IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 5, NO. 2, APRIL 1997

205

Group Priority Scheduling

Simon S. Lam, Fellow, IEEE, and Geoffrey G. Xie

Abstract—We present an end-to-end delay guarantee theorem
for a class of guaranteed-deadline (GD) servers. The theorem can
be instantiated to obtain end-to-end delay bounds for a variety of
source control mechanisms and GD servers. We then propose the
idea of group priority, and specialize the theorem to a subclass
of GD servers that use group priority in packet scheduling. With
the use of group priority, the work of packet schedulers can be
substantially reduced. We work out a detailed example, for the
class of burst scheduling networks, to illustrate how group sizes
can be designed such that the worst case end-to-end delay of
application- data uhits in a real-time flow is unaffected by the
use of group priority. Group priority also can be used in packet
schedulers that provide integrated services (best effort as well as
real-time services) to achieve statistical performance gains, which
we illustrate with empirical results from simulation experiments.

Index Terms— ATM block transfer, burst scheduling network,
delay guarantee, group priority, integrated services, packet
scheduling, real-time flow.

I. INTRODUCTION

g4 VONSIDER a packet-switching network that delivers

packets from sources to destinations. The source of
a flow may negotiate with the network for service guarantees
(e.g., throughput, delay, loss rate) at connection setup time. A
flow requiring service guarantees is modeled as a sequence of
packets traversing a fixed path through the network. A flow
is said to be real time if the network provides an end-to-end
delay guarantee to each packet in the flow. Conceptually, a
network provides end-to-end delay guarantees to flows by
implementing each communication channel as a guaranteed-
deadline (GD) server, together with an appropriate admission
control mechanism. Each packet arrival from a real-time flow
to a GD server is given a deadline, or priority value, and
the server ensures that the packet departs by its deadline.'
Many GD service disciplines have been proposed [1]-[4],
[10], [11], [15].

In this paper, we assume that packets in the same real-time
flow are served in FIFO order.? At a GD server, there is a
packet scheduler which repeatedly searches for the smallest
value in a set of priority values, one for each flow. (The priority
value of a flow is the priority value of its head-of-line packet.)

Manuscript received January 11, 1996; revised September 30, 1996; ap-
proved by IEEE/ACM TRANSACTIONS ON NETWORKING Editor G. Sasaki. This
work was supported, in part by National Science Foundation Grant NCR-
9506048 and the Texas Advanced Research Program Grant 003658-220. An
earlier version of this paper was presented at IEEE INFOCOM’96.

S. S. Lam is with the Department of Computer Sciences, University of
Texas at Austin, Austin, TX 78712 USA (e-mail: lam@cs.utexas.edu).

G. G. Xie is with the Department of Computer Science, Naval Postgraduate
School, Monterey, CA 93943 USA (e-mail: xie@cs.nps.navy.mil).

Publisher Item Identifier S 1063-6692(97)03024-0.

'We will use deadline and priority value interchangeably.
2packets are given deadlines that are nondecreasing in arrival order.

For networks of the future, we envision that a high-speed
channel will be shared by hundreds, perhaps, thousands of
flows, which would require a highly efficient search algorithm.
Toward this goal, several heap search algorithms have been
designed and studied [7], [12].

We propose the idea of group priority to substantially reduce
the work of a packet scheduler in updating heaps (or any
other sorted priority data structure). The basic idea is simple.
Consecutive packets in a flow are partitioned into groups. Each
group is given a priority value equal to the largest of the
priority values of packets in the group.® The priority value
of a flow is defined to be the priority value of its head-of-line
group. Since each flow’s priority value changes less frequently,
for any group size larger than one, less work is required for
heap updates, Empirical results in [12] show that such work
reduction can be substantial, especially for a heavily utilized
channel. ‘

With the use of group priority, the largest of the packet
deadlines in a group becomes the deadline to be ensured by a
GD server for all packets in the group. Since the deadlines
of most packets in a real-time flow are “relaxed” at each
channel in the path of the flow, the worst case end-to-end
delay would increase. Thus, we observe that group priority is
a mechanism for trading an increase in the worst case end-
to-end delay of packets for a decrease in the work of packet
schedulers. However, we will demonstrate that for variable
bit-rate (VBR) flows, group sizes can be chosen such that the
worst case end-to-end delay of application data units in each
flow is unaffected (see Section IV-B).

Observe that most application data units are too large to
be carried in a single packet, and must be segmented for
network delivery. To an application, the end-to-end delays
(and loss rate) of its data units, rather than packets, are
the relevant measures of performance. For example, a video
picture to be sent over an IP network may be segmented into a
sequence of IP datagrams. To an end user, the delay incurred
to deliver the entire video picture is more important than the
delays of individual TP datagrams. As another example, an
e-mail message may be segmented into a sequence of cells
for delivery over an ATM network. The delay incurred to
deliver the e-mail message is more important than the delays
of individual cells.

The balance of this paper is organized as follows. In Section
I, we introduce the class of GD servers, and prove an end-to-
end delay guarantee theorem. The theorem can be instantiated
to obtain end-to-end delay bounds for a variety of source
control mechanisms and GD servers; in particular, different
GD servers can be used in the same end-to-end path. With the

3Note that group priority subsumes individual priority as a special case.

1063-6692/97$10.00 © 1997 IEEE

206

theorem, the problem of deriving the worst case end-to-end
delay for a real-time flow is reduced to a set of single-node
problems. '

In Section III, we develop the idea of group priority in
packet scheduling. For a subclass of GD servers, called the
priority subclass, we prove a relaxed deadline theorem. The
delay guarantee theorem in Section II is then specialized to
a smaller subclass of GD servers that use group priority in
packet scheduling.

In Section IV, we work out a detailed example for the class
of burst scheduling networks [9]. We derive end-to-end delay
bounds for application data units,* each carried in a sequence
of packets, called a burst. We illustrate how to choose group
sizes such that the end-to-end delays of bursts are unaffected
by the use of group priority in packet scheduling:

Note that the concept of a burst already exists in the ATM
literature. It is known as a block in the ATM block transfer
(ABT) capability being standardized by ITU-T [6]. The basic
objective of ABT is to allow a source to dynamically negotiate
its throughput reservation on the basis of a block of cells.
A block is bracketed by two RM cells. A leading RM cell
requests a reserved bandwidth for the block, and a trailing
RM cell releases the reserved bandwidth. In particular, a block
of cells is either discarded or accepted entirely by an ATM
switch. ABT can be extended as described in. [9] to support
the provision of delay bounds to application data units in a
real-time flow [13].

In integrated-services packet—switching networks, we be-
lieve that it is desirable to use the same packet scheduling
algorithm for all service classes. Different services, such as
real-time delivery at a specified loss rate and best effort
delivery, can be provided to individual flows through, the
use of different admission control conditions and mechanisms
[9], [13]. Lastly, in Section V, we present empirical results
from simulation expeﬁrhents which demonstrate that the use
of group priotity in packet scheduling has another advantage
in such integrated-services networks. Specifically, when some
channels in such a network are heavily utilized, the use
of group priority actually improves the network’s statistical
performance (loss rates, delays, and queue sizes), aside from
reducing the work of packet schedulers.

II. END-TO-END DELAY GUARANTEE ‘

Consider a packet-switching network in which each packet
is of variable; bounded size (in number of bits). Each com-
munication channel in the network i$ statistically shared, and
will be referred to s a server:

We will focus upon a flow, say f, which is a sequence of
packets. Packets in the flow traverse a path of K + 2 nodes.
Node 0 is the source of the flow, and node K + 1 is the
destination. Nodes 1-K are servers. The network is to provide
an end-to-end delay guarantee to the flow. Such a flow will
be called a real-time flow. (We do not care whether or not
the network also provides delay guarantees to other flows that
statistically share the same servers.)

40r the data units of a protocol at the transport level or higher.

IEEE/ACM TRANSACTIONS ON NETWORKiNG, VOL. 5, NO. 2, APRIL 1997

Packets in flow f traverse the path in FIFO order. Specifi-
cally, the ordering of packets in flow f is preserved at every
node along the path.

Notation for Server k:

B A nonnegative time constant associated with node
k (seconds).

Tk,k+1 Channel propagation tirie from node k to node k+1-
(seconds) (each channel is assumed to be reliable
and FIFO).

o, = Br + Tk k+1 (seconds).

P Maxxmum packet size at node k& (bits).

Ck Transthission rate of channel from node & to node
k 4+ 1 (bits/second).

P An arbitrary packet served (ihe packet may belong

‘to any flow).

Notation for Flow f:

i, Indices of flow f's sequence of packets.-

Al () Arrival time of packet ¢ at node k (time when
last bit of packet arrives).

P,Z () + Br Deadline of packet i at node k& Where By is
defined above and Pf (4) 1s a packet-dependent
component.

L}: (%) Departure time of packet i at node k (time when
last bit of packet leaves).

sf(3) Size of packet i (bits).

AL(3), Pl (5), and L{(i), for i > 1; are positive real

numbers Indlces i and j are positive integers. Additionally,
we also use m;n, and [as positive integers whose meanings
depend upon context.

A. Guaranteed-Deadline Servers

A GD server provides the following service to each real-
time flow f it serves: :
* packets in flow f depart in FIFO order
+ server ensures that the departure time of packet i is
bounded as follows:

L{(i) < PL(i) + Be (1)

where the deadline on the nght—hand Slde has two components:
1) a packet-dependent component P (4) which depends on
packet ¢ (its arrival time, flow, size, priority, etc.) and 2) a
nonnegative constant 3. Note that each component may vary
from one server to another, and /3, ‘may be zero.

The function P/ (-) is not yet specified. Any function may
bé used as long as, for a real-time flow, the server can ensure
that, for all 4, packet ¢ departs by its deadline.

Many service disciplines in the literature belong to this class.
They differ in packet deadlines, scheduling algorithms, and
admission control conditions. Some examples and references

“are given in Section II-D.

B. Delay Guarantee Theorem

Consider a real-time flow f traversing the path from node 0
to node K + 1. Nodes 1-K are GD servers (different service

LAM AND XIE: GROUP PRIORITY SCHEDULING

disciplines may be used at different nodes). The following
lemma is immediate from the definition of .

Lemma 1: For packet ¢ = 1,2,... in flow f and node
k=1,2,... K, the arrival time of packet ¢ at node k + 1
is bounded as follows: '

AL () < PL(0) + o @

- 'We next present a general delay guarantee formula for flow
f. The formula makes use of reference clock values at nodes
1-K, which are described below.

Notation for Flow f:

vf(i) A time constant associated with packet i (seconds).
ka (7) Reference clock value of packet ¢ at node k.

v¥(3) and V(i) are positive real numbers for i > 1. The
time constant v/ (i) can be interpreted as the service time of
packet ¢ (excluding waiting time) guaranteed by each node
in the path. V;/ (s) is determined as follows for i > 1, with
V/(0) defined to be 0:

V() = max{VE (i - 1), AL} +07). @)

Thus, ka (%) can be thought of as the expected finishing time
of packet ¢ at node k, and is to be used as a time reference
in our delay guarantee formula for flow f. As such, reference
clock values are neither computed nor actually implemented
by the nodes.

Node k ensures that packet i departs before its deadline,
which is P{ (i) + f. Therefore, Al +1(2) depends upon P ()
as shown in (2), and ka 1 (4) depends upon A£ 41(%) as shown
in (3).

A concrete way to interpret v/ (4) is to assume that packet
i has been allocated a throughput of Af(i) bits/s at each
node such that vf(i) = sf(i)/Af(i). We note that adaptive
throughput allocation on a per-packet basis is unrealistic in
practice. However, adaptive throughput allocation on a per-
burst basis has been proposed [9], where each burst consists
of a number of packets; see Section IV.

Lemma 2: For packet ¢ =
k= 1727"'7K_ 17

Vi) < VI + max (o7 () + (L)~ W (D} +
)

Theorem 1: For packet i = 1,2,--- in flow f, the arrival
time of packet ¢ at the destination is bounded as follows:

1,2,--+ in flow f and node

K-1
@ SWO + 3 max 076) + (BLG) - W)}

K
+ (PL(3) ~ VL) + Y . ®)
k=1

This is our delay guarantee theorem. (Proofs of Lemma 2
and Theorem 1 are given in the Appendix.) By definition,
the end-to-end delay for packet ¢ is A{{ () — Al (7). The
delay guarantee in (5) can be instantiated to obtain end-to-end

207

delay upper bounds for a variety of source control mechanisms
and different service disciplines at nodes 1-K. Specifically,
the delay guarantee in (5) provides an upper bound on the
end-to-end delay of packet ¢ if
« a source control mechanism is chosen such that V{/ () —
AJ(4) at node 1 has a finite upper bound, and
+ a GD server is chosen for node k,1 < k < K such that
the term P{ (j) — V{/ (j) has a finite upper bound.
Note that different service disciplines may be chosen for
different nodes, and the term P,f () - ka (j) may be positive
or negative. With Theorem 1, the problem of deriving an end-
to-end delay upper bound for a real-time flow traversing a
network path is reduced to a set of single-node problems.

C. Examples of Source Control

The goal of source control is to upper bound Vlf (1)— A{ OF
A widely used mechanism is leaky bucket control. If the source
of flow f is controlled by a leaky bucket with token rate p
and bucket depth o, then for all packet ¢ in the flow [5],

v (i) < AL () + % ©)

To obtain an end-to-end upper bound for flow f, Vlf () is .
instantiated to Af (i) + o/p in the delay guarantee formula
of Theorem 1. _

Another example of source control is the separation timing
constraint between consecutive bursts in a flow [9]; see Section
IV for more details.

D. Examples of GD Servers

The GD class of servers is general, and includes many
service disciplines in the literature. There are differences in
their P,Cf () functions, (3 constants, scheduling algorithms,
and admission control conditions. We next discuss four well-
known examples.

For a VC server, the P values are virtual clock values
computed as follows [15] for all j > 1:

P{(j) = max{P{(j - 1), AL()} + 07 () ()

where PJ(0) = 0 and v7(j) is equal to s/ (5)/M (j). Under
certain admission control conditions, the VC server provides
the guaranteed deadline in (1) with 3y = sp***/C} [11]. From
(3) and (7), it is trivial to show that, for all 7,

Pl -viG)y=0. ®)

For a PGPS server, Pki@s the virtual-time finishing time
of packet j. Under certain admission control conditions, the
PGPS server provides the guaranteed deadline in (1) with
Br = si2x/C) [10]. It is shown in [5] that if the server
allocates a minimum rate of A/ to every packet of flow f,
such that vf(j) = sf(5)/Af, then the following holds for all

] .
PlG)-Vi{G) <o ©)

Simon Lam
Line

Simon Lam
Sticky Note
the guaranteed deadline

208

For a Delay-EDD server [2], the P values of packets are
computed as follows [14] for all 7 > 1 :

P(j) = max{A{(j) + a[, P{ (G -)+ T} (0)
where P,f 0) = —of ,d}: is a local delay bound for every
packet in flow f, and v/ (§) = vf =5 /A7, with s and A/
being the same for all j. If certain schedulability conditions
-are met, then a Delay-EDD server provides the guaranteed
deadline in (1) with 8, = 0 [2]. By induction, it is easy. to
show that, for all § > 1,
PlGY-VIG)=df =07, (11)
For a leave-in-time server [3], the P values of packets are
computed as follows® for j > 1 :

PL(j) = max{AL(j), V{ (5 - 1)} + &L (5)
V() = max{AL(4), V{ (G — 1)} + 7 (5)

(12)
(13)

where V,/(0) = 0,d(5) is the local delay bound of packet
4, and v7(5) = sf(5)/\f, with the reserved rate A/ the same
for every packet in flow f. Under certain admission control
conditions, a leave-in-time server provides the guaranteed
deadline in (1) with G = s**/C}, [3]. Subtracting (13) from
(12), we have for all j
PL(G) = Vi (9) = d{(5) = v/ ().

For example, suppose every server in the path of flow f
is one of the four GD servers described above. In this case,
‘to obtain an end-to-end delay upper bound for f, we simply
replace the term Pf (4) - Vf (4), for 1 < k < K, in the delay
guarantee formula of Theorem 1 by the appropriate term on
the right hand side of (8), (9), (11), or (14). ‘

In summary, we have shown how to obtain end-to-end delay
upper bounds for a variety of source control mechanisms and
GD servers. In the next section, we illustrate how to apply the
delay guarantee formula in Theorem 1 to the idea of group
priority.

(14

L. .Grour PRIORITY

We first prove a theorem about relaxing deadlines for a
subclass of GD servers. We then specialize the delay guarantee
theorem to a subclass of GD servers that use group priority.
The previous model of a flow, which is a sequence of packets,
is generalized with the addition of two kinds of structure in
the sequence: 1) groups, which are meaningful only to packet
schedulers, and 2) bursts, which represent data units sent from
sources to destinations.

A. Relaxed Deadline Theorem
Consider a subclass of GD servers, called the priority
subclass, with the following additional properties.

* Work-Conserving—The server does not idle when there
are bits to send.

3The packet arrival time Ai(7) should be interpreted as the time when
packet j becomes eligible in [3].

[EEE/ACM TRANSACTIONS ON NETWORKING, VOL. 5, NO. 2, APRIL 1997

* Nonpreemptive—The transmission of a packet cannot be
preempted.

* Priority Service—In selecting the next packet to serve, the
packet in queue with the smallest deadline is chosen. Ties
between packets of different flows are broken arbitrarily,
and ties between packets of the same flow are broken by
arrival order (to preserve the FIFO property).

Note that each service discipline in the priority subclass is
almost completely specified. Only the P functions——Pkf (+) for
all f—remain to be specified. Also, since (3 is a constant,
the server can use the P values of packets rather than their
deadlines, as priorities.

The following theorem is about two related systems, an
original system and a modified system; we use the term
system to refer to a particular implementation of a server
k in the priority subclass. The arrival times and sizes of
packets are the same in each system. The arrival time of
an arbitrary packet p at server k is A(p). In the original
system, the deadline and departure time of packet p are
Pr(p) + B and L(p), respectively. In the modified system,
the deadline and departure time of packet p are P} (p)+ 5 and
L} (p), respectively. Furthermore, for all p, it is assumed that
P[(p) > Pr(p); the modified system is said to have relaxed
deadlines compared to the original system.

Theorem 2: If, for all packets p, the deadline Pr(p) + S
is met in the original system, that is,

Li(p) < Pr(p) + B (15)
then, for all packets p, the relaxed deadline Pk()+ Bk is met
in the modified system, that is,

Ly (p) < Pi(p) + Br. (16)

A proof of Theorem 2 is given in the Appendix.

B. Groups

We proceed to develop the concept of groups, which is
meaningful only to packet schedulers along the path of a
flow, but not to the flow’s source and destination. Consider
a real-time flow whose sequence of packets is partitioned
into groups of different sizes. The group sizes are parameters
whose values are to be chosen such that some network
performance measures are optimized (see Section IV-B for
a design example and Section V for empirical performance
results).

Notation for Groups: We use h to denote the sequence
index which identifies a particular group of packets in flow
f, and h(i) to denote the set of packets in the group that
includes packet i.

At each GD server, the largest of the deadlines of packets
in a group is used as the group’s deadline, i.e., to be used
for scheduling every packet in the group. More specifically,
consider packet arrivals from flow f to node k. For packet ¢ in
the flow, its individual priority value is Pf (1) + Br. With the
use of group priority, packet ¢ is scheduled using its group’s

LAM AND XIE: GROUP PRIORITY SCHEDULING

deadline, i.e.,

P+ B = max (PL(7)} + B a7
Note that most packets in the group have relaxed deadlines.
Methods for imfplementing the group priority idea depend upon
the server’s P, (-) function, that is, the service discipline.

C. End-to-End Delay Guarantee

We proceed to specialize the delay guarantee in Theorem
1 to a subclass of GD servers that use group priority. In the
balance of this paper, we will consider servers in the priority
subclass that specify P,f () to be the virtual clock value of
packet ¢ in flow f as computed by (7). More specifically, the
priority values of packets in flow f are computed assuming
that packet ¢ in the flow is allocated a throughput of \f(4)
bits/s at each server on the path, and that some admission
control mechanism ensures that the capacity of each server is
not exceeded [11].

From (3) and (7), we see that the virtual clock value of
packet ¢ in flow f at server k is equal to its reference clock
value ka (7). With the use of group priority, the packet-
dependent deadline P,:f (4) of packet ¢ is equal to the virtual
clock value of the last arrival in its group.

Let 4, denote the first packet of some group. In order for
the packet scheduler to compute P,if (¢1) when packet 4, gets
to the head-of-line position of flow f, without waiting for the
arrival of the last packet in the group, it is sufficient that the
packet arrival times satisfy a jitter constraint.® We then have
at node k, for k = 1,2,... K,

Pl - PLG) = BT G) - V{() < vf(n). (18)

>

neh(i),ni

With group priority, packet ¢ is scheduled with P,;f (1) rather
than P,f (¢) for all ¢ in flow f. Substituting (18) into the delay
guarantee of Theorem 1, we have the following result.

Corollary 1: If server k on the path of flow f, for &k =
1,2,..., K, schedules packet j using its group priority P,éf (),
for 1 < j < 1, then the following end-to-end delay guarantee
holds for packet i:

Afea () SV @) + (K = 1) pmax (o] (7))
+ (vl (5) — 7 (8) + i o (19)
k=1
where, for 1 < j < 1,
vi@)= Y v(n) (20)

neh(j)
and o = (s;cnax/ck) + Tk k41

SFor example, the interarrival time between packets ¢ and ¢+ 1 in the same
group is less than or equal to v/ (i). For a constraint that is weaker and easier
to implement, see (21) in Section IV. A description of an architecture and
algorithms to implement this constraint for real-time flows can be found in

[9].

209

D. Modeling Application Data Units

When an application data unit (more generally, a data unit
of a protocol that uses the network layer) is too large to be
carried in a single packet, it is segmented for network delivery.
To an application, the end-to-end delays and loss rate of their
data units are the relevant measures of performance.

We proposed in [9] to generalize the model of a flow to a
sequence of packets partitioned into bursts, each of which is a
sequence of packets that carry an application data unit. Thus,
for packet schedulers that use group priority, the sequence
of packets in a flow is partitioned in two different ways:
into bursts and into groups. Note that burst partitioning is an
inherent characteristic of the flow, while group partitioning is
optional and performed by packet schedulers to reduce work
and improve network performance. A description of how to
do group partitioning is presented below.

IV. A DETAILED EXAMPLE

For the class of burst scheduling networks, we illustrate
how to implement the group priority idea and apply the delay
guarantee in Corollary 1. As in [9], we assume that all packets
have a fixed size. In this section, we focus upon a particular
real-time flow f, and we will omit the superscript f in the
following notation for clarity. The flow travels the path of

"K + 2 nodes introduced in Section II.

Notation for Bursts:

(m,1) The Ith packet in the mth burst of flow f.

A(m,l) Arrival time of packet (m,!) at a node.

D(m,l) End-to-end delay of packet (m,!) (from arrival
at node 1 to arrival at node K + 1).

b Size of burst m (packets).

bm Maximum duration of burst m (seconds).

Am = b /6m: Rate of burst m (packets/second).

Im Group size chosen for burst m (packets).
Time ahead of burst m (in seconds); initialized
to zero at source.

For burst m, we assume that the group size g, is chosen
at the network entrance such that g,, < b,,. (Alternatively,
gm can be computed by each packet scheduler from b,, and
QoS parameter values negotiated for the flow at connection
setup time. A method for determining group sizes is given in
Section IV-B.) The burst’s sequence of packets is partitioned
into groups such that each group consists of g,, packets, except
for the last group whose size may be smaller. There are two
special cases that-are noteworthy: 1) g, = 1 for all m (group
priority is not used), and 2) g,, is chosen to be the same as b,,,.

To be guaranteed an end-to-end delay bound, a flow is
required to satisfy the following burst-based flow specification
when its packets arrive at the network entrance (node 1).

Flow Specification:

o The first packet of burst m carries information’ on
Ams by G, and ugy,.

7 This informaton is implementation-dependent. Some other set of parame-
ters may be used.

210

» Packets in burst m satisfy a jitter timing constraint,
namely, for | = 1,2,---, by,
I-1
* Bursts in the flow satisfy a separation timing constraint,
namely: for m > 1,
Alm+1,1) = A(m,1) > 6., 22)

The information carried in the first packet of each burst
allows every server in the path to allocate a reserved rate to
the flow on a per-burst basis. Such adaptive rate allocation
(similar to ABT) is very appropriate for VBR flows, such as
compressed video.

Two admission control mechanisms are described in [9] to
provide two classes of VBR service: 1) real-time delivery
with no loss—at connection setup time, a flow is allocated
a reserved rate equal to the largest rate of its bursts, and 2)
real-time delivery at a specified loss rate. Specifically, for class
2), overbooking is used in admitting flows with the following
consequence. When the first packet of a burst arrives at a
server, if the server cannot allocate a reserved rate equal to
the rate of the burst, the burst will be discarded in its entirety.

The jitter timing constraint in (21) requires that packets

of the same burst arrive at the network entrance within
some bounded duration. Without this requirement, it would be
impossible for any network to provide an upper bound on the
end-to-end delay of the burst. This is a rather weak constraint
and can be satisfied easily if the packets of a burst are derived
from the same application data unit at the source, i.e., they
arrive at the same time. The jitter timing constraint can be
exploited to compute virtual clock values very efficiently for
each flow at a server; specifically, the main steps of the
computation are performed only once per burst [9].

The separation timing constraint in (22) is a source control
mechanism that ensures that at node 1, the difference between
the virtual clock value and arrival time of (m,1), the first
packet of burst m, is upper bounded by 1/\,, for all m.
The constraint also ensures that each active flow [11] contains
at most one active burst—this makes it easy for a server to
allocate reserved rates to flows on a per burst basis, and to
ensure that its capacity is not exceeded by the aggregate rate
allocated ' to flows.

The time ahead field u,, in the first packet of burst m,
for all m, is used to preserve the jitter and separation timing
constraints of a flow when its packets arrive at nodes 2—-K.
_ Specifically, u,, is initialized to zero at the source (or upon
arrival at node 1). Within node &, for k¥ =" 1,---, K — 1,
when packet (m, 1) is selected for transmission, the value of
P(m,1)—now() is written into the u,, field of packet (m, 1),
where P(m, 1) is the group priority value of packet (m, 1) at
node k and now() is the current time from a local clock. Note
that the difference P(m,1) — now() is the extent to which
packet (m, 1) departs from node k ahead of its deadline. At
node k+1, a flow regulator delays the arrival of packet (m, 1)
to'its queue by w,,, seconds. It is shown in [9] that delaying the
first packet of burst m by this amount, for all m, is sufficient

IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 5, NO. 2, APRIL 1997

to preserve both the jitter and separation timing constraints of
the flow at node £k + 1, fork=1,---,K — 1.

Note that such delays increase the end-to-end delay lower
bound for packets, but do not affect the end-to-end delay guar-
antee of Corollary 1. Also note that Corollary 1 is applicable
because the server at node k& (excluding the flow regulator) is
work-conserving.

A. Delay Bounds

If the channel capacity, for every channel on the path, is not
exceeded by the aggregate reserved rate of active flows [11],
a tight upper bound on the end-to-end delay of the first packet
of a burst can be derived as a special case of Corollary 1.

Corollary 2:

Im

D(m,1) < b

mn

+ (K -)1<n<m{ } Zak 23)

Corollary 2 generalizes a theorem in [9] for the special case
of individual priority (that is, g, = 1 for all m). Delaying the
first packet of burst m in flow regulators, as described above,
gives rise to the following tight end-to-end delay lower bound:

K
_im
(K 1)/\m +;ak.

Since flow regulators preserve the jitter timing constraint for
each burst in a real-time flow [9], the delay of packet (m,)
is upper bounded as follows:

D(m,1) > 24

{
D(m,l) < D(m,1) + P
The end-to-end delay of burst m, denoted by D,,, measured
from the time when packet (m,1) arrives at node 1 to the
time when packet (m, b,,,) arrives at node K + 1, is bounded
as follows:

25)

D,, < D(m,1)+ =

m

=D(m, 1)+ b6m. (26

B. How to Determine Group Sizes

The source of a real-time flow negotiates with the network
to agree upon QoS parameter values, which determine flow
characteristics and service guarantees. (For a commercial
network, the cost of flow delivery would depend upon these
negotiated values.) In this example we consider the following
QoS parameters.

Amax Maximum rate to be reserved for a burst (A, <
Amax for all m), to be guaranteed by source.

Smax Maximum burst duration (6,, < Smax for all m), to
be guaranteed by source. ;

Dyyax Maximum end-to-end delay of any burst in flow, to
be guaranteed by network.

Note that A, is an average determined by b,, and §,,. Thus,
to conform to the negotiated value of Ay .y, it is sufficient that
the source controls its burst sizes such that, for all m,

b,

— < .
5. = Amax 27

LAM AND XIE: GROUP PRIO'RITY SCHEDULING

If the flow conforins to Flow Specification at its network

entrance, the network will ensure that burst delays do not

exceed D,y The negotiated values of Dy,x and 8,y are
used to determine group sizes for bursts, as described below.

We first derive a uniform upper bound on D(m, 1) for all
m. Let mx denote the index of the slowest burst in the flow,
that is, for all m,

Amse < Am. (28)

Suppose each burst is allocated a reserved rate equal to its
rate. For the special case of individual priority (gm = 1 for
all m), the slowest burst in the flow determines the uniform
upper bound of D(m,1), which is

D(m,1) < 9)

For the general case of group priority, if g is chosen to be
1 and g, a positive integer such that

gm 1

Am = Am*
it is easy to observe, from (23), that the same uniform upper
bound in (29) applies. This observation suggests that, subject
to (30), group priority can be used without increasing the
worst case delay of any burst in the flow. To illustrate the
potential benefit of using group priority, consider interframe-
encoded pictures in a video flow, which have very large size
fluctuations, e.g., for MPEG sequences studied in [8], an I
picture is up to 30 times the size of a B picture. From (30),
gm can be as large as 30 for an I picture. Thus, we see that
for such video traffic, the frequency of priority changes for a

“flow can be significantly decreased, which reduces the work

of packet schedulers.

We next consider the QoS parameter Dmx In order for
the netWOrk to provide the bound Dyax to every burst, the
reserved rates of bursts in the flow must be lower bounded to
avoid having a burst that travels too slowly. Specifically, the
minimum reserved rate for a burst should be

K
Amin = K/(Dm - 6max - Zak) .

(30)

(B
k=1

Note that if Ay, is larger than Ayax, there is a conflict
between the negotiated values of \yax and Dppax. A renegotia-
tion between source and network would be required. Suppose
that ‘this is not true. To derive a condition for determining
group sizes for bursts, we consider two possible scenarios.

First, one or more bursts in the flow may be so slow that
the uniform upper bound is very large, in fact; it is larger than
the value of Doy negotiated between source and network. To
ensure that the uniform upper bound is less than Dy, ; each
burst in the flow must be allocated a reserved rate not less
than A, at edch sérver, i.e., the reserved rate of burst m is
chosen to be max{A.; Amin}- :

Second, the value of D, negotiated between source and
network is larger than the uniform delay upper bound. In this
case, a group size larger than 1 may be used for scheduling
even for the slowest burst in the flow. This group size, denoted

211

cez]_10003)

SWa 15 (0.3) @

15 (0.4)

7-9 1-6
Fig. 1. Simulated network.

b'y Qmin, 18 chosen to be a positive integer such that the
following holds:

Gmin < 1 i

)\m* - Amin
In this case, the condition for selecting group sizes for bursts
can be relaxed from (30) to the following:
' Im Ymin

Am = /\m*

From the above discussion, the general condition for select-
ing the group sizes of bursts is

< min< b Am |]
9m = m")\min

which follows from (32) and (33), and the requirement g,,, <
b

(32)

(33)

(34)

V. EMPIRICAL RESULTS

We conducted experiments using a discrete-évent simulator
from [9]. The network simulated is illustrated in Fig. 1. There
are six switches labeled SW. Each switch has a buffer pool
for 1200 packets, which is shared by all video flows.

Each thin arrow in Fig. 1 represents a channel, which
(except for L2 and L3) is labeled by its capacity in megabits
per second. The channel propagation delay, in milliseconds, is
shown in parentheses. Channels L2 and L3 have the same ca-
pacity C. The value of C can be changed from one experiment
to another.

Each thick arrow represents a set of chiannels, one for each
video flow. Each such channel has a capacity larger than A .x

212

IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 5, NO. 2, APRIL 1997

. TABLE 1 TABLE 1I
MPEG SEQUENCES, USED IN EXPERIMENTS GROUP S1ZES FOR THREE gmin VALUES v

MPEG encoding : A (vMbpS) : MPEG sequence gipin ‘: 1 Grnin = 2 Imin = 4

sequence pattern(M, N) min max - ave : max | . ave max ave max ave
Terminator (3, 6) 0.14 3.86 1.15 Terminator 27 7.1 55 14.4 110 29.3
ParentsSon (3, 6) 0.37 5.97 151 ParéntsSon 16 34 32 7.3 64 14.6
RedsNightmare (10; 30) 0.089 - 3.62 0.75 RedsNightmare 40 7.3 81 145 | 162 294
Student: ‘ 1,4 048 2.47 1.27 Student 5 120 10 4.8 . 20 9.4
Drivihg - (3,9 0.17 8.48 1.88 Driving 51 9.3 102 20.0 205 36.7
Airwolf 2 (3, 6) 0.14 3.31 0.89 Airwolf 2 23 | 54 47 11.2 94 | 23.0
Simpsons I (3,.6) 0.14 2.60 0.92 Simpsons 1 18 | 55 37 11.5 74 23.5
Canyon (3, 6) 0.076 0.70 0.28 Canyon - . 9 26 |- 18 5.9 36 | 108
FlowerGarden (3, 6) 1.39. 13.25 5.04 FlowerGarden 9 28 |- 19 6.2 38 13.3
UnderSiege {3, 6) 0.17 12,02 0.59 UnderSiege . .| 12 2.8 24 6.1 48 11.6
StarTrek II 0, 1) 0.28 115 0.62 StarTrek II 4 1.6 8 . 37 16 7.8
Energizer (3, 6) 0.17 2.34 . 0.76 Energizer 14 3.6 28 7.9 56 15.0

of the flow it carries; the capacity varies from 10 to 15 Mbits/s,
and the propagation delay also varies.

A Video Flows and ABR Traffic

The simulated network carries 12 video flows; as well as
some ABR traffic. Ini Fig. 1, the source of each video flow is la-
beled VS, and the destination VD. The video flows travel from
their sources through three different switches (SW1, SWa,
SWb) to SW2. From there, they all travel through SW3 and
SW4 to their destinations. The video flows were generated us-
ing traces obtalned from MPEG video sequences. A profile of
the video sequences is shown in Table 1. Two of the sequences,
Student and Driving, were encoded by us. The other ten
sequences were obtained from http://w3:eeb.cle.tue.nl/mpeg.
In Table I, the parameters N and M deternune the repeatmg
pattern of I, B, and P pictures in the sequence [8].

Pictures are represented as bursts defined in Section IV.
The rate of a picture is computed as follows. Each packet is
53 bytes long with a 48-byte payload. Let by, be the number
of packets needed to carry the bits of plcture m. The rate of
picture m is 33 X 8 X by X 30 bits/s, where we have used
1/30 s as 6y, for all /m. For most of our experiments (all of
the performance results 111ustrated in this section), the packets
in a burst were generated with a fixed interpacket gap

We did not try .to 1dent1fy values for the QoS parame-
ters Apax and Di,ax appropriate for a partlcular multimedia
application. We simply used the rates of the largest and
smallest pictures in a sequence as values for A, and /\mm,'
respectively. In Table I, A, is the average of the rates over
all pictures. »

The group size for each picture in a video séquence was
calculated to be the largest integer that satisfies the mequahty
in (33); we expenmented with sevetal values of Gmin- The
maximum and average group sizes for each of the 12 video
sequences are shown in Table II.

In addition to the video flows, the network carried two ABR
traffic flows: a flow from CS1 to CD1 via L2 and the other

8We conducted several experlments in whxch the packets of a burst were
generated in batches of 40 each, with a fixed interbatch gap. Compared to the
results presented herein, we observed that such batch arrivals had no impact
on the worst case end-to-end delay of bursts. The Gueue sizes were larger.
The average end-to-end burst delays were-actually smallér bécatise, with batch
arrivals, the burst durations were smaller on the average.

from CS2 to CD2 via L3. Each was a Poisson source whose
rate was set to be between 0. 20 and 0.21 of the capacity C' of
channel L2 (also L3) for each experiment.

For L2 and L3, 0.2 of the channel capacity C' was allocated
to ABR traffic by assigning virtual clock values to ABR
packets as priority values [9]. Whenever there was nothing to
send from the video flow queues, the entire channel capa_city
was available to ABR traffic.

We ran each experiment for 10 s of simulated time. About
300 plctures were delivered for each video flow. Three of the
MPEG sequerices were not long enough, and their traces were
wrapped around.

B. End-to-End Picture Delays

Since the reserved rate of a flow changes from burst to
burst, it is possible that the largest pictures of all vidéo flows
are served by L2 (or L3) at the same time. From Table T, the
sum of Ap.y over all 12 video flows is 49.77 Mbits/s. Since
ohly 0.8 of the channel capaéity C is allocated to video flows,
to ensure that the channel capacity of L2 (L3) is not exceeded,
we must have C' = 62.21 Mbits/s. We refer to this case as 0%
overbooking, which can be implemented by adImttlng a flow
at connection setup time only if the flow is allocated, by each
server on its path, a rate equal to. its peak rate. ‘

Clearly, with 0% overbookmg, the capacity of every channel
in’ the path of a video flow will not be exceeded by the
aggregate rate allocated to active flows. The end-to-end delays
of bursts in each video flow miust be less than the uniform
upper bound in (29) plus 1/30 s. This bound holds for
individual priority and for group priority with gmin = 1.

The end-to-end delays of pictures in the Energizer sequence
are shown in Fig. 2, as well as the upper bound. The utiliza-
tion of channel L2 (also L3) is about 42%, which includes
utilization due to ABR traffic. |

C. Overbooking to Increase Utilization

_In integrated-services networks, we believe that it is de-
sirable to use the same packet-scheduling algorithm for all
service classes, with and without overbooking. Flows admitted
into a service class with overbooking would receive a real-time
delivery service at a specified loss rate (i.e., some bursts may
be discarded) or only a best effort service.

LAM AND XIE: GROUP PRIORITY SCHEDULING

80 T T — 1 T
75 | 0% overbooking '"""’J‘;‘;Z',%’J,‘f,’},% Ry
70 + -
65 - 4
N
E 6o 1
g
8 5+t ’ 1
<4
g sor 1
o
45
40| .
35 k
30 . . : . . .
0 50 100 150 200 250 300
Picture Number
(a)
Fig. 2. End-to-end picture delays of Energizer sequence.
100 T 1 T T
individual priority --o--
90 | g.min=1 -+ -
9 g_min=2 =
: g_min =4 ~x--
H 80 B
©
N
£ 701 E
S
2
S 60 -
o
5
50t Channef L2 i
40 i 1 1 1
0 50 100 150 200 250
Overbooking (%)
Fig. 3. Channel utilization versus overbooking.
1.5 E
individual priority ——
gmn=1—+—
g_min=2 s
% g_min=4 -~—
=1
8‘ /
E -
a
2
2
8
o
B
@ 05¢r j
1<
o
0 : s Z .
0 50 100 150 200 250

Overbooking (%)

Fig. 4. Packet loss rate versus overbooking.

We designed a set of experiments to evaluate network
performance when the channel capacity at L2 and L3 is
intentionally overbooked. In the experiments described below,
overbooking was achieved not by increasing the number of
video flows, but by using a value of C smaller than 62.21
Mbits/s. If C' is chosen for an experiment such that 49.77

213
80 T 7 T T T
75 k 0% overbooking upgg;n l;2u=n(11 + i
70 1
65 | 1
Iy
£ e} 1
g
] 8¢ 1
e
_‘3 50 | b
[
35 + 1
30 (- 1 | 1 i
0 50 100 150 200 250 300
Picture Number
®)
80 - T T T —
g ol individual priority ——
- group priotity (g_min = 1) — b
a 60 E
g
8
> S0 1
£ :
el
[
2 40 L i
w
0
e 3or R
2
2
a
5 20r :
3
5 10f 1
a
o 1 1 1 L
0 50 100 150 200 250

Overbooking (%)

Fig. 5. Impact of overbooking on delay bound.

Mbits/s exceeds 0.8C by n%, the channels in the experiment
are said to be n% overbooked. The experiment is referred to
as n% overbooking.

D. Channel Utilization and Loss Rate

The objective of overbooking is to increase channel utiliza-
tion. We performed a series of experiments from 32 to 208%
overbooking. Fig. 3 shows that the utilization of channel L2
increasés almost linearly with overbooking. Three cases of
group priority were investigated, for gmin equal to 1, 2, and
4. At 208% overbooking, the channel utilization was 0.958
for group priority with gmin = 2 and 0.952 for individual
priority. The utilization for individual priority was smaller
because some packets were dropped (due to buffer overflow).

In Fig. 4, we show the percentage of packets dropped due
to buffer overflow at L2 which has space for 1200 packets
shared by all 12 video flows. Note that the loss rate was zero
for group priority with gmin equal to 2 or 4. It was fairly low
for the other two cases, considering that the channel utilization
exceeded 0.95.

214

200
individual priority ——
g_min=1 ——
) g_min=2 -&—
E 150 g_min'=4 —— 4
> .
=
]
[a}
g
2 100 +
5]
[on
£
=3
£
® 50 r
=
0 L I) |. -
0 50 100 150 200 250

Overbooking (%)
@

Fig. 6. 'End-to-end picture delays versus overbooking.

E. Impact on Delay Bound

We measured the sum of reserved rates of active flows as a
function of time, and compared it with the channel capacity of
L2 (L3). For the experiments at 32% overbooking, at no time
was the channel capacity exceeded by the aggregate reserved
rate of active flows. But for experiments at 76% overbooking,
and higher, the channel capacity was exceeded frequently.

" The delays of individual -pictures (bursts) were measured
and compared to the upper bound given by (26) for each video
sequence. The results were plotted in Fig. 5 for two cases: 1)
individual priority, and 2) group priority with gmin = 1. These
two cases have the same delay upper bound for each video
sequence, determmed by the slowest picture in the sequence.

As illystrated in Fig. 5, the delay bounds held for all
pictures. in all v1deo sequences up to 120% overbookmg At
134% overbooking, the delays of a small number of pictures
(less than 1%) exceeded their bounds. In all expenments the
fraction of pictures V101at1ng their delay bounds was smaller
for group priority (with gmin = 1) than for 1nd1v1dua1 pnonty

F Smttstzcal Delay Performance

In Fig. 6, we show end to-end picture delay versus over-
booking. Specifically, we show the maximum and average
delays over all pictures in all video sequences. Note that the
delay performan_ce of group priority with gumi, = 1 was slightly
better than individual priority in all experiments (except for the
maximum delay at 208% overbooking). Group priority with
Grin equal to 2 and 4 performed better than individual pnonty
only when the network was heavily loaded.

In Fig. 7, we show the end-to-end picture delays of the
Energizer video sequence for individual priority and the three
cases of group priority. At 164% overbooking, all three
cases of group priority had better performance than 1nd1v1dua1
pnonty

G. Queue Sizes

In Fig. 8, we show the maximum and average video queue
length at L2 versus overbooking, where video queue length

IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 5, NO. 2, APRIL 1997

80— : : t

75 | individual priority ~—
g.min=1 —+—
& 107 g_mn=2 -=— k
£ g_min =4 ——
<. 65+t :
T
8 eof -
o
5 857 :
Q
& 50
Q
1o)]
g 45 |
=3
< 40 -
35 l 7
30 - 1 L 1 i

100 150 250
Overb_oo’king (%)

)

200

denotes the aggregate size of all 12 video flow queues. In
Fig. 9, we show the video queue length at L2 as a function of
time. At 164% overbooking, the cases of group priority with
Ymin = 2 and 4 clearly performed much better than individual
pnonty and group pnonty w1th Imin = 1.

VI. CONCLUSIONS

We introduced the class of GD servers, and proved an
end-to-end delay guarantee theorem. The theorem can be
instantiated to obtain end-to-end delay bounds for a variety
of source control mechanisms and GD servers; in particular,
different GI_) servers can be used in the same end-to-end
path. With the theorem, the problem of deriving an end-to-
end delay upper bound for a real-time flow is reduced to a set
of single-node problems.

We then introduced and developed the idea of group priority.
We proved a relaxed deadline theorem for the priority subclass
of GD servers. The delay guarantee theorem is then specialized
to a smaller subclass of GD servers that use group priority.

We worked out a detailed example for the class of burst-
scheduling networks [9]. We derived end-to-end delay bounds
for bursts (apphcauon data units), and illustrated how to
choose group sizes such that the end-to-end delays of bursts
are unaffected by the use of group priority.

Group priority scheduling has two advantages. First, the
priority of a flow changes less frequently, i.e., from one group
to the next rather than from one packet to the next. Hence, the
packet scheduler’s work in updatmg its priority data structure
(e.g., a heap) would b¢ much reduced for large groups. (An
empirical investigation qua.nt1fy1ng this reduction can be found
in [12].) Second, servers that use group priority have more
flexible deadlines; consequently, their packet schedulers can
better cope with temporary overloads.

APPENDIX

Proof of Lemma 2: We use induction on 4.

LAM AND XIE: GROUP PRIORITY SCHEDULING

215

80 T T T T T 80 T T T T T
75 | 164% overbooking 'nd'vdg:ﬂr%':’%r% e | 75 | 164% overbooking upg;f{,";unl,]
70 70 F
65 65 9
N G
E 60} £ w0}
& g
& s5 z
® ®
43' 50 %
B ? [N
45
40 Ny 4
35+ . 35 | :
30 : A A .) 30 A A L . .
0 50 100 150 200 250 300 0 50 100 150 200 250 300
Picture Number Picture Number
() (b)
80 T T T T T 80 T T T T T
751 164% overbooking uppg:n b",;:nﬁ el 75 b 164% overbooking upper bound mgh 13]
70 | 1 70 -
65 | 65 |
0 ?
E 6ot E
& k)
Q@ 3]
a a
@ 4
=1 =]
k3] k3]
a a
35 B 35 4
30 L L L L L 30 L L 1 L "
0 50 100 150 200 250 300 0 50 100 150 200 280 300
Picture Number Picture Number _
(©) (@
Fig. 7. End-to-end picture delays of Energizer sequence.
1200 T T T T T — T T
1100 | individual prioity —— 1 120 | individual priority —— Channell2
@ 1000 - g_mn=1 —— Channel L2] — g_mn=1 —+—
° g_min=2 & 2 g_min=2 &
S 900 | g min=4 —x— 1 2w g min=4 —— .
o
2 800} s
= £ 80}t
2 700 | . B
3 g
600
g 9 60t .
S 500 [
S g
§ 400 1 g 40
£ s} 1 &
3 > L
s 200} < 20
100 r]
0 L 2 0 L
0 50 100 150 200 250 0 50 100 150 - 200 250
Overbooking (%) Overbooking (%)
(@))]

Fig. 8. Video queue length versus overbooking.

Base Case: From 3), for i = 1,
ka+1()= {:_H(l) +of(1) {by Lemmé 1}
<Pl(1) + ar + 07 (1)
=V +o () + (Pl (V) -
Thus, the inequality in (4) holds for ¢ = 1.

V(1) + ax.

Inductive Step: Assume that the inequality in (4) holds for -
35) 1 < ¢ < n. A proof that the inequality holds for : = n + 1
follows.
(36) From (3), for i = n + 1,
37 ¥ ¥
max{Vy,,(n), A5, (n + 1)}

+of(n+1). (38)

ka+1(n +1) =

216

1200
1100
1000

[{=]
[«
(=3

600
500

Video Queue Length {packets)

100

1200
1100
1000

900

600
500

300
200
100

Video Queue Length (packets)

o

800 -
700 -

400 +
300
200 +

800
700

400

164% overbooking individual priority ——

AL “ IHIIL‘[i ' il

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
Time (ms)

(@

F 164% overbooking g_min=2 — 1

: i ,‘I.MHMJ. bl MHH

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
Time (ms)

©)

Fig. 9. Video queuve length at L2 over time.

e Case I Vk+1(n)

> Al (n+1):

Vi +1) =V) +v/(n+1)
{by induction hypothesis} 39)
<VI(n)+ Joax. {1 (5) + (PL(5)
-~V + ek +vf(n+ 1)
{by (3) and FIFO property} (40)
SV (1) + max {o/(7)
P VG +an @D
<Vm+1)+ <I;1<ax {v’(5)
+(PL(G) - Vi ())} + o (42)
» Case 2: Vk+1()<Ak+1(n +1):
Vit + D) =4l (n+ 1) + o/ (n +1)

{by Lemma 1} (43)
<Pl(n+1)+ar+oi(n+1) @4)
:ka(n+1)+ak+vf(n+1)

+(P{(n+1)=Vi{n+1) @)

IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 5, NO. 2, APRIL 1997

1200
1100
1000
900
800
700
600
500

Video Queue Length (packets)

1200
1100

1000 |
900
800

300
200
100

Video Queue Length (packets)

400 |
300 |
200 |
100 |

NN N, H‘

T T T T T T T T T

164% overbooking

Al ‘“

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
Time (ms)

®

700
600 |
500
400 |

'Lm

o b

0

164% overbooking

i

‘ll.h L ‘ ! i i) JLAL) “
1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
Time (ms)

(@

<VIn+1)+ max {vf())

1<5<n$1
+(PL@) -V + o @)
]
Proof of Theorem 1: From Lemma 1,
Al () <PLG) + ok @7)
=VE(0) + (P (D) - V(D) + ax
{applying Lemma 2} 48)

(PL_1()

—VE LG+ ek + (PLG) = VEGE) + ax

<Viea(8) + max (o () +

{applying Lemma 2 repeatedly} 49)
f; f fooN vl
<V Z e (07) + (PLG) =V)}
+(PLG)) + Z Q. (50)
O

LAM AND XIE: GROUP PRIORITY SCHEDULING

Proof of Theorem 2: The arrival times and sizes of packets
are the same in both systems. Since the server is work-
conserving, each busy period begins and ends at the same
time in both systems. Without any loss of generality, it suffices
to consider an arbitrary busy period. Each packet within the
busy period is identified by its index m in the sequence of
departures in the original system. We will prove the following
lemma first.

Lemma 3: Consider a modified system that has exactly one
packet in the busy period, say m, with a relaxed deadline,
ie., Pi(m1) < P(my), and Vm # my, P{(m) = Py(m). If,
for all packets p in the busy period, the deadline Py (p)+ Oy is
met in the original system, then, for all packets p, the relaxed
deadline P/(p) + O is met in the modified system.

A proof of Lemma 3 follows. If packets in the busy period
of the modified system depart in the same order as they
depart in the original system, then deadlines in the modified
system are met because, for all m, from work-conserving and
nonpreemptive assumptions,

Li(m) = Lg(m) < Py(m) + Br £ P(m) + B

Otherwise, there is a reordering of the departure sequence in
the modified system due to the relaxed deadline of packet m;.
Let

6]y

<1a29"',m1_1amla"'am2a"'ab> (52)
denote a preﬁx of the departure sequence in the original
system, such that 1 < my <my+1 < mg < b, Thatis, mpisa
packet served behind m; in the original system. However, due
to the relaxed deadline of m,m4 is served immediately after
my in the modified system. That is, the prefix of departure
sequence, for m; > 1, becomes
(1727"'7m1_17m1+17”'7 ,b>
in the modified system. Note that for m; = 1, the prefix
of departure sequence becomes (2, -« - -, b) in the
modified system.
For all m # my, we have (from work—conservmg and

nonpreemptive assumptions)

Ly(m) < Li(m) < Po(m) + i = Py(m) + B

(53

mQ,ml’...

,M2,1MY, -

(54

For packet m, we have (from work-conserving and nonpre-
emptive assumptions)

2) + %ﬁ = Lg(ma2)

2) + B = Pp(ma) + Br.

We next prove that P} (mo) < P/ (m1). There are two possible
cases. First, m; is the first packet served in the original system
for this busy period. In the modified system, m can be served
ahead of m; only if the two packets arrive at the same time
and P,;(mz) S P,é(ml)

The second case is for 1< m; <b, which is proved by
contradiction as follows. Suppose P/(m2) > Pj(m1). Since
mo is served ahead of m; in the modified system, m; must

Ly (my) = Li(m

< Pr(m (35)

217

have arrived too late to be selected ahead of ms on the basis
of a smaller deadline, i.e.,

Ar(my) > Li(mb"™) (56)

pre

where m3"™® denotes the packet served immediately ahead of
mg in the modified system. From the departure sequence of
the modified system in (53) and ma > m; + 1, there are two
possibilities for the identity of packet m5™*: 1) m§™ ismq—1, -
and 2) my™ > mq + 1. In either case, we have

Ak(ml) > L;c(mpre) > LI (m1 - 1) = Lk(ml - 1). (57)
Since the inequality Ax(m;)> Lx(mq — 1) contradicts the
assumption that m; is served immediately after m — 1 in the
original system (for a work-conserving server), we have thus
proved P;(m2) < Pj(my4). This last inequality together with
(55) imply

Ly, (m1) < Pi(ma) + Br. (58)

From (54) and (58), our proof of Lemma 3 is complete.

Theorem 2 can now be proved by induction on the number
of packets with relaxed deadlines in the modified system for
the busy period.

Inductive Step: Assume that (16) in Theorem 2 holds for
a modified system with n packets in the busy period having
relaxed deadlines. To show that (16) in Theorem 2 holds for a
modified system with n + 1 packets in the busy period having
relaxed deadlines, we redefine the modified system with n
packets in the busy period having relaxed deadlines to be
another original system, and. then apply the proof of Lemma
3. g

ACKNOWLEDGMENT

The authors thank the anonymous referees and the Editor,
Prof. G. Sasaki, for their constructive comments.

REFERENCES

{11 A. Demers, S. Keshav, and S. Shenker, “Analysis and simulation of a
fair queuing algorithm,” in Proc. ACM SIGCOMM’89, pp. 3-12.

[2] D. Ferrari and D. Verma, “A scheme for real-time channel establishment
in wide-area networks,” IEEE J. Select. Areas Commun., vol. 8, pp.
368-379, Apr. 1990.

[3] N.R. Figueira and J. Pasquale, “Leave-in-time: A new service discipline
for real-time communications in a packet-switching network,” in Proc.
ACM SIGCOMM’95, pp. 207-218.

[4] S. J. Golestani, “A self-clocked fair queueing scheme for high speed

applications,” in Proc. IEEE INFOCOM’%4, pp. 636-646.

P. Goyal, S. S. Lam, and H. Vin, “Determining end-to-end delay bounds

in heterogeneous networks,” in Proc. NOSSDAV’95, Durham, NC.

[61 Traffic Control and Congestion Control in B-ISDN, ITU-T Rec. 1.371,
Perth, U.K., Nov. 1995.

[7]1 S. Keshav, “On the efficient implementation of fair queueing,” J.
Internerworking Res. Exp., 1991.

[8] S. S. Lam, S. Chow, and D. K. Y. Yau, “An algorithm for lossless
smoothing of compressed video,” IEEE/ACM Trans. Networking, vol. 4,
pp. 697-708, Oct. 1996. Earlier version in Proc. ACM SIGCOMM’94,
London, UK., pp. 281-293.

[9] S.S.Lam and G. G. Xie, “Burst scheduling networks,” Univ. Texas at

Austin, Austin, TX, Tech. Rep. TR-94-20, July 1994; revised, Aug. 31,

1996. Available from http://www.cs.utexas.edu/users/lam/NRL/. Abbre-

viated version in Proc. IEEE INFOCOM’95.

A. K. Parekh and R. G. Gallager, “A generalized processor sharing

approach to flow control in integrated services networks: The single

[5

—_

[10]

218

node case,” IEEE/ACM Trans. Networking, vol. 1, pp. 344-357, June
1993,

[11]7 G. G. Xie and S. S. Lam, “Delay guarantee of Virtual Clock server,”
IEEE/ACM Trans. Networking, vol. 3, pp. 683-689, Dec. 1995; also
presented at the 9th IEEE Workshop Comput. Commun., Oct. 1994,

, “An efficient adaptive search algorithm for scheduling real-time

traffic,” Univ. Texas at Austin, Tech. Rep. TR-95-29, July 1995; also

in Proc. IEEE ICNP’96.

, “Real-time block transfer under a link sharing hierarchy,” Univ.
Texas at Austin, Tech. Rep. TR-96-19, June 1996; abbrev. version in
Proc. IEEE INFOCOM’97.

[14] H Zhang and S. Keshav, “Compatison of rate-based service disciplines,”
in Proc. ACM SIGCOMM’91, pp. 113-121.

[15] L. Zhang, “VirtualClock: A new ftraffic control algorithm for packet
switching networks,” in Proc. ACM SIGCOMM 90, pp. 19-29.

[12]

[13]

Simon S. Lam (M’69-SM’80-F’85) received the
B.S.EE. degree (with Distinction) from Washington
State University, Pullman, in 1969, and the M.S. and
Ph.D. degrees in engineering from the University
of California at Los Angeles (UCLA), in 1970 and
1974, respectively.

From 1971 to 1974, he was a Postgraduate Re-
search Engineer at the ARPA Network Measuzement
Center, UCLA. From 1974 to 1977, he was a
Research Staff Member at the IBM Thomas J.
Watson Research Center, Yorktown Heights, N.
Since 1977, he has been on the faculty of the University of Texas at Austin,
where he is a Professor of Computer Sciences. He holds two anonymously
endowed professorships, and served as Department Chair from 1992 to 1994.
His research interésts in networking include switch and protocol design,
performance analysis, distributed multimedia, and security, He served on
the Editorial Boards of Performance Evaluation, IEEE TRANSACTIONS ON
SOFTWARE ENGINEERING, IEEE TRANSACTIONS ON COMMUNICATIONS, and the
ProceepINGs oF THE IEEE. He organized and was Program Chair of the first
ACM SIGCOMM Symposium held at the University of Texas at Austin in
1983. He presently serves as Editor-in-Chief of the IEEE/ACM T RANSACTIONS
ON NETWORKING.

Dr. Lam recetved the 1975 Leonard G. Abraham Prize Paper Award from
the IEEE Communications Society for his paper on packet switching in a
multiaccess broadcast channel, derived from his doctoral dissertation.

IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 5, NO. 2, APRIL 1997

Geoffrey G. Xie received the B.S. degree in com-
puter science from Fudan University, Shanghai,
China, in 1986, the M.S. degree in computer science
and the MLA. degree in mathematics from Bowling
Green State University, Bowling Green, OH, in
1988, and the Ph.D. degree in computer sciences
from the University of Texas at Austin in 1996.
From 1991 to 1993, he worked full time as a
project engineer in Schlumberger Austin Systems
Center, Austin, TX. He is currently an Assistant
Professor in the Department of Computer Science,
Naval Postgraduate School, Monterey, CA. His research interests include
computer networking, multimedia systems, and distributed computing.

