
330 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 13, NO. 2, APRIL 2005

CYRF: A Theory of Window-Based Unicast
Congestion Control

Nishanth R. Sastry and Simon S. Lam, Fellow, IEEE

Abstract—This work presents a comprehensive theoretical
framework for memoryless window-based congestion control
protocols that are designed to converge to fairness and efficiency.
We first derive a necessary and sufficient condition for stepwise
convergence to fairness. Using this, we show how fair window
increase/decrease policies can be constructed from suitable pairs
of monotonically nondecreasing functions. We generalize this
to smooth protocols that converge over each congestion epoch.
The framework also includes a simple method for incorporating
TCP-friendliness.

Well-studied congestion control protocols such as TCP, GAIMD,
and Binomial congestion control can be constructed using this
method. Thus, we provide a common framework for the analysis
of such window-based protocols. We also present two new con-
gestion control protocols for streaming media-like applications as
examples of protocol design in this framework: The first protocol,
LOG, has the objective of reconciling the smoothness requirement
of an application with the need for a fast dynamic response to con-
gestion. The second protocol, SIGMOID, guarantees a minimum
bandwidth for an application but behaves exactly like TCP for
large windows.

Index Terms—Congestion control, fairness, TCP-friendliness,
transport protocols.

I. INTRODUCTION

VAN JACOBSON’S congestion control and avoidance
mechanisms for TCP [9] have been instrumental for the

success and stability of the Internet. Chiu and Jain [5] proved
that, assuming synchronous feedback, any additive-increase
multiplicative-decrease (AIMD) mechanism such as TCP
converges to fairness and efficiency. Thus, these mechanisms
allow flows to equitably share a bottleneck link’s bandwidth by
adjusting their sending rates, while at the same time efficiently
utilizing all of the available bandwidth. In abstract terms, TCP
can be viewed as a distributed algorithm to fairly and efficiently
apportion a common resource without having to explicitly
exchange any information between the users of the resource.
This is arguably the main reason for the success of TCP.

Unfortunately, recent experience indicates that TCP may
not be suitable for all applications. For example, TCP’s abrupt
decrease-by-half response to losses or congestion indications

Manuscript received March 11, 2003; revised December 4, 2003; approved
by IEEE/ACM TRANSACTIONS ON NETWORKING Editor E. Knightly. This work
was supported in part by the National Science Foundation under Grant CNS-
0434515 and by the Texas Advanced Research Program under Grant 003658-
0439-2001. This paper is an extended version of a paper presented at the IEEE
International Conference on Network Protocols, Paris, France, November 2002.

N. R. Sastry is with the International Business Machines Corporation, West-
ford, MA 01886 USA (e-mail: nishanth_sastry@us.ibm.com).

S. S. Lam is with the Department of Computer Sciences, University of Texas
at Austin, Austin, TX 78712-0233 USA (e-mail: lam@cs.utexas.edu).

Digital Object Identifier 10.1109/TNET.2005.845545

cannot be tolerated by streaming media applications. Conse-
quently, there is a pressing need to design custom congestion
control protocols adapted to the needs of different applications.
To simplify the task of designing a protocol that not only suits
a given situation, but also satisfies the nice property of conver-
gence to fairness and efficiency, we propose a window-based
congestion control framework called CYRF (for Choose Your
Response Function). By choosing specific window increase and
decrease policies (or response functions), CYRF can be easily
adapted to suit different application and network needs and can
also be made TCP-friendly.

Our main theoretical result is that given two monotonically
nondecreasing functions and , and

for all , a set of flows using the following
increase-decrease policy converges to fairness and efficiency

(1)

Throughout this paper, we use to represent the current
window size and , the next window, after a round-trip
time . We also use for the increase policy and for the
decrease policy.

We term these protocols as step-wise convergent because each
application of the above policy moves the system closer to fair-
ness. We obtain a more general class of smooth epoch-wise
convergent protocols called 1-CYRF that allow unfair decrease
steps but still converge to fairness over each congestion epoch
if we drop the requirement that be monotonic, and instead
only ask that the product be monotonically nonde-
creasing, and always greater than 1 for .

We also introduce a new characterization of TCP-friendliness
and show that a smooth CYRF flow will be TCP-friendly in
steady state if

(2)

Observe from (1) that a slowly increasing function for
results in an aggressive protocol that makes full use of network
bandwidth as soon as it becomes available. Similarly a slowly
increasing results in a smoother response to congestion
indications. We cannot choose an arbitrarily aggressive increase
policy together with a very smooth decrease policy because of
the above constraint (2). Thus, there is a continuum of protocols
with different degrees of smoothness.

An interesting aspect of this work is that all commonly known
window-based protocols, namely TCP, GAIMD, and Binomial
Congestion Control, are special cases of CYRF (some binomial
congestion control protocols are only a special case of 1-CYRF),

1063-6692/$20.00 © 2005 IEEE

SASTRY AND LAM: CYRF: A THEORY OF WINDOW-BASED UNICAST CONGESTION CONTROL 331

thus providing a powerful unified framework for the analysis of
these protocols. We obtain new proofs for the fairness and TCP-
friendliness of these protocols as special cases of the results for
CYRF. As a second application of CYRF, we describe a new
classification of the space of window-based protocols.

The main application envisaged for CYRF is the design
of new window-based protocols to suit different applica-
tion and network needs. We briefly describe a new 1-CYRF
TCP-friendly protocol called LOG that balances the need of
streaming media applications for smooth changes in sending
rate with the network requirement of a fast response to conges-
tion indications. We use LOG to experimentally demonstrate
the validity of the main theorems for CYRF. We also discuss a
limitation of window-based TCP-friendly nonlinear protocols
in the presence of severely congested (overflowing) drop-tail
queues and propose a possible solution—a protocol that be-
haves just like TCP in the limiting case of large windows, but
also guarantees a minimum throughput. We obtain a new pro-
tocol called SIGMOID from the desired shape of its response
function, using the CYRF paradigm. LOG and SIGMOID
are intended to be examples of protocol design in the CYRF
framework for specific application and network requirements.

The rest of this paper is organized as follows. In Section II,
we describe related proposals. Section III explains some of the
simplifying assumptions used in our analysis and derives suffi-
cient conditions for 2 and flows to converge to fairness
and efficiency. This is used in Section IV as the basis for CYRF.
Section V provides the TCP-friendliness rule and describes the
design of LOG. Section VI experimentally validates the main
theorems using LOG and sketches the design of SIGMOID. Sec-
tion VII concludes the work.

II. RELATED WORK

The TCP algorithms introduced by Jacobson and Karels [1],
[9], [23] is the most widely used congestion control mechanism
today. In congestion avoidance mode, TCP increases its window
size by 1 when a window is acknowledged, and decreases the
window to half its previous size when a loss is detected. Thus,
its increase and decrease policies are given by

(3)

Chiu and Jain [5] proved that, assuming synchronous feedback,
any AIMD mechanism such as TCP converges to fairness and
efficiency.

The notion of TCP-friendliness [15], [16] has given rise to
a number of new proposals [2], [8], [12], [20]–[22], [25] for
the transport of streaming multimedia. The closest in approach
to CYRF are GAIMD and Binomial Congestion Control, which
are both shown to be special cases of CYRF. GAIMD [11], [25],
generalizes TCP to an AIMD policy with different increase and
decrease parameters

(4)

For TCP-friendliness, and must be related as follows [7]:1

(5)

Binomial congestion control [2] proposes the following non-
linear increase–decrease policies:

(6)

with the further condition that to ensure TCP-friend-
liness. We can use only if we know that the maximum
window size is . Otherwise, we will need to sep-
arately deal with the possibility of negative window sizes after
an application of . A similar policy is briefly considered in
Section IV of [5]. GAIMD is a special case of the binomial al-
gorithm (6) with and . and

are two nonlinear binomial controls in [2]
that we will use in later sections.

In this work, we do not look at multicast congestion con-
trol. We also do not consider application-specific adaptive
approaches such as [19] that try to make the best use of the
available network support. We consider all flows equal so that
schemes like MulTCP [6] fall outside our framework. Similarly,
we allow only binary feedback, either through packet loss or an
ECN-like indication. Thus, proposals such as Explicit Window
Adaptation [13] which requires per-flow network feedback are
not considered. Finally, we confine ourselves to the classical
memoryless model of congestion control. Thus, recent schemes
such as SIMD [12] fall outside our scope.

III. CONVERGENCE REQUIREMENTS

In this section, we first outline the simplifying assumptions
made in the rest of the paper and then formalize the notions of
convergence to fairness and efficiency.

A. Notation

Following Chiu and Jain [5], in the rest of this work we adopt
the following conventions for notation. We use to represent
the current window size of the flow. denotes a change
to it due to the application of an increase policy or a decrease
policy . In general, the numerical subscript will be used to
denote a quantity on flow , and the number of flows is repre-
sented by .

B. The Model

The following analysis uses Chiu and Jain’s synchronous
feedback assumption [5] that all the flows in the network
get the same feedback and get this feedback simultaneously.
Furthermore, the feedback is binary and limited to a single bit
indicating whether the network is overloaded (1) or if there
is additional available bandwidth (0). This feedback can be
implicit, for example, through packet losses, or through an
explicit mechanism such as a “congestion experienced” bit in
an ECN aware network [17], [18].

1This does not consider the effect of timeouts. Ref. [25] gives a slightly dif-
ferent condition for TCP-friendliness with timeouts.

332 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 13, NO. 2, APRIL 2005

If the network feedback is 1, then the next window size is
determined by the decrease policy , otherwise, the increase
policy is applied. Usually, this adjustment occurs upon re-
ceiving an ACK. Here we use the continuous fluid model which
assumes that this happens as a continuous process.

We also assume a saturated sender whose window size is
limited only by the network, and not by the receiver’s window or
the amount of outstanding data at the sender. Finally, we ignore
mechanisms such as slow-start by assuming that steady state has
been reached.

It is important to note that while these assumptions simplify
our proofs, they do not restrict the applicability of our results.
Section VI-A shows that the results apply even in experimental
simulations where the ideal-case assumptions do not hold.

C. 1-Responsiveness

Steady state can be characterized by a sequence of conges-
tion epochs which we define as the largest period of time which
contains (and ends with) exactly one application of the decrease
policy. Most analyses (for example, [2], [7]) implicitly assume
that each congestion epoch has at least one application of an in-
crease policy, or equivalently, that each decrease is preceded by
at least one increase. With the synchronous feedback assump-
tion, this means that for each flow, the decrease in window size
from a single application of must at least wipe out the pre-
vious increase resulting from the last application of , so that
the next feedback from the network does not indicate overload.
In other words, the following criterion must be satisfied:

(7)

where is the increase resulting from a single application
of and the decrease in window size because of . We
term protocols which satisfy (7) for sufficiently large window
sizes as 1-responsive to distinguish them from -responsive pro-
tocols which require applications of to offset an in-
crease.

Unless otherwise stated, the protocols are assumed to be 1-re-
sponsive. As can be seen from (3), (4), and (6), many inter-
esting protocols like TCP, GAIMD, and the TCP-friendly ver-
sion of Binomial Congestion Control are 1-responsive in gen-
eral.2 Thus, this is not a very restrictive assumption.

D. Smoothness

While smoothness is not a “necessary” property, smooth pro-
tocols are now being studied with great interest as possible trans-
port protocols for streaming media applications. We will later
show how to design new smooth protocols with the useful char-
acteristics of TCP-friendliness and epoch-wise convergence.

Smoothness has been used as a metric in previous work (e.g.,
[7] and [24]). Below we formalize a slightly different (but com-
patible) notion of smoothness. Intuitively, the smoother a flow
is, the lesser will be its decrease in response to a congestion in-
dication from the network. A window increase (decrease) policy

2Note that the minimum possible window size is 1 and for this window, (7)
fails. But we assume a congestion epoch with a sufficiently large minimum
window size.

, is said to be smooth if the window size in-
crease (decrease) from a single application of the policy is at
least an order of magnitude smaller than the current window
size, for large enough windows. Formally, we write

(8)

In this work, we say a protocol is smooth if it has a smooth
decrease policy.

E. Convergence to Efficiency

We require the system to react in such a way as to move
the total bottleneck link utilization closer to the link capacity.
This can be achieved if the total utilization across all flows (i.e.,
sum of window sizes) increases when the bottleneck link is
under-utilized and decreases when the bottleneck link is over-
loaded. This is just the principle of negative feedback [5]. An
easy way to achieve this is to have each flow increase its window
size when the bottleneck link is under-utilized and decrease its
window size when the bottleneck link is overloaded.

F. Convergence to Fairness

Fairness is an important criterion for the feasibility of any
end-to-end congestion control protocol. Intuitively, this means
that regardless of the initial window size values, all flows
sharing a single bottleneck link must eventually end up with
identical window sizes at each instant (in steady state).

In practice, we use the stronger notions of step-wise and
epoch-wise convergence to fairness. Stepwise convergence
requires each application of an increase or decrease policy to
move the system closer to fairness. Epochwise convergence
requires each congestion epoch to move the system closer to
fairness, although individual increase or decrease steps may
worsen fairness.

When the eventual goal of equal window sizes is not satisfied,
the flows share the link unfairly. To quantify this, we use the
Jain–Chiu–Hawe Fairness Index [10]

(9)

Observe that is a continuous differentiable function bounded
from above by 1, and this upper bound is reached when the
allocation is fair .

In this section, we use the fairness index to derive a simple
sufficient condition that guarantees convergence to fairness. (It
is also a necessary condition for stepwise-convergence.) The
following numerical example will motivate and provide an in-
tuitive feel for the result.

Example 1: Consider two flows with windows of size
and . If an application of the increase policy must

result in a fair window size of 11 for both, the smaller flow must
change (increase) by a larger amount: , as compared to

. Similarly, if a decrease must result in a fair window
size of 7, the smaller flow must decrease by a smaller amount,
or equivalently, change by a larger amount: which
is greater than .

Thus, the signed change in the window size , must be
greater for the flow with the smaller window. The theorem below
shows that it is sufficient for the signed proportional change

to be greater.

SASTRY AND LAM: CYRF: A THEORY OF WINDOW-BASED UNICAST CONGESTION CONTROL 333

Theorem 1 (2-Flow Fairness Condition): Two flows with
window sizes and , , sharing a bottleneck link
will eventually converge to a fair allocation of bottleneck link
bandwidth if the following condition is satisfied (after each
application of an increase policy and decrease policy or
over any reasonably small period of time):

(10)

At least one of the two policies must ensure a strict inequality.
Proof: The proof proceeds as follows: Suppose two flows

with windows and share a bottleneck link. Let be the
change in corresponding to a small change in and

in . If is positive at each application of an increase-
decrease policy, then eventually reaches its maximum value of
1 regardless of its initial value, and the system moves to a fair
allocation. Thus, we only need to ensure always.

For , (9) becomes

Using

and making the continuous fluid approximation that the changes
and represent infinitesimal changes to and

(11)

we get

Imposing the condition , we get

(12)

Simplifying, and using , we can write

Note that we need at least one of or to ensure so
that increases over each congestion epoch and eventually be-
comes 1. Thus, at least one of them must have a strict inequality
in (10). Also, once , this equality is maintained under
synchronous feedback and the values of the window sizes will
increase or decrease in lockstep with each other.

We can use a linear interpolation of the window size between
two applications of for GAIMD and TCP, so that ,

and which is stronger than (11). Thus, the
above proof applies to these protocols even though the changes

and are not infinitesimal.
This is used in the following corollary which gives a new al-

gebraic proof of convergence to fairness for two GAIMD (or
TCP) flows. Chiu and Jain [5] give a different proof for the con-
vergence of GAIMD under the same conditions. This validates
the correctness of our results in a way. We also give the first
algebraic proof of convergence for binomial congestion con-
trol. (The original proof in [2] is a geometric proof based on
the Chiu–Jain phase plot.)

Corollary 2: Two TCP or GAIMD flows converge to fairness

Proof: For TCP, for the increase policy and (10)
becomes: if . Similarly for
the decrease policy and (10) reduces to .

For GAIMD, for the increase policy and (10) be-
comes: if . Similarly for the
decrease policy and (10) reduces to .

For Binomial Congestion Control, for the in-
crease policy and (10) becomes: if .
Similarly for the decrease policy and (10) reduces
to if . Thus, the increase and de-
crease policy separately ensure convergence to fairness only if

and .
However, SQRT and IIAD, the two instances of binomial con-

gestion control experimentally evaluated in [2] have values of
. Also, as discussed in Section II, we can use only

if we know the maximum window size. The following corollary
shows that binomial congestion control converges to fairness if

, , which is satisfied by both
and .

The proof proceeds as follows: We have shown above that
each application of an increase policy increases fairness if

. Thus, any sequence of window size updates using only the
increase policy increases fairness. The proof shows that even
though the decrease policy will worsen fairness when

, the increase in fairness from the previous application of the
increase policy more than offsets this decrease in fairness. Also,
for sufficiently large window sizes, binomial congestion control
is 1-responsive. Thus, each application of a decrease policy is
always preceded by an increase policy, so that the value of
increases over each congestion epoch.

Corollary 3: Binomial congestion control converges to fair-
ness if , .

Proof: Clearly, binomial congestion control with ,
satisfies the 1-responsiveness criterion (7) for sufficiently large
window sizes. Thus, each application of a decrease policy is
preceded by an application of the increase policy.

Suppose the window sizes of the two flows are ,
, just before the application of the increase policy that is fol-

lowed by an application of the decrease policy. It is sufficient to
show that the fairness index increases over this subsequence of
window size adjustments (an increase followed by a decrease)
since we already know that sequences consisting only of appli-
cations of increase policy improve the fairness index if .
(Because of 1-responsiveness we need not consider a subse-
quence with two or more window decreases.)

We need to show that if

Approximating , we need to prove

or

But when , we have and
because .

334 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 13, NO. 2, APRIL 2005

Thus, the decrease in fairness due to the application of the de-
crease policy is offset by the increase in fairness resulting from
the previous increase in window size. Thus, always improves
over a congestion epoch, and binomial congestion control con-
verges to fairness even if .

Theorem 1 can be extended for flows also.
Theorem 4 (-Flow Fairness Condition): -flows with win-

dows converge to fairness if the following con-
dition is satisfied (after each application of an increase policy
and decrease policy or over any reasonably small period of
time)

(13)

Again, at least one of the two policies should ensure a strict
inequality.

The proof is very similar to the 2-flow case. Notice that the
-flow result reduces to (12) for .
Corollary 5: GAIMD or TCP flows converge to fairness

Proof: We derive the results for GAIMD. We can show
that TCP flows converge to fairness in exactly the same way.
In fact, the result for GAIMD implies the result for TCP because
TCP is a special case of GAIMD.

• Case 1: The increase policy satisfies (13). In this case
. Since is bounded from above by 1, we get

[from (9)]

Rewriting this, we get

Multiplying both sides by

which is (13) with .
• Case 2: The decrease policy satisfies (13). In this case

. Equation (13) becomes

Thus, GAIMD ensures that each application of the increase
policy leads to an increase in fairness, but maintains the fairness
index when the decrease policy is applied.

It can be shown that binomial flows also satisfy (13) and
hence converge to fairness. The proof sketch is very similar to
the proof for Theorem 9. However, this result is easily obtained
in Section IV-B as a special case of Theorem 10. Thus, we have
the following:

Corollary 6: binomial flows converge to fairness.

IV. CYRF

In this section, we adopt a novel approach to protocol design.
Since the primary motivation behind this work is the wide range

of requirements of different applications, we would like to know
what latitude an application can have in choosing a response
function. We ask the question: “What is the class of increase-
decrease policies that satisfy (10)?”. This yields a new family
of congestion control protocols that are designed to converge to
fairness and efficiency.

A. , Congestion Control

Suppose two flows share a bottleneck. Assuming that is
some function of , we can see that (10) (and Example 1) im-
plies some kind of monotonicity for . Also, this function
must be differentiable for the proof of Theorem 1 to apply. Fur-
thermore, for convergence to efficiency, the principle of negative
feedback discussed in Section III-E must be satisfied. These re-
quirements are expressed in the following theorem.

Theorem 7 (2-Flow Fairness for CYRF): Let and
be any differentiable monotonically non-decreasing functions
(at least one of them strictly increasing) with and

for all . Then the increase and decrease
policies in (1) ensure convergence to fairness and efficiency for
two flows sharing a bottleneck link.

Proof: for the increase policy and
for the decrease policy.

Convergence to fairness: It is easy to see that, if ,
, are the two window sizes, then because of the monotonicity

of and , and ;
so the increase and decrease policies satisfy (10). Note that since
at least one of the two functions is strictly increasing, we have
a strict inequality for at least one of the two policies as required
by Theorem 1.

Convergence to efficiency: For CYRF to be efficient, the
principle of negative feedback must apply and must increase
the window and must decrease the window size. This is
clearly satisfied for all window sizes , because is
positive for the increase policy and negative for the decrease
policy (due to the constraints and .

The upper bound ensures that does not lead to
negative window sizes.

Because each application of an increase or decrease policy
moves the system toward fairness, CYRF belongs to the class of
step-wise convergent protocols. For protocols with a smooth in-
crease policy, we can drop the requirement that be a mono-
tonically nondecreasing function; instead, we only require that

be monotonically nondecreasing and greater than 1
for , for some small constant . We then obtain epoch-
wise convergent protocols that only converge over each conges-
tion epoch. Note that we need either or to be
strictly increasing to meet the “strict inequality” requirement of
Theorem 1. We call this class of protocols 1-CYRF because if

, the protocol is 1-responsive.
Theorem 8: 1-CYRF converges to fairness for flows.

Proof: In 1-CYRF, each application of the increase policy
will still increase the fairness index. However, the decrease
policy can now worsen fairness if is not monotonic. But if
the increase in can offset the decrease, the system will still
converge to fairness over each congestion epoch. To accomplish
this, we impose a stronger constraint that the increase in from
a single application of must be more than the decrease in

SASTRY AND LAM: CYRF: A THEORY OF WINDOW-BASED UNICAST CONGESTION CONTROL 335

from a single application of and use the 1-responsiveness
condition to ensure that each application of a decrease policy is
preceded by at least one increase. Thus, in deterministic steady
state, will still increase over each congestion epoch.

A single application of followed by an application of
increases fairness if (10) is satisfied. Here

because of
smoothness. Thus, we require

if . Notice that if is monotonically
nondecreasing, then

is monotonically nonincreasing. Thus, the inequality required
by (10) will be automatically satisfied.

CYRF was designed to converge to fairness for the two-flow
case. The following theorem proves that CYRF converges to
fairness for flows also.

Theorem 9: CYRF converges to fairness for flows.
Proof: We will prove a stronger result, viz., that CYRF

flows satisfy the sufficiency condition given by (13). The proof
proceeds as follows: Without loss of generality, we will order
the flows by increasing window size. We then use mathematical
induction to show that if (13) is satisfied with flows, adding a

th flow with a larger window size preserves the fairness
condition. The key fact used is that and are both
monotonically nonincreasing, so that for all , we have

and .

• Case 1: The increase policy increases fairness. Theorem
7 forms the base case. Without loss of generality let

be the window sizes of
flows. Suppose (13) is satisfied with flows.

Here, . So we get

(14)

Consider . Because , for all
, and is monotonically nondecreasing, we

can write

(15)

Rewriting, we get

(16)

Adding (14) and (16), adding to both sides and
factoring, we get

This is just (13) for . Hence, by the principle
of mathematical induction, (13) holds for any number of
flows, .

• Case 2: The decrease policy increases fairness. The al-
gebra is exactly the same as above, except that is
replaced by , which is also a nonincreasing function.

Since one of or is strictly increasing, one of the two
policies or will ensure a strict inequality as required.

Note that the previous argument for convergence to efficiency
still holds for the n-flow case and need not be repeated again.

It can also be shown that 1-CYRF converges to fairness for
-flows. The proof is very similar to Theorem 9. The increase

case is exactly the same. In the decrease case, instead of ,
we use , which is a decreasing function as shown
above. Thus, we have:

Theorem 10: 1-CYRF converges to fairness for flows.

B. Applications of CYRF

We discuss three applications of the CYRF framework: a
classification of window-based protocols, a tool for unifying
analyses of protocols, and constructing new protocols for dif-
ferent application and network needs.

Theorem 11: Window-based protocol families can be classi-
fied as follows:

(a) CYRF is necessary and sufficient for stepwise-conver-
gence; 1-CYRF is sufficient for epochwise-convergence.

(b) Smooth, 1-responsive CYRF protocols are also 1-CYRF
but the converse is not true.

(c) TCP, GAIMD 1-CYRF; TCP-friendly binomial
1-CYRF.

Proof: The sufficiency conditions in (a) are obvious. To
prove that CYRF is is necessary for stepwise-convergence, ob-
serve that any window increase or decrease function can be
written in the form of (1). However, if there is a range
where the and are not monotonic, the function is not CYRF.
In such a case we can construct an increase-decrease step sim-
ilar to Example 1 with window sizes in which decreases
fairness. Thus, CYRF implies stepwise convergence and vice-
versa.

Notice that if , are monotonically nondecreasing, so
is their product . Thus, if a CYRF protocol is smooth
and 1-responsive (and all important protocols are), it is also
1-CYRF. Clearly the converse is not true—Binomial Conges-
tion Control can be written in terms of (1)

(17)

However, this is not CYRF for because will then
monotonically decrease. Fortunately, all TCP-friendly Bino-
mial controls satisfy [2] so that
for . Thus, TCP-friendly binomial congestion con-
trol is 1-CYRF but not CYRF.

Also, by substituting , and in (1), we
see that TCP is a special case of CYRF. Similarly, GAIMD is
also a special case of CYRF (, and).

Fig. 1 summarizes the relationships. The rectangles repre-
sent new classes introduced in this work, and the ovals show
known classes. Specific protocols in each class are given in

336 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 13, NO. 2, APRIL 2005

Fig. 1. Classification of window-based protocols.

italics. In particular, observe that SIGMOID is in the class of
step-wise convergent protocols wheras LOG is a 1-CYRF pro-
tocol and thus is only epochwise convergent. As the “???” marks
indicate, we do not know of any protocols that are 1-CYRF
but not CYRF or protocols that are epoch-convergent but not
1-CYRF. We believe that TCP-friendly 1-CYRF may represent
the widest class of smooth window-based memoryless binary
feedback TCP-friendly congestion control protocols that always
converge to fairness.

CYRF can also be thought of as a framework for analyzing
window-based protocols. For example, it follows from the above
discussion that Binomial, GAIMD and TCP converge to fairness
and efficiency because they fall within the CYRF framework.

The third (and main) application envisaged for the CYRF
framework is the design of new protocols to suit different ap-
plication and network needs. Protocols in the CYRF framework
provably converge to fairness as shown above. The next section
derives a simple relation between the and that guar-
antees TCP-friendliness for smooth protocols. Thus, designing
protocols for different situations reduces to choosing the appro-
priate and .

V. TCP-FRIENDLY CYRF

Smooth protocols are now being widely studied because
streaming media flows require smooth transport for effective
playout at the receiver end. Such protocols are also required
to be TCP-friendly. We first obtain a useful approximation
valid in smooth protocols and characterize TCP-friendliness in
steady state. Using this, we obtain a simple rule for CYRF to be
TCP-friendly. We then design a TCP-friendly 1-CYRF protocol
called LOG with the aim of reconciling the conflicting needs of
smoothness and a fast dynamic response to congestion.

A. Smoothness

Recall that a window increase or decrease policy
, is smooth if . Suppose the increase policy

of a smooth protocol is successively applied two times:
, . Because and

, we can write or in
general

(18)

for successive applications of (being of at most the order
of so that the errors do not add up significantly). This gives
the following smoothness lemma.

Lemma 1 (Smoothness Lemma): In 1-responsive protocols,
the successive window sizes after each application of a smooth
increase policy during a congestion epoch can be approximated
by an arithmetic series.

In particular, this applies to smooth CYRF protocols in steady
state. Suppose is the maximum window size in the epoch,
just before the application of . For 1-responsive protocols,
is also the last window change in the current epoch. The window
size just after the application of , , is also the initial
window size for the epoch because of the steady-state condition.
Using this with the arithmetic series approximation, the number
of applications of the increase policy is given by the number of
terms in the series

(19)

and number of packets sent during the epoch is the sum of the
terms

(20)

B. TCP-Friendliness

An arbitrarily smooth and aggressive protocol is dangerous
because it cannot respond fast enough to congestion indications.
To protect all flows, and in particular, legacy TCP flows that
dominate the Internet, we require the notion of TCP-compati-
bility [4], which states that a flow should send no more than a
comparable conformant TCP flow (same RTT, MTU, etc). This
is easily achieved by maintaining the arrival rate to at most some
suitable constant , times the square root of the packet loss rate

[16]. This is called TCP-friendliness. The following theorem
gives a new characterization of TCP-friendliness in steady state:

Theorem 12 (TCP-Friendliness): A 1-responsive flow is
TCP-friendly in deterministic steady state if and only if the
number of packets, , sent during a congestion epoch is
related to , the number of applications of the increase policy
during that epoch as

(21)

Proof: Suppose the packet size is and the steady-state
(or average) round-trip time is . Then the (long-term)
throughput over the epoch is given by . Note that

and are constant for a given flow, so .
Assuming , or equivalently, we have

But by definition, the loss rate for 1-responsive
protocols in steady state is given by .3 Thus, we get

, which is the standard condition for TCP-friendli-
ness.

Assume or equivalently . Since
, we get .

Corollary 13: A smooth CYRF flow is TCP-friendly in
steady state if and only if

(22)

3p = k=S for k-responsive protocols. Also, note that S 6= 0 because of
1-responsiveness.

SASTRY AND LAM: CYRF: A THEORY OF WINDOW-BASED UNICAST CONGESTION CONTROL 337

Proof: Substituting from (19) and (20) in (21), we see that
. if a CYRF flow must be TCP-

friendly. If (Fig. 2 shows that this is valid for the three
protocols discussed in the next section), we get (22).

Note that (22) also implies 1-responsiveness, which was an
implicit assumption in the above theorem.

We observe in passing that by substituting from (17) in (22),
we get , which is the rule for binomial congestion con-
trol to be TCP-friendly. In Appendix A, we derive rules for strict
TCP-compatibility in CYRF, and obtain the rule for GAIMD (5)
from it.

In the next section, we sketch the design of an example TCP-
friendly protocol.

C. Log

CYRF represents a wide class of window-based protocols.
Applications can choose different and to get different
window-based protocols. For example, from (1) it is easy to
see that an application that uses a slowly increasing function
for will be more aggressive and make full use of network
bandwidth as soon as it becomes available. Similarly a slowly
increasing results in a smoother response to congestion in-
dications. We cannot choose an arbitrarily aggressive increase
policy together with a very smooth decrease policy because of
the TCP-friendliness constraint [15], [16] which requires all
flows to limit their sending rate to that of a comparable TCP
flow. Thus, there is a continuum of protocols with different de-
grees of smoothness.

While smoother protocols are better from the application
point of view (for streaming media applications), this is true
only in steady state. Aggressive protocols are also more respon-
sive protocols and usually have better transient and dynamic
behaviors [3], [24].

Here we trade-off between smoothness and dynamic or tran-
sient behavior by designing a protocol whose properties are “be-
tween” SQRT (in (6)) and ,
the two nonlinear binomial controls studied in [2]. From (17),
we see IIAD is smoother than SQRT because
is always less than .

As shown in Fig. 2, by choosing a function that lies between
these two, such as , we get a new protocol
with intermediate properties. For this to be TCP-friendly, we
need (Corollary 13). Thus, the increase and
decrease policies in (1) become

(23)

We call this protocol LOG.4 From Fig. 2, we see that just like
IIAD and SQRT, for LOG is a decreasing function and
hence LOG is only 1-CYRF. The decrease policy will worsen
fairness. However, unlike IIAD or SQRT, increases for
very small window values; thus LOG is CYRF in this region.
Due to this, it is likely to perform better in extremely congested
situations when the window sizes are small.

4Note that Corollary 15 in the Appendix would give a decrease factor of
0:3 log(x). Experimentally, we find that the protocol is not very sensitive to
small changes in the multiplicative constant.

Fig. 2. Smoothness hierarchy through functions of different orders of
magnitude: g(x) for SQRT, IIAD and LOG.

VI. SIMULATION-BASED VALIDATION

We have implemented CYRF in the ns-2 network simulator
by changing TCP’s congestion avoidance mechanism to use
arbitrary increase or decrease functions. CYRF inherits other
mechanisms such as slow-start and timeouts from TCP. We use
LOG as an example CYRF protocol to verify the main theoret-
ical results. We will also examine the properties of LOG and
then propose SIGMOID, a protocol that overcomes the “TCP-
unfriendliness” of IIAD, SQRT, and LOG in the presence of
droptail queues.

Most of the experiments use the standard “dumbbell”
topology: a single bottleneck link with a default bandwidth of
10 Mb and a delay of 1 ms.5 RED queues with a maximum
queue size equal to the bandwidth-delay product and
maximum and minimum drop thresholds at 20% and 80% of

are used. flows are started at random times in the first
two seconds. All flows use 1 Kb packets and saturated senders
are simulated by using the FTP application in ns. A random
number of Reno TCP flows form background traffic.

A. Validating Theoretical Results

In this section, we will verify the theoretical results of
this paper. Fig. 3 shows the scaled values for the congestion
window variables () of two competing flows, and the
corresponding Jain–Chiu–Hawe Fairness Index. These re-
sults show that LOG rapidly converges to a value of near
1 verifying the results of Theorems 1 and 7. The repeated
instantaneous decreases in fairness are because of packet drops
(mostly random RED drops). Note that LOG is a 1-CYRF
protocol and drops invoke the decrease policy which worsens
fairness.

Fig. 4 shows the congestion window evolution of a single
LOG flow. The points are decimated by plotting one in every
20 values for clarity. We also give the linear best-fit for
the values (taking all values into account) which
clearly shows the validity of the arithmetic-series approximation
in Lemma 1.

5This was chosen to approximate the “synchronous feedback” assumption in
the theorems. The results do not change significantly for larger delay values.

338 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 13, NO. 2, APRIL 2005

Fig. 3. Fairness index and cwnd of two competing LOG flows.

Fig. 4. LOG congestion window evolution.

Fig. 5. Multiple-bottlenecks: topology.

In the next experiment, we investigate the interaction between
LOG and TCP. We use the multiple-bottleneck topology shown
in Fig. 5. The inter-router links are 10 Mb with a delay of 1 ms,
and the others are 100 Mb with 24 ms delay, designed to saturate
the routers. All queues are RED. X-Flowi is the source of a
TCP/Reno cross-flow to X-Sinki that starts at a random time in
the first two seconds. A TCP/Reno flow from TCP to TCPSink
and a LOG flow from LOG to LOGSink are examined. Fig. 6
shows that the congestion window of the LOG flow varies much
more smoothly than TCP and shares the bandwidth effectively.
Similar results were obtained for the dumbbell topology.

Fig. 7 depicts the congestion windows of competing TCP,
SQRT, LOG and IIAD flows over a window of time from

to in the above setup. This validates the basis
for the design of LOG in Section V-C, namely protocols with a
smaller experience smoother variations in window size.

Fig. 8 shows the normalized throughputs of TCP and
LOG flows in the single bottleneck case. This shows the TCP-

Fig. 6. Multilink-bottlenecks: window size variation.

Fig. 7. Smoothness hierarchy: cwnd variations of (from the top) IIAD, LOG,
SQRT and TCP.

Fig. 8. Normalized throughput (Kb/500 ms).

friendliness of LOG as predicted by theory. (LOG/IIAD and
LOG/SQRT interactions are quite similar and are omitted for
space reasons).

SASTRY AND LAM: CYRF: A THEORY OF WINDOW-BASED UNICAST CONGESTION CONTROL 339

TABLE I
TROUGH-TEST METRICS

B. Trough-Test Benchmark

In order to study the relative dynamic behaviors of IIAD,
SQRT and CYRF(LOG), we performed the following experi-
ment: TCP flows and flows of one of these protocols share
the dumbbell topology described previously. A CBR flow with a
rate equal to half the bottleneck link bandwidth also flows in the
same direction. Background traffic consists of a random number
of TCP flows. At time , the CBR flow is stopped. At

, it starts again. This “bandwidth trough” caused by
stopping the CBR flow between and allows us to measure
several useful metrics. These are summarized in Table I. Each
metric was measured over 10 repeated experiments. The figures
in the table represent the average values. In the rest of this sec-
tion, “steady state” is used to refer to a time betwen and

, when all the startup transients have been stabilized,
and the CBR flow is still running.

When additional bandwidth becomes available at ,
smoother protocols take more time to make use of it. Similarly,
an overly aggressive protocol can ramp up too much and may
have to reduce its window, thus losing some utilization. We
define the Utilization Metric of a protocol as the product of the
drop in utilization at (from the utilization at steady state) and
the amount of time it takes to get back to 95% of the steady-state
utilization. This is a measure of the additional amount of data
that could have been sent by an “ideal protocol” that adapts to
the available bandwidth. (The utilization metric, multiplied by
the bottleneck link bandwidth gives the additional amount of
data in terms of bits or bytes.) Obviously, this number must be
as small as possible. The table shows that LOG hits a “sweet
spot” between overly aggressive and overly smooth protocols
(All numbers are percentage values).

Similarly, we see an increased drop rate (up to 10–15 times
the steady-state drop rate!) at . This is because the smoother
protocols cannot reduce their sending rates fast enough to ac-
comodate the CBR flow and thus saturate the link. We measure
this by the Drop Metric, which is given by the product of the
additional drop rate (as compared to the steady-state drop rate)
and the time required to get back to 1.5 times the steady-state
drop rate. This is similar to the metric defined in [3], except
that we use the difference in the drop rates at and at steady
state, instead of using the drop rate at directly. Again, this
number should be as low as possible and the table shows that
LOG achieves a reasonably low metric (numbers given are per-
centage values). Observe that smoothness can make a huge dif-
ference in times of sudden congestion such as at . The metric
for TCP is considerably smaller than the others, and IIAD per-
forms much worse than the other protocols.

Finally, we measured the average drop rate and link utiliza-
tion in steady state, when the CBR flow is running, the results

show that LOG achieves the highest utilization (95.11%) and
the least drop rate (3.76%). Each number is marginally better
than the other protocols.

C. SIGMOID

All the previous experiments used RED queues. Now
we show that LOG (and other nonlinear window-based
“TCP-friendly” protocols) become “TCP-unfriendly” in the
face of drop-tail queues and severely congested situations.
Fig. 9(b) shows the window sizes of competing LOG and TCP
flows in the standard bottleneck link topology described in
the previous section, with a bottleneck bandwidth changed to
1 Mb (from 10 Mb in the other experiments) and RED queues
in the bottleneck routers. Fig. 9(a) shows that LOG grabs an
unfair share of bandwidth in the same simulation with drop-tail
queues. Similar results have been reported in [2] for IIAD and
SQRT. Fig. 9(c)–(f) confirms their results.

This happens because drop tail queues can back-up and
over-flow in congested situations. TCP reduces its sending rate
by half to flush the queue. The “smoother” non-TCP flows
reduce by a smaller amount. Thus, they grab more bandwidth
and the queue does not get flushed. Because they use different
window increase-decrease policies, TCP and other non-TCP
flows see different drop rates when the queue becomes full.
However, the non-TCP flows are designed to send at a rate
inversely proportional to the square root of the loss-rate which
causes the disparity. RED varies the drop rate as a function of
the queue size making all TCP-friendly flows see the same drop
rate thus eliminating this problem.

Clearly, the root cause for the problem is smoothness. Also,
smooth flows with larger window sizes cause more damage [14].
We now propose a solution called SIGMOID that works around
this issue by behaving exactly like TCP when the window size is
large enough. Thus, it has a dynamic behavior exactly like TCP
for large windows. It also tries to ensure a minimum window
size by reducing the window decrease for smaller windows and
thus achieves a minimum throughput. Thus, when used with
a playout buffer, smoothness is no longer an essential require-
ment—When there is available bandwidth, SIGMOID ramps up
quickly exactly like TCP, thus filling the playout buffer. In times
of congestion, a continuous playout stream is still possible be-
cause of the achieved minimum throughput together with the re-
serve playout minutes built up in the buffer. It gracefully gives
up any additional bandwidth by quickly reducing its window
size just as TCP would, thus flushing a backed-up drop-tail
queue.

Thus, SIGMOID works by replacing the TCP-friendliness re-
quirement with the requirement that the flow should be con-
siderate to TCP when the window size is large enough. The
smoothness requirement is obviated by allowing a fast TCP-
style window increase together with playout buffers and a min-
imum throughput “guarantee.” Fig. 9(g) and (h) shows that SIG-
MOID performs much better than the other nonlinear conges-
tion controls in the same conditions as before with virtually no
difference between the drop-tail and RED queue configurations.

We conclude by showing how to implement the SIGMOID
requirements in the CYRF framework. Clearly, we need a de-
crease function that is similar to that of TCP

340 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 13, NO. 2, APRIL 2005

Fig. 9. RED-Effect: (a) and (b) LOG, (c) and (d) IIAD, (e) and (f) SQRT, (g) and (h) SIGMOID. The left-hand figures use drop-tail queues, and the right-hand
figures use RED queues.

for large windows and near zero for smaller win-
dows. We consider functions of the form with

for small , and as increases. If the con-
gestion window was small at the time a congestion indication
is received, , and the window size is decreased very
little, or not at all. On the other hand, if a window of data large
enough to fill the receiver’s playout buffer had been sent pre-

viously, , and the window size is halved exactly like
TCP.

The well-known sigmoid function

(24)

has the shape we are looking for. is the maximum of this func-
tion. determines how smoothly the function changes from

SASTRY AND LAM: CYRF: A THEORY OF WINDOW-BASED UNICAST CONGESTION CONTROL 341

Fig. 10. Different SIGMOID functions: varying a, k, and c.

a value near 0 to a value near . Smaller values of give a
smoother knee. The knee-point on the axis can be changed
by altering . Fig. 10 shows the possibilities.

The increase function can be the same as TCP. Thus, we get
the following increase–decrease policy for SIGMOID:

(25)

Fig. 9(g) and (h) uses , , and . Above
the knee point, SIGMOID behaves exactly like TCP because

saturates to a value of . Below it,
, so that the decrease policy leaves the window size virtu-

ally unchanged and thus a minimum throughput is guaranteed.
Choosing the right knee point is extremely important for the
proper operation of SIGMOID since this determines the min-
imum throughput of the SIGMOID flow and thus the maximum
throughput of the other flows. If the knee point is too high for a
given bottleneck, SIGMOID may never decrease its window. A
useful rule of thumb is to have -in conges-
tion avoidance mode; the slow-start threshold, , rep-
resents a “safe” estimate of the flow’s share of the bottleneck,
and a safety factor of allows the queue to be flushed
after getting backed up. A different safety factor can be chosen
depending on the application’s need for minimum bandwidth
guarantees.

VII. CONCLUSION AND SCOPE FOR FUTURE WORK

In this paper, we presented CYRF, a novel approach to pro-
tocol design that is guaranteed to converge to fairness and effi-
ciency. This allows protocol designers to choose the appropriate
response function given the application and network issues at
hand, without having to worry about fairness and efficiency.
Such protocols can also be made TCP-friendly easily. Using
this framework, we designed and evaluated a protocol called
LOG, with intermediate smoothness and aggressiveness. We
also briefly discussed SIGMOID, a CYRF protocol which tries
to address the “TCP-unfriendliness” of window-based non-TCP
protocols in the presence of drop-tail queues. It circumvents the
smoothness requirement for streaming media by taking a radi-
cally different approach.

On the theoretical front, we gave a necessary and sufficient
condition for convergence to fairness and a new characteriza-
tion of smoothness and TCP-friendliness in steady state. Both
of these results can easily be made use of outside the CYRF
framework. CYRF itself includes most well-known window-
based protocols as special cases and can be used to understand
these protocols better. Finally, we gave a new classification of
window-based protocols based upon the results of this paper.

Clearly, the basic framework presented here can be improved
if it can also ensure other cross-protocol concerns such as scal-
ability. The window increase–decrease policies are restricted to
be functions of the current window size. The framework can be
extended allowing more parameters, such as a history of pre-
vious window sizes. The theorems can be strengthened by re-
laxing some of the assumptions of the Chiu–Jain model used
here. We are currently looking into some of these possibilities.

APPENDIX A
TCP-COMPATIBILITY

As stated in Section V-B, the notion of TCP-compatibility
requires that a flow should send no more than a comparable
conformant TCP flow. TCP-friendliness advocates maintaining
the arrival rate to at most some suitable constant , times the
square root of the packet loss rate. We determine , and using
this, we derive the rule for CYRF to be TCP-compatible.

Theorem 14 (TCP-Compatibility): A 1-responsive protocol
with a congestion epoch of size during which packets are
sent is TCP-compatible in deterministic steady state if and only
if

(26)

Proof: From Theorem 12 we know that a protocol is TCP-
friendly in steady state if and only if for some con-
stant . To get the proportionality constant, we just need to plug
in the values of and for some TCP-compatible protocol. In
particular, we know that TCP itself is TCP-compatible.

Suppose the maximum window size in a TCP congestion
epoch is . This is the window size after the last increase
in the epoch. It is followed by an application of the decrease
policy, which decreases the window to and the next
congestion epoch starts.6 In steady state, the initial window size
of each congestion epoch is the same and hence equal to the
final window size of the epoch. Also, from (3) we can see that
the successive window sizes during a sequence of applications
of the increase policy form an arithmetic series with a term dif-
ference of 1. Thus, we can write
or . We also get the number of packets sent during
the epoch as the sum of the series

Plugging these values into the relation , we get the
required result.

By a very similar argument, we can show that a -responsive
protocol is TCP-compatible if .

6As in the proof of Theorem 12, this follows from our definition of the con-
gestion epoch and the fact that TCP is 1-responsive.

342 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 13, NO. 2, APRIL 2005

Using (19) and (20) in (26), we get the following.
Corollary 15: A smooth CYRF flow is TCP-compatible in

steady state if and only if

(27)

Notice that when we get back the TCP-friendli-
ness condition of Corollary 13. As another quick check, substi-
tuting the and values for GAIMD, we get (5).

REFERENCES

[1] M. Allman, V. Paxson, and W. Stevens, “TCP congestion control,” In-
ternet Engineering Task Force, RFC 2581 (Standards Track), Apr. 1999.

[2] D. Bansal and H. Balakrishnan, “Binomial congestion control algo-
rithms,” in Proc. IEEE INFOCOM, Apr. 2001, pp. 631–640.

[3] D. Bansal, H. Balakrishnan, S. Floyd, and S. Shenker, “Dynamic be-
havior of slowly responsive congestion control algorithms,” in Proc.
ACM SIGCOMM, San Diego, CA, Aug. 2001, pp. 263–273.

[4] B. Braden, D. Clark, J. Crowcroft, B. Davie, S. Deering, D. Estrin, and S.
Floyd, “Recommendations on queue management and congestion avoid-
ance in the Internet,” Internet Engineering Task Force, RFC 2309 (Infor-
mational), Apr. 1998.

[5] D.-M. Chiu and R. Jain, “Analysis of the increase and decrease algo-
rithms for congestion avoidance in computer networks,” Comput. Netw.
ISDN Syst., vol. 17, pp. 1–14, 1989.

[6] J. Crowcroft and P. Oechslin, “Differentiated end-to-end Internet ser-
vices using a weighted proportional fair sharing TCP,” ACM Comput.
Commun. Rev., vol. 28, no. 3, pp. 53–67, Jul. 1998.

[7] S. Floyd, M. Handley, and J. Padhye. (2000, May) A comparison of
equation-based and AIMD congestion control. [Online]. Available:
http://www.aciri.org/tfrc

[8] S. Floyd, M. Handley, J. Padhye, and J. Widmer, “Equation-based
congestion control for unicast applications,” in Proc. ACM SIGCOMM,
Aug. 2000, pp. 43–56. Extended version available as International
Computer Science Institute Tech. Report TR-00-03, Mar. 2000.

[9] V. Jacobson and M. Karels, “Congestion avoidance and control,” ACM
Comput. Commun. Rev., vol. 18, no. 4, pp. 314–329, Aug. 1990. Revised
version of an ACM Sigcomm’88 paper.

[10] R. Jain, D.-M. Chiu, and W. Hawe, “A quantitative measure of fairness
and discrimination for resource allocation in shared computer systems,”
Digital Equipment Corporation, DEC Research Report, Tech. Rep.
TR-301, Sep. 1984.

[11] R. Jain, K. K. Ramakrishnan, and D.-M. Chiu, “Congestion avoidance in
computer networks with a connectionless network layer,” Digital Equip-
ment Corporation, Tech. Rep. DEC-TR-506, 1988. Reprinted in Inno-
vations in Internetworking, C. Partridge, Ed. Norwood, MA: Artech
House, 1988.

[12] S. Jin, L. Guo, I. Matta, and A. Bestavros, “TCP-friendly SIMD conges-
tion control and its convergence behavior,” in Proc. 9th IEEE Int. Conf.
Network Protocols (ICNP), Nov. 2001, pp. 156–164.

[13] L. Kalampoukas, A. Varma, and K. K. Ramakrishnan, “Explicit window
adaptation: a method to enhance TCP performance,” in Proc. IEEE IN-
FOCOM, San Francisco, CA, Mar./Apr. 1998, pp. 242–251.

[14] R. Mahajan and S. Floyd, “Controlling high-bandwidth flows at the con-
gested router,” in Proc. 9th IEEE Int. Conf. Network Protocols (ICNP),
Nov. 2001, pp. 192–201.

[15] J. Mahdavi and S. Floyd. (1997, Jan.) TCP-friendly unicast rate-based
flow control. [Online]. Available: http://www.psc.edu/networking/pa-
pers/tcp_friendly.html

[16] J. Mahdavi and S. Floyd. (1999, Jun.) The TCP-friendly web-site. [On-
line]. Available: http://www.psc.edu/networking/tcp_ friendly.html

[17] K. K. Ramakrishnan, S. Floyd, and D. Black, “The addition of Explicit
Congestion Notification (ECN) to IP,” Internet Engineering Task Force,
RFC 3168 (Standards Track), Sep. 2001.

[18] K. K. Ramakrishnan and R. Jain, “A binary feedback scheme for con-
gestion avoidance in computer networks,” ACM Trans. Comput. Syst.,
vol. 8, no. 2, pp. 158–181, May 1990.

[19] R. Rejaie, M. Handley, and D. Estrin, “Quality adaptation for unicast
audio and video,” in Proc. ACM SIGCOMM, Sep. 1999, pp. 189–200.

[20] , “RAP: an end-to-end rate-based congestion control mechanism
for realtime streams in the Internet,” in Proc. IEEE INFOCOM, Mar.
1999, pp. 1337–1345.

[21] I. Rhee, V. Ozdemir, and Y. Yi, “TEAR: TCP Emulation at Re-
ceivers—Flow Control for Multimedia Streaming,” North Carolina
State Univ., Raleigh, NC, Technical Report, Apr. 2000.

[22] D. Sisalem and H. Schulzrinne, “The loss-delay based adjustment al-
gorithm: a TCP-friendly adaptation scheme,” presented at the 8th Int.
Workshop on Network and Operating System Support for Digital Audio
and Video (NOSSDAV), Cambridge, U.K., 1998.

[23] G. Wright and W. R. Stevens, TCP/IP Illustrated, Volume 2: The Imple-
mentation. Reading, MA: Addison Wesley, 1995.

[24] Y. R. Yang, M. S. Kim, and S. S. Lam, “Transient behaviors of TCP-
friendly congestion control protocols,” in Proc. IEEE INFOCOM, An-
chorage, AK, Apr. 2001, pp. 1716–1725.

[25] Y. R. Yang and S. S. Lam, “General AIMD congestion control,” in Proc.
8th IEEE Int. Conf. Network Protocols, Osaka, Japan, Nov. 2000, pp.
187–198.

Nishanth R. Sastry received the Bachelor’s degree
in computer science and engineering in 1999, gradu-
ating with distinction from the R.V. College of Engi-
neering, Bangalore University, India. He received the
Master’s degree in computer science from the Uni-
versity of Texas at Austin in 2001.

During 1999–2000, he was with Cisco Systems,
working on ATM and LAN emulation in the catalyst
switches. Since 2002, he has been with IBM, working
on groupware for work-place team collaboration. His
interests include all aspects of designing practical dis-

tributed systems, from low-level network protocol design and congestion control
to high-level distributed collaborative environments.

Simon S. Lam (S’71–M’74–SM’80–F’85) received
the B.S.E.E. degree with distinction from Wash-
ington State University, Pullman, in 1969, and the
M.S. and Ph.D. degrees in engineering from the
University of California at Los Angeles (UCLA) in
1970 and 1974, respectively.

From 1971 to 1974, he was a Postgraduate Re-
search Engineer at the ARPA Network Measurement
Center, UCLA, where he worked on satellite and
radio packet switching networks. From 1974 to
1977, he was a Research Staff Member at the IBM

T. J. Watson Research Center, Yorktown Heights, NY. Since 1977, he has been
on the faculty of the University of Texas at Austin, where he is Professor and
Regents Chair in Computer Sciences, and served as Department Chair from
1992 to 1994. His current research interests are in network protocol design and
analysis, distributed multimedia, and Internet security services.

Dr. Lam served on the editorial boards of IEEE/ACM TRANSACTIONS

ON NETWORKING, IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, IEEE
TRANSACTIONS ON COMMUNICATIONS, Proceedings of the IEEE, and Perfor-
mance Evaluation. He was Editor-in-Chief of IEEE/ACM TRANSACTIONS

ON NETWORKING from 1995 to 1999. He currently serves on the editorial
board of Computer Networks. He organized and was Program Chair of the
inaugural ACM SIGCOMM Symposium held at the University of Texas
at Austin in 1983. He is a founding Steering Committee member of the
IEEE International Conference on Network Protocols. He received the 2004
ACM Software System Award, the 2004 ACM SIGCOMM Award, the 2004
W. Wallace McDowell Award from IEEE Computer Society, and the 1975
Leonard G. Abraham Prize and the 2001 William R. Bennett Prize from the
IEEE Communications Society. He has been a Fellow of the Association for
Computing Machinery (ACM) since 1998.

	toc
	CYRF: A Theory of Window-Based Unicast Congestion Control
	Nishanth R. Sastry and Simon S. Lam, Fellow, IEEE
	I. I NTRODUCTION
	II. R ELATED W ORK
	III. C ONVERGENCE R EQUIREMENTS
	A. Notation
	B. The Model
	C. 1-Responsiveness
	D. Smoothness
	E. Convergence to Efficiency
	F. Convergence to Fairness
	Example 1: Consider two flows with windows of size $x_{1}=8$ and
	Theorem 1 (2-Flow Fairness Condition): Two flows with window siz
	Proof: The proof proceeds as follows: Suppose two flows with win

	Corollary 2: Two TCP or GAIMD flows converge to fairness
	Proof: For TCP, $\Delta x=1$ for the increase policy and (10) be

	Corollary 3: Binomial congestion control converges to fairness i
	Proof: Clearly, binomial congestion control with k, $l\geq0$ s

	Theorem 4 (n -Flow Fairness Condition): n -flows with windo
	Corollary 5: n GAIMD or TCP flows converge to fairness
	Proof: We derive the results for GAIMD. We can show that n TCP

	Corollary 6: $n>2$ binomial flows converge to fairness.

	IV. CYRF
	A. $f(\cdot)$, $g(\cdot)$ Congestion Control
	Theorem 7 (2-Flow Fairness for CYRF): Let $f(x)$ and $g(x)$ be a
	Proof: $\Delta x=x(t)/f(x(t))$ for the increase policy and $\Del

	Theorem 8: 1-CYRF converges to fairness for $n=2$ flows.
	Proof: In 1-CYRF, each application of the increase policy will s

	Theorem 9: CYRF converges to fairness for $n>2$ flows.
	Proof: We will prove a stronger result, viz., that CYRF flows sa

	Theorem 10: 1-CYRF converges to fairness for $n>2$ flows.

	B. Applications of CYRF
	Theorem 11: Window-based protocol families can be classified as
	Proof: The sufficiency conditions in (a) are obvious. To prove t

	Fig.€1. Classification of window-based protocols.
	V. TCP-F RIENDLY CYRF
	A. Smoothness
	Lemma 1 (Smoothness Lemma): In 1-responsive protocols, the succe

	B. TCP-Friendliness
	Theorem 12 (TCP-Friendliness): A 1-responsive flow is TCP-friend
	Proof: Suppose the packet size is B and the steady-state (or a

	Corollary 13: A smooth CYRF flow is TCP-friendly in steady state
	Proof: Substituting from (19) and (20) in (21), we see that $X(2

	C. Log

	Fig.€2. Smoothness hierarchy through functions of different orde
	VI. S IMULATION -B ASED V ALIDATION
	A. Validating Theoretical Results

	Fig.€3. Fairness index and $\tt cwnd_$ of two competing LOG flo
	Fig.€4. LOG congestion window evolution.
	Fig.€5. Multiple-bottlenecks: topology.
	Fig.€6. Multilink-bottlenecks: window size variation.
	Fig.€7. Smoothness hierarchy: $\tt cwnd_$ variations of (from t
	Fig.€8. Normalized throughput (Kb/500 ms).
	TABLE€I T ROUGH -T EST M ETRICS
	B. Trough-Test Benchmark
	C. SIGMOID

	Fig.€9. RED-Effect: (a) and (b) LOG, (c) and (d) IIAD, (e) and (
	Fig.€10. Different SIGMOID functions: varying a, k, and c
	VII. C ONCLUSION AND S COPE FOR F UTURE W ORK
	TCP-C OMPATIBILITY
	Theorem 14 (TCP-Compatibility): A 1-responsive protocol with a c
	Proof: From Theorem 12 we know that a protocol is TCP-friendly i

	Corollary 15: A smooth CYRF flow is TCP-compatible in steady sta

	M. Allman, V. Paxson, and W. Stevens, TCP congestion control, In
	D. Bansal and H. Balakrishnan, Binomial congestion control algor
	D. Bansal, H. Balakrishnan, S. Floyd, and S. Shenker, Dynamic be
	B. Braden, D. Clark, J. Crowcroft, B. Davie, S. Deering, D. Estr
	D.-M. Chiu and R. Jain, Analysis of the increase and decrease al
	J. Crowcroft and P. Oechslin, Differentiated end-to-end Internet
	S. Floyd, M. Handley, and J. Padhye . (2000, May) A comparison o
	S. Floyd, M. Handley, J. Padhye, and J. Widmer, Equation-based c
	V. Jacobson and M. Karels, Congestion avoidance and control, ACM
	R. Jain, D.-M. Chiu, and W. Hawe, A quantitative measure of fair
	R. Jain, K. K. Ramakrishnan, and D.-M. Chiu, Congestion avoidanc
	S. Jin, L. Guo, I. Matta, and A. Bestavros, TCP-friendly SIMD c
	L. Kalampoukas, A. Varma, and K. K. Ramakrishnan, Explicit windo
	R. Mahajan and S. Floyd, Controlling high-bandwidth flows at the
	J. Mahdavi and S. Floyd . (1997, Jan.) TCP-friendly unicast rate
	J. Mahdavi and S. Floyd . (1999, Jun.) The TCP-friendly web-site
	K. K. Ramakrishnan, S. Floyd, and D. Black, The addition of Expl
	K. K. Ramakrishnan and R. Jain, A binary feedback scheme for con
	R. Rejaie, M. Handley, and D. Estrin, Quality adaptation for uni
	I. Rhee, V. Ozdemir, and Y. Yi, TEAR: TCP Emulation at Receivers
	D. Sisalem and H. Schulzrinne, The loss-delay based adjustment a
	G. Wright and W. R. Stevens, TCP/IP Illustrated, Volume 2: The I
	Y. R. Yang, M. S. Kim, and S. S. Lam, Transient behaviors of TCP
	Y. R. Yang and S. S. Lam, General AIMD congestion control, in Pr

