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Abstract—Routing protocols for large wireless networks must
address the challenges of reliable packet delivery at increasingly
large scales and with highly limited resources. Attempts to reduce
routing state can result in undesirable worst-case routing per-
formance, as measured by stretch, which is the ratio of the hop
count of the selected path to that of the optimal path. We present
a new routing protocol, Small State and Small Stretch (S4), which
jointly minimizes the state and stretch. S4 uses a combination
of beacon distance-vector-based global routing state and scoped
distance-vector-based local routing state to achieve a worst-case
stretch of 3 using � � routing state per node in an -node
network. Its average routing stretch is close to 1. S4 further in-
corporates local failure recovery to achieve resilience to dynamic
topology changes. We use multiple simulation environments to
assess performance claims at scale and use experiments in a
42-node wireless sensor network testbed to evaluate performance
under realistic RF and failure dynamics. The results show that S4
achieves scalability, efficiency, and resilience in a wide range of
scenarios.

Index Terms—Compact routing, resilience, routing, scalability,
simulation, testbed experiments, TOSSIM.

I. INTRODUCTION

R OUTING finds paths in a network along which to send
data and is one of the most basic network functions. The

effectiveness of routing protocols directly affects network scal-
ability, efficiency, and reliability. With continuing growth in the
sizes of wireless network, routing protocols must simultane-
ously achieve the following design goals.

• Small routing state: Using small amounts of routing state
is essential to achieving network scalability. Many wire-
less devices are resource-constrained. For example, mica2
sensor motes have only 4 kB RAM. Limiting routing
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state is necessary for such devices to form large networks.
Moreover, limiting routing state also helps to reduce
control traffic used in route setup and maintenance since
the amount of routing state and control traffic is often
correlated.

• Small routing stretch: Routing stretch is defined as the ratio
between the cost of selected route and the cost of optimal
route. Small routing stretch means that the selected route is
efficient compared to the optimal route. It is a key quanti-
tative measure of route quality and affects global resource
consumption, delay, and reliability.

• Resilience: Wireless networks often experience frequent
topology changes arising from battery outage, node fail-
ures, and environmental changes. Routing protocols should
find efficient routes even in the presence of such changes.

Existing routing protocols either achieve small worst-case
routing stretches with large routing state (e.g., shortest path
routing) or achieve small routing state at the cost of large
worst-case routing stretches (e.g., geographic routing and
hierarchical routing). In this paper, we present the design and
implementation of Small State and Small Stretch (S4), a new
addition to the routing protocol design space. S4 achieves a de-
sirable balance among these characteristics and is well suited to
the large-scale wireless network setting (e.g., sensor networks).

We make the following contributions.
1) S4 is the first routing protocol that achieves a worst-case

routing stretch of 3 in large wireless networks. Its average
routing stretch is close to 1.

2) S4’s distance-guided local failure recovery scheme signifi-
cantly enhances network resilience and is portable to other
settings.

3) S4’s scalability, effectiveness of resource use, and re-
silience are validated using multiple simulation environ-
ments and a 42-node sensor network testbed.

The rest of the paper is organized as follows. Section II dis-
cusses prior work. The S4 routing protocol is introduced in
Section III. S4 performance in an ideal wireless environment (no
wireless medium losses or collisions) is studied using high-level
simulation in Section IV. Section V presents further evalua-
tion results using a packet-level simulator (TOSSIM) to study
S4 performance in more realistic large-scale wireless networks
with a wireless medium and collisions. Section VI describes a
final S4 evaluation performed on an experimental testbed, and
Section VII summarizes and concludes the paper.

II. RELATED WORK

Routing is a well-studied problem, but large-scale wireless
networks have introduced new challenges. Shortest path routing
protocols (e.g., DSR [11], AODV [23], DSDV [22]) can find
good routes, but are limited in scale by both control traffic
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and the amount of state required at each node. Consequently,
routing in large-scale wireless networks has focused on mini-
mizing storage and exchange of routing state and can be divided
into geographic routing and hierarchical routing approaches.

In geographic routing, each node is assigned a coordinate
reflecting its position in the network. Upon receiving a packet,
a node selects a next-hop closer to the destination in the coordi-
nate space. Some geographic routing protocols use geographic
locations as node coordinates, while others use virtual coor-
dinates based on network proximity. As connectivity in the
coordinate spaces is not complete, these schemes must address
getting “stuck” in a local minimum, where no neighbor is closer
to the destination than the current node. Some proposals such as
GFG [2], GPSR [12], GOAFR [15], GPVFR [18] and variants
use face traversal schemes that route packets on a planar graph
derived from the original connectivity graph. Their delivery
guarantees [6] depend on the assumption that the planarization
algorithms (e.g., GG [7] and RNG [28]) can successfully
planarize any network graph. These planarization algorithms
typically assume a unit disk or quasi-unit disk model. However,
these models can be inadequate for real wireless environments
due to obstacles and multipath fading. Kim et al. [14] have
shown that model failures in real radio environments can cause
routing pathologies and persistent routing failures. CLDP
[13] addresses the imperfect RF propagation problem using a
right-hand probing rule to detect link-crossings and remove
them to replanarize the graph. GDSTR [17] provides delivery
guarantee without requiring planarization by avoiding routing
across the face of planar graphs and instead routing packets
through a spanning tree.

The geographic coordinate-based routing schemes have at
least three difficulties for wireless networks. First, accurate ge-
olocation either requires careful static setting or access to GPS,
with consequences for cost and need for line-of-sight to satel-
lites. Second, geographic distances may lack predictive value
for network performance (e.g., loss rate). This may result in
paths with poor performance. Third, even with GPS and ideal
radios, the best routing stretch for geographic routing is
in GOAFR [15] and ARF [16], where is the length of the
optimal path, and example topologies exist where this bound is
tight [16].

Virtual coordinates reflecting underlying network connec-
tivity address the first two difficulties, but still face the challenge
of “dead ends,” for which a recovery scheme is required. In
addition, the overhead of computing and storing virtual coordi-
nates is not negligible. For example, NoGeo [25] uses
perimeter nodes to flood the -node network so that every
node can learn its distances to all the perimeter nodes. Each
node determines its virtual coordinate based on the distances to
the perimeter nodes. However, perimeter nodes need to store

pair-wise distance among them, which is not scalable in
large wireless networks with limited memory space per node.
GEM [21] achieves greater scalability by using triangulation
from a root node and two other reference nodes. However, the
routing stretch is larger than that of typical geographic routing
algorithms, and there is the additional cost of recomputing
routing labels resulting from network failures. Fonseca et al.
[5] have proposed Beacon Vector Routing (BVR), which selects
a few beacon nodes and uses flooding to construct spanning

trees from the beacons to all other nodes. A node’s coordinate
is a vector of distances from the node to all beacons, and
each node maintains the coordinates of its neighbors. BVR
defines a distance metric over these beacon vectors, and a
node routes packets to the one that minimizes the distance.
When greedy routing stalls, it forwards the packet toward the
beacon closest to the destination. If the beacon still fails to
make greedy progress, scoped flooding is used. None of the
virtual coordinate-based routing algorithms provide worst-case
routing stretch guarantees.

Hierarchical routing is an alternative approach to achieving
scalability. Example protocols in this category include landmark
routing [29], LANMAR [8], ZRP [9], and Safari [24]. Hierar-
chical routing protocols provide no guarantee on the routing
stretch due to boundary effects: Two nodes that are physically
close may belong to different clusters or zones, and hence the
route between them has to go through cluster heads, which can
be arbitrarily longer than their shortest path.

Caesar et al. develop VRR [3], a scheme for layer-3
any-to-any routing based on distributed hash tables. To route to
its successors on the virtual ring, a node sets up and maintains
forwarding entries to its successors and predecessors along
multihop physical paths. As a result, a node has both routing
table entries toward its neighbors in the ring and also entries
for the nodes on the paths in between. VRR greedily forwards
a packet toward the node in the routing table with the closest
ID to the destination ID. The routing state per node is roughly

. Unlike S4, VRR does not provide worst-case routing
stretch guarantee.

Theoretical work [4], [27] on achieving scalable and effi-
cient routing has developed compact routing algorithms that
provide a worst-case routing stretch of 3 while using at most

state in an -node network. This worst-case
routing stretch is provably optimal when each node uses less
than linear routing state [4], [27]. While compact routing seems
to be a promising direction for large-scale networks, it cannot
be directly translated into a routing protocol in a distributed
network. In particular, the proposed algorithms do not specify
how each node should build and maintain routing state for local
clusters and for beacon nodes. Moreover, the algorithm in [27]
requires choosing beacon nodes offline, considers only initial
route construction, and cannot cope with topology changes,
which precludes realization in our network setting. The im-
plications of compact routing for average routing stretch also
remain unclear.

III. S4 ROUTING PROTOCOL

S4 uses the theoretical ideas of the compact routing algorithm
[27] as a basis, refined by the addition of new techniques needed
to obtain a practical routing protocol for large-scale wireless net-
works. We first describe the basic routing algorithm and identify
challenges for routing protocol design, and then present the S4
routing protocol. Throughout this paper, our metric for the cost
of a route is the number of links traversed (i.e., hop count).

A. Basic Routing Algorithm

In S4, a random set of nodes, , is chosen as beacons. For
a node , let denote the beacon closest to node , and let
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Fig. 1. S4 routing examples. Every node within the circle of � has � in its local
cluster. The route � � � is the shortest path. The route �� � takes a shortcut
at � before reaching ����. The route �� � is through ��� � without shortcut.

denote the shortest path distance from to . Each node
constructs the following local cluster, denoted as :

where is the set of all nodes in the network. A local cluster of
node consists of all nodes whose distances to are within
times their distances to their closest beacons. Each node then
maintains a routing table for all beacon nodes and nodes in its
own cluster .

As shown in Fig. 1, when routing from node to node , if
, we can directly use the shortest path to route from

to . Otherwise, first takes the shortest path toward ,
and then uses the shortest path to route toward . In the second
case, the route does not have to always reach before routing
to . Whenever data reaches a node whose cluster contains

can directly route to using the shortest path from to
. According to the triangle inequality, the “shortcut” strictly

improves routing stretch. We give the following theorem as an
extension to the proof in [4] and [27], in which a special case

is proved.
Theorem 1: Let ,

where . If each node maintains next-hop for the shortest
path to every beacon and every node in , the worst-case
routing stretch is .

Proof: When , routing stretch is 1 since we know
the shortest path from to . When , let denote
the cost of selected route from to .

(1)

(2)

(3)

(4)

The first inequality is due to possible shortcut before reaching
. As shown in Fig. 1, the shortcut is less than

according to triangle inequality. Hence,
is less than . Equality holds when there is no
shortcut. The second inequality is due to triangle inequality and
symmetry: The shortest path should cost no more
than . Finally, the third inequality is based on

the definition of cluster and the fact that . This
completes the proof.

As a special case, when , a local cluster of node
consists of all nodes whose distances to are closer than their
distances to their closest beacons. This special case is called
compact routing [4], [27]. It is particularly interesting since it
has low worst-case storage cost of and provides
a worst-case routing stretch of 3. In the remaining paper we
consider since it gives small routing state.

Practical concerns dictate three changes to the TZ compact
routing scheme [27] to achieve S4. First, the boundary con-
ditions of the cluster definitions are slightly different. In S4,

, but in the TZ scheme,
. That is, node is in

the cluster of in S4 but not in the TZ scheme, if
. This change does not affect the worst-case routing

stretch, and reduces average-case routing stretch at the cost of
increasing routing state.

Second, to route toward node , only should be
carried in the packet header as the location informa-
tion in S4. In comparison, the TZ scheme requires a

for each packet, where
is the next-hop at toward . Only with the

label carried in the packet header, a beacon node can forward a
packet toward using next-hop . It is necessary
in the TZ scheme because the beacon nodes do not store routing
state. However, in S4, as a result of the boundary condition
change, each beacon node stores routing state to all the nodes
that have as its closest beacon node. Given that the total
storage cost of the additional field in the labels is
the same as the total number of routing entries at beacon nodes
in S4 (i.e., both are ), we favor storing routing state at beacon
nodes since it reduces packet header length and the frequency
of updating labels. The frequency of label updates is reduced
because labels are updated only when changes but not
when changes.

Finally, the TZ scheme proposes a centralized beacon node
selection algorithm to meet expected worst-case storage bound

in an -node network. Since practicality is our
main design goal, in S4 we randomly select beacon nodes in a
distributed fashion. It is proved that when nodes are
randomly selected as beacon nodes, the average storage cost on
each node is still [26]. As our evaluation results show,
the storage cost is still low even for the worst cases. Note that the
worst-case routing stretch of 3 still holds under random beacon
node selection.

B. Design Challenges

Designing a routing protocol to realize the algorithm pro-
posed in Section III-A poses the following challenges.

First is how to construct and maintain routing state for a local
cluster. Frequent topology changes in wireless networks make
it necessary to support incremental routing updates. Unlike tra-
ditional hierarchical routing, each node has its own cluster in
compact routing. Therefore, naive routing maintenance could
incur significant overhead.

Second is how to construct and maintain routing state for
beacon nodes. Knowledge of next-hops and shortest path dis-
tances to beacon nodes is important to the performance of S4.
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When beacon packets are lost, the routing state could be inac-
curate, which could substantially degrade the performance.

Third is how to provide resilience against node/link failures
and environmental changes. Maintaining up-to-date routing
state could be expensive, especially in a large network. More-
over, routing changes take time to propagate. During the
transient period (e.g., the period from the time when failure
occurs to the time when the routing tables at all nodes are
updated to account for the failure), many packets could be lost
without a failure recovery scheme.

To address the above challenges, S4 consists of the following
three major components: 1) scoped distance vector for building
and maintaining routing state to nodes within a cluster; 2)
resilient beacon distance vector for efficient routing toward
beacon nodes and facilitating intercluster routing; and 3) dis-
tance-guided local failure recovery for providing high-quality
routes even under dynamic topology changes. We will describe
these three components in turn.

C. Intracluster Routing: Scoped Distance Vector (SDV)

In S4, node uses the shortest paths to route toward nodes in
the cluster of . Unlike the traditional hierarchical routing, in S4
each node has its own cluster, which consists of nodes close
to node . This clustering is essential for providing a routing
stretch guarantee since it avoids boundary effects. In compar-
ison, hierarchical routing cannot provide routing stretch guar-
antee due to boundary effects, where two nearby nodes belong to
different clusters and the hierarchical route between them could
be much longer than their direct shortest path.

A natural approach to building a local routing table is to use
scoped flooding. That is, each node floods the network up
to hops away from , where is the dis-
tance between and its closest beacon . Scoped flooding
works fine when the network is initialized or when there are
new nodes joining the network. However, it is costly to send
frequent scoped flooding to reflect constant topology changes,
which often arises in wireless networks due to battery outage,
node failures, and environmental changes.

Scoped distance vector: To provide cheap incremental
routing updates, we propose using scoped distance vector
(SDV) for constructing routing tables for local clusters. SDV is
attractive because it is fully distributed, asynchronous, and sup-
ports incremental routing updates. SDV is more efficient than
scoped flooding, especially under small changes in a network
topology because a node in SDV propagates routing update
only when its distance vector changes, while in scoped flooding,
a node propagates a flooded packet regardless of whether its
distance and next-hop to a destination have changed.

In S4, each node stores a distance vector for each destination
in its cluster as the following tuple:

where and are both node IDs, is the latest
sequence number for destination , is the distance be-
tween and ’s closest beacon, and is whether the
distance vector has been updated since the last routing update.

A node exchanges its distance vectors with its neighbors
either synchronously or asynchronously. Node initializes

for only , and otherwise. Upon

receiving a distance vector, a node uses the newly received
distance vectors to update its routing state. Node further
propagates the update for only when its current distance from

is below and its distance vector to has changed.
Benefits of SDV: SDV supports incremental routing updates.

This allows a wireless network to dynamically adapt to routing
changes. Moreover, unlike traditional distance vector protocols,
SDV does not suffer from the count-to-infinity problem1 be-
cause the scope is typically small (e.g., we evaluate a 1000-node
network with 32 beacons, and its average scope is 3.35 and max-
imum scope is 13. This implies routing loops can be detected
within 13 hops).

D. Intercluster Routing: Resilient Beacon Distance Vector
(RBDV)

To support routing across clusters, each node is required to
know its distances to all beacons. This can be achieved by con-
structing a spanning tree rooted from each beacon nodes to every
other node in the network. Flooding beacon packets reliably is
important to the routing performance because loss of beacon
packets may introduce errors in estimating the closest beacon
and its distance and degrade the performance of S4. We develop
a simple approach to enhance resilience of beacon packets.

Routing state construction and maintenance: To construct
routing state for beacon nodes, every beacon periodically broad-
casts beacon packets, which are flooded throughout the net-
work. Every node then keeps track of the shortest hop count and
next-hop toward each beacon.

Since beacon packets are broadcast and typical MAC pro-
tocols (e.g., CC1000 used in sensor motes) do not provide
reliability for broadcast packets, it is essential to enhance the
resilience of beacon packets at the network layer. Our idea is to
have a sender retransmit the broadcast packet until fraction
of neighbors have forwarded or until the maximum retry
count is reached. and provide a tradeoff
between overhead and reliability. In our evaluation, we use

% for beacon nodes, and for
nonbeacon nodes, which corresponds to the following condition
in our implementation (to avoid floating point calculation):

neighbors forwarded neighbors. %
for a beacon node is used because all neighbors of the beacon
nodes should forward the beacon packet. In comparison, for a
nonbeacon node , only a subset of ’s neighbors are farther
away from the beacon than and need to forward the beacon
packet received from . Therefore, we use a smaller for
nonbeacon nodes.

E. Distance-Guided Local Failure Recovery (DLF)

Wireless networks are subject to temporary or permanent
node/link failures due to obstruction, signal fading, energy
depletion, or physical damage [5], [1], [20]. To provide high
routing success rate and low routing stretch even in the presence
of such failures, we develop a simple and effective local failure
recovery based on distance vectors.

Overview: To achieve high resilience, S4 provides failure
recovery at the network layer in additional to MAC-layer

1The count-to-infinity problem is that when a link fails, it may take a long
time (on the order of network diameter) before the protocol detects the failure.
During the interim, routing loops may exist.
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Fig. 2. Computing priority using scoped distance vectors and beacon distance
vectors.

retransmission. Specifically, a node retransmits a packet at
the network layer when it does not receive an ACK even with
MAC-layer retransmission. When retransmissions at the net-
work layer fail, broadcasts a failure recovery request, which
contains: 1) the next-hop used; 2) whether destination is in-
cluded in ’s local cluster; and 3) the distance to if ’s cluster
includes , or the distance to ’s beacon otherwise. Upon
hearing the failure requests, ’s neighbors attempt to recover
the packet locally. Our goal is to select the neighbor that is the
closest to the destination as ’s new next-hop; meanwhile, the
selection process should be cheap and easily distributed.

S4 uses distance-guided local failure recovery to prioritize
neighbors’ responses based on their scoped distance vectors.
Each node uses its priority to determine the time it needs to
wait before sending failure recovery response. We further ex-
ploit broadcast nature of wireless medium to avoid implosion
of recovery responses. Note that if no response is received,
can retransmit the failure recovery request up to a threshold.
Our evaluation uses a threshold of 0 (i.e., does not retransmit),
and we already see significant performance improvement. With
more retries, the improvement would be even higher.

Distance-guided local failure recovery: Our goal is to prior-
itize neighbors based on their distances to the destination so that
the nodes closest to the destination can take over the forwarding.
The problem is nontrivial because the distance to the destina-
tion is not always available. When the destination is outside the
local cluster, a neighbor only knows the distance to the destina-
tion’s closest beacon, but not the distance from that beacon to
the destination.

To address the issues, each node computes its priority using
the algorithm in Fig. 2. It involves two main scenarios. In the
first scenario, ’s local cluster contains the destination . This
information is available in ’s failure recovery request. Then,
’s neighbor is assigned one of the four priorities using the fol-

lowing rules. The neighbors that have in their clusters are as-
signed the top three priorities since they can directly route to-
ward the destination using the shortest path. In this case, each
neighbor knows its distance to the destination and assigns itself
a priority based on the difference between and .
Neighbors whose local clusters do not contain the destination
are assigned the fourth priority, which is the lowest.

In the second case, when ’s cluster does not contain the des-
tination , only the neighbors that have in their clusters are
assigned the highest priority since they can directly route to-
ward the destination. The other nodes are assigned priorities by
comparing their distances to the beacon with .

A sender selects the neighbor from which it receives the
response first as the new next-hop. By assigning each neighbor
with a timer , a higher priority node sends
the response earlier and is thus favored as the new next-hop
node. To avoid collisions, we add a small random timer rand
to the priority-based timer so that different nodes are likely to
respond at different times even when assigned the same priority.
To avoid response implosion, upon hearing a failure response to

from someone else, the current node cancels its own pending
recovery response if any. Our evaluation uses ms, and
rand ranges from 0 to 49 ms.

Node failures versus link failures: The above scheme works
well for link failures. When a node fails, all the links to and from
the failed nodes are down. Therefore, we need to avoid using
nodes that use the failed nodes as next-hop. This can be done by
letting the sender specify the failed node. Only the nodes that
use different next-hop from the failed node will attempt to re-
cover. To identify a failed node, every node periodically broad-
casts a hello message once every 30 s, and a node considers its
neighbor as failed if it does not receive any hello messages from
that neighbor for the last five hello intervals.

F. Other Design Issues

Location directory: So far, we assume that the source knows
which beacon node is closest to the destination. In practice, such
information may not be directly available. In such a situation,
the source can apply the location directory scheme described in
BVR [5] to look up such information. More specifically, beacon
nodes are responsible for storing the mapping between non-
beacon nodes and their closest beacons. The closest beacon in-
formation for node is stored at , where is a consistent
hash function that maps nodeid to beaconid. The source con-
tacts the beacon node whose ID is to obtain the closest
beacon to dest. The storage cost of location directory is much
smaller in S4 than that in BVR (as shown in Section IV) be-
cause the source in S4 only needs to know the closest beacon to
its destination, while the source in BVR needs to know the dis-
tance between its destination and all beacon nodes. Moreover,
in S4 when destination is in ’s cluster, no location lookup
is required since knows the shortest path to , whereas BVR
as well as other geographic routing schemes always require lo-
cation lookup on a new destination. Such property is especially
beneficial when traffic exhibits locality (i.e., nodes close to each
other are more likely to communicate).

Beacon maintenance: When a beacon fails, S4 applies dis-
tance-guided local failure recovery to temporarily route around
the failure. If the failure persists, we can apply the beacon main-
tenance protocol proposed in [5] to select a new beacon. Beacon
maintenance is not the focus of this paper. Instead, we focus on
the routing performance during the transient period after fail-
ures occur.

Link quality: Link quality significantly affects routing per-
formance. We define link quality as the delivery rate of packet
on the link in a given direction. In S4, each node continuously
monitors its links to/from its neighbors. We adopt a passive link
estimator layer developed in [5] and [30] for estimating link
quality. When a node receives a beacon packet or SDV update,
it first checks if both the forward and reverse link qualities of
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the sender are above a threshold (30% is used in our current im-
plementation). Only those updates from a sender with good link
quality in both directions will be accepted.

IV. SIMULATION

In this section, we evaluate the efficiency and scalability of S4
by simulation. We compare S4 with BVR [5] because BVR is
one of the latest scalable routing protocols and also among the
few that have been implemented in real sensor networks. We
use BVR with scoped flooding since it provides delivery guar-
antee and offers a fair baseline comparison. We use three evalu-
ation methodologies: 1) MATLAB simulation based on the unit
disk graph radio model (presented in this section); 2) TOSSIM
simulation, a packet-level simulator with more detailed wire-
less model (presented in Section V); and 3) testbed evaluation
(presented in Section VI). Our MATLAB simulation results can
be directly compared to many previous works on geographic
routing in which the unit disk model is used. TOSSIM sim-
ulations allow us to study the performance in more realistic
large-scale wireless networks. Having both levels of simula-
tions also reveals how underlying wireless models may affect
the routing performance. For BVR, we validate our MATLAB
implementation of BVR by comparing with the original BVR
simulation code, and we directly use the original BVR imple-
mentation in TinyOS for TOSSIM evaluation.

A. Simulation Methodology

To study the protocols in an ideal wireless environment,
nodes are randomly placed in a square rectangular region of
size in the simulator. The packet delivery rates among nodes
are derived from the unit disk graph model. That is, each node
has a fixed communication range . A node can communicate
with all the nodes inside , but cannot communicate with any
node outside . It is also assumed that there is no packet loss,
collision, or network congestion. In the following description,
we let denote the number of nodes, denote the number of
beacon nodes, denote communication range, and denote
the size of the area.

We use the following performance metrics to quantify the ef-
ficiency and robustness of S4:

• Routing stretch: the ratio of the route length using the se-
lected routing protocol to that using the optimal shortest
path routing protocol.

• Transmission stretch: the ratio of the total number of
packets transmitted using the selected routing protocol to
that using the optimal shortest path routing protocol. It
may differ from routing stretch because a single hop may
sometimes require multiple transmissions (e.g., scoped
flooding).

• Routing state: the amount of state required to maintain at
each node.

• Control traffic: the amount of traffic transmitted for setting
up the routing state and location directory.

Unless specified otherwise, our default simulation scenario
uses a 3200-node network with nodes uniformly distributed in
an area of 25 25 square units. The communication range
is 1 unit. On average, each node has 15.4 immediate neighbors.
Beacon nodes are randomly selected. In BVR, all or a subset of

Fig. 3. S4 has routing and transmission stretches close to 1, which is consis-
tently smaller than those of BVR algorithms across all numbers of beacons.
(a) Routing stretch. (b) Transmission stretch.

beacon nodes serve as routing beacons; a node’s coordinate is
defined as its distances to the routing beacons. The number of
routing beacons is fixed to 10 for all simulations because it
is reported to offer a good balance between routing performance
and overhead [5]. For each configuration, we conduct 10 random
runs and report the aggregate statistics.

B. Simulation Results

1) Varying the Number of Beacons : Routing and trans-
mission stretches: First, we compare the routing and transmis-
sion stretches of S4 and two variants of BVR by varying the
number of beacons . BVR 1-hop refers to the default BVR
algorithm. BVR 2-hop is an on-demand 2-hop neighbor acqui-
sition. In this approach, when a node cannot use greedy for-
warding to make progress, it fetches its 1-hop neighbors’ neigh-
bors to its routing table. BVR 2-hop reduces the routing failure
rate of BVR 1-hop at the cost of higher routing state and control
traffic.

Fig. 3(a) compares the routing stretches under S4, BVR
1-hop, and BVR 2-hop. The stretches are computed based
on 32 000 routes between randomly selected pairs of nodes.
We observe that S4 has the lowest average routing stretch. A
closer examination of the simulation results shows that the
worst stretches in S4 are bounded by 3. This is consistent with
the worst-case guarantee provided by S4. In comparison, the
average routing stretches in BVR 1-hop and 2-hop are substan-
tially higher especially for small . Moreover, their worst-case
routing stretches are even higher (e.g., the worst routing stretch
of BVR 1-hop in the simulation is 6 for , and much
larger for smaller ).

Fig. 3(b) compares transmission stretch among the three
routing protocols. The average transmission stretches of S4 are
consistently below 1.1 under all values of . However, both
BVR 1-hop and BVR 2-hop have much higher stretches when

is small. To achieve comparable transmission stretches to
S4 (though still higher), the least numbers of beacons required
is 56 for BVR 1-hop and 30 for BVR 2-hop. Such high trans-
mission stretch in BVR is due to its scoped flooding, which is
necessary for its guaranteed delivery.

Routing state: Fig. 4 compares routing state per node under
the three routing protocols. The routing state in S4 includes
route entries for beacon nodes and for nodes within local
clusters, whereas the routing state in BVR is determined by
the number of neighbors and the length of their beacon vectors
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Fig. 4. Routing state comparison, where the errorbars show that when � ��
� , the routing state in S4 is half of routing state in BVR. (a) Number of

bytes. (b) Number of routing table entries.

Fig. 5. Initial control traffic to set up routing state. The errorbars show min-
imum, mean, and maximum traffic across all nodes. The control traffic of S4
decreases gracefully as the number of beacons increases. When� �

�
� , the

overhead of S4 is 65% higher than that of BVR 1-hop, but much less than BVR
2-hop. (a) Number of bytes. (b) Number of packets.

2. We make the following observations. First, in BVR the
average routing table size proportionally increases with the
number of beacons, while the number of entries remains close
to the number of neighbors. In comparison, the routing state in
S4 first decreases and then slightly increases with the number
of beacon nodes. The routing state in S4 reaches minimum for

since it gives a good balance between global routing
state (for beacon nodes) and local routing state (for nodes in
the clusters). These trends also hold for maximum routing state
in BVR and S4. Second, recall that to achieve a relatively small
transmission stretch, 56 beacon nodes are required in BVR. In
this case, the average and maximum routing state in BVR is
twice or more than those of S4. Third, BVR 2-hop has signifi-
cantly higher upper bound of routing state than BVR 1-hop due
to the requirement of holding 2-hop neighbor information.

Control traffic: Fig. 5 shows initial control traffic for set-
ting up routing state. The bandwidth overhead of BVR 1-hop
increases linearly with the number of beacons because the main
overhead is the beacon flooding messages. In BVR 2-hop, other
than beacon flooding, the control traffic also includes the over-
head of fetching 2-hop neighbor coordinates for the required
nodes. We can see the overhead of on-demand 2-hop neighbor
acquisition is significant, which is a big disadvantage of BVR
2-hop even though its routing stretch is lower than BVR 1-hop.
In S4, control traffic includes beacon flooding and SDV. As
increases, the size of the local cluster of each node decreases, so

2The size of a routing table entry in S4 is 5 bytes long in our implementation.
The routing state of BVR is estimated based on the relevant data structures found
in the BVR implementation code.

Fig. 6. Control traffic overhead of updating routing state due to topology
changes. (a) Number of bytes. (b) Number of packets.

the number of scoped DV packets is reduced. When , the
overhead of S4 is 65% higher than that of BVR 1-hop. However,
since SDV can be updated incrementally after the initial setup,
its amortized overhead over the long run is reduced. In terms of
the number of packets, S4 is less than twice of the BVR 1-hop
when . Note that the number of packets in S4 can be
reduced by grouping SDV packets. On the other hand, BVR de-
mands large packet size when the number of beacons is large,
and large packets could be forced to split in order to achieve
high delivery rates under unreliable links.

To evaluate the overhead of incremental SDV in S4, we ran-
domly select nonbeacon nodes to fail between two consecutive
routing updates to create topology changes. There are two ways
of updating the routing state after the initial round: either in-
crementally update based on the current routing state (incre-
mental DV), or build new routing tables starting from scratch
(regular DV). As shown in Fig. 6, when the number of node
failures is small (e.g., within 5%), incremental routing updates
incur lower overhead. Since the typical number of node failures
between consecutive routing updates is likely to be low, incre-
mental routing updates are useful in real networks.

The control traffic to set up the routing table is not the only
overhead. The source should be able to lookup the location in-
formation of the destination. Therefore, each node should store
its location to a directory during the setup phase. We study
such directory setup overhead by using the location directory
scheme described in Section III-F: Each node periodically
publishes its location to a beacon node by using a consis-
tent hashing mechanism. then sends a confirmation back to
if the publishing is successful. We simulate the initial directory
setup overhead, in which every node publishes its location to the
distributed directory. The results are shown in Fig. 7(a), and they
include traffic to and from beacon nodes for publishing the loca-
tions. S4 has the following three advantages over the BVR. First,
the size of location information in S4 is significantly smaller
than that of BVR because, in BVR, a node’s coordinate is pro-
portional to the number of beacons, while in S4, a node’s coor-
dinate is its closest beacon ID. Second, the transmission stretch
of BVR is higher than that of S4. Therefore, it incurs more traffic
in routing a confirmation packet from the beacon node back to
the node publishing its location. Third, it is more likely that a
node changes its coordinates in BVR than it changes its closest
beacon in S4. Therefore, S4 incurs a lower overhead in setting
up and maintaining the location directory.

Fig. 7(b) shows the overall traffic overhead incurred in setting
up both routing state and directory. We observe that compared
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Fig. 7. Control traffic overhead comparison. (a) Location directory setup
traffic. (b) Overall control traffic.

Fig. 8. Transmission stretch comparison between S4 and BVR in the presence
of obstacles.

to both variants of BVR, S4 has smaller overall control traffic,
including traffic in setting up both route and location directory.

Per-data packet header overhead: Aside from the control
traffic, routing protocols also have overhead in the data packet
headers. The overhead of S4 includes the closest beacon ID to
the destination and its distance. For BVR, the overhead mainly
depends on the number of routing beacons . The packet
header of BVR includes a -long destination coordinate,
which has at least bits indicating which nodes
are chosen out of the total beacons as the routing beacons
for the destination. For example, a rough estimation suggests
that with and , BVR requires 15-byte packet
headers, which is significant compared to the default packet
payload size of 29 bytes in mica2 motes, while S4 only takes
3 bytes in the packet header.

2) Under Obstacles: We now study the performance of S4
and BVR in the presence of obstacles using the same method-
ology as in [5]. The obstacles are modeled as horizontal or ver-
tical walls, which completely block wireless signals. (They do
not reflect wireless signals.) We vary the number and length of
those randomly placed obstacles. We find that the median trans-
mission stretches of S4 and BVR are 1.00 and 1.04, respectively.
They are both insensitive to the obstacles. However, as shown
in Fig. 8, the 95th percentile of the transmission stretches of S4
and BVR are quite different: S4 has a constant 95th percentile
stretch around 1.2 regardless the existence of obstacles, while
the transmission stretch of BVR increases with the number of
the obstacles and the length of the obstacles. For example, when
there are 75 obstacles with length 2.5 times of the transmis-
sion range, 12.9% of the links are blocked by them. As a result,
the 95th percentile transmission stretch of BVR increases up to

7.9 due to the irregular topology, while the stretch of S4 stays
around 1.2. This is because S4’s worst-case routing stretch guar-
antee is independent of network topologies.

3) Summary: Our evaluation shows that S4 provides a worst-
case routing stretch of 3 and an average routing stretch around
1.1–1.2 in all evaluation scenarios. When (a favor-
able operating point for both S4 and BVR), S4 has significantly
smaller routing state than BVR. While the initial route setup
traffic in S4 is higher than that of BVR, due to its compact lo-
cation representation, its total control traffic including location
setup is still comparable to that of BVR. Furthermore, S4 can
efficiently adapt to small topology changes using incremental
routing update. Finally, BVR 1-hop is more scalable than BVR
2-hop due to its lower control traffic and routing state. So in the
following evaluation, we only consider BVR 1-hop as a baseline
comparison.

V. TOSSIM EVALUATION

We have implemented a prototype of S4 in nesC language
for TinyOS [10]. The implementation can be directly used both
in TOSSIM simulator [19] and on real sensor motes. In this
section, we evaluate the performance of S4 using extensive
TOSSIM packet-level simulations. By taking into account
actual packet transmissions, collisions, and losses, TOSSIM
simulation results are more realistic.

Our evaluation considers a wide range of scenarios by varying
the number of beacon nodes, network sizes, network densities,
link loss rates, and traffic demands. More specifically, we con-
sider two types of network densities: a high density with an av-
erage node degree of 16.6 and a low density with an average
node degree of 7.6. We use both lossless links and lossy links
that are generated by LossyBuilder in TOSSIM. Note that even
when links are lossless, packets are still subject to collision
losses. In addition, we examine two types of traffic: a single
flow and five concurrent flows. The request rate is one flow
per second for single-flow traffic and five flows per second for
5-flow traffic. The simulation lasts for 1000 s. Therefore, the
total number of routing requests is 1000 for single-flow traffic
and 5000 for 5-flow traffic. We compare S4 to BVR, whose
implementation is available from the public CVS repository of
TinyOS.

A. Routing Performance

First, we compare S4 with BVR under stable network condi-
tions. To reach stable network conditions, we let each node pe-
riodically broadcast RBDV and SDV packets every 10 s. Data
traffic is injected into the network only after route setup is fin-
ished. BVR uses scoped flooding after a packet falls back to
the beacon closest to the destination and greedy forwarding
still fails, whereas S4 uses the distance-guided failure recovery
scheme to recover failures. To make a fair comparison, in both
BVR and S4, beacon nodes periodically broadcast and build
spanning trees, and RBDV is turned off in S4.

1) Varying the Number of Beacons: We vary the number of
beacon nodes from 16 to 40 while fixing the total number of
nodes to 1000.

Routing success rate: We study four configurations: a single
flow with lossless links, a single flow with lossy links, five flows
with lossless links, and five flows with lossy links. In the interest



MAO et al.: S4 COMPACT ROUTING PROTOCOL FOR LARGE STATIC WIRELESS NETWORKS 769

Fig. 9. Compare routing success under different numbers of beacons, network
densities, and traffic patterns. (a) Lossless links with one flow. (b) Lossy links
with five flows.

Fig. 10. Compare routing stretch under different numbers of beacons, network
densities, and traffic patterns. (a) Lossless links with one flow. (b) Lossy links
with five flows.

of space, Fig. 9 only shows the results of the first and last con-
figurations. “HD” and “LD” curves represent results under high
and low network densities, respectively.

We make the following observations. First, under lossless
links with ove flow, S4 always achieves 100% success rate.
In comparison, BVR achieves close to 100% success only in
high-density networks, but its success rate reduces to 93% under
low network density with 16 beacons. Why does BVR not pro-
vide delivery guarantee even under perfect channel condition?
The reason is that scoped flooding is invoked after a packet is
stuck at the fallback beacon, and scoped flooding could cause
packet collisions and reduce packet delivery rate.

Second, under lossy links with five flows, packet losses are
common, and the performance of both S4 and BVR degrades.
Nevertheless, S4 still achieves around 95% routing success rate
in high-density networks, while success rate of BVR drops dra-
matically. The large drop in BVR is because its scoped flooding
uses broadcast packets, which have no reliability support from
MAC layer; in comparison, data packets are transmitted in uni-
cast under S4 and benefit from link layer retransmissions. Third,
the success rate is lowest under low-density networks with lossy
links and five flows. Even in this case, S4 achieves 70%–80%
success rate, while the success rate of BVR is reduced to below
50%.

Routing stretch: Fig. 10 compares the average routing
stretch of S4 and BVR. The average routing stretch is computed
only for the packets that have been successfully delivered.
Although the worst stretch of S4 is 3, its average stretch is
only around 1.1–1.2 in all cases. In comparison, BVR has
significantly larger routing stretch: Its average routing stretch

Fig. 11. Transmission stretch comparison. (a) Average transmission stretch.
(b) CDF of transmission stretch.

Fig. 12. Control traffic overhead under different numbers of beacons and net-
work densities. (a) Control traffic in bytes. (b) Control traffic in packets.

is 1.2–1.4 for one flow, and 1.4–1.7 for five flows. Moreover,
its worst routing stretch (not shown) is 8.

Transmission stretch: As shown in Fig. 11(a), the trans-
mission stretch of S4 is close to its routing stretch, while the
transmission stretch of BVR is much larger than its routing
stretch due to its scoped flooding, which lets all nodes within the
flooding scope perform transmission and significantly increases
transmission stretch. Fig. 11(b) shows the cumulative distribu-
tion function (CDF) of transmission stretches under 32 beacon
nodes. We observe that the worst-case transmission stretch in
S4 is 3, and most of the packets have transmission stretch very
close to 1.

Control traffic overhead: Compared to BVR, S4 introduces
extra control traffic of SDV to construct routing tables for local
clusters. To evaluate this overhead, we count the average control
traffic (in bytes and number of packets) that each node generates
under lossless links and a single flow. We separate the global
beacon traffic and local SDV traffic. The results are shown in
Fig. 12. Note that beacon traffic overhead is the same for both
S4 and BVR.

We can see that when the number of beacons is small, the
SDV traffic dominates since the cluster sizes are relatively large
in such a case. As the number of beacons increases, the amount
of SDV traffic decreases significantly. In particular, when there
are 32 beacons , the amount of SDV traffic is com-
parable to the amount of global beacon traffic. Moreover, if we
include control traffic for setting up location directory, the total
control traffic in S4 would be comparable to that of BVR, as
shown in Fig. 7.

Routing state: We compare routing state of S4 and BVR as
follows. For S4, the routing state consists of a beacon routing
table and a local cluster table. For BVR, the routing state con-
sists of a beacon routing table and a neighbor coordinate table.
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Fig. 13. Routing state comparison under different numbers of beacons and
network densities with lossy links (single flow). (a) Average routing state.
(b) Number of routing table entries.

TABLE I
MAXIMUM ROUTING STATE OF S4 AND BVR

We first compare the total amount of routing state in bytes be-
tween S4 and BVR.

Fig. 13(a) shows the average routing state over all nodes. We
make the following observations. First, network density has
little impact on the routing state of S4, but has large impact
on BVR. This is because in S4 the local cluster sizes are
not sensitive to network density (when density increases, the
scope tends to decrease), while in BVR each node stores the
coordinates of its neighbors and its routing state increases with
density. Second, the amount of routing state in BVR increases
with the number of beacons. In comparison, S4’s routing state
does not necessarily increase with the number of beacons since
increasing the number of beacons reduces the local cluster
size. Third, when the number of beacons is 32 or
above, the routing state in S4 is less than BVR. Similar results
have been observed in other TOSSIM configurations as well as
MATLAB simulation results in Section IV.

Fig. 13(b) further shows the number of entries in the beacon
routing table, local cluster table, and neighbor coordinate table.
The beacon table curves of S4 and BVR overlap since it is
common for both. Note that although the coordinate tables in
BVR have fewer entries than the cluster tables in S4, the total
size of the coordinate tables are generally larger since the size
of each coordinate table entry is proportional to the number of
beacons.

Table I shows maximum routing state of S4 and BVR under
high density and low density. The maximum number of routing
entries is around 4.5 times of (the expected average
cluster size), but still an order of magnitude smaller than 1000
(the flat routing table size) in shortest path routing. This sug-
gests that random beacon selection does a reasonably good job
in limiting worst-case storage cost.

Node load: Fig. 14 shows the average number of packets
that each node transmits, under lossless links and 5-flow traffic.
Fig. 14(a) shows the beacon node load, and Fig. 14(b) shows
nonbeacon node load. We observe that in S4 both beacon nodes
and nonbeacon nodes experience lower load than those nodes
in BVR. This is due to lower routing stretch and transmission

Fig. 14. Node load of data traffic under different numbers of beacons and net-
work densities with lossless Links (five flows). (a) Beacon load. (b) Nonbeacon
load.

Fig. 15. Comparison under different network sizes. (a) Transmission stretch.
(b) Routing state.

stretch in S4. In addition, we observe that in S4, the beacon
load is within a factor of 1.5–2 of nonbeacon load, which means
the load is reasonably balanced among beacon and nonbeacon
nodes. Similar results are observed under single-flow traffic.

2) Varying Network Size: We also evaluate the performance
and scalability of S4 when the network size changes from 100
to 4000. In both S4 and BVR, for a network of nodes, we
select nodes as beacon nodes for fair comparison. In
the interest of space, we only present results under lossless links
and a single flow.

Fig. 15(a) shows the average transmission stretch of S4 and
BVR under different network sizes. The error bars represent
fifth and 95th percentiles. S4 achieves smaller transmission
stretches and smaller variations in the stretches. In BVR,
packets experience higher medium stretch and higher stretch
variation due to greedy forwarding and scoped flooding.

Fig. 15(b) shows the average routing state. For both S4 and
BVR, the routing state tends to increase with . This
suggests both S4 and BVR are scalable with network sizes. In
particular, even when the network size is 4000, the majority of
nodes can store the routing state in a small portion of a 4-kB
RAM (the RAM size on Mica2 motes we experimented with).
Moreover, S4 uses less routing state than BVR when the number
of beacon nodes is because the coordinate table size in BVR
is linear to the number of beacon nodes.

To further study the performance of S4 in smaller networks,
we compare S4 and BVR in networks of 100 nodes. Due to space
limitation, we only include the results for the case of single flow
traffic with lossless links. Table II shows that in 100-node net-
works, S4 outperforms BVR in terms of routing success rate,
routing stretch, transmission stretch, and routing state. S4 incurs
more control overhead than BVR due to the extra SDV traffic,
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Fig. 16. Impact of RBDV on success rate (1000 nodes, low density).

TABLE II
PERFORMANCE COMPARISON IN 100-NODE NETWORKS

though its overall control traffic (after including location direc-
tory setup traffic) is still comparable to that of BVR.

B. Impact of RBDV

Next, we evaluate resilient beacon distance vector (RBDV).
Again, we use 1000-node networks. We turn off periodic trans-
missions of beacon and SDV messages so that the failed trans-
missions of these messages have to be recovered using RBDV,
but not using periodic beacon transmissions. This is an inter-
esting scenario to consider because we want to minimize the fre-
quency of periodic broadcasts while still achieving high delivery
rate. Each beacon broadcasts once. Other nodes who receive a
beacon packet further broadcast it. Similarly, a nonbeacon node
broadcasts its own scoped distance vector once. A node further
broadcasts a SDV only if it is inside the scope.

We simulate for single-flow data traffic with lossless links
and compare the routing success rate between the case with and
without RBDV. In both cases, DLF is enabled. Packet collisions
are common when nodes broadcast beacon packets or scoped
distance vectors. As shown in Fig. 16, without RBDV, the suc-
cess rate is around 90%. With RBDV, the success rate is im-
proved to close to 100% because RBDV helps to improve accu-
racy of the routing tables.

C. Impact of Node Failures

We now evaluate the performance of S4 under node failures.
In our evaluation, we first establish routes using SDV and RBDV
as usual. Then, we randomly kill a certain number of nodes after
route initialization is completed and evaluate the success rate
of routing data traffic. Since BVR does not incrementally up-
date routing state between rounds, to make fair comparison, we
disable incremental routing update in S4, and completely rely
on DLF to recover failures. The performance of S4 would be
even better if we incrementally update routing states upon fail-
ures. We distinguish between beacon and nonbeacon failures

Fig. 17. Impact of DLF on success rate (1000 nodes, 32 beacons, low density).
(a) Random nonbeacon failures. (b) Random beacon failures.

Fig. 18. Impact of DLF on routing stretch (1000 nodes, 32 beacons, low den-
sity). (a) Random nonbeacon failures. (b) Random beacon failures.

and show the results under lossless links and single-flow traffic
in comparison to BVR. By default, scoped flooding is enabled
in BVR.

Fig. 17 shows that failure recovery can significantly increase
the success rate under both nonbeacon and beacon failures. DLF
in S4 is more effective than the scoped flooding in BVR for
the following reasons. First, scoped flooding results in packet
collisions. Second, S4 uses unicast for data transmissions and
benefits from link-layer retransmissions. Third, if some node
between the beacon and destination fails, DLF can recover such
failures, while scoped flooding cannot.

Next, we compute the average routing stretch over all
successfully delivered packets. As we expect, packets going
through failure recovery take longer than normal paths. Inter-
estingly, as shown in Fig. 18, the average routing stretch is
only slightly higher than the case of no failure recovery, which
indicates the robustness of S4.

D. Summary

Our TOSSIM evaluation further confirms that S4 is scalable
to large networks: The average routing state scales with
in an -node network. The average routing and transmission
stretches in S4 are around 1.1–1.2. This is true not only in loss-
less networks under single flow traffic, but also under lossy wire-
less medium, packet collisions arising from multiple flows, and
significant failures. This demonstrates that S4 is efficient and
resilient. In comparison, the performance of BVR is sensitive
to wireless channel condition. Even under loss-free networks, it
may not provide 100% delivery guarantee due to possible packet
collisions incurred in scoped flooding. Its routing and transmis-
sion stretches also increase with wireless losses and failures.
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Fig. 19. Testbed measurement. (a) Topology snapshot. (b) Link quality.

VI. TESTBED EVALUATION

To demonstrate the feasibility of S4 in real wireless networks,
we deploy the S4 prototype on a testbed of 42 motes
with 915-MHz radios on the fifth floor of the ACES building
at the University of Texas at Austin. While the testbed is only
a moderate size and cannot stress-test the scalability of S4, it
does allow us to evaluate S4 under realistic radio characteris-
tics and failures. We adjust the transmission power to dBm
for all control and data traffic to obtain an interesting multihop
topology. With such a power level, the testbed has a network
diameter of around 4 to 6 hops, depending on the wireless link
quality. Eleven motes are connected to the MIB600 Ethernet
boards that we use for logging information. They also serve as
gateway nodes to forward commands and responses for the re-
maining 31 battery-powered motes3.

Fig. 19(a) shows a snapshot of the network topology. We
measure packet delivery rates by sending broadcast packets on
each mote one by one. Two motes have a link if the delivery
rates on both directions are above 30%. Because no two nodes
will broadcast packets at the same time, the measurement re-
sult is optimistic in the sense that channel contention and net-
work congestion is not considered. The average node degree is
8.7. We observe that a short geographic distance between two
motes does not necessarily lead to good link quality. Some of the
links are very asymmetric, and their qualities vary dramatically
over time. As shown in Fig. 19(b), some of the links are highly
asymmetric and their qualities vary dramatically over time. For
example, the link qualities between motes 4 and 31 fluctuate
as time goes by and are quite asymmetric, while link qualities
between motes 1 and 15 are fairly stable to 100% delivery rate,
until in the last 1 h when they suddenly drop to almost 0%. Such
link characteristics allow us to stress-test the performance and
resilience of S4.

A. Routing Performance

We randomly preselect six nodes out of 42 nodes as beacon
nodes for S4. The distance from any node to its closest beacon is
at most two hops. After 10 min of booting up all the motes, we
randomly select source and destination pairs to evaluate routing
performance. The sources are selected from all 42 motes, and
the destinations are selected from the 11 motes that are con-
nected to the Ethernet boards. All destinations dump the packet

3Unfortunately, we are unable to compare S4 against BVR in our testbed.
Current BVR implementation requires all motes have Ethernet boards connected
to send and receive routing commands. However, our testbed only has 11 motes
with Ethernet connections, which would make the evaluation less interesting.

Fig. 20. Experiments on the 42-node testbed. (a) Routing success rate under
multiple concurrent flows. (b) CDF of the hop count difference to pseudo op-
timal. (c) Routing table size. (d) Routing performance under node failure.

TABLE III
ROUTING SUCCESS RATE IN THE 42-NODE TESTBED

delivery confirmation through UART to the PC for further anal-
ysis. For each routing request, unless the source is connected
to an Ethernet board, we choose the gateway mote that is the
closest to the source to forward a command packet. The com-
mand packet is sent with the maximum power level and up to
five retransmissions so that the source is very likely to receive
it. Upon receiving the routing request, the source will send back
a response packet with the maximum power level and poten-
tial retransmissions to acknowledge successful reception of the
routing request. Each routing request is tagged with a unique
sequence number to make the operation idempotent. After the
command traffic, the data packet will be sent at a lower power
level in order to have an interesting multihop network topology.

We send routing requests at one packet per second for the first
70 min (altogether 4210 packets), and then double the sending
rate thereafter for another 60 min (altogether 7701 packets). As
shown in Table III, the routing success rate is 99.1%–99.9% and
consistent over time. This demonstrates the resilience of S4 in a
real testbed.

Next, we use multiple constant bit rate (CBR) flows to in-
crease the network load. In each multiple flow test, we randomly
pick source destination pairs, and instrument the sources to
send consecutive packets at the rate of one packet per s. This
is essentially having random flows per second. The flows
start after a predefined idle period to avoid potential collisions
with the command traffic. We choose and test up to six
concurrent flows (i.e., is up to 12). For each experiment, we
repeat it for 10 times. Fig. 20(a) plots the median routing suc-
cess rates in different flow settings. The error bars indicate the
best-case and worst-case routing success rate. We see the me-
dian success rate gracefully degrades with an increasing number
of concurrent flows. Our log collected from the gateway motes
indicates that some of the failures are due to the limitation of a
single forwarding buffer per node. Such failure happens when
two or more flows try to concurrently route through the same
node. Note that this is not a protocol limitation in S4. We could
remove many such failures by having a more complete imple-
mentation that supports multiple forwarding buffers.

Finally, we study the routing efficiency of S4. Note that
it is impossible to calculate the true routing stretch in a real
wireless network because the topology is always changing,
and the packet loss rates depend on the traffic pattern so that
the optimal routes are changing, too. Instead, we compare S4
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against the pseudo-optimal hop count metric. The pseudo-op-
timal hop count of a route is defined as the shortest path length
in a snapshot of the network topology. In our experiment, we
use broadcast-based active measurement to obtain the pair-wise
packet delivery rates before the routing test starts. The delivery
rates are averaged over a 1-h measurement period. Note that
the real optimal routes could be either better or worse than the
pseudo-optimal ones due to topology changes, and the delivery
rates tend to be optimistic due to no packet collision in the
measurement. The routing tests follow the measurement within
30 min. We randomly select source and destination pairs and
send routing requests at one packet per second for 5000 s. Then,
we change the number of beacons from 6 to 3 and repeat the
same test. The shortest paths from the topology snapshot are
computed offline. Fig. 20(b) shows that more than 95% of the
routes are within one-hop difference from the pseudo-optimal
hops under six beacons. Interestingly, S4 sometimes achieves
better performance than the pseudo-optimal scheme. This is
because during the 5000-s routing experiment, S4 adapts to the
change of topology so that it can take advantage of new links
and reduce path lengths. The number of beacons also has both
positive and negative effects on routing performance. When
fewer beacons are selected, the nodes tend to have larger routing
tables so that more nodes can be reached via the shortest paths;
however, having fewer beacons also leads to more control
traffic so that the link estimator will have a more pessimistic
estimation on link quality due to packet collision. Underesti-
mating link quality apparently hurts the routing performance.

In the same experiment, we also study the routing state per
node in S4. Fig. 20(c) compares the numbers of local routing
table entries used under six and three beacons. Using six bea-
cons yields smaller routing tables. A node in S4 has local routing
state toward its neighbor unless the neighbor is a beacon node.
Therefore, the number of routing entries at each node is gen-
erally larger than the number of its neighbors. We find that on
average, when six beacons are used, the routing table has only
three more entries than a typical neighborhood table, which sug-
gests that the routing state in S4 is small.

B. Routing Under Node Failures

To stress-test the resilience of S4, we artificially introduce
node failure in our testbed. We randomly select nongateway
motes to kill one by one and study the routing performance.
We send one routing request per second for 50 min, altogether
generating 3000 packets. The source node is randomly selected
from the current live nodes, and the destination is one of the
gateway motes. Note that we do not start any SDV update or
beacon broadcast after the initial setup stage in order to study
the effectiveness of the failure recovery mechanism alone. As
shown in Fig. 20(d), in the first 30 min, even when 20 motes
are killed, including a beacon node, the routing success rate is
still close to 100%. The routing success rate starts to drop after
30 min due to congestion at some bottleneck links. When the
second beacon is killed, the network is partitioned and more
routing failures are expected. The third major performance
degradation occurs after all 31 nongateway motes are dead,
which causes further network partitions. These results show
that S4 is resilient to failures.

C. Summary

Our evaluation in the 42-node testbed shows that S4 achieves
close to 100% routing success rate in a normal condition with
a single flow. Meanwhile, S4 degrades gracefully with an in-
creasing number of packet collisions (in multiple concurrent
flows) and node failures.

VII. CONCLUSION

We present S4 as a scalable routing protocol in large wireless
networks to simultaneously minimize routing state and routing
stretch in both normal conditions and under node or link fail-
ures. S4 incorporates a scoped distance vector protocol (SDV)
for intracluster routing, a resilient beacon distance vector pro-
tocol (RBDV) for intercluster routing, and distance-guided local
failure recovery (DLF) for achieving resilience under failures
and topology changes. S4 uses small amounts of routing state to
achieve a worst-case routing stretch of 3 and an average routing
stretch of close to 1. Evaluation across a wide range of scenarios,
using high-level and packet-level simulators, and real testbed
deployment show that S4 achieves scalability, efficiency, and
resilience.
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