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Abstract

Constructing and maintaining consistent neighbor tables
and optimizing neighbor tables to improve routing locality
are two important issues in p2p networks. In this paper, we
address the problem of preserving consistency while opti-
mizing neighbor tables for p2p networks with node dynam-
ics. We present a general strategy: identify a consistent sub-
net as large as possible and only replace a neighbor with a
closer one if both of them belong to the subnet. We real-
ize the general strategy in the context of hypercube routing.
First, we present a join protocol that enables the identifi-
cation of a large consistent subnet with very low cost when
new nodes join. Next, we define an optimization rule to con-
strain neighbor replacements to preserve consistency, and
present a set of optimization heuristics to optimize neighbor
tables with low cost. The join protocol is then integrated
with a failure recovery protocol. By evaluating the protocols
through simulation experiments, we found our protocols and
optimization heuristics to be effective, efficient, and scalable
to a large number of network nodes.

1 Introduction
Structured peer-to-peer networks are being investigated as
a platform for building large-scale distributed systems [10,
11, 13, 14, 17]. The primary function of these networks is
object location, that is, mapping an object ID to a node in the
network. For efficient routing, each node maintains neigh-
bor pointers in a table, called its neighbor table. The design
of protocols to construct and maintain “consistent” neighbor
tables for network nodes that may join, leave, and fail con-
currently and frequently is an important issue. (Consistency
ensures that a network is fully connected, i.e., there exists
a path from any node to any other node.) Another impor-
tant issue is to optimize neighbor tables so that the average
distance traveled for each hop (locality) is optimized. Var-
ious ideas have been proposed to optimize neighbor tables
for improving routing locality [1, 2, 3, 8, 12].

An important problem that has not been addressed ade-
quately is how to preserve consistency (and thus preserve
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established reachability) while optimizing neighbor tables,
when there are nodes that join, leave, or fail concurrently
and frequently. We address the problem in this paper and
present a general strategy: Identify a consistent subnet as
large as possible, and only allow a neighbor to be replaced
by a closer one if both of them belong to the subnet. To
implement this strategy in a distributed p2p network, where
there is no global knowledge, the following problems need
to be addressed: (1) how to identify nodes that belong to
such a consistent subnet with minimum cost, (2) how to ex-
pand the subnet when new nodes join, and (3) how to main-
tain consistency of the subnet when nodes leave or fail.

In this paper, we realize the general strategy in the con-
text of the hypercube routing scheme that is used in several
proposed systems [10, 13, 17] to achieve scalable routing. In
this scheme, given consistent [6] and optimal (that is, they
store nearest neighbors) neighbor tables, it is guaranteed to
locate a nearby copy of an object with asymptotically opti-
mal cost if the object exists [10].

In [6], we have proposed a join protocol for the hyper-
cube routing scheme. We proved that when an arbitrary
number of nodes join an initially consistent network us-
ing the join protocol, the network is consistent again after
all joins have terminated. The protocol is later extended
to construct K-consistent neighbor tables to improve sys-
tem robustness [4]. Correctness of the join protocol relies
on preserved reachability: once a node can reach another
node, it always can thereafter. In order not to break estab-
lished reachability when replacing neighbors (to optimize
neighbor tables), one approach is to apply optimization al-
gorithms without interfering with joins, that is, applying op-
timization algorithms when joins have terminated and the
network is already consistent. However, in a distributed p2p
network, where nodes keep joining, it is difficult, if not im-
possible, to identify a quiescent time period in which there is
no node joining and which is long enough for optimizations.
Executing optimization algorithms while nodes are joining,
on the other hand, may result in an inconsistent network,
since replacing neighbors arbitrarily may break established
reachability of some source-destination pairs, and thus af-
fect the correctness of the join protocol.

We observe that within a subnet that is already consistent,
replacing any neighbor with another, when both of them be-
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long to the subnet, does not break consistency conditions
and thus does not break established reachability. (See Sec-
tion 2.2 for the definition of consistency.) Following the
observation, we first extend our join protocol in [4] so that
at any time, the set of nodes whose join processes have ter-
minated (including the nodes in the initial network) form a
consistent subnet. The extended join protocol leads to solu-
tions to the first two problems mentioned before: (1) iden-
tifying whether a neighbor is in the consistent subnet or not
can be easily achieved by recording the state of the neigh-
bor to indicate whether its join process has terminated or
not; (2) the consistent subnet is expanded whenever a node’s
join process terminates, by including the node. Next, we in-
tegrate the extended join protocol with our failure recovery
protocol presented in [5]. (Node leave is treated as a special
case of failure.) The failure recovery protocol always tries
to repair a hole left by a failed neighbor with a qualified
node that is in the consistent subnet, thus it naturally fol-
lows the general strategy and provides a solution to problem
(3). Through extensive simulation experiments [5], we have
shown that the failure recovery protocol is able to maintain
1-consistency and re-establish K-consistency in every ex-
periment with failures, for K ≥ 2.

Contributions of this paper are the following:

• We present a general strategy to preserve consistency
while optimizing neighbor tables for p2p networks
with node dynamics.

• We extend the join protocol in [4] and prove that with
the extended protocol, at any time t, the set of initial
nodes plus the set of nodes whose joins have termi-
nated form a consistent subnet. The extended protocol
enables easy identification of nodes in the consistent
subnet, and the costs of protocol extensions are shown
to be very low.

• We present an optimization rule. Optimization algo-
rithms should be applied within the constraint of this
rule to preserve consistency. To optimize neighbor ta-
bles with low cost, we present a set of heuristics that
search for nearby neighbors by primarily using infor-
mation carried by join protocol messages.

• We integrate the extended join protocol with our failure
recovery protocol and evaluate the protocols and the
optimization heuristics by simulation experiments.

• We show that the extended join protocol and the opti-
mization heuristics can also be used for initializing a
K-consistent and optimized network.

Among related work, both Pastry [13] and Tapestry [17]
make use of hypercube routing. In Pastry, in addition to a
neighbor table for hypercube routing, each node maintains a
set of nearest nodes on the ID ring, which is actively main-
tained and ensures success of routing as well as object loca-
tion. Pointers for hypercube routing, on the other hand, are
used as shortcuts and maintained lazily. Therefore, how to
preserve established reachability while optimizing neighbor

tables is not addressed. Tapestry’s join and failure recov-
ery protocols are based upon use of a lower-layer Acknowl-
edged Multicast protocol supported by all nodes [2], which
also relies on established reachability. An algorithm to lo-
cate k nearest neighbors for each table entry, k ≥ 1, is also
presented [2]. However, it is not addressed how to preserve
established reachability when nearest neighbors are located
and old neighbors are replaced. Thus it is not clear how op-
timization operations will interfere with the correctness of
their join protocol.

The rest of this paper is organized as follows. In Sec-
tion 2, we briefly review the hypercube routing scheme, K-
consistency, our original join protocol [4], and our theoreti-
cal foundation of protocol design and proofs. In Section 3,
we present our general strategy for consistency-preserving
optimization, extend the join protocol following the strat-
egy, and present an optimization rule and a set of optimiza-
tion heuristics. Correctness of the extended join protocol is
proved and scalability of the protocol is analyzed. In Sec-
tion 4, we evaluate the effectiveness of optimization heuris-
tics by conducting simulation experiments in which nodes
may join and fail concurrently and frequently. In Section 5,
we explain how to initialize a K-consistent and optimized
network. We conclude in Section 6.

2 Foundation
2.1 Hypercube routing scheme

In this section, we briefly review the hypercube routing
scheme used in PRR [10], Pastry [13], and Tapestry [17].
Consider a set of nodes. Each node has a unique ID, which
is a fixed-length random binary string. A node’s ID is rep-
resented by d digits of base b, e.g., a 160-bit ID can be rep-
resented by 40 Hex digits (d = 40, b = 16). Hereafter, we
will use x.ID to denote the ID of node x, x[i] the ith digit in
x.ID , and x[i − 1]...x[0] a suffix of x.ID . We count digits
in an ID from right to left, with the 0th digit being the right-
most digit. See Table 1 for notation used throughout this
paper. Also, we will use “network” instead of “hypercube
routing network” for brevity.

Notation Definition
〈V,N (V )〉 a hypercube network: V is the set of nodes in the

network, N (V ) is the set of neighbor tables
[�] the set {0, ..., � − 1}, � is a positive integer
d the number of digits in a node’s ID
b the base of each digit
x[i] the ith digit in x.ID
x[i − 1]...x[0] suffix of x.ID; denotes empty string if i = 0
x.table the neighbor table of node x
j · ω digit j concatenated with suffix ω
Nx(i, j) the set of nodes in (i, j)-entry of x.table, also

referred as the (i, j)-neighbors of node x
Nx(i, j).prim the primary(i, j)-neighbor of node x

Table 1. Notation
Given a message with destination node ID, z.ID , the ob-

jective of each step in hypercube routing is to forward the
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message from its current node, say x, to a next node, say y,
such that the suffix match between y.ID and z.ID is at least
one digit longer than the match between x.ID and z.ID .1

If such a path exists, the destination is reached in O(logb n)
steps on the average and d steps in the worst case, where n
is the number of network nodes. Figure 1 shows an example
path for routing from source node 21233 to destination node
03231 (b = 4, d = 5). Note that the ID of each intermediate
node in the path matches 03231 by at least one more suffix
digit than its predecessor.

21233 0323133121 13331 30231

Figure 1. An example hypercube routing path

To implement hypercube routing, each node maintains
a neighbor table that has d levels with b entries at each
level. Each table entry stores link information (IDs and IP
addresses) to nodes whose IDs have the entry’s required suf-
fix, defined as follows. (Hereafter, we will use “neighbor” or
“node” instead of “node’s ID and IP address” whenever the
meaning is clear from context.) Consider the table in node
x. The required suffix for entry j at level i, j ∈ [b], i ∈ [d],
referred to as the (i, j)-entry of x.table , is j ·x[i− 1]...x[0].
Any node whose ID has this required suffix is said to be a
qualified node for the (i, j)-entry of x.table . Nodes stored
in the (i, j)-entry of x.table are called the (i, j)-neighbors of
x, denoted by Nx(i, j). Ideally, these neighbors are chosen
from qualified nodes for the entry according to some prox-
imity criterion [10], with the nearest one designated as the
primary(i, j)-neighbor. Furthermore, node x is said to be a
reverse(i, j)-neighbor of node y if y is an (i, j)-neighbor of
x. Each node also keeps track of its reverse-neighbors.

Note that node x has the required suffix for each (i, x[i])-
entry, i ∈ [d], of its own table. For routing efficiency, we
fill each node’s table such that Nx(i, x[i]).prim = x for all
x ∈ V , i ∈ [d]. Figure 2 shows an example neighbor table.
The string to the right of each entry is the required suffix for
that entry. An empty entry indicates that there does not exist
a node in the network whose ID has the entry’s required
suffix. For clarity, IP addresses are not shown in Figure 2.

0

1

2

3

033

133

233

333

03

13

23

33

01100

33121

12232

21233

22303

13113

00123

21233

31033

21233

0233

1233

2233

3233

10233

21233

03233

01233

11233

31233

21233

11233

21233

level 4 level 3 level 2 level 1 level 0

03133

Neighbor table of node 21233  ( b=4, d=5)

Figure 2. An example neighbor table

2.2 K-consistent networks

Constructing and maintaining consistent neighbor tables is
an important design objective for structured peer-to-peer

1In this paper, we follow PRR [10] and use suffix matching, whereas
other systems use prefix matching. The choice is arbitrary and conceptually
insignificant.

networks. We defined consistency for a hypercube routing
network as follows [6]: A network, 〈V,N (V )〉, is consis-
tent if and only if the following conditions hold: (i) For
every table entry in N (V ), if there exists at least one qual-
ified node in V , then the entry stores at least one qualified
node; (ii) otherwise, the entry is empty. In a consistent net-
work, any node x can reach any other node y using hyper-
cube routing in k steps, k ≤ d; more precisely, there exists
a neighbor sequence (path), (u0, ..., uk), k ≤ d, such that
u0 is x, uk is y, and ui+1 ∈ Nui(i, y[i]), i ∈ [k].

If nodes may fail frequently in a network, a natural ap-
proach to improve robustness is to store in each table en-
try multiple qualified nodes. For this approach, we gen-
eralized the definition of consistency to K-consistency as
follows [4]. A network, 〈V,N (V )〉, is K-consistent if and
only if the following conditions hold: (i) For every table en-
try in N (V ), if there exist H qualified nodes in V , H ≥ 0,
then the entry stores at least min(K, H) qualified nodes; (ii)
otherwise, the entry is empty. For K ≥ 1, K-consistency
implies consistency (in particular, 1-consistency is the same
as consistency).

2.3 Join protocol

In [4], we presented a join protocol for the hypercube rout-
ing scheme and proved that it constructs and maintains K-
consistent neighbor tables for an arbitrary number of con-
current joins. Here we briefly review the protocol design.

In designing and proving the correctness of the proto-
col for nodes to join a network 〈V,N (V )〉, we made the
following assumptions: (i) V �= ∅ and 〈V,N (V )〉 is a K-
consistent network, (ii) each joining node, by some means,
knows a node in V initially, (iii) messages between nodes
are delivered reliably, and (iv) there is no node leave or node
failure during the joins. Then, tasks of the join protocol are
to update neighbor tables of nodes in V and to construct ta-
bles for the joining nodes so that after the joins, the network
is K-consistent again.

Each node in the network maintains a state variable
named status, which begins in copying, then changes to
waiting, notifying, and in system in that order. A node in
status in system is called an S-node; otherwise, it is a T-
node. Each node also stores, for each neighbor in its ta-
ble, the neighbor’s state, which can be S indicating that the
neighbor is an S-node or T indicating that it is not yet.

In status copying, a joining node, say x, copies neighbor
information from S-nodes to fill in most entries of its table
level by level. It copies level-0 neighbor information from
the node it knows in V (an S-node), say g0, and finds an S-
node g1 among the level-0 neighbors of g0 such that g1.ID
shares the rightmost digit with x.ID. x then copies level-1
neighbors from g1, and finds an S-node g2 that shares the
rightmost two digits with it, and so on. When after coping
level-(i − 1) neighbors, x cannot find an S-node that shares
the rightmost i digits with it, i ≥ 1, x changes status to
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waiting. In this status, x tries to “attach” itself to the net-
work, i.e., to find an S-node, say y, that shares at least the
rightmost i − 1 with x and stores x as a neighbor. When x
is attached, its status becomes notifying. Then, x seeks and
notifies nodes that share the rightmost j digits with it, where
j is the lowest level that x is stored in y’s table (the attach-
level of x, as defined in [4]). Lastly, when it finds no more
node to notify, x changes status to in system and becomes
an S-node.

Figure 3 presents the protocol messages. In particular,
JoinWaitMsg is the message that a joining node sends out to
request for attachment. It is worth pointing out that when
a node, y, receives a JoinWaitMsg from some joining node,
y processes the message and replies immediately if y is al-
ready an S-node; otherwise, y saves the message to be pro-
cessed later when it becomes an S-node. That is, a joining
node is always stored as a neighbor by an S-node first.

CpRstMsg, sent by x to request a copy of receiver’s neighbor table.
CpRlyMsg(x.table), sent by x in response to a CpRstMsg.
JoinWaitMsg, sent by x to notify receiver of the existence of x and

request the receiver to store x, when x.status is waiting.
JoinWaitRlyMsg(r, i, x.table), sent by x in response to a JoinWaitMsg,

when x.status is in system. r ∈ {negative, positive}, i: an integer.
JoinNotiMsg(i, x.table), sent by x to notify receiver of the existence

of x, when x.status is notifying. i: an integer.
JoinNotiRlyMsg(r, Q, x.table, f ),

sent by x in response to a JoinNotiMsg.
r ∈ {negative, positive}, Q: a set of integers, f ∈ {true, false}.

SpeNotiMsg(x, y), sent or forwarded by a node to inform receiver
of the existence of y, where x is the initial sender.

SpeNotiRlyMsg(x, y), response to a SpeNotiMsg.
InSysNotiMsg, sent by x when x.status changes to in system.
RvNghNotiMsg(y, s), sent by x to notify y that x is a reverse neighbor

of y, s ∈ {T, S}.
RvNghNotiRlyMsg(s), sent by x in response to a RvNghNotiMsg,

s = S if x.status is in system; otherwise s = T .

Figure 3. Join protocol messages

2.4 C-set tree

C-set tree is a conceptual foundation for guiding our pro-
tocol design and reasoning about K-consistency [4, 6]. To
introduce C-set trees, we first present the notion of notifica-
tion set of x regarding V , denoted by V Notify

x [4]. Suppose
a set of nodes W join a K-consistent network 〈V,N (V )〉
and x ∈ W . Intuitively, V Notify

x is the set of nodes in V that
need to update their tables if x were the only node that joins
〈V,N (V )〉.

Intuitively, a C-set tree organizes nodes in V that need to
update their tables as well as nodes in W into a tree struc-
ture, if the notification sets regarding V (noti-sets, in short)
of all nodes in W are the same. Generally, the noti-sets of
all nodes in W may not be the same. Then, nodes in W with
the same noti-set belong to the same C-set tree and the C-
set trees for all nodes in W form a forest. Each C-set tree in
the forest can be treated separately in proving protocol cor-
rectness. In the rest of this subsection, we focus on a single
C-set tree, i.e., we assume that the noti-sets of the joining

nodes are the same. (Formal definitions for C-set trees are
presented in [4, 6].)

Given V , W and K , the structure of the C-set tree is de-
termined, which we call a C-set tree template. For example,
suppose W = {30633, 41633, 10533} (b = 8, d = 5) and
V = {02700, 14263, 62332, 72413}. The corresponding C-
set tree template is shown in Figure 4(a). Here we assume
K = 1 to simplify illustration. In this example, noti-set
of the joining nodes is the set of nodes in V with suffix 3,
denoted by V3. Observe that the joining nodes introduce
new suffixes to the network. For each new suffix, there is a
corresponding C-set, and all C-sets plus set V3 form a tree
according to their suffixes.

C33

C633

C41633 C30633

0633CC1633

C33

C1633 0633C

C30633C41633

V

V3

V

V3

41633 30633

41633

41633

30633

30633

C633C

C

C

533

0533

10533

14263 72413 14263 72413

10533

10533

10533

C

C

C

533

0533

10533

41633 30633

(a) Template (b) Realization

Figure 4. C-set tree example

The task of the join protocol is to construct and up-
date neighbor tables such that paths are established between
nodes; conceptually nodes are filled into each C-set. For
instance, in the above example, when 14263 stores a node
with suffix 33, say node 30633, in its (1, 3)-entry, then con-
ceptually 30633 is filled into C33. We call the C-set tree
realized at the end of all joins a C-set tree realization. Fig-
ure 4(b) shows one possible realization of the template in
Figure 4(a). At the end of joins, we check whether some
correctness conditions [4] are satisfied by the C-set tree re-
alization. If they are, then neighbor tables of nodes in V ∪W
are guaranteed to be K-consistent.

3 Consistency-preserving Optimization

To date, correctness of proposed join protocols for the hy-
percube routing scheme [2, 4, 6] depends on preserved
reachability, i.e., once a node can reach another node, it
always can thereafter. Therefore, if optimization opera-
tions are to be performed, they should preserve reachabil-
ity. There is a common operation in all optimization algo-
rithms: replacing an old neighbor with a new one that is
measured to be closer. However, if there is no constraint
on such a replacement, it may break reachability of some
source-destination pairs, affect correctness of the join pro-
tocol, and result in an inconsistent network after nodes join.

For example, suppose nodes 41633 (x) and 30633 (y)
join a network concurrently with some other nodes. Let t2
be the time that neighbor pointers along the path from x to
y are completely established. Then x cannot reach y before
time t2. If at some time t1, t1 < t2, some node that has
stored y, say node 14263 (u), finds x to be closer and re-
places y with x, then after the replacement, u cannot reach
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y until time t2, as illustrated by Figure 5. In this case, reach-
ability of pair (u, y) is not preserved by the optimization
operation even if both join processes of x and y have ter-
minated by time t1, since some nodes along the path from
x to y may be still joining and neighbor pointers are still
being established. Then, during the period [t1, t2], joining
nodes that are supposed to find out y through u will fail to do
so and thus cannot construct their neighbor tables correctly.
Even worse, the period may be arbitrarily long, if messages
are delayed arbitrarily long in the network, or if reachability
of some source-destination pair along the path from u to y
is also broken.

30633
y

before

after

u

u

14263 30633

14263

y

41633
x

Figure 5. Paths before and after neighbor replacement

To construct and optimize neighbor tables without break-
ing established reachability when new nodes join a network,
one possible approach is to first construct and update neigh-
bor tables so that they are K-consistent, and then optimize
neighbor tables after the joins. However, this approach is
not practical in a distributed p2p network, since nodes keep
joining and none of them is aware of any quiescent time pe-
riod in which there is no node joining and which is long
enough for optimization operations, if such a period exists.

3.1 Our strategy

We observe that for the hypercube routing scheme, within
a subnet that is already consistent, replacing any neighbor
with any other neighbor does not break consistency con-
ditions if both neighbors belong to the consistent subnet.
(Basically, consistency conditions require that for each ta-
ble entry, if there exists qualified nodes in the subnet, then
the entry is filled with at least such a node.) If a neighbor
replacement does not break the consistency conditions, then
after the replacement, nodes that are previously reachable
via the old neighbor can now be reached via the new neigh-
bor. This observation is also applicable to other structured
p2p networks, such as the system proposed in [9].

When new nodes are joining a network, if we can iden-
tify a “core” of the network such that if we only consider
the nodes in this core, their neighbor tables are consistent
and they can reach each other, then we know that replac-
ing a neighbor with a closer neighbor, both of which are in
the core, is a safe operation and will not break established
reachability. Note that before the joins start, the initial net-
work is consistent and thus is the “core” of the network.
However, if we optimize neighbor tables by only consider-
ing nodes in the initial network, the extent of optimization
would be greatly limited. It is desired that after a node has
joined the network, it becomes part of the core so that it can
also be considered for optimization. It is also desired that
when nodes fail, consistency of the core is maintained. To
summarize, we present a general strategy for consistency-

preserving neighbor table optimization in presence of node
dynamics.

A general strategy for consistency-preserving opti-
mization: Identify a consistent subnet as large as possible;
only allow a neighbor to be replaced by a closer one if both
of them belong to the subnet; expand the consistent subnet
after new nodes join; and maintain consistency of the subnet
when nodes fail.

The join protocol in [4] guarantees that when a set of
nodes join an initially K-consistent network, the network is
K-consistent (and thus consistent) again after all join pro-
cesses terminate. To implement the above strategy, we need
another property from the join protocol: at any time, the
subnet consisting of all nodes whose join processes have
terminated plus nodes in the initial network is consistent.
With this property, identifying nodes or neighbors that be-
long to the consistent subnet becomes easy: if the join pro-
cess of a node has terminated, then it belongs to the subnet;
otherwise, it is not. The property also ensures that the con-
sistent subnet keeps growing when more join processes ter-
minate. To maintain consistency of the subnet when nodes
fail, a failure recovery protocol is needed to recover K-
consistency.2 The failure recovery protocol should always
try to recover a hole left by a failed neighbor with a quali-
fied node that is in the consistent subnet.

Recall that in our protocol design, when a node’s join
process terminates, it becomes an S-node. (Nodes in the
initial network are also S-nodes.) Hence, more specifically,
our goals are to (1) design a join protocol so that at any time,
the set of S-nodes form a consistent subnet, and (2) design
a failure recovery protocol that recovers K-consistency of
the subnet by repairing holes left by failed neighbors with
qualified S-nodes. The failure recovery protocol presented
in [5] naturally fits into the general strategy with minor ex-
tensions. Basically, it works in the following way. When a
neighbor failure is detected by a node, a recovery process
is initiated. The process always tries to repair a hole left
by the failed neighbor with a qualified S-node, by searching
in the node’s own neighbor table and querying the node’s
neighbors. Only when it fails to find a qualified S-node will
it repair the hole with a T-node. The failure recovery proto-
col has been shown to maintain consistency and re-establish
K-consistency for networks with K ≥ 2. Therefore, in this
section, we focus on how to extend the join protocol in [4]
to achieve goal (1).

3.2 Extended join protocol

To extend the join protocol, we first consider the basis of
the proofs of protocol correctness. Proofs in [4] rely on the
following properties of a network.

1. Once two S-nodes can reach each other, they always
can thereafter.

2K-consistency provides redundancy in neighbor tables to ensure that
a dynamically changing network remains fully connected.
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2. Once a T-node can reach an S-node, it always can
thereafter.

3. After a T-node, say x, is stored by another node, say y,
x remains in the table of y when x is still a T-node.

If there is no table optimization involved during the joins,
i.e., no neighbor in any entry would be replaced, the above
properties hold trivially: once a path is established, the
neighbor pointers from one hop to another along the path
are always there and remain the same. When there are op-
timization operations that happen concurrently with joins,
the above three properties must be preserved to ensure the
correctness of the join protocol. To preserved property 3 is
not difficult: we require that if a neighbor is still a T-node, it
cannot be replaced even if another node is found to be closer
than it. To preserve properties 1 and 2, goal (1) stated above
needs to be achieved and neighbor replacement should be
constrained to neighbors that are S-nodes.

We extend the join protocol to achieve goal (1) as fol-
lows. In short, a new status, cset waiting, is inserted be-
tween notifying and in system. When a joining node has fin-
ished its tasks and exited status notifying, it will not change
to status in system and become an S-node immediately. In-
stead, the node waits in status cset waiting for some nodes
that are joining concurrently and are likely to be in the same
C-set with it (conceptually). When it is confirmed that all
these nodes have exited status notifying, it changes status
to in system. (Pseudo-code of the extended join protocol
is presented in [7].) The extensions ensure that when two
nodes have both become S-nodes, paths between them (in
both directions) have already been established.

• A new joining status, cset waiting, is added after sta-
tus notifying. Moreover, one more join protocol mes-
sage, SameCsetMsg(s), is introduced, where s is S is
the sender is already an S-node and T otherwise.

• When a joining node, x, receives a JoinWaitRlyMsg
or a JoinNotiRlyMsg, the message includes a copy of
the sender’s table. If from the copy, x finds a T-node,
say y, that shares with x a suffix longer than k, k =
x.att level , x saves y in set Qcset wait. (x.att level is
the attach-level of x in the network [4], which is the
lowest level x is stored in the table of the first S-node
that stored x.)

• When a node in status notifying finds that it is not ex-
pecting any more JoinNotiRlyMsg or SpeNotiRlyMsg,
it changes status to cset waiting. It then sends a
SameCsetMsg(T) to each node in set Qcset wait and
waits for their replies. It also replies to each node in
set Qcset recv (see discussion below) with a SameC-
setMsg(T). Each node that is in both Qcset recv and
Qcset wait is then removed from Qcset wait.

• When a node, say x, receives a SameCsetMsg(s), if it is
already in status in system, it sends a SameCsetMsg(S)
back immediately if s is T (if s is S, x simply ignores
the message). If x is in status cset waiting, it sends a

SameCsetMsg(T) back immediately if it has not done
so, and removes the sender from Qcset wait. If x is
in any other status, x saves the sender into Qcset recv

to reply later when x changes status from notifying to
cset waiting.

• When a node is in status cset waiting and finds that
Qcset wait is empty, it changes status to in system.

The above extensions add extra delay into each join pro-
cess. With the extra delay, a joining node will not become an
S-node until it believes that nodes currently in the same C-
set with it (conceptually) have all entered status cset waiting
or in system. Since only after a node becomes an S-node
can it store another joining node that has requested it for at-
tachment (by sending a JoinWaitMsg), the above extensions
ensure that only after a set of nodes in a parent C-set have
all finished their joining tasks, will new joining nodes be
attached to these nodes and filled into children C-sets. In
the correctness proof [7], we show that when a new node is
filled into a child C-set, neighbor pointers among the nodes
that have been filled in ancestor C-sets have been established
and those nodes already can reach each other.

02700, 14263, 62332, 
72413

02700, 14263, 62332, 
72413, 30633, 41633

02700, 14263, 62332, 
72413, 30633, 41633,
10533

Figure 6. Evolution of consistent subnet

For instance, consider the example mentioned in Sec-
tion 2.4 (the C-set tree template of which, assuming K = 1,
is shown in Figure 4(a)). With the extended join proto-
col, the C-set tree is realized in the following way: only
after C-set C33 is filled and nodes in it have all entered sta-
tus cset waiting or in system, will new nodes (nodes other
than those in C33) be filled into the children C-sets, C633

and C533, and so on.3 For example, for the realization as
shown in Figure 4(b), it is realized as follows: only after
nodes 41633 and 30633 (nodes in C33) have entered sta-
tus cset waiting or in system, will node 10533 be filled into
C533. Figure 6 shows the corresponding evolution of the
consistent subnet.

3.3 Correctness and scalability of join protocol

We first present Theorem 1, which shows that when a set of
new nodes join a network using the extended join protocol,
at any time, all S-nodes at that time belong to a consistent
subnet. This property guarantees that replacing a neighbor
with another one is safe if both of them are S-nodes. Proof
of Theorem 1 is based on the assumptions stated in Sec-
tion 2.3. Proof details are presented in [7] and are omitted
here due to space limitation.

3A node is a neighbor of itself and is stored in each entry whose required
suffix is a suffix of its node ID. Therefore, after a node is filled into a C-set,
it is automatically filled into descendant C-sets. For instance, when 41633
is filled into C33, it is automatically filled into C633 , C1633 , and C41633 .
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Theorem 1 Suppose a set of nodes, W = {x1, ...xm},
m ≥ 1, join a K-consistent network 〈V,N (V )〉 using the
extended join protocol. Then at any time t, any node in set
S(t) can reach any other node in S(t), where S(t) is the set
of S-nodes at time t.

Next, we demonstrate the scalability of the extended join
protocol by analyzing communication costs of protocol ex-
tensions through simulation experiments. We implemented
the extended join protocol in an event-driven simulator, and
used the GT ITM package [15] to generate network topolo-
gies. For a generated topology with a set of routers, overlay
nodes (end hosts) were attached randomly to the routers.
For the simulations reported in this paper, two topologies
were used: a topology with 1056 routers to which 1000
overlay nodes were attached, and a topology with 2112
routers to which 4000 overlay nodes were attached. We sim-
ulated the sending of a message and the reception of a mes-
sage as events, but abstracted away queueing delays. The
end-to-end delay of a message from its source to destination
was modeled as a random variable with mean value propor-
tional to the shortest path length in the underlying network.
For the 1056-router topology, end-to-end delays are in the
range of 0 to 329 ms, with the average being 113 ms; for the
2112-router topology, end-to-end delays are in the range of
0 to 596 ms, with the average being 163 ms. In each exper-
iment, we let m nodes join an initial network of n nodes,
m 
 n. We set parameters b to be 16 and d to be 8.4

We first study the extra delay caused by the new status,
cset waiting. We define the join duration of a node to be
the duration from the time the node starts joining to the time
it changes status to in system. Figure 7(a) plots the aver-
age join durations for 990 nodes joining an initial network
of 10 nodes, as a function of K , for simulations using the
original join protocol (presented in Section 2.3) and the ex-
tended join protocol, respectively. The underlying topology
was the 1056-router topology. In each experiment, all joins
started at exactly the same time. As shown in the figure, the
average join durations for the extended protocol are only
slightly longer than those for the original protocol, which
indicates that the extra delay caused by waiting in status
cset waiting is small. The same conclusion can be drawn
from Figure 7(b), where 1990 nodes joined an initial net-
work of 10 nodes and the underlying topology is the 2112-
router topology. Error-bars in Figure 7 show the minimum
and maximum join durations observed from simulations us-
ing the extended join protocol.

Next, we study communication costs of the extended join
protocol in terms of numbers of messages sent by a joining
node. In [4], we have analyzed numbers of protocol mes-
sages sent by a joining node, for all message types except
the one introduced in this paper, and showed that the com-
munication costs are scalable to large networks. Hence, in

4In Tapestry, b = 16 and d = 40. In Pastry, b = 16 and d = 32.
We found that the value of d is insignificant when bd � n, where n is the
number of nodes in a network.
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Figure 8. Average number of SameCsetMsg

this paper we only need to study the number of the new mes-
sage (SameCsetMsg) sent by a joining node.

Figure 8 presents average numbers of SameCsetMsg sent
by joining nodes as a function of K . The numbers are small
in general, and increase when K increases. This is because
when K increases, more neighbors are stored in each en-
try and thus each C-set tends to contain more nodes. By
comparing the two curves in each diagram, we observe that
in the simulations where joins did not start at exactly the
same time, average numbers of SameCsetMsg were greatly
reduced. Moreover, comparing Figure 8(a) and Figure 8(b),
we see that with other parameters being the same, the av-
erage number of SameCsetMsg remained almost the same
when the number of concurrent joins (m) was increased
from 990 to 1990.

We conclude that the communication costs of the proto-
col extensions are very low and the extended join protocol
is scalable to a large number of network nodes.

3.4 Optimization rule and heuristics

We now have an extended join protocol that expands the
consistent subnet while nodes join a network, and a failure
recovery protocol [5] that maintains consistency of the con-
sistent subnet when nodes fail. To implement the general
strategy (Section 3.1), we also need the following rule.

Optimization Rule When a node, x, intends to replace
a neighbor, y, with a closer one, z, the replacement is only
allowed when both y and z are S-nodes.

Recall that for each neighbor, a node stores the state of
the neighbor. State S indicates that the neighbor is in status
in system, while state T indicates it is not yet. To imple-
ment the above rule, when x intends to replace y with z,
it only does so when the states associated with both y and
z are S. With the extended join protocol and the optimiza-
tion rule, the three properties stated in Section 3.2 will be
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preserved even when optimization operations happen con-
currently with joins [7].

To optimize neighbor tables, an algorithm is needed to
search for qualified nodes that are closer than current neigh-
bors. We next present a set of heuristics to optimize neigh-
bor tables when new nodes are joining a network and new
tables are constructed. To search for closer neighbors with
low cost, the heuristics are designed by primarily utilizing
information carried in join protocol messages. Notice that
whenever a closer neighbor is found for a table entry, it can
be used to replace an old neighbor only if the replacement is
allowed by the optimization rule.

Heuristic 1: Copy neighbor information from nearby
nodes. Recall that in the copying status, a joining node, x,
constructs most part of its neighbor table by copying neigh-
bor information from other nodes (S-nodes). Suppose y is
the node that x starts joining with. Instead of directly copy-
ing level-0 neighbors from y, x chooses the closest node
from y’s neighbors, say g0, and copies level-0 neighbors
from g0. If the level-0 neighbors of g0 are close to g0, and
g0 and x are close to each other, then it is highly likely that
these level-0 neighbors are also close to x [1]. To copy level-
1 neighbors, x chooses a level-0 neighbor of g0 that shares
suffix x[0] with it, say z, if such a node exists. Then from
the level-1 neighbors of z (whose IDs all have suffix x[0]),
x chooses the closest one to copy level-1 neighbors from,
and so on.

Heuristic 2: Utilize protocol messages that include
copies of neighbor tables. During status waiting and no-
tifying, a joining node, x, sends out messages (JoinWaitMsg
and JoinNotiMsg) to some nodes to notify them about itself.
Replies to these messages all include copies of the neighbor
tables of the senders. From each reply message, x searches
for qualified nodes that are closer than some current neigh-
bors for every table entry. Moreover, when x is in status
notifying, a notification message sent by x includes a copy
of x.table. The receiver of such a message also searches for
closer nodes in x.table to replace old neighbors.

Heuristic 3: Optimize neighbor tables when a node’s join
process terminates. When a joining node, x, changes sta-
tus to in system, it informs its reverse-neighbors (nodes that
have stored x as a neighbor) as well as its neighbors that it
becomes an S-node. These nodes then update the state of
x to be S in their tables and try to optimize their table en-
tries for which x is a qualified node. In addition to inform-
ing neighbors, x exchanges neighbor tables with its neigh-
bors (not including reverse-neighbors) so that both x and its
neighbors can optimize their tables at this time.

4 Experimental Results

We have integrated the extended join protocol with our fail-
ure recovery protocol and the optimization heuristics, un-
der the constraint of the optimization rule. In this sec-
tion, we validate our strategy for consistency-preserving op-

timization and evaluate the effectiveness of the heuristics
through simulation experiments. To evaluate the optimiza-
tion heuristics, we use a metric called p-ratio, defined be-
low. Recall that the closest neighbor in an entry is called the
primary-neighbor of that entry. For a table entry of a node,
say x, suppose the primary-neighbor of the entry is y, and
the closest node among all qualified nodes of the entry is z.
We define p-ratio of the entry to be the ratio of the com-
munication delay from x to y to the delay from x to z. A
p-ratio of 1 indicates that y and z are of the same distance.
If for every table entry in a network, p-ratio is 1, then the
neighbor tables are optimal.

4.1 Optimization during joins

In each experiment where optimization happened concur-
rently with joins, we let m nodes join an initial K-consistent
network of n nodes, m 
 n. Neighbor tables were then
constructed, updated, and optimized according to the ex-
tended join protocol and the optimization heuristics. In the
protocol implementation, an old neighbor is only replaced
by a new neighbor if the distance of the new one is measured
to be 10% shorter than the old one (plus that the replace-
ment is allowed by the optimization rule). This is to prevent
oscillation, since each end-to-end delay is modeled as a ran-
dom number with a mean value proportional to the shortest
path length in the underlying network. When all join pro-
cesses had terminated, we checked whether K-consistency
was maintained and calculated p-ratio for every table entry.
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Figure 9. Effectiveness of optimization heuristics

Figures 9 presents results from experiments with n = 10
and m = 990, and from experiments with n = 10 and
m = 1990. In each experiment, starting times of the joins
were drawn randomly from range [0s, 60s] (i.e., all nodes
joined within 1 minute). The results show that by primar-
ily using information carried in join protocol messages, ta-
ble entries can be greatly optimized. For instance, in Fig-
ure 9(a), without any optimization, the average p-ratio for
K = 1 is more than 6.82, and the 95th percentile of p-ratio
for K = 1 is 26.67 (i.e., 95% of p-ratios are no greater than
26.67); with the optimization heuristics, the values drop to
2.21 and 7.51, respectively. We also found that in every ex-
periment, K-consistency was maintained after all joins had
terminated, which demonstrates that our strategy preserves
consistency and ensures correctness of the join protocol.

Results in Figure 9 also show that when K is increased,
the average p-ratio decreases. The reason is that when K
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becomes larger, more neighbors are stored in each table en-
try, thus more neighbor information is carried in protocol
messages. Clearly, there is a tradeoff between the benefits
and maintenance costs of K-consistency.5

4.2 Optimization with concurrent joins and failures

The extensions to the join protocol presented in this paper
do not affect failure recovery actions, thus integrating the
extended join protocol with the failure recovery protocol
should not affect success of failure recoveries. On the other
hand, since a substitute for a failed neighbor is searched lo-
cally (see Section 3.1), if neighbor tables have been opti-
mized, the substitute node would not be too far away. Hence
the average p-ratio would not be affected too much after a
recovery action. Therefore, integration of the extended join
protocol, the failure recovery protocol, and the optimization
heuristics should be effective and stable in both consistency
maintenance and neighbor table optimization.6 To demon-
strate this, we conducted experiments with concurrent joins
and failures as well as churn experiments.

Massive joins and failures We first conducted simula-
tions in which massive number of joins and failures hap-
pened concurrently. Each experiment began with a K-
consistent network, 〈V,N (V )〉, which was constructed and
optimized by the extended join protocol and optimization
heuristics. Then, a set W of nodes joined and a set F of
randomly chosen nodes failed. Join and failure events were
generated according to a Poisson process at the rate of 10
events every second.

From the experiments, we found that K-consistency was
maintained when all join and failure recovery processes had
terminated, in every experiment with K ≥ 2. This result in-
dicates that our protocols are effective in consistency main-
tenance. Figure 10 presents results of average p-ratios at
the end of the simulations. The lower curve presents results
from simulations where 494 joins and 506 failures happened
in a network that initially had 1000 nodes. The upper curve
presents results from simulations where 968 joins and 1032
failures happened in a network that initially had 2000 nodes.
As shown in the figure, even with massive joins and failures,
the table entries were still optimized greatly: For K ≥ 2,
average p-ratios were less than 3.

Churn experiments We also investigated the impact
of continuous node dynamics on protocol performance. To
simulate node dynamics, Poisson processes with rates λjoin

and λfail were used to generate join and failure events, re-
spectively. We set λjoin = λfail = λ, which is said to be
the churn rate. For each join event, a new node (T-node)
was given a randomly chosen S-node to begin its join pro-
cess. For each failure event, an S-node or a T-node was
randomly chosen to fail and stay silent. Periodically in each

5In [5], we had investigated the tradeoff in detail.
6In [5], we have shown that the integration of the original join proto-

col and the failure recovery protocol is effective and stable in consistency
maintenance.
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Figure 10. Optimization with massive joins and failures

experiment, we took snapshots of the neighbor tables of all
S-nodes (the “core” of the network). For each snapshot, we
calculated the average p-ratio as an indicator of how well ta-
ble entries were optimized at the moment. We also checked
whether consistency was maintained at each snapshot.

Figure 11 presents results from an experiment with λ =
1, i.e., join events were generated at a rate of 1 per second
and so were the failure events. The initial K-consistent net-
work of 2000 nodes, K = 3, was constructed and optimized
by letting 1990 nodes join a network of 10 nodes. In the ex-
periment, join and failure events were generated from the
1,000th second to the 4,000th second (simulated time). Af-
ter that, no more join or failure events was generated and
the experiment continued until all join, failure recovery, and
optimization processes terminated. Snapshots were taken
every 50 seconds. The lower curve in Figure 11(a) plots
the average p-ratio for each snapshot. Although there were
continuous joins and failures, neighbor tables remained op-
timized to a certain degree: The average p-ratio increased
slightly at first, when joins and failures started to happen; it
then remained below 2.3. (For comparison, the upper curve
shows the average p-ratios from an experiment with the
same simulation setup, in which no optimization heuristics
were applied.) We also found that consistency was main-
tained at every snapshot, and K-consistency (K = 3) was
recovered at the end of the simulation. Figure 11(b) plots
the number of nodes in the network (T-nodes and S-nodes)
versus the number of S-nodes for each snapshot. Note that
the two curves are very close to each other, which demon-
strates that at the given churn rate, the size of the subnet
formed by S-nodes is consistently close to that of the entire
network. It also demonstrates that with the given churn rate
and the network size, our protocols can sustain a large sta-
ble “core” over the long term even when joins, failures, and
neighbor table optimization happen concurrently.7

5 Network Initialization
To initialize a K-consistent and optimized network of n
nodes, we can put any one of the nodes, say x, in V , and
construct x.table as follows. (Let x.state(y) denote the
state of neighbor y stored in the table of x.)

• Nx(i, x[i]).prim = x, x.state(x) = S, i ∈ [d].
• Nx(i, j) = ∅, i ∈ [d], j ∈ [b] and j �= x[i].
7In [5], we have studied “sustainable churn rates” in detail.
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Next, let the other n−1 nodes join the network concurrently.
Each node is given x to start with and executes the extended
join protocol with the optimization heuristics implemented.
At the end of joins, a K-consistent network is constructed
and table entries are optimized.

6 Conclusions

Constructing and maintaining consistent neighbor tables
and optimizing neighbor tables to improve routing local-
ity are two important issues in p2p networks. To construct
and maintain consistent neighbor tables in presence of node
dynamics, especially when new nodes are joining, it is de-
sired that neighbor pointers remain unmodified once they
are established so that new nodes are ensured to construct
neighbor tables correctly following the pointers. On the
other hand, to improve routing locality, it is desired that
once closer neighbors are found, old neighbors that are fa-
ther away are replaced.

In this paper, we showed that the “divergence” between
the two issues can be resolved by a general strategy: to re-
place a neighbor with a closer one only when they both be-
long to a consistent subnet. We realized the strategy in the
context of hypercube routing. We first extended our join
protocol in [4] so that the following property holds in a net-
work: at any time, the set of S-nodes form a consistent sub-
net. This property enables both easy identification of a con-
sistent subnet and expansion of the consistent subset when-
ever a join process terminates. Nevertheless, utilization of
this property is not limited to consistency-preserving opti-
mization.

The extended join protocol was then integrated with our
failure recovery protocol and a set of optimization heuris-
tics. The integrated protocols were evaluated through simu-
lation experiments. We showed that our protocols are effec-
tive and efficient in maintaining K-consistency and scalable
to a large number of network nodes. We also showed that
by primarily using information carried in join protocol mes-
sages, neighbor tables can be greatly optimized. For p2p
networks that have higher demand for optimality of neigh-
bor tables, algorithms presented in [1, 2, 16] can be further
applied with extra costs. No matter which algorithm is ap-
plied, it should be applied within the constraint of the opti-
mization rule to preserve consistency.
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