt [ (Assumption)

(3) 6 € FiniteBehaviors (M) 1)

(4) o is safe wrt / )

(5) o is safe wrt N (3, 4, Induction hypothesis)
(6) last () € enabledy (e ) 1)

(7) e € Internals (M) = 0@ (e, s ) safe wrt N
(5, e € Internals (M) = e & Events(N))
(8) e € Outputs(M) = 6@ (e, s)safe wrt N (proof follows)
(8.1) e € Outputs (M) (Assumption)
(8.2) c@e safe wrt N
(3. 5. 6, 8.1, first Safety constraint of M implements N}
(83)c@ (e, s) safe wrt N 8.2)
[(8) follows from (8.1), (8.3).]
9) e € Inputs (M) = 6@ (e, s) safe wrt N (proof follows)
(9.1) e € Inputs (M ) (Assumption)
(9.2) € € Inputs (N)
(9.1, Naming constraints of M implements N)

(9.3) 3w € FiniteBehaviors (N ). proj[w J=proj[6] (&)
(9.4) w safe wrt / 9.3,4)
(9.5) w@e safe wrt ] 2.9.3)

(9.6) last (w) € enabledy(e)
(9.2,9.3,9.4,9.5, second Safety constraint of N offers I)
(9.7) 31 € Srates(N). w@ (e, 1) € FiniteBehaviors(N) (9.3,9.6)
(9.8) proj[w@ (e, t)]=proj[c@ (e, 5)} “.3)
9.9)o@ (e, s) safe writ N (9.7,9.8)
[(9) follows from (9.1), (9.9).]
[(1). (2), (7), (8). (9) imply the induction step.]
End of proof of Lemma 10.

Lemma 11. Let M and N be modules, and U and L be interfaces.
If M implements N and N using L offers U, then the following holds:

o€ Behaviors(M) N osafewrt Uand L = o safe wrt N.

The proof of Lemma 11 is the same as the proof of Lemma 10, with
“‘safe wrt I replaced by *‘safe wrt U and L™, and ‘N offers /" replaced
by *‘N using L offers U”’.

Proof of Theorem § (Implementation Replacement)

We first prove Theorem 5(a). Naming constraints of M offers I follow
from Naming constraints of M implements N and N offers 1.

Proof for Safety constraints:

(1) o € FiniteBehaviors (M) (Assumption)

(2) o is safe wrt/ (Assumption)
(3) ois safe wrt N (1, 2, Lemma 10)

(4) e € Outputs (M) A last (G) € enabledy(e) (proof follows)
= 0@e safe wrt ]
(4.1) e € Outpuss (M) (Assumption)
(4.2) last (6) € enabledy(e) (Assumption)
(4.3) 6@e safe wrt N
(1,3,4.1,4.2, first Safety constraint of M implements N)
(4.4) 3w € FiniteBehaviors (N ), 31 € States(N):
w@ (e, t)e FiniteBehaviors(N)

Aprojw@ (e, t)]=proj[c@e] “4.3)
(4.5) last(w) € enabledy(e)Aw safe wrt] (4.4,2)
(4.6) e € Outputs (N)

(4.1, Naming constraint of M implements N)
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(4.7) w@e safe wrt/
(4.4,4.5, 4.6, first Safety constraint of N offers 1)
(4.8) c@e safe wrt I
(4.7,1, 4.4, Naming constraints of M implements N and N offers I)
[(4) follows from (4.1), (4.2), (4.8).]
(5) e € Inputs (M)A o@e safe wrt |

= last () € enabledy(e) (proof follows)
(5.1) e € Inputs(M) (Assumption)
(5.2) c@e safe wrt 1 (Assumption)

(5.3) e € Inputs (N}
(5.1, Naming constraints of M implements N)

(5.4) 3w € FiniteBehaviors (N): proj[w=proj [0] 3)
(5.5) w@e safe wrt / (54,52)
(5.6) last(w) € enabledy(e)

(5.3,5.4,5.5, second Safety constraint of N offers )
(5.7) 3t € States(N): w@ (e t) € FiniteBehaviors(N) (5.4,5.6)
(5.8) proj[w@ (e, 1)]=proj[c@e] (5.4)
(5.9) 6@e safe writ N (5.8,5.7)

(5.10) last (o) € enabledy(e )
(5.9,3,1,5.1, second Safety constraint of M implements N)
{(5) follows from (5.1, (5.2), (5.10).]
[(1), (2), (4), (5) imply Safety constraints of M offers /]
End of proof for Safety constraints.

Proof for Progress constraints:
(1) 6 € AllowedBehaviors (M) (Assumption)
(2) o is safe wrt [ (Assumption)

(3) o is safe wrt N (1,2, Lemma 10)

(4) o is allowed wrt N (1, 3, Progress constraint of M implements N)
(5) 3w € AllowedBehaviors (N): proj [w }=proj (6] “)

(6) w is safe wrt ] 5,2)

(7) w is allowed wrt / (5, 6, Progress constraint of N offers I}
(8) ¢ is allowed wrt / 5,7

[(1), (2). (8) imply Progress constraints.]
End of proof for Progress constraints.
End of proof of Theorem 5(a).
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