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Abstract—Many emerging network applications (e.g., telecon-
ference, information services, distributed interactive simulation,
and collaborative work) are based upon a group communications
model. As a result, securing group communications, i.e., providing
confidentiality, authenticity, and integrity of messages delivered
between group members, will become a critical networking issue.
We present, in this paper, a novel solution to the scalability problem
of group/multicast key management. We formalize the notion of a
secure group as a triple( ) where denotes a set of users,

a set of keys held by the users, and a user-key relation. We
then introduce key graphs to specify secure groups. For a special
class of key graphs, we present three strategies for securely dis-
tributing rekey messages after a join/leave and specify protocols
for joining and leaving a secure group. The rekeying strategies and
join/leave protocols are implemented in a prototype key server we
have built. We present measurement results from experiments and
discuss performance comparisons. We show that our group key
management service, using any of the three rekeying strategies, is
scalable to large groups with frequent joins and leaves. In partic-
ular, the average measured processing time per join/leave increases
linearly with the logarithm of group size.

Index Terms—Confidentiality, group communications, group
key management, key distribution, multicast, privacy, rekeying,
security.

I. INTRODUCTION

M OST network applications are based upon the
client–server paradigm and make use of unicast (or

point-to-point) packet delivery. Many emerging applications,
on the other hand, are based upon agroup communications
model. In particular, they require packet delivery from one
or more authorized sender(s) to a large number of authorized
receivers. In the Internet, multicast has been used successfully
to provide an efficient, best effort delivery service to large
groups [7]. We envision that deployment of network appli-
cations requiring group communications will accelerate in
coming years. As a result, securing group communications,
i.e., providing confidentiality, authenticity, and integrity of
messages delivered between group members, will become a
critical networking issue in the near future.
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While the technical issues of securing unicast communica-
tions for client–server computing are fairly well understood,
the technical issues of securing group communications are not.
Conceptually, since every point-to-multipoint communication
can be represented as a set of point-to-point communications,
the current technology base for securing unicast communica-
tions can be extended in a straightforward manner to secure
group communications [12], [13]. However, such an extension
is not scalable to large groups.

For a more concrete illustration of this point, we outline a typ-
ical procedure for securing unicast communications between a
client and a server. Initially, the client and server mutually au-
thenticate each other using an authentication protocol or service;
subsequently, a symmetric key is created and shared by them
to be used for pairwise confidential communications [4], [21],
[23], [27]. This procedure can be extended to a group as follows.
Let there be a trusted server which is given membership infor-
mation to exercise group access control. When a client wants to
join the group, the client and server mutually authenticate using
an authentication protocol. Having been authenticated and ac-
cepted into the group, each member shares with the server a
key,1 to be called the member'sindividual key. For group com-
munications, the server distributes to each member agroup key
to be shared by all members of the group.2

For a group of members, distributing the group key securely
to all members requires messages encrypted with individual
keys (a computation cost proportional to group size). Each
such message may be sent separately via unicast. Alternatively,
the messages may be sent as a combined message to all group
members via multicast. Either way, there is a communication
cost proportional to group size (measured in terms of the
number of messages or the size of the combined message).

Observe that for a point-to-point session, the costs of session
establishment and key distribution are incurred just once, at
the beginning of the session. A group session, on the other
hand, may persist for a relatively long time with members
joining and leaving the session. Consequently, the group key
should be changed frequently. To achieve a high level of
security, the group key should be changed after everyjoin and
leaveso that a former group member has no access to current
communications and a new member has no access to previous
communications.

1In this paper,keymeans a key from a symmetric cryptosystem, such as DES,
unless explicitly stated otherwise.

2It is easy to see that sharing a group key enables confidential communications
within a group. In addition to confidentiality, standard techniques such as digital
signature and message digest can be used to provide authenticity, integrity, and
nonrepudiation. We will not elaborate upon these techniques since the focus of
this paper is key management.
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Let there be a trusted server that creates a new group key after
every join and leave. After a join, the new group key can be sent
via unicast to the new member (encrypted with its individual
key) and via multicast to existing group members (encrypted
with the previous group key). Thus, changing the group key se-
curely after a join is not too much work. After a leave, how-
ever, the previous group key can no longer be used and the new
group key must be encrypted for each remaining group member
using its individual key. Thus, we see that changing the group
key securely after a leave incurs computation and communica-
tion costs proportional to , the same as initial group key dis-
tribution. That is, large groups whose members join and leave
frequently pose a scalability problem.

The topic of secure group communications has been investi-
gated [1], [2], [11]–[13], [18]. Also the problem of how to dis-
tribute a secret to a group of users has been addressed in the
cryptography literature [3], [5], [9], [22]. However, with the ex-
ception of [18], no one has addressed the need for frequent key
changes and the associated scalability problem for a very large
group. The approach proposed in Iolus [18] to improve scala-
bility is to decompose a large group of clients into many sub-
groups and employ a hierarchy of group security agents.

A. Our Approach

We present in this paper a different hierarchical approach
to improve scalability. Instead of a hierarchy of group security
agents, we employ a hierarchy of keys. A detailed comparison of
our approach and the Iolus approach [18] as well as an overview
of related work, is given in Section VI.

We begin by formalizing the notion of a secure group as a
triple , where denotes a set of users, denotes a
set of keys, and denotes auser–keyrelation, which
specifies keys held by each user in. In particular, each user is
given a subset of keys which includes the user's individual key
and a group key. We next illustrate how scalability of group key
management can be improved by organizing the keys ininto
a hierarchy and giving users additional keys.

Let there be a trusted server responsible for group access con-
trol and key management. In particular, the server securely dis-
tributes keys to group members and maintains the user–key rela-
tion.3 To illustrate our approach, consider the following simple
example of a secure group with nine members partitioned into
three subgroups: , , and .
Each member is given three keys: its individual key, a key for
the entire group, and a key for its subgroup. Suppose that
leaves the group; the remaining eight members form a new se-
cure group and require a new group key; also,and form a
new subgroup and require a new subgroup key. To send the new
subgroup key securely to , the server encrypts it with
the individual key of . Subsequently, the server can send
the new group key securely to members of each subgroup by en-
crypting it with the subgroup key. Thus by giving each user three
keys instead of two, the server performs five encryptions instead
of eight. As a more general example, suppose the numberof
users is a power of, and the keys in are organized as the

3In practice, such a server may be distributed or replicated to enhance relia-
bility and performance.

nodes of a full and balanced-ary tree. When a user leaves the
secure group, to distribute new keys, the server needs to perform
approximately encryptions (rather than encryp-
tions). For a large group, say, 100 000, the savings can be very
substantial.

This approach of a hierarchy of keys, organized as a rooted
tree, was discovered independently by Wallneret al.of the Na-
tional Security Agency and presented in an informational RFC
[24] at about the same time as when this paper was first pub-
lished as a technical report [25]. Additional contributions of
this paper on protocol design, implementation, and performance
analysis, not addressed in [24], are summarized below.

B. Other Contributions of This Paper

With a hierarchy of keys, there are many different ways to
construct rekey messages and securely distribute them to users.
We investigate three rekeying strategies:user-oriented, key-ori-
ented,and group-oriented. We design and specify join/leave
protocols based upon these rekeying strategies. For key-oriented
and user-oriented rekeying, which use multiple rekey messages
per join/leave, we present a technique for signing multiple mes-
sages (destined to different receivers) with a single digital sig-
nature operation. Compared to using one digital signature per
rekey message, the technique provides a substantial reduction
in the average server processing time of a join/leave.

The rekeying strategies and protocols are implemented in a
prototype key server we have built. We performed experiments
on two lightly loaded SGI Origin 200 machines, with the server
running on one and up to 8192 clients on the other. From mea-
surement results, we show that our group key management ser-
vice, using any of the rekeying strategies with a key tree, is
scalable; in particular, the average server processing time per
join/leave increases linearly with the logarithm of group size.
We found that the optimal key tree degree is four. Group-ori-
ented rekeying provides the best performance of the three strate-
gies on the server side but is worst of the three on the client side.
User-oriented rekeying has the best performance on the client
side but the worst on the server side.

The balance of this paper is organized as follows. In Sec-
tion II, we introduce key graphs as a method for specifying
secure groups. In Section III, we present protocols for users
to join and leave a secure group as well as the three rekeying
strategies. In Section IV, we present a technique for signing
multiple rekey messages using a single digital signature opera-
tion. Experiments and performance results are presented in Sec-
tion V. Related work and a comparison of our approach and the
Iolus approach are given in Section VI. Our conclusions are in
SectionVII.

II. SECUREGROUPS

A secure groupis a triple where:

• is a finite and nonempty set of users;
• is a finite and nonempty set of keys;
• is a binary relation between and ,

called theuser—keyrelation of the secure group. User
has key if and only if is in .
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Each secure group has a trustedkey serverresponsible for gener-
ating and securely distributing keys in to users in the group.4

Specifically, the key server knows the user setand the key set
and maintains the user–key relation. Every user in has

a key in , called itsindividual key, which is shared only with
the key server and is used for pairwise confidential communi-
cation with the key server. There is agroup keyin , shared by
the key server and all users in. The group key can be used by
each user to send messages confidentially to other members of
the group.

A. Key Graphs

A key graph is a directed acyclic graph with two types
of nodes: -nodesrepresenting users and-nodesrepresenting
keys. Each -node has one or more outgoing edges but no in-
coming edge. Each-node has one or more incoming edges. If a

-node has incoming edges only and no outgoing edge, then this
-node is called aroot. (A key graph can have multiple roots.)
Given a key graph , it specifies a secure group as

follows.

1) There is a one-to-one correspondence betweenand the
set of -nodes in .

2) There is a one-to-one correspondence betweenand the
set of -nodes in .

3) is in if and only if has a directed path from
the -node that corresponds toto the -node that corre-
sponds to .

As an example, the key graph in Fig. 1 specifies the following
secure group:

Associated with each secure group are two func-
tions, and , defined as follows:

Intuitively, is the set of keys that are held by
user in , and is the set of users that hold
key in . For examples, referring to the key graph
in Fig. 1, we have and

.
We generalize the definition of function to any

subset of , and function to any subset of
, in a straightforward manner, i.e., is the set of

keys each of which is held by at least one user in, and
is the set of users each of which holds at least one

key in .

4Note that individual keys may have been generated and securely distributed
by an authentication service and do not have to be generated by the key server.

Fig. 1. A key graph.

When a user leaves a secure group , every key
that has been held by and shared by other users inshould
be changed. Let be such a key. To replace, the server ran-
domly generates a new key and sends it to every user in

except . To do so securely, the server needs to find
a subset of keys such that
and use keys in to encrypt for distribution. To minimize
the work of rekeying, the server would like to find a minimal
size set . This suggests the followingkey-covering problem:
Given a secure group , and a subset of , find a min-
imum size subset of such that . Unfor-
tunately, the key-covering problem in general is NP-hard. (This
is proved by showing that the NP-hard Set-Covering problem in
[6] can be reduced to the Key-Covering problem in polynomial
time.)

B. Special Classes of Key Graphs

We next consider key graphs with special structures for which
the key covering problem can be easily solved.

Star: This is the special class of a secure group
where each user in has only two keys: its individual key and
a group keythat is shared by every user in.5

Tree: This is the special class of a secure group
whose key graph is a single-root tree. A tree key graph (or
key tree) is specified by two parameters.

• Theheight of the tree is the length (in number of edges)
of the longest directed path in the tree.

• The degree of the tree is the maximum number of in-
coming edges of a node in the tree.

Note that since the leaf node of each path is a-node, each user
in has at most keys. Also the key at the root of the tree is
shared by every user in, and serves as thegroup key. Lastly,
it is easy to see thatstar is a special case oftree.

Complete: This is the special class of a secure group
, where for every nonempty subsetof , there is

a key in such that . Let be the number
of users in . There are 2 1 keys in , one for each of the
2 1 nonempty subsets of. Moreover, each user in has
2 1 keys, one for each of the 21 subsets of that contains

5This is the base case where no additional keys are used to improve scalability
of group key management.
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TABLE I
NUMBER OF KEYS HELD BY THE SERVER

AND BY EACH USER

. Since is a subset of , there is a key shared by every user
in , which serves as thegroup key.

The total number of keys held by the server and the number of
keys held by a user are presented in Table I whereis the size of

. In particular, in the case of a complete key graph, each user
needs to hold 2 1 keys, which is practical only for small.
Note that the number of keys in a key tree is

when the tree is full and balanced (i.e., ).

III. REKEYING STRATEGIES AND PROTOCOLS

A user who wants to join (leave) a secure group sends a join
(leave) request to the key server, denoted by. For a join request
from user , we assume that group access control is performed
by server using an access control list provided by the initiator
of the secure group.6 A join request initiates an authentication
exchange betweenand . If user is not authorized to join the
group, server sends a join-denied reply to. If the join request
is granted, we assume that the session key distributed as a result
of the authentication exchange [10], [21], [27] will be used as
the individual key of . To simplify protocol specifications
below, we use the following notation:

authenticate and distribute

to represent the authentication exchange between serverand
user , and secure distribution of key to be shared by and
.
After each join or leave, a new secure group is formed. Server
has to update the group's key graph by replacing the keys of

some existing -nodes, deleting some-nodes (in the case of a
leave), and adding some-nodes (in the case of a join). It then
securely sendsrekey messagescontaining new group/subgroup
keys to users of the new secure group. (A reliable message de-
livery system, for both unicast and multicast, is assumed.) In
protocol specifications below, we also use the following nota-
tion:

to denote

• if is a single user, the sending of messagefrom to ;
• if is a set of users, the sending of messagefrom to

every user in (via multicast or unicast).
In the following subsections, we first present protocols for

joining and leaving a secure group specified by a star key
graph. These protocols correspond to conventional rekeying
procedures informally described in the introduction. We then

6The authorization function may be offloaded to an authorization server. In
this case, the authorization server provides an authorized user with a ticket to
join the secure group [19], [28]. The user submits the ticket together with its
join request to servers.

Fig. 2. Join protocol for a star key graph.

Fig. 3. Star key graphs before and after a join (leave).

consider secure groups specified by tree key graphs. With
a hierarchy of group and subgroup keys, rekeying after a
join/leave can be carried out in a variety of ways. We present
three rekeying strategies—user-oriented, key-oriented, and
group-oriented—as well as protocols for joining and leaving
a secure group.

A. Joining a Star Key Graph

After granting a join request from user, server updates the
key graph by creating a new-node for and a new -node for

, and attaching them to the root node. Serveralso generates
a new group key for the root node, encrypts it with the in-
dividual key of user , and sends the encrypted new group
key to . To notify other users of the new group key, server
encrypts the new group key with the old group key , and
then multicasts the encrypted new group key to every user in the
group. (See Fig. 2.)

For example, as shown in Fig. 3, suppose userwants to join
the left secure group in the figure, and it is allowed to join. After
server changes the group key from to a new key ,
server needs to send out the following two rekey messages:

For clarity of presentation, we have assumed that rekey mes-
sages contain new keys only and secure distribution means that
the new keys are encrypted for confidentiality only. In our pro-
totype implementation, rekey messages have additional fields,
such as, subgroup labels for new keys, server digital signature,
message integrity check, etc.

B. Leaving a Star Key Graph

After granting a leave request from user, server updates
the key graph by deleting the-node for user and the -node
for its individual key from the key graph. Servergenerates a
new group key for the new secure group without, encrypts
it with the individual key of each remaining user, and unicasts
the encrypted new group key to the user. (See Fig. 4.)
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Fig. 4. Leave protocol for a star key graph.

Fig. 5. Key trees before and after a join (leave).

C. Joining a Tree Key Graph

After granting a join request from, server creates a new
-node for user and a new -node for its individual key .

Server finds an existing -node (called thejoining point for
this join request) in the key tree and attaches-node to the
joining point as its child.

To prevent the joining user from accessing past communi-
cations, all keys along the path from the joining point to the
root node need to be changed. After generating new keys for
these nodes, serverneeds to securely distribute them to the ex-
isting users as well as the joining user. For example, as shown
in Fig. 5, suppose is granted to join the upper secure group
in the figure. The joining point is -node in the upper key
graph, and the key of this-node is changed to in the lower
key graph. Moreover, the group key at the root is changed from

to . Users only need the new group key
, while users , and need the new group key

as well as the new subgroup key .

To securely distribute the new keys to the users, the server
constructs and sends rekey messages to the users. Arekey mes-
sagecontains one or more encrypted new key(s), and a user
needs to decrypt it with appropriate keys in order to get the new
keys. We next present three different approaches to construct
and send rekey messages.

1) User-Oriented Rekeying:Consider each user and the
subset of new keys it needs. The idea of user-oriented rekeying
is that for each user, the server constructs a rekey message
that contains precisely the new keys needed by the user and
encrypts them using a key held by the user.

For example, as shown in Fig. 5, for userto join the upper
secure group in the figure, serverneeds to send the following
three rekey messages:

Note that users need to get the new group key .
There is no single key that is shared only by . How-
ever, key can be used to encrypt the new key for

without security breach since users and will
also get this new group key from another rekey message.

User-oriented rekey messages can be constructed as follows.
For each -node whose key has been changed, say, fromto

, the server constructs a rekey message by encrypting the new
keys of -node and all its ancestors (up to the root) by the
old key . This rekey message is then sent to the subset of users
that need precisely these new keys. Either unicast orsubgroup
multicastmay be used.7 Moreover, one rekey message is sent to
the joining user, which contains all of the new keys encrypted
by the individual key of the joining user.

This approach needsrekey messages. Counting the number
of keys encrypted, the encryption cost for the server is given by

2) Key-Oriented Rekeying:In this approach, each new key
is encrypted individually (except keys for the joining user). For
each -node whose key has been changed, say, fromto

, the server constructs two rekey messages. First, the server
encrypts the new key with the old key and sends it to

, which is the set of users that share. All of the
original users that need the new keycan get it from this rekey
message. The other rekey message contains the new keyen-
crypted by the individual key of the joining user and is sent to
the joining user.

As described above, a user may have to get multiple rekey
messages in order to get all the new keys it needs. For example,
as shown in Fig. 5, for user to join the upper secure group
in the figure, server needs to send the following four rekey

7A rekey message can be sent via multicast to a subgroup if a multicast ad-
dress has been established for the subgroup in addition to the multicast address
for the entire group. Alternatively, the method in [16] may be used in lieu of
allocating a large number of multicast addresses for subgroups. SeeSection VII
for more discussion.
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Fig. 6. Join protocol for a tree key graph (key-oriented rekeying).

messages. Note that users and need to get two rekey
messages each

Compared to user-oriented rekeying, the above approach re-
duces the encryption cost of the server from ( 1)/2) 1 to
2( 1), but it requires 2( 1) rekey messages instead of.

To reduce the number of rekey messages, all of the rekey mes-
sages for a particular user can be combined and sent as one mes-
sage. Thus, servercan send the following three rekey messages
instead of the four rekey messages shown above:

The join protocol based upon this rekeying strategy is pre-
sented in Fig. 6. Steps (4) and (5) in Fig. 6 specify how the com-
bined rekey messages are constructed and distributed by server
.
Using combined rekey messages, the number of rekey

messages for key-oriented rekeying is(same as user-oriented
rekeying), while the encryption cost is 2 1). From this
analysis, key-oriented rekeying is clearly better for the server
than user-oriented rekeying. (This conclusion is confirmed by
measurement results presented in Section V.)

3) Group-Oriented Rekeying:In key-oriented rekeying,
each new key is encrypted individually (except keys for the
joining user). The server constructs multiple rekey messages,
each tailored to the needs of a subgroup. Specifically, the users
of a subgroup receive a rekey message containing precisely the
new keys each needs.

An alternative approach, called group-oriented, is for the
server to construct a single rekey message containing all new
keys. This rekey message is then multicasted to the entire
group. Clearly, such a rekey message is relatively large and
contains information not needed by individual users. How-
ever, scalability is not a concern because the message size
is for group size and key tree degree. The
group-oriented approach has several advantages over key-ori-
ented and user-oriented rekeying. First, multicast can be used

Fig. 7. Join protocol for a tree key graph (group-oriented rekeying).

instead of unicast or subgroup multicast. Second, with fewer
rekey messages, the server's per rekey message overheads
are reduced. Third, the total number of bytes transmitted
by the server per join/leave request is much less than those
of key-oriented and user-oriented rekeying which duplicate
information in rekey messages. (See Sections V and VII for a
more thorough discussion on performance comparisons.)

For example, as shown in Fig. 5, for userto join the upper
secure group in the figure, serverneeds to send the following
two rekey messages; one is multicasted to the group and the
other is unicasted to the joining user:

The join protocol based upon group-oriented rekeying is pre-
sented in Fig. 7. This approach reduces the number of rekey
messages to one multicast message and one unicast message,
while maintaining the encryption cost at 2(1), which is the
same as key-oriented rekeying.

D. Leaving a Tree Key Graph

After granting a leave request from user, server updates
the key graph by deleting the-node for user and the -node
for its individual key from the key graph. The parent of the

-node for its individual key is called theleaving point.
To prevent the leaving user from accessing future communi-

cations, all keys along the path from the leaving point to the root
node need to be changed. After generating new keys for these

-nodes, server needs to securely distribute them to the re-
maining users. For example, as shown in Fig. 5, supposeis
granted to leave the lower secure group in the figure. The leaving
point is the -node for in the lower key graph, and the key
of this -node is changed to in the upper key graph. More-
over, the group key is also changed from to . Users

only need to know the new group key . Users
and need to know the new group key and the new

subgroup key .
To securely distribute the new keys to users after a leave, we

revisit the three rekeying strategies.
1) User-Oriented Rekeying:In this approach, each user gets

a rekey message in which all the new keys it needs are encrypted
using a key it holds. For example, as shown in Fig. 5, for user

to leave the lower secure group in the figure, serverneeds
to send the following four rekey messages:

User-oriented rekey messages for a leave can be constructed
as follows. For each-node whose key has been changed, say,
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Fig. 8. Leave protocol for a tree key graph (key-oriented rekeying).

from to , and for each unchanged childof , the server con-
structs a rekey message by encrypting the new keys of-node

and all its ancestors (up to the root) by the keyof -node
. This rekey message is then multicasted to .
This approach requires rekey messages. The

encryption cost for the server is given by

2) Key-Oriented Rekeying:In this approach, each new key
is encrypted individually. For example, as shown in Fig. 5, for
user to leave the lower secure group in the figure, server
needs to send the following four rekey messages:

The leave protocol based upon key-oriented rekeying is pre-
sented in Fig. 8. Step (4) in Fig. 8 specifies how the rekey mes-
sages are constructed and distributed to users.

Note that by storing encrypted new keys for use in different
rekey messages, the encryption cost of this approach is

, which is much less than that of user-oriented rekeying. The
number of rekey messages is , same as user-
oriented rekeying.

3) Group-Oriented Rekeying:A single rekey message is
constructed containing all new keys. For example, as shown in
Fig. 5, for user to leave the lower secure group in the figure,
server needs to send the following rekey message:

let denote

let denote

Note that for a leave, this single rekey message is about
times bigger than the rekey message for a join, whereis the
average degree of a-node.

The leave protocol based upon group-oriented rekeying is
presented in Fig. 9. This approach uses only one rekey message
which is multicasted to the entire group, and the encryption cost
is , same as key-oriented rekeying.

Fig. 9. Leave protocol for a tree key graph (group-oriented rekeying).

TABLE II
COST OF AJOIN/LEAVE REQUEST

TABLE III
AVERAGE COST PER REQUEST

E. Encryption and Decryption Costs

An approximate measure of the computational costs of the
server and users is the number of key encryptions and decryp-
tions required by a join/leave request. Letbe the number of
users in a secure group. For each join/leave request, the user
that requests the join/leave is called therequesting user, and the
other users in the group arenonrequesting users. For a join/leave
request, we tabulate the cost of a requesting user in Table II(a),
the cost of a nonrequesting user in Table II(b), and the cost of
the server in Table II(c). These costs are from the protocols de-
scribed above for star and tree key graphs and from [25] for
complete key graphs. (Key-oriented or group-oriented rekeying
is assumed for tree key graphs.)

For a key tree, recall thatand denote the degree and height
of the tree, respectively. In this case, for a nonrequesting user,
the average cost of for a join or a leave is less than 1),
which is independent of the size of the tree (see derivation in
Appendix A).

Assuming that a request is equally likely to be a join or a
leave, and the group sizeis large, the average costs per request
are tabulated in Table III for the server and a user in the group.

From Table III, it is obvious that complete key graphs should
not be used. On the other hand, scalable group key management
can be achieved by using tree key graphs. Note that for a full and
balanced -ary tree, the average server cost is

. However, each user has to do slightly more
work [from 1 to )]. For , a user needs to do 1.33
key decryptions on the average instead of one. (It can be shown
that the server cost is minimized for , i.e., the optimal
degree of key trees is four.)
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TABLE IV
AVERAGE REKEY MESSAGESIZE AND SERVER PROCESSINGTIME (n = 8192, DES, MD5, RSA)

IV. TECHNIQUE FORSIGNING REKEY MESSAGES

In our join/leave protocols, each rekey message contains one
or more new keys. Each new key, destined for a set of users, is
encrypted by a key known only to these users and the server.
It is possible for a user to masquerade as the server and send
out rekey messages to other users. Thus if users cannot be
trusted, then each rekey message should be digitally signed by
the server.

We note that a digital signature operation is around two or-
ders of magnitude slower than a key encryption using DES. For
this reason, it is highly desirable to reduce the number of dig-
ital signature operations required per join/leave. If each rekey
message is signed individually, then group-oriented rekeying,
using just one rekey message per join/leave for all users, would
be far superior to key-oriented (user-oriented) rekeying, which
uses many rekey messages per join/leave.

Consider rekey messages, , with message di-
gests for , where is a secure mes-
sage digest function such as MD5. The standard way to provide
authenticity is for the server to sign each message digest (with
its private key) and send the signed message digest together with
the message. This would requiredigital signature operations
for messages.

We next describe a technique, implemented in our prototype
key server, for signing a set of messages destined to different re-
ceivers using just a single digital signature operation. The tech-
nique is based upon a scheme proposed by Merkle [17].

Suppose there are four messages, , with mes-
sage digests , and . Compute message digests

, and . The server
signs message digest with its private key. The server then
sends the signed message digest, , together with

, and to a user that needs . Upon receipt, the user
computes from , and then computes from and .
It computes from and , and uses it to verify the re-
ceived signature . The above example can be easily
extended to messages in general (see [26]).

The benefits of this technique for signing rekey messages are
demonstrated in Table IV for both key-oriented and user-ori-
ented rekeying. (Note that it is not needed by group-oriented
rekeying which uses one rekey message per join/leave.) The av-
erage rekey message size per join/leave is shown, as well as the
server's processing time per join/leave (avedenotes the average
of average join and leave processing times). The experiments
were performed for an initial group size of 8192, with DES-CBC
encryption, MD5 message digest, and RSA digital signature
(512-bit modulus). Additional details of our experimental setup
can be found in Section V. With the technique for signing rekey

messages, the processing time reduction for key-oriented and
user-oriented rekeying is about a factor of ten (for example, 14.5
ms versus 140.1 ms in the case of key-oriented rekeying). There
is however a small increase (around 50–70 bytes) in the average
rekey message size.

V. EXPERIMENTS AND PERFORMANCECOMPARISONS

We have designed and constructed a prototype group key
server, as well as a client layer, which implement join/leave pro-
tocols for all three rekeying strategies in Section III and the tech-
nique for signing rekey messages in Section IV.

We performed a large number of experiments to evaluate the
performance of the rekeying strategies and the technique for
signing rekey messages. The experiments were carried out on
two lightly loaded SGI Origin 200 machines running IRIX 6.4.
The machines were connected by a 100-Mbps Ethernet. The key
server process runs on one SGI machine. The server is initialized
from a specification file, which determines the initial group size,
the rekeying strategy, the key tree degree, the encryption algo-
rithm, the message digest algorithm, the digital signature algo-
rithm, etc. A client simulator runs on the other SGI simulating a
large number of clients. Actual rekey messages, as well asjoin,
join-ack, leave, leave-ackmessages, are sent between individual
clients and the server using UDP over the 100-Mbps Ethernet.
Cryptographic routines from the publicly available CryptoLib
library are used [14].

For each experiment with an initial group size, the client
simulator first sent join requests, and the server built a key
tree. Then the client simulator sent 1000 join/leave requests. The
sequence of 1000 join/leave requests was generated randomly
according to a given ratio (the ratio was 1:1 in all our experi-
ments to be presented). Each experiment was performed with
three different sequences of 1000 join/leave requests. For fair
comparisons (between different rekeying strategies, key trees of
different degrees, etc.), the same three sequences were used for a
given group size. The server employs a heuristic that attempts to
build and maintain a key tree that is full and balanced. However,
since the sequence of join/leave requests is randomly generated,
it is unlikely that the tree is truly full and balanced at any time.

To evaluate the performance of different rekeying strategies
as well as the technique for signing rekey messages, we mea-
sured rekey message sizes (in bytes) and processing time (in
ms) used by the server per join/leave request. Specifically, the
processing time per join/leave request consists of the following
components. First, the server parses a request, traverses the key
graph to determine which keys are to be updated, generates new
keys, and updates the key graph. Second, the server performs
encryption of new keys and constructs rekey messages. Third,
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TABLE V
NUMBER AND SIZE OF REKEY MESSAGES, WITH ENCRYPTION AND SIGNATURE, SENT BY THE SERVER(INITIAL GROUPSIZE 8192)

TABLE VI
NUMBER AND SIZE OF REKEY MESSAGES, WITH ENCRYPTION AND SIGNATURE,

RECEIVED BY A CLIENT (INITIAL GROUPSIZE 8192)

if message digest is specified, the server computes message di-
gests of the rekey messages. Fourth, if digital signature is speci-
fied, the server computes message digests and a digital signature
as described in Section IV. Last, the server sends out rekey mes-
sages as UDP packets using socket system calls.8

Table VI presents the size and number of rekey messages re-
ceived by a client. Only theaveragemessage sizes are shown,
because the minimum and maximum sizes are the same as those
in Table V. Note that each client gets exactly one rekey message
for all three rekeying strategies. For key-oriented and user-ori-
ented rekeying, the average message size is smaller than the cor-
responding average message size in Table V. This is because the
average message size here was calculated over all clients, and
many more clients received small rekey messages than clients

8The processing time is measured using the UNIX system call
getrusage() , which returns processing time (including time of system
calls) used by a process. In the results presented herein, the processing time
for a join request does not include any time used to authenticate the requesting
user [i.e., step (2) in the join protocols ofFigs. 6 and 7]. We feel that any
authentication overhead should be accounted for separately.

that received large rekey messages. The results in this table show
that group-oriented rekeying, which has the best performance on
the server side, requires more work on the client side to process
a larger message than key-oriented and user-oriented rekeying.
The average rekey message size on the client side is the smallest
in user-oriented rekeying.

The server processing time per request (averaged over joins
and leaves) versus group size (from 32 to 8192) is shown in
Fig. 10. Note that the horizontal axis is in log scale. The left
figure is for rekey messages with DES-CBC encryption only
(no message digest and no digital signature). The right figure is
for rekey messages with DES-CBC encryption, MD5 message
digest, and RSA-512 digital signature. The key tree degree was
four in all experiments. We conclude from the experimental re-
sults that our group key management service is scalable to very
large groups since the processing time per request increases (ap-
proximately) linearly with the logarithm of group size for all
three rekeying strategies. Other experiments support the same
conclusion for key tree degrees of eight and 16.

The average server processing time versus key tree degree is
shown in Figs. 11–13. The initial group size was 8192 in these
experiments. The left-hand side of each figure is for rekey mes-
sages with DES-CBC encryption only (no message digest and
no digital signature). The right-hand side of each figure is for
rekey messages with DES-CBC encryption, MD5 message di-
gest, and RSA-512 digital signature. These experimental results
illustrate three observations. First, as shown in Fig. 13, the op-
timal degree for key trees is around four. Second, with respect
to server processing time, group-oriented rekeying has the best
performance, with key-oriented rekeying in second place. Third,
signing rekey messages increases the server processing time by
an order of magnitude (it would be another order of magnitude
more for key-oriented and user-oriented rekeying without a spe-
cial technique for signing multiple messages).

Table V presents the size and number of rekey messages sent
by the server. Note that group-oriented rekeying uses a single
large rekey message per request (sent via group multicast),
while key-oriented and user-oriented rekeying use multiple
smaller rekey messages per request (sent via subgroup multicast
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(a) (b)

Fig. 10. Server processing time per request versus group size (key tree degree 4). (a) Encryption only and (b) encryption and signature.

(a) (b)

Fig. 11. Server processing time per join versus key tree degree (initial group size 8192). (a) Encryption only and (b) encryption and signature.

or unicast).9 Note that the total number of bytes per join/leave
transmitted by the server is much higher in key-oriented and
user-oriented rekeying than in group-oriented rekeying.

From the contents of rekey messages, we counted and
computed the average number of key changes by a client per
join/leave request, which is shown in Fig. 14. The left figure
shows the average number of key changes versus the key tree
degree, and the right figure shows the average number of key
changes versus the initial group size of each experiment. Note
that the average number of key changes by a client is small and
is very close to the analytical result 1) shown in Table III
in Section III.

VI. RELATED WORK

Various cryptographic techniques have been proposed to ad-
dress the problem of distributing a secret from a source to a set
of destinations. Chiou and Chen proposed a method calledse-
cure lock implemented using the Chinese remainder theorem
[5]. The times to compute the lock and the length of the lock
(size of transmission) are both proportional to the numberof
destinations. (Hence it is not scalable for the purposes of this
paper.)

9The experiments reported herein were performed with each rekey message
sent just once by the server via subgroup multicast.

Berkovits [3] proposed the use ofout of secret sharing.
To distribute a new secret todestinations, the source needs to
compute at least new “shares” and send them to each of the
destinations. Thus, the communication cost is proportional to,
the number of destinations. The computing cost is at least .

Denget al. [8] proposed the use of systematic linear block
codes to distribute a secret todestinations. The transmission
overhead of their approach is independent of the size of the se-
cret but is still proportional to , the number of destinations. The
computing cost is at least .

Fiat and Naor [9] introduced the concept of-resilient broad-
cast. In their approach, a secret distributed to a subset of
destinations is resilient to collusion by up toother destina-
tions. (Note that our approach is resilient to collusion by any
number of destinations not belonging to the group of authorized
receivers.) The most interesting scheme requires each destina-
tion to store keys and the source to broad-
cast messages to distribute a new secret.
Some recent results on this approach by Stinson can be found
in [22].

Another related area is process group security in distributed
computing systems, e.g., protocols in Rampart [20]. These pro-
tocols, designed for highly secure and fault-tolerant systems, are
very complicated and appropriate only for small groups.
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(a) (b)

Fig. 12. Server processing time per leave versus key tree degree (initial group size 8192). (a) Encryption only and (b) encryption and signature.

(a) (b)

Fig. 13. Server processing time per request versus key tree degree (initial group size 8192). (a) Encryption only and (b) encryption and signature.

Fig. 14. Number of key changes by a client per request.

Security issues in the area of groupware or computer-sup-
ported cooperative work (CSCW) are also related. In particular,
Enclaves [11] is a toolkit designed for building applications for
secure collaboration over the Internet. However, the problem of
scalable group key management was not addressed [11].

Security issues of IP multicast have been addressed to some
extent [2]. A number of group key management protocols have

been proposed for the Internet [1], [12], [13]. Their concern is
the distribution of group keying material to users joining a group.
Nosolutionwasproposed forchanging thegroupkeyingmaterial
when users leave a group, except the obvious approach of estab-
lishing a new secure group, which is clearly not scalable.

The scalability problem of group key management for a large
group with frequent joins and leaves was previously addressed
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by Mittra with his Iolus system [18]. Both Iolus and our ap-
proach solve the scalability problem by making use of a hier-
archy. The similarity, however, ends here. The system architec-
tures are very different in the two approaches. We next compare
them by considering a tree hierarchy with a single root (i.e., a
single secure group).

Iolus's tree hierarchy consists of clients at the leaves with mul-
tiple levels of group security agents (agents, in short) above. For
each tree node, the tree node (an agent) and its children (clients
or lower level agents) form a subgroup and share a subgroup key.
There is no globally shared group key. Thus a join or a leave in
a subgroup does not affect other subgroups; only the local sub-
group key needs to be changed.

Our tree hierarchy consists of keys, with individual keys at
leaves, the group key at the root, and subgroup keys elsewhere.
There is a single key server for all the clients. There are no
agents, but each client is given multiple keys (its individual key,
the group key, and some subgroup keys).

In comparing the two approaches, there are several issues to
consider: performance, trust, and reliability.

A. Performance

Roughly speaking, since both approaches make use of a hier-
archy, both attempt to change a problem into a
problem where denotes group size. They differ, however, in
where and when work is performed to achieve secure rekeying
when a client joins/leaves the secure group.

Secure rekeying after a leave requires more work than after
a join because, unlike a join, the previous group key cannot be
used and rekey messages are required (this is referred to in
[18] as a1 does not equal ntype problem). This is precisely
the problem solved by using a hierarchy in both approaches.

The main difference between Iolus and our approach is in how
the1 affects ntype problem [18] is addressed. In our approach,
every time a client joins/leaves the secure group, a rekeying op-
eration is required, which affects the entire group. Note that this
is not a scalability concern in our approach because the server
cost is and the client cost is .

In Iolus, there is no globally shared group key with the ap-
parent advantage that whenever a client joins/leaves a subgroup,
only the subgroup needs to be rekeyed. However, for a client
to send a message confidentially to the entire group, the client
needs to generate amessage keyfor encrypting the message and
the message key has to be securely distributed to the entire group
via agents. Each agent decrypts using one subgroup key to re-
trieve the message key and reencrypts it with another subgroup
key for forwarding [18].

That is, most of the work in handling the1 affects n type
problem is performed in Iolus when a client sends a message
confidentially to the entire group (rather than when a client
joins/leaves the group). In our approach, most of the work in
handling the1 affects ntype problem is performed when a client
joins/leaves the secure group (rather than when a client later
sends messages confidentially to the entire group).

B. Trust

Our architecture requires a single trusted entity, namely, the
key server. The key server may be replicated for reliability/per-
formance enhancement, in which case, several trusted entities
are needed. Each trusted entity should be protected using strong
security measures (e.g., physical security, kernel security, etc.).
In Iolus, however, there are many agents and all of the agents are
trusted entities. Thus the level of trust required of such system
components is much greater in Iolus than in our approach.

C. Reliability

In Iolus, agents are needed to securely forward message keys.
When an agent fails, a backup is needed. It would appear that
replicating a single key server (in our approach) to improve re-
liability is easier than backing up a large number of agents.10

VII. CONCLUSION

To address the scalability problem of group key management,
we propose the use of key trees (or graphs, in general). We in-
vestigated three rekeying strategies,user-oriented, key-oriented
andgroup-oriented, and specified join/leave protocols for them.
The rekeying strategies and protocols are implemented in a pro-
totype key server we have built. From measurement results of
a large number of experiments, we conclude that our group key
server using any of the three rekeying strategies is scalable to
very large groups with frequent joins and leaves. In particular,
the average server processing time per join/leave increases lin-
early with the logarithm of group size. We found that the optimal
key tree degree is around four.

On the server side, group-oriented rekeying provides the best
performance, with key-oriented rekeying in second place, and
user-oriented rekeying in third place. On the client side, user-
oriented rekeying provides the best performance, with key-ori-
ented rekeying in second place, and group-oriented rekeying in
third place. In particular, for a very large group whose clients are
connected to the network via low-speed connections (modems),
key-oriented or user-oriented rekeying would be more appro-
priate than group-oriented rekeying.

We have not investigated the amount of network traffic
generated by the three rekeying strategies. With group-oriented
rekeying, a single rekey message is sent per join/leave via mul-
ticast to the entire group. The network load generated would
depend upon the network configuration (local area network,
campus network, wide-area Internet, etc.) and the group's
geographic distribution. With key-oriented and user-oriented
rekeying, many smaller rekey messages are sent per join/leave
to subgroups. If the rekey messages are sent via unicast (be-
cause the network provides no support for subgroup multicast),
the network load generated would be much greater than that of
group-oriented rekeying.

It is possible to enable subgroup multicast by the method in
[16] or by allocating a large number of multicast addresses, one
for each subgroup that shares a key in the key tree being used.
A more practical approach, however, is to allocate just a small
number of multicast addresses (e.g., one for each child of the key

10Craig Partridge observed that agents can be implemented in existing fire-
walls and derive their reliability and trustworthiness from those of firewalls.
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Fig. 15. Derivation ofProb[u changesi keys].

tree's root node) and use a rekeying strategy that is a hybrid of
group-oriented and key-oriented rekeying. It is straightforward
to design such a hybrid strategy and specify the join/leave proto-
cols. Furthermore a hybrid approach, involving the use of some
Iolus agents at strategic locations, such as firewalls or border
routers, would also be appropriate.

We have implemented a prototype system for group key man-
agement, called Keystone [15]. In designing the system, we had
to deal with several practical issues not considered in this paper.
To deliver rekey messages reliably to group members, an appli-
cation program that uses Keystone can specify one of two op-
tions for rekey message delivery: reliable unicast (which is not
scalable) or IP multicast with forward error correction. In the
case of forward error correction, the application can specify the
ratio of orginal to repair packets such that the loss probability of
a rekey message is calculated to be at an acceptable level (such
as 0.001). For rekey messages that are not recoverable, a client
sends a resynchronization request to the Keystone server, which
then resends the missing rekey messages by reliable unicast.

For applications characterized by very frequent joins/leaves,
the amount of rekey message traffic can be substantially reduced
by rekeying periodically instead of after each join/leave. This
also allows batch processing of join/leave requests at the key
server. An application that uses Keystone can specify a rekeying
period. If one is specified, then the Keystone server performs

rekeying periodically instead of after every join/leave. Any ef-
ficiency gain, however, is at the expense of allowing new mem-
bers access to some past data and old members access to some
future data. Such a tradeoff may be acceptable to some e-com-
merce applications, e.g., pay per view and information services,
where a temporary breach in group confidentiality can be quan-
tified in monetary terms.

Last, Keystone allows an application to have multiple secure
groups, and clients to simultaneously join (or leave) a subset of
these groups. For example, consider video conferencing where
there is video stream and a set of audio streams in different lan-
guages. Each client joins (leaves) the video group and one audio
group simultaneously. In this case, it is efficient for Keystone to
use a single key graph for all groups instead of separate key trees
(one for each group).

APPENDIX

NUMBER OF KEY CHANGES BY A USER

Consider a secure group with a key tree that is full and bal-
anced with degree and height . Suppose each user is equally
likely to be the one who is joining/leaving. First, we derive the
probability that after a join or leave, a user, say,, needs to
change exactly keys, denoted by changes keys.
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Suppose the individual key of useris at -node . Let
denote the path from-node to the root

of the tree (see Fig. 15). Userneeds to change exactly
keys if and only if it needs to change keys at but
not . Let denote the children of .
Without any loss of generality, we assume , that is, user

is in the subtree rooted at . When the joining/leaving user
is in one of the subtrees rooted at (there are
of them), the keys at are precisely the ones to be
changed by user . Note that these subtrees are of the same
height, and there are subtrees of this height in the key tree.
Therefore

changes keys

For a join/leave, the average number of key changes (or the av-
erage number of key decryptions) by a nonrequesting user,
denoted by , is given by the following expression:

changes keys

which depends only on the degreeof the key tree.
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