16 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 8, NO. 1, FEBRUARY 2000

Secure Group Communications Using Key Graphs

Chung Kei WongMember, IEEEMohamed Gouda, and Simon S. LaRellow, IEEE

Abstract—Many emerging network applications (e.g., telecon- While the technical issues of securing unicast communica-
ference, information services, distributed interactive simulation, tjons for client-server computing are fairly well understood,

and collaborative work) are based upon a group communications e technical issues of securing group communications are not.
model. As a result, securing group communications, i.e., providing

confidentiality, authenticity, and integrity of messages delivered Conceptually, since every pOInt-tO.-multIDOI'nt commun!cat[on

between group members, will become a critical networking issue. Can be represented as a set of point-to-point communications,
We present, in this paper, a novel solution to the scalability problem the current technology base for securing unicast communica-
of group/multicast key management. We formalize the notion of a tions can be extended in a straightforward manner to secure

secure group as a triple(U, K, R) whereU denotes a set of users, it ;
K a set of keys held by the users, and® a user-key relation. We group communications [12], [13]. However, such an extension
is not scalable to large groups.

then introduce key graphs to specify secure groups. For a special . > . . .
class of key graphs, we present three strategies for securely dis- FOramore concrete illustration of this point, we outline a typ-
tributing rekey messages after a join/leave and specify protocols ical procedure for securing unicast communications between a
for joining and leaving a secure group. The rekeying strategies and client and a server. Initially, the client and server mutually au-
join/leave protocols are implemented in a prototype key server we o niicate each other using an authentication protocol or service:

have built. We present measurement results from experiments and b H tric kev i ted and shared bv th
discuss performance comparisons. We show that our group key subsequently, a symmetric key IS created and shared by them

management service, using any of the three rekeying strategies, ist0 be used for pairwise confidential communications [4], [21],
scalable to large groups with frequent joins and leaves. In partic- [23], [27]. This procedure can be extended to a group as follows.
ular, the average measured processing time per join/leave increases|_et there be a trusted server which is given membership infor-
linearly with the logarithm of group size. mation to exercise group access control. When a client wants to
Index Terms—Confidentiality, group communications, group join the group, the client and server mutually authenticate using
key management, key distribution, multicast, privacy, rekeying, an authentication protocol. Having been authenticated and ac-
security. cepted into the group, each member shares with the server a
key! to be called the membeiiisdividual key For group com-
l. INTRODUCTION munications, the server distributes to each memiggoap key
. to be shared by all members of the gréup.
O.ST network appllcauons are based upon the For a group of: members, distributing the group key securely
. cller!t—server paracﬁgm and make use of umca;t (Pcf all members requires messages encrypted with individual
point-to-point) packet delivery. Many emerging apphcgﬂon%eys (a computation cost proportional to group sideEach
on the other hand, are based upograup communications such message may be sent separately via unicast. Alternatively,

model. In parti_cular, they require packet delivery from ONfhen messages may be sent as a combined message to all group
or more authorized sender(s) -to a large number of authon (imbers via multicast. Either way, there is a communication
receivers. In the Internet, multicast has been used successfH

. - .) t proportional to group size (measured in terms of the
to provide an efﬂcu_an_t, best effort delivery service to Iarg.ﬁumber of messages or the size of the combined message).
groups [71. We envision that dep_loyment Of. network appl_l- Observe that for a point-to-point session, the costs of session
cations requiring group communications will accelerate ing

. A it . cati tablishment and key distribution are incurred just once, at
coming years. As a result, securing group communicatiohg, beginning of the session. A group session, on the other
ie., prowdmg.confldentlahty, authenticity, and |n.tegr|ty thand, may persist for a relatively long time with members
mi_ssallge? detyere_d betyvef[ﬁn grou? {nembers, will becomﬁ)iﬂing and leaving the session. Consequently, the group key
criical networking 1Ssue in the near future. should be changed frequently. To achieve a high level of

security, the group key should be changed after ejarnyand
leaveso that a former group member has no access to current

Manuscript received November 5, 1998; revised July 14, 1999; reco®pymmunications and a new member has no access to previous
mended by IEEE/ACM RANSACTIONS ONNETWORKING Editor C. Partridge. P

This work was supported in part by the Texas Advanced Research Progrﬁﬁmmun'catmns-

under Grant 003658-063, in part by the NSA INFOSEC University Research

Program under Grant MDA904-98-C-A901, and in part by the National Science

Foundation under Grant ANI-9977267. Experiments were performed on equip-) .

ment procured with the support of the NSF under Grant CDA-9624082. An'In this paperkeymeans a key from a symmetric cryptosystem, such as DES,
earlier version of this paper was presented at ACM SIGCOMM'98, Vancouvéfless explicitly stated otherwise.

BC, Canada, September 1998. 2ltis easy to see that sharing a group key enables confidential communications
The authors are with the Department of Computer Sciences, The Universitithin a group. In addition to confidentiality, standard techniques such as digital
of Texas at Austin, Austin, TX 78712-1188 USA (e-mail: ckwong@hrl.comsignature and message digest can be used to provide authenticity, integrity, and
gouda@cs.utexas.edu; lam@cs.utexas.edu). nonrepudiation. We will not elaborate upon these techniques since the focus of

Publisher Item Identifier S 1063-6692(00)01437-0. this paper is key management.

1063-6692/00$10.00 © 2000 IEEE

WONG et al. SECURE GROUP COMMUNICATIONS USING KEY GRAPHS 17

Let there be a trusted server that creates a new group key aftedes of a full and balancedary tree. When a user leaves the
every join and leave. After a join, the new group key can be sesgcure group, to distribute new keys, the server needs to perform
via unicast to the new member (encrypted with its individuapproximatelyllog,(n) encryptions (rather tham— 1 encryp-
key) and via multicast to existing group members (encryptdidns). For a large group, say, 100 000, the savings can be very
with the previous group key). Thus, changing the group key ssubstantial.
curely after a join is not too much work. After a leave, how- This approach of a hierarchy of keys, organized as a rooted
ever, the previous group key can no longer be used and the riese, was discovered independently by Walleeal. of the Na-
group key must be encrypted for each remaining group memlienal Security Agency and presented in an informational RFC
using its individual key. Thus, we see that changing the gro{@4] at about the same time as when this paper was first pub-
key securely after a leave incurs computation and communidiashed as a technical report [25]. Additional contributions of
tion costs proportional te, the same as initial group key dis-this paper on protocol design, implementation, and performance
tribution. That is, large groups whose members join and leagaalysis, not addressed in [24], are summarized below.
frequently pose a scalability problem.

The topic of secure group communications has been invegi- Other Contributions of This Paper
ggted [1], [2], [11]-{13], [18]. Also the problem of how to di_s- With a hierarchy of keys, there are many different ways to
tribute a secrgt to a group of users has been add_ressed 'nc%]‘?struct rekey messages and securely distribute them to users.
cryptography literature (3], [5], [9], [22]. However, with the e investigate three rekeying strategieser-oriented, key-ori-

ception of [18], no one has addressed the need for frequent lé%\fed and group-oriented We design and specify join/leave
changes and the associated scalability problem for a very lal !

[ﬁgtocols based upon these rekeying strategies. For key-oriented

group. The approach proposed in lolus [18] to improve scalgﬁd user-oriented rekeying, which use multiple rekey messages

bility is to decompose a large group of cllentsllnto many Su%brjoin/leave, we present a technique for signing multiple mes-
groups and employ a hierarchy of group security agents.

sages (destined to different receivers) with a single digital sig-

nature operation. Compared to using one digital signature per

rekey message, the technique provides a substantial reduction
We present in this paper a different hierarchical approaghthe average server processing time of a join/leave.

to improve scalability. Instead of a hierarchy of group security The rekeying strategies and protocols are implemented in a

agents, we employ a hierarchy of keys. A detailed comparisonmbtotype key server we have built. We performed experiments

our approach and the lolus approach [18] as well as an overviewtwo lightly loaded SGI Origin 200 machines, with the server

of related work, is given in Section VI. running on one and up to 8192 clients on the other. From mea-
We begin by formalizing the notion of a secure group assurement results, we show that our group key management ser-

triple (I/, K, R), wherel/ denotes a set of userk, denotes a vice, using any of the rekeying strategies with a key tree, is

set of keys, and? C U x K denotes aiser—keyelation, which scalable; in particular, the average server processing time per

specifies keys held by each usefinIn particular, each user is join/leave increases linearly with the logarithm of group size.

given a subset of keys which includes the user's individual ke found that the optimal key tree degree is four. Group-ori-

and a group key. We next illustrate how scalability of group kegnted rekeying provides the best performance of the three strate-

management can be improved by organizing the keys into gies on the server side but is worst of the three on the client side.

a hierarchy and giving users additional keys. User-oriented rekeying has the best performance on the client
Let there be atrusted server responsible for group access cside but the worst on the server side.

trol and key management. In particular, the server securely disThe balance of this paper is organized as follows. In Sec-

tributes keys to group members and maintains the user—key reéian 1, we introduce key graphs as a method for specifying

tion3 To illustrate our approach, consider the following simplsecure groups. In Section Ill, we present protocols for users

example of a secure group with nine members partitioned irtw join and leave a secure group as well as the three rekeying

three subgroupsfus ,ua, us}, {wa, us, us}, and{ur, us,us}. sStrategies. In Section IV, we present a technique for signing

Each member is given three keys: its individual key, a key fonultiple rekey messages using a single digital signature opera-

the entire group, and a key for its subgroup. Supposethat tion. Experiments and performance results are presented in Sec-

leaves the group; the remaining eight members form a new sien V. Related work and a comparison of our approach and the

cure group and require a new group key; alspandug forma lolus approach are given in Section VI. Our conclusions are in

new subgroup and require a new subgroup key. To send the rigectionVII.

subgroup key securely to, (u3), the server encrypts it with

the individual key ofu; (u3). Subsequently, the server can send

the new group key securely to members of each subgroup by en- Il. SECURE GROUPS

crypting it with the subgroup key. Thus by giving each user three . .

keys instead of two, the server performs five encryptions insteadA‘ se(‘fure 9@“95 atriple(V, K, i) where:

of eight. As a more general example, suppose the numioér *Ulisa f|_n|_te and nonempty set of users;

users is a power of, and the keys ik are organized as the * X is afinite and nonempty set of keys;

e R is a binary relation betweeti andK, R C U x K,

3In practice, such a server may be distributed or replicated to enhance relia- called the.user_key?lation Qf t.he secure group. User
bility and performance. has keyk if and only if (u, k) is in R.

A. Our Approach

18 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 8, NO. 1, FEBRUARY 2000

Each secure group has a truskegt serveresponsible for gener- ki234

ating and securely distributing keys i to users in the group. B E LR R -» k-nodes
Specifically, the key server knows the user&eind the key set

K and maintains the user—key relatién Every user in/ has

a key inK, called itsindividual key which is shared only with S

the key server and is used for pairwise confidential communi- k12 kaza

each user to send messages confidentially to other members of

the group.
A. Key Graphs @ emeeenns u-nodes

A key graph is a directed acyclic gragh with two types
of nodes:u-nodesrepresenting users atdnodesrepresenting
keys. Eachu-node has one or more outgoing edges but no in-
coming edge. Eack-node has one or more incoming edges. Ifa When a usemw leaves a secure grou@/, K, i), every key
k-node has incoming edges only and no outgoing edge, then tiigt has been held by and shared by other usersiihshould
k-node is called aoot. (A key graph can have multiple roots.) be changed. Let be such a key. To replacde the server ran-

Given a key grapld, it specifies a secure grogp’, K, R) as domly generates a new key,.,, and sends it to every user in
follows. userset(k) exceptu. To do so securely, the server needs to find

a subsef(’ of keys such thatiserset(K') = userset(k) — {u}
set ofu-nodes inG. and use keys i’ to encryptk,,.., for distribution. To minimize

2) There is a one-to-one correspondence betwéand the the work of rekeying, the server would like to find a minimal
set ofk-nodes inG. size setl’. This suggests the followinkey-covering problem

3) (u, k) is in R if and only if G has a directed path from Givenasecure gro/L(}iU, K, R), and a subsef Olf U, find amin-
thew-node that corresponds icto the/-node that corre- Imum size subsek” of K such thauserset(K”’) = 5. Unfor-
sponds tk. tunately, the key-covering problem in general is NP-hard. (This

As an example, the key graph in Fig. 1 specifies the fonowinigproved by showing that the NP-hard Set-Covering problem in

secure group:] can be reduced to the Key-Covering problem in polynomial
time.)

cation with the key server. There igeoup keyin K, shared by
the key server and all usersfi The group key can be used by K

Fig. 1. A key graph.

1) There is a one-to-one correspondence betwéand the

U= {u17u27u37u4}

K = {ky, ky, ks, ki, kro, koz, kiose} B. Special Classes of Key Graphs

R = {(us, k1), (ug, ko), (ur, ki2za), We next consider key graphs with special structures for which
the key covering problem can be easily solved.
(w2, ka), (2, krz), (uz, k2se), (uz, kizsa), Star: This is the special class of a secure grqip K, R)
(u3, k3), (u3, k2sa), (u3, k1234), where each user it has only two keys: its individual key and
(g, ka), (g, k23a), (g, k1234) }- agroup keythat is shared by every userins

Tree: This is the special class of a secure grqip K, R)
Associated with each secure gro(ip, K, R) are two func- whose key graplt is a single-root tree. A tree key graph (or

tions, keyset() anduserset(), defined as follows: key tre@ is specified by two parameters.
» Theheighth of the tree is the length (in number of edges)
keyset(u) = {k | (u. k) € R} of the longest directed path in the tree.
userset(k) = {u | (v, k) € R}. » The degreed of the tree is the maximum number of in-

coming edges of a node in the tree.

Intuitively, keyset(u) is the set of keys that are held byNote that since the leaf node of each pathisraode, each user
useru in U, and userset(k) is the set of users that holdin I/ has at most keys. Also the key at the root of the tree is
key k£ in K. For examples, referring to the key graplshared by every user iti, and serves as thggroup key Lastly,
in Fig. 1, we havekeyset(us) = {k4,k234,k1234} and itis easy to see thataris a special case dfee.
userset(kasa) = {u2, us, uq }. Complete: This is the special class of a secure group
We generalize the definition of functiokeyset() to any (U, K, R), where for every nonempty subsstof U, there is
subsett” of U, and functionuserset() to any subsef’ of a keyk in K such thatuserset(k) = S. Letn be the number
K, in a straightforward manner, i.esgyset(l/’) is the set of of users inU. There are 2—1 keys inK, one for each of the
keys each of which is held by at least one user/fy and 2"—1 nonempty subsets &f. Moreover, each userin U has
userset(K’) is the set of users each of which holds at least or2@—1 keys, one for each of thé’2 1 subsets of’ that contains
key in K.
4Note that individual keys may have been generated and securely distribute8This is the base case where no additional keys are used to improve scalability
by an authentication service and do not have to be generated by the key semiegroup key management.

WONG et al. SECURE GROUP COMMUNICATIONS USING KEY GRAPHS 19

TABLE | (1) v — s :join request
NUMBER OF KEYS HELD BY THE SERVER (2) s & u :authenticate u and distribute k,
AND BY EACH USER 3) s :randomly generate a new group key ky-
(4) s —u :{kU’}ku
Star | Tree | Complete (5)s > U : {kpr }iy
Total # of keys n+l | F&gn 2"-1
of keys per user | 2 h 2n-t Fig. 2. Join protocol for a star key graph.
u. Sincel is a subset o/, there is a key shared by every use k123 k1234

in 7, which serves as thgroup key

The total number of keys held by the server and the number o
keys held by a user are presented in Table | whesthe size of L Joins
U. In particular, in the case of a complete key graph, each us

needs to hold 2-1 keys, which is practical only for smail. w leaves

Note that the number of keys in a key treéd4 —1)/(d — 1) ~ .
d/(d—1))n whenthe tree is full and balanced (.= d"1). :
e

[ll. REKEYING STRATEGIES AND PROTOCOLS

£

Fig. 3. Star key graphs before and after a join (leave).

A useru, who wants to join (leave) a secure group sends a join

(leave) request to the key server, denoted.lyor a join request consider secure groups specified by tree key graphs. With
from useru, we assume that group access control is performgg

: . . L hierarchy of group and subgroup keys, rekeying after a
b%/tiervers using an z;cge;s controtl !ls.tt.p;owded b%;het!n't't.atoroinlleave can be carried out in a variety of ways. We present
0 he secm:)retgroufa dJO|rI1freques_ |n|;a etshan al:jte_n !C%o hree rekeying strategiesuser-oriented key-oriented and
exchange betweanancs. fTUseru IS not autnorizeadto join tine group-oriented—as well as protocols for joining and leaving
group, serves sends a join-denied reply ta If the join request
; :) a slecure group.
is granted, we assume that the session key distributed as a result
of the authentication exchange [10], [21], [27] will be used

the individual keyk, of «. To simplify protocol specifications%' Joining a Star Key Graph

below, we use the following notation: After granting a join request from usey servers updates the
key graph by creating a newnode foru and a new:-node for
s < u : authenticate: and distributek,, k., and attaching them to the root node. Servalso generates

a new group keycy- for the root node, encrypts it with the in-
to represent the authentication exchange between selved dividual keyk,, of useru, and sends the encrypted new group
usery, and secure distribution of ke, to be shared by. and key tow. To notify other users of the new group key, server
s. encrypts the new group kdy;, with the old group key:;;, and

After each join or leave, a new secure group is formed. Serwtien multicasts the encrypted new group key to every user in the
s has to update the group's key graph by replacing the keysgpbup. (See Fig. 2.)
some existing:-nodes, deleting somenodes (in the case of a For example, as shown in Fig. 3, suppose usevants to join
leave), and adding somienodes (in the case of a join). It thenthe left secure group in the figure, and it is allowed to join. After
securely sendsekey messagentaining new group/subgroupservers changes the group key frok .3 to a new keykioay,
keys to users of the new secure group. (A reliable message siervers needs to send out the following two rekey messages:
livery system, for both unicast and multicast, is assumed.) In

protocol specifications below, we also use the following nota- s — {ug, uz,uzt: {k1234 bnyo
tion: S = Uy s { k1234t

For clarity of presentation, we have assumed that rekey mes-
sages contain new keys only and secure distribution means that
to denote the new keys are encrypted for confidentiality only. In our pro-
totype implementation, rekey messages have additional fields,
such as, subgroup labels for new keys, server digital signature,
message integrity check, etc.

T =Yz

« if y is a single user, the sending of messadem x to ¥;
« if y is a set of users, the sending of messadem z to
every user iny (via multicast or unicast).

In the following subsections, we first present protocols fqé Leaving a Star Key Graph
joining and leaving a secure group specified by a star key)
graph. These protocols correspond to conventional rekeying\ter granting a leave request from userservers updates

procedures informally described in the introduction. We théhe key graph by deleting thenode for user and thek-node
forits individual keyk,, from the key graph. Servemgenerates a
'eThe authorization function may be offloaded to an authorization server. Hayy group key:y+ for the new secure group without encrypts
this case, the authorization server provides an authorized user with a ticket to . h the individual k f h . d .
join the secure group [19], [28]. The user submits the ticket together with s W/t the individual key of each remaining user, and unicasts

join request to server. the encrypted new group key to the user. (See Fig. 4.)

20 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 8, NO. 1, FEBRUARY 2000

)u — s :{ leave-request }i, To securely distribute the new keys to the users, the server
(23 s = u:{ leave-granted }, constructs and sends rekey messages to the usezke mes-

3 s :randomly generate a new group key kyr .
(4) for each user v in U except user u do sagecontains one or more encrypted new key(s), and a user
s—wv: {kpolg, needs to decrypt it with appropriate keys in order to get the new
keys. We next present three different approaches to construct
Fig. 4. Leave protocol for a star key graph. and send rekey messages.

1) User-Oriented RekeyingConsider each user and the
subset of new keys it needs. The idea of user-oriented rekeying
ki-g is that for each user, the server constructs a rekey message
@ <- - - k-node x o that contains precisely the new keys needed by the user and
encrypts them using a key held by the user.
For example, as shown in Fig. 5, for uggrto join the upper
secure group in the figure, serveneeds to send the following
three rekey messages:

k-node x 4
N

S — {U,l, ey U,G} : {/{}1,9}]&‘1_8
s — {ur,us} :{k1-9, k789 } o
@ @ 5 — g :{k1—0, k7so fro-
@ Note that usersy, .. ., ug need to get the new group kéy_o.

There is no single key that is shared onlydy . . ., ug. How-
ever, keyk; _g can be used to encrypt the new kiy o for
u1,...,us Without security breach since users andug will
also get this new group key from another rekey message.
User-oriented rekey messages can be constructed as follows.
For eacht-nodex whose key has been changed, say, fiota
k', the server constructs a rekey message by encrypting the new
keys of k-nodez and all its ancestors (up to the root) by the
old keyk. This rekey message is then sent to the subset of users
that need precisely these new keys. Either unicastibgroup
multicastmay be used.Moreover, one rekey message is sent to
the joining user, which contains all of the new keys encrypted
by the individual key of the joining user.
This approach needsrekey messages. Counting the number
of keys encrypted, the encryption cost for the server is given by

k123

()

(o) @g C)
hhddddd

Fig. 5. Key trees before and after a join (leave).

h(h+1)
2

1424 +h-14+h-1= -1
2) Key-Oriented Rekeyingtn this approach, each new key
C. Joining a Tree Key Graph is encrypted individually (except keys for the joining user). For
eachk-node x whose key has been changed, say, frbrto
After granting a join request from, servers creates a new k', the server constructs two rekey messages. First, the server
u-node for user: and a newk-node for its individual key:,,. encrypts the new key’ with the old keyk and sends it to
Servers finds an existingt-node (called thgoining pointfor userset(k), which is the set of users that shateAll of the
this join request) in the key tree and attackesodek, to the original users that need the new kigycan get it from this rekey
joining point as its child. message. The other rekey message contains the nei/ legy
To prevent the joining user from accessing past commurtirypted by the individual key of the joining user and is sent to
cations, all keys along the path from the joining point to thée joining user.
root node need to be changed. After generating new keys forAs described above, a user may have to get multiple rekey
these nodes, serveneeds to securely distribute them to the exniessages in order to get all the new keys it needs. For example,
isting users as well as the joining user. For example, as shoasishown in Fig. 5, for usery to join the upper secure group
in Fig. 5, suppose is granted to join the upper secure groun the figure, serves needs to send the following four rekey
in the figure. The joining point i%-nodek-s in the upper key
graph, and the key of thisnode is changed th;sg in the lower

key graph. Moreover, the group key at the root is changed froniA rekey message can be sent via multicast to a subgroup if a multicast ad-

ki_g t0 ki_g. Usersuq, ..., ug only need the new group keydress has been established for the subgroup in addition to the multicast address
3 - h'l_ ’ ;:i d th k for the entire group. Alternatively, the method in [16] may be used in lieu of
19, While usersuz, us, andug need the new group ke —o ajiocating a large number of multicast addresses for subgroupseste Vi

as well as the new subgroup k&ysg. for more discussion.

WONG et al. SECURE GROUP COMMUNICATIONS USING KEY GRAPHS 21

(1) w — s : join request (1) - (3) (same as Figure 6)
(2) s & u : authenticate v and distribute k,, (4) 5 — userset(Ky) : {Kp}x,, - - v{K;}K,'
(3) s : find a joining point and attach k,; (5) s—u: {Ky,... ,K,/'}k.,
let z; denote the joining point,
zg the root, and for i = 1,...,j Fig. 7. Join protocol for a tree key graph (group-oriented rekeying).

z;—1 the parent of z;;
let K;4; denote ky, and Ky, ..., K;

the old keys of @y, ..., ;; instead of unicast or subgroup multicast. Second, with fewer
fam}omly Sﬁnerate new keys rekey messages, the server's per rekey message overheads
Koy K; are reduced. Third, the total number of bytes transmitted

(4) for i = 0 upto j do

5 = (userset(K;) — userset(Kip1)) : by the server per join/leave request is much less than those

(K} ks - {K}k, of key-oriented and user-oriented rekeying which duplicate
(6) s > u: {Kp,..., Kbk, information in rekey messages. (See Sections V and VIl for a
more thorough discussion on performance comparisons.)
Fig. 6. Join protocol for a tree key graph (key-oriented rekeying). For example, as shown in Fig. 5, for userto join the upper

secure group in the figure, serveneeds to send the following
messages. Note that users ug, andug need to get two rekey two rekey messages; one is multicasted to the group and the

messages each other is unicasted to the joining user:
s — {ulv cee 7“8} : {kl—Q}kl,g § — {ul, RN U,g} : {Ifl—Q}kl,g, {k789}k78
§ — Ug : {kl—O}kQ s — Ug : {k‘l_g, k789}k9-
s = {ur,ust o {K7so bhos o . o
S — Ug : {k789 tho - The join protocol based upon group-oriented rekeying is pre-

sented in Fig. 7. This approach reduces the number of rekey

Compared to user-oriented rekeying, the above approach igsssages to one multicast message and one unicast message,

duces the encryption cost of the server frof/{+1)/2)-1t0 \yhile maintaining the encryption cost ati2{1), which is the
2(h—1), but it requires 2{—1) rekey messages insteadfof same as key-oriented rekeying.

To reduce the number of rekey messages, all of the rekey mes-
sages for a particular user can be combined and sent as one 'BEY eaving a Tree Key Graph
sage. Thus, serveican send the following three rekey messages

instead of the four rekey messages shown above: After granting a Iea\{e request from usegrservers updates
the key graph by deleting thenode for user: and thek-node
s—{ug, .., uet: {ki—otr, s for its individual key from the key graph. The parent of the
s—{ur,ug}t {ki—otk s, {k780 Fars k-node for its individual key is called tHeaving point
S — Up s {k1—0, k780 fho - To prevent the leaving user from accessing future communi-

The ioin protocol based upon this rekeving strateqy is rg{;\tions, all keys along the path from the leaving point to the root
join p P ying 9Y 1S P'EGde need to be changed. After generating new keys for these

sented in Fig. 6. Steps (4) and (5) in Fig. 6 specify how the Cor7;'-'r10des, server needs to securely distribute them to the re-

bined rekey messages are constructed and distributed by server . - :
5 malining users. For example, as shown in Fig. 5, suppgss

Using combined rekev messages. the number of re ranted to leave the lower secure group in the figure. The leaving
m 9 for k rent)(;r K ingi ' m rorient gggint is thek-node fork-sg in the lower key graph, and the key
essages for key-oriented rekeyingiigsame as user-oriente of this k-node is changed tbg in the upper key graph. More-

rekeylr_lg), wh|Ie_ the encryp_t|on_ cost ig(/2-1). From this gver, the group key is also changed frém. g to k;_g. Users
analysis, key-oriented rekeying is clearly better for the server
.,ug only need to know the new group kéy_g. Users

than user-oriented rekeying. (This conclusion is confirmed by’
measurement results pr}(lasgntsed in Section V.) J; andus need to know the new group kéy s and the new

: : . . subgroup keyers.
3) Group-On_e nted Rekey_lng_tn_ key-oriented rekeying, To securely distribute the new keys to users after a leave, we
each new key is encrypted individually (except keys for the
joining user). The server constructs multiple rekey messa (reesVISIt the three rekeying strategies.
] 9 : P y 9 1) User-Oriented Rekeyingtn this approach, each user gets

each tailored to thg needs of a subgroup. Spe_cmcally, the us rr%akey message in which all the new keys it needs are encrypted
of a subgroup receive a rekey message containing precisely

u an a key it holds. For example, as shown in Fig. 5, for user
new keys each needs. : .
An alternative approach. called aroup-oriented. is for th to leave the lower secure group in the figure, serveeeds

pproach, group . r‘{((Jjgsend the following four rekey messages:
server to construct a single rekey message containing all new
keys. This rekey message is then multicasted to the entire
group. Clearly, such a rekey message is relatively large and
contains information not needed by individual users. How-
ever, scalability is not a concern because the message size
is O(log,(n)) for group sizen and key tree degreé. The
group-oriented approach has several advantages over key-orlJser-oriented rekey messages for a leave can be constructed
ented and user-oriented rekeying. First, multicast can be usedfollows. For each-nodexz whose key has been changed, say,

5 = {ug, u2,us)i {h1-8}hiss
§— {U'47 Us, U'G} : {kl—s}k436
5 — uy k18, krstr,
5 — ug k18, kst -

22 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 8, NO. 1, FEBRUARY 2000

(1) u — s : { leave-request }, (1) - (3) (same as Figure 8)
(2) s — u : { leave-granted }, (4) for i =0 upto 7 do
3) s : find the leaving point (parent of k,); let Jyi,...,J, denote keys at the children
remove k, from the tree; of z; in the new key tree;
let x4, denote the deleted k-node for let L; denote {K}}y,,...,{K}}s;
ky, x; the leaving point, z¢ the root, 8 —> userset(Ky) : Lo,...,L;
andfori=1,...,j
x;—1 the parent of z;; Fig. 9. Leave protocol for a tree key graph (group-oriented rekeying).
randomly generate keys Ky, ..., K}
as the new keys of y,...,z; TABLE I
(4) for ¢ = 0 upto j do CosT OF AJOIN/LEAVE REQUEST
for each child y (# x;4+1) of z; do
let K denote the key at k-node y; (a) the requesting user
s — userset(K) : Star Tree | Complete
{E ko AR 1}y {Kod iy join 1 h—1 271
leave 0 0 0
Fig. 8. Leave protocol for a tree key graph (key-oriented rekeying). (b) a non-requesting user
Star Tree Complete
, . join 1 7% P
fromk tok’, and for each unchanged chilaf =, the server con- 1 d
o eave 1 1 0
structs a _rekey message by encrypting the new keysraide © the server
« and all its ancestors (up to the root) by the K€yof k-node Star Tree | Complete
y. This rekey message is then multicastedderset(K). join 2 2(h—1) | 2¢FT -2
This approach requirggl — 1)(h — 1) rekey messages. The leave | n-1 | d(h—1) 0
encryption cost for the server is given by
d— Dh(h— 1 TABLE Il
(d—l)(1—|—2—|—---+h—1)= (-)2(-) AVERAGE COST PER REQUEST
Star Tree Complete
2) Key-Oriented Rekeyingtn this approach, each new key Cost of server | n/2 |(d+2)(h —1)/2 2"
is encrypted individually. For example, as shown in Fig. 5, for Cost of a user| 1 d/(d-1) 2
userug to leave the lower secure group in the figure, sewrver
needs to send the following four rekey messages: E. Encryption and Decryption Costs
s — {ug, uz,us}: {k1_s}r,,, An approximate measure of the computational costs of the
5 — {ug, us, Ue) {k1-8 hane server and users is the number of key encryptions and decryp-
s — uy : {k1—8 Y hrg {F78 tir tions required by a join/leave request. kebe the number of
s — ug {18 Y {F78 Y g users in a secure group. For each join/leave request, the user

that requests the join/leave is called tequesting userand the
The leave protocol based upon key-oriented rekeying is pigther users in the group amenrequesting useror a join/leave
sented in Fig. 8. Step (4) in Fig. 8 specifies how the rekey magquest, we tabulate the cost of a requesting user in Table I1(a),
sages are constructed and distributed to users. the cost of a nonrequesting user in Table I1(b), and the cost of
Note that by storing encrypted new keys for use in differeffie server in Table 11(c). These costs are from the protocols de-
rekey messages, the encryption cost of this approadfhis- scribed above for star and tree key graphs and from [25] for
1), which is much less than that of user-oriented rekeying. Th@mpbte key graphs_ (Key-oriented or group-oriented rekeying
number of rekey messages(i¢ — 1)(h — 1), same as user- js assumed for tree key graphs.)
oriented rekeying. For akey tree, recall thatand’ denote the degree and height
3) Group-Oriented RekeyingA single rekey message isof the tree, respectively. In this case, for a nonrequestingujser
constructed containing all new keys. For example, as showntie average cost of for a join or a leave is less thaly (d—1),
Fig. 5, for useny to leave the lower secure group in the figurewhich is independent of the size of the tree (see derivation in

servers needs to send the following rekey message: Appendix A).

Assuming that a request is equally likely to be a join or a
let Lo denote{k1—srize: {k1-8}kusor 1h1-8 ters leave, and the group sizes large, the average costs per request
let L; denote{krs}tr,, {k7s frs are tabulated in Table 11l for the server and a user in the group.
s — {ur,...,us}: Lo, L. From Table Il1, it is obvious that complete key graphs should

not be used. On the other hand, scalable group key management
Note that for a leave, this single rekey message is aldloutan be achieved by using tree key graphs. Note that for a full and
times bigger than the rekey message for a join, whkisethe balancedi-ary tree, the average server cogtig-2)(h—1)/2 =
average degree offanode. (d+2)(log,(n))/2. However, each user has to do slightly more
The leave protocol based upon group-oriented rekeyingvierk [from 1 tod/(d — 1)]. Ford = 4, a user needs to do 1.33
presented in Fig. 9. This approach uses only one rekey messkgedecryptions on the average instead of one. (It can be shown
which is multicasted to the entire group, and the encryption cdbat the server cost is minimized fdr = 4, i.e., the optimal
is d(h — 1), same as key-oriented rekeying. degree of key trees is four.)

WONG et al. SECURE GROUP COMMUNICATIONS USING KEY GRAPHS 23

TABLE IV
AVERAGE REKEY MESSAGESIZE AND SERVER PROCESSINGTIME (n = 8192, DES, MD5, RSA)
key tree one signature per rekey msg one signature for all rekey msgs
degree 4 msg size (byte) | proc time (msec) | msg size (byte) | proc time {msec)
join leave | join leave ave | join leave | join leave ave

user-oriented | 263.1 233.8 | 76.7 204.6 140.6 | 312.8 306.9 | 13.6 17.1 153
key-oriented 303.0 270.9 | 76.3 203.8 140.1 | 352.8 3440 | 131 159 145
group-oriented | 525.5 1005.7 | 11.9 12.0 11.9 } 525,56 1005.7 | 11.9 12.0 119

IV. TECHNIQUE FORSIGNING REKEY MESSAGES messages, the processing time reduction for key-oriented and

o ~user-oriented rekeying is about a factor of ten (for example, 14.5
In our join/leave protocols, each rekey message contains Qg versus 140.1 ms in the case of key-oriented rekeying). There

or more new keys. Each new key, destined for a set of usersidowever a small increase (around 50-70 bytes) in the average
encrypted by a key known only to these users and the serfekey message size.

It is possible for a user to masquerade as the server and send
out rekey messages to other users. Thus if users cannot be
trusted, then each rekey message should be digitally signed by

the server. We have designed and constructed a prototype group key
We note that a digital signature operation is around two ogerver, as well as a client layer, which implement join/leave pro-
ders of magnitude slower than a key encryption using DES. Rexols for all three rekeying strategies in Section Ill and the tech-
this reason, it is highly desirable to reduce the number of digique for signing rekey messages in Section V.
ital signature operations required per join/leave. If each rekeywe performed a large number of experiments to evaluate the
message is signed individually, then group-oriented rekeyingsrformance of the rekeying strategies and the technique for
using just one rekey message per join/leave for all users, woslgning rekey messages. The experiments were carried out on
be far superior to key-oriented (user-oriented) rekeying, whigo lightly loaded SGI Origin 200 machines running IRIX 6.4.
uses many rekey messages per join/leave. The machines were connected by a 100-Mbps Ethernet. The key
Considern rekey messages/y, . . ., M,,, with message di- server process runs on one SGI machine. The server is initialized
gestsd; = h(M;) fori =1,...,m, whereh() is a secure mes- from a specification file, which determines the initial group size,
sage digest function such as MD5. The standard way to provi#e rekeying strategy, the key tree degree, the encryption algo-
authenticity is for the server to sign each message digest (withm, the message digest algorithm, the digital signature algo-
its private key) and send the signed message digest together wiithm, etc. A client simulator runs on the other SGI simulating a
the message. This would requiredigital signature operations large number of clients. Actual rekey messages, as wdias
for m messages. join-ack, leave, leave-ackessages, are sent between individual
We next describe a technique, implemented in our prototypkents and the server using UDP over the 100-Mbps Ethernet.
key server, for signing a set of messages destined to different@yptographic routines from the publicly available CryptoLib
ceivers using just a single digital signature operation. The tedHlrary are used [14].

V. EXPERIMENTS AND PERFORMANCE COMPARISONS

nigue is based upon a scheme proposed by Merkle [17]. For each experiment with an initial group sizethe client
Suppose there are four messagks,, . . ., M4, with mes- simulator first sent. join requests, and the server built a key
sage digestd; , do, ds, andd,. Compute message digedis = tree. Then the client simulator sent 1000 join/leave requests. The

h(dy,ds), d3s = h(ds, ds), andd;_s = h(d12, d34). The server sequence of 1000 join/leave requests was generated randomly
signs message digest_, with its private key. The server thenaccording to a given ratio (the ratio was 1:1 in all our experi-
sends the signed message digsigty(d; 1), together withd;, ments to be presented). Each experiment was performed with
d12, and M, to a user that needs/,. Upon receipt, the user three different sequences of 1000 join/leave requests. For fair
computest, from My, and then compute$,, from ds andd),. comparisons (between different rekeying strategies, key trees of
It computes?] _, from d;» andd,, and uses it to verify the re- different degrees, etc.), the same three sequences were used for a
ceived signatureign(d; _4). The above example can be easilgiven group size. The server employs a heuristic that attempts to
extended ton messages in general (see [26]). build and maintain a key tree that is full and balanced. However,
The benefits of this technique for signing rekey messages aiace the sequence of join/leave requests is randomly generated,
demonstrated in Table IV for both key-oriented and user-oiit-is unlikely that the tree is truly full and balanced at any time.
ented rekeying. (Note that it is not needed by group-orientedTo evaluate the performance of different rekeying strategies
rekeying which uses one rekey message per join/leave.) The as-well as the technique for signing rekey messages, we mea-
erage rekey message size per join/leave is shown, as well assined rekey message sizes (in bytes) and processing time (in
server's processing time per join/leaawédenotes the averagems) used by the server per join/leave request. Specifically, the
of average join and leave processing times). The experimeptsecessing time per join/leave request consists of the following
were performed for an initial group size of 8192, with DES-CBComponents. First, the server parses a request, traverses the key
encryption, MD5 message digest, and RSA digital signatugeaph to determine which keys are to be updated, generates new
(512-bit modulus). Additional details of our experimental setugeys, and updates the key graph. Second, the server performs
can be found in Section V. With the technique for signing rekegncryption of new keys and constructs rekey messages. Third,

24 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 8, NO. 1, FEBRUARY 2000

TABLE V
NUMBER AND SIZE OF REKEY MESSAGES WITH ENCRYPTION AND SIGNATURE, SENT BY THE SERVER (INITIAL GROUP SIZE 8192)

NUMBER AND SIZE OF REKEY MESSAGES WITH ENCRYPTION AND SIGNATURE,

RECEIVED BY A CLIENT (INITIAL GROUP SIZE 8192)

key tree rekey msg size (byte) number of rekey msgs
degree 4 per join per leave per join per leave

ave min max ave min max | ave min max ave min max
user-oriented [312.8 196 552 | 306.9 228 412 | 7.00 6 7119.02 18 20
key-oriented 352.8 212 616 | 344.0 244 476 | 7.00 6 7119.02 18 20
group-oriented | 525.5 356 564 | 1005.7 968 1076 | 1.00 1 1| 1.00 1 1
key tree rekey msg size (byte) number of rekey msgs
degree 8 per join per leave per join per leave

ave min max ave min max | ave min max ave min max
user-oriented | 287.3 196 496 | 2859 228 356 | 5.00 4 5129.01 28 30
key-oriented 3193 212 544 | 3143 244 404 | 5.00 4 5129.01 28 30
group-oriented | 464.5 284 492 | 1293.1 1256 1364 | 1.00 1 1| 1.00 1 1
key tree rekey msg size (byte) number of rekey msgs
degree 16 per join per leave per join per leave

ave min max ave min max | ave min max ave min max
user-oriented | 274.0 180 452 | 2824 244 344] 4.00 3 4|46.01 45 47
key-oriented 302.0 196 492 | 306.6 260 384 | 4.00 3 4146.01 45 47
group-oriented | 427.8 248 456 | 1869.1 1832 1940 | 1.00 1 1| 1.00 1 1

TABLE VI that received large rekey messages. The results in this table show

that group-oriented rekeying, which has the best performance on
the server side, requires more work on the client side to process

key tree rekey msg size (byte) [# of rekey a larger message than key-oriented and user-oriented rekeying.
degree 4 per join | per leave | msgs per The average rekey message size on the client side is the smallest
. average | average | join/leave in user-oriented rekeying.
Ei;rozgtezd ggg:g ;gg:g i The server processing time per request (average_zd over joi_ns
group-oriented 595.5 1005.7 1 and leaves) versus group size (from 32 to 8192) is shown in
key tree rekey msg size (byte) | # of rekey Fig. 10. Note that the horizontal axis is in log scale. The left
degree 8 per join | per leave | msgs per figure is for rekey messages with DES-CBC encryption only
. average | average | join/leave (no message digest and no digital signature). The right figure is
‘;:;ro‘;:;‘:i‘zd ;‘1)(7"2 ggg’g i for rekey messages with DES-CBC encryption, MD5 message
group-oriented 4645 1293.1 1 dlge_st, and RSA-512 digital signature. The key tree _degree was
key tree rokey msg size (byte) | # of rekey four in all experiments. We conclude from the experimental re-
degree 16 per join | per leave | msgs per sults that our group key management service is scalable to very
average | average | join/leave large groups since the processing time per request increases (ap-
;Ser'OfieI;tzd ;’Zg g‘ég'; i proximately) linearly with the logarithm of group size for all
€ey-oriente: . . H H H
ngup—oriented 78 1869.1 1 three rekeying strategies. Other experiments support the same

conclusion for key tree degrees of eight and 16.
The average server processing time versus key tree degree is

if message digest is specified, the server computes messag@®éwn in Figs. 11-13. The initial group size was 8192 in these
gests of the rekey messages. Fourth, if digital signature is spegiperiments. The left-hand side of each figure is for rekey mes-
fied, the §erve_rcomputes message digests and a digital signaiigi€es with DES-CBC encryption only (no message digest and
as described in Section IV. Last, the server sends out rekey mg§-digital signature). The right-hand side of each figure is for
sages as UDP packets using socket system<alls. rekey messages with DES-CBC encryption, MD5 message di-

Table VI presents the size and number of rekey messagesgest, and RSA-512 digital signature. These experimental results
ceived by a client. Only thaveragemessage sizes are shownjjjystrate three observations. First, as shown in Fig. 13, the op-
_because the minimum and maximum sizes are the same as thpg8l degree for key trees is around four. Second, with respect
in Table V. Note that each client gets exactly one rekey messag&erver processing time, group-oriented rekeying has the best
for all three rekeying strategies. For key-oriented and user-ggerformance, with key-oriented rekeying in second place. Third,
ented rekeying, the average message size is smaller than the ggking rekey messages increases the server processing time by
responding average message size in Table V. This is because@rder of magnitude (it would be another order of magnitude
average message size here was calculated over all clients, gigle for key-oriented and user-oriented rekeying without a spe-
many more clients received small rekey messages than cliegjtg technique for signing multiple messages).

8The processing time is measured using the UNIX system call Table V presents the size and n.umber of rekgy message; sent
getrusage() , which returns processing time (including time of systenby the server. Note that group-oriented rekeying uses a single
calls) used by a process. In the results presented herein, the processing [Hge rekey message per request (sent via group multicast)
for a join request does not include any time used to authenticate the requesti ile key-oriented and user-oriented rekeying use multiple '

user [i.e., step (2) in the join protocols 6fgs. 6 and 7]. We feel that any W - :
authentication overhead should be accounted for separately. smaller rekey messages per request (sent via subgroup multicast

WONG et al. SECURE GROUP COMMUNICATIONS USING KEY GRAPHS 25

4 ; ; 16 . ;
uSer—oriehted —_— user-oriented ——
35 r key-oriented 15 | key-oriented --------
— group-oriented --x- — group-oriented %
) 3 ©
5} @
E .5 — E 1 e
()] .] L P -
'%, 2 e e S % 13 / ------------------ :
£ £ T iy
& 1.5 o § &-"'
8 [i I S g 12 : -
e 1 XTI [TS SRS SR
cre M ore . 11
0.5
0 - 10
32 64 128 256 512 1024 2048 4096 8192 32 64 128 256 512 1024 2048 4096 8192
group size group size
(@) (b)

Fig. 10. Server processing time per request versus group size (key tree degree 4). (a) Encryption only and (b) encryption and signature.

8 , ; 24 . .
user-oriented —— user-oriented ——
7 key-oriented 20 | key-oriented ---x----
_ group-oriented -—-x- group-oriented -
g 6 g
g s 20
N s
£ g 18
> 4 =
£ £ 16
g sx 2\
s \\ g 14
=% S \\ &
X — g R i
ST SR - ; """" - *\:\ I 12 P g R g g T g R T e
0 10
2 4 6 8 10 12 14 16 2 4 6 8 10 12 14 16
key tree degree key tree degree

(@) (b)

Fig. 11. Server processing time per join versus key tree degree (initial group size 8192). (a) Encryption only and (b) encryption and signature.

or unicastP Note that the total number of bytes per join/leave Berkovits [3] proposed the use bfout of i secret sharing.
transmitted by the server is much higher in key-oriented afi@ distribute a new secret todestinations, the source needs to
user-oriented rekeying than in group-oriented rekeying. compute at least new “shares” and send them to each ofithe
From the contents of rekey messages, we counted at®btinations. Thus, the communication costis proportiona) to
computed the average number of key changes by a client fiee number of destinations. The computing cost is at [84s}.
join/leave request, which is shown in Fig. 14. The left figure penget al. [8] proposed the use of systematic linear block
shows the average number of key changes versus the key #gges to distribute a secrettodestinations. The transmission
degree, and the right figure shows the average number of kRerhead of their approach is independent of the size of the se-
changes versus the initial group size of each experiment. Ngf@t but is still proportional te, the number of destinations. The
that the average number of key changes by a client is small aiifnputing cost is at leasi(n).
is very close to the analytical resulf(d—1) shown in Table i Fiat and Naor [9] introduced the conceptiefesilient broad-

in Section Ill. cast. In their approach, a secret distributed to a subset of
destinations is resilient to collusion by up koother destina-
tions. (Note that our approach is resilient to collusion by any
Various cryptographic techniques have been proposed to admber of destinations not belonging to the group of authorized
dress the problem of distributing a secret from a source to a seteivers.) The most interesting scheme requires each destina-
of destinations. Chiou and Chen proposed a method ca#led tion to storeO(k log(k) log(n)) keys and the source to broad-
cure lockimplemented using the Chinese remainder theoremastO(%? log? (k) log(n)) messages to distribute a new secret.
[5]. The times to compute the lock and the length of the locBome recent results on this approach by Stinson can be found
(size of transmission) are both proportional to the numbef in [22].
destinations. (Hence it is not scalable for the purposes of thisanother related area is process group security in distributed
paper.) computing systems, e.g., protocols in Rampart [20]. These pro-

9The experiments reported herein were performed with each rekey mess'é%%OIS’ des[gned for highly Sec‘_"re and fault-tolerant systems, are
sent just once by the server via subgroup multicast. very complicated and appropriate only for small groups.

VI. RELATED WORK

26 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 8, NO. 1, FEBRUARY 2000

8 T T T T T 24 T r
user-oriented —— / user-oriented —— "
7 t key-oriented : 1 |l key-oriented ---->--- et
group-oriented % — B 22 group-oriented --x---- T
5 6l ‘ // L - 5 // o o
g g 20
[} e @ . 1
£ S £ 18 / e
2 o Y]
[77] . o
8 3 f X g -
8 g 14]
a 2 I T ¥ L R T A Keeeeen Heeeoeeoo
1 oKennne oo oot Horr Koo YR 1D Feoromeersrmgomners s IR,]
0 10
2 4 6 8 10 12 14 16 2 4 6 8 10 12 14 16
key tree degree key tree degree
() (b)

Fig. 12. Server processing time per leave versus key tree degree (initial group size 8192). (a) Encryption only and (b) encryption and signature.

8 T T 24 T T
user-oriented —— user-oriented ———
7 1 key-oriented 2o | key-oriented ---x-—
. group-oriented ---x-- group-oriented -—x-—
g © 2
171 ® 20
E 5 E
o @]
£,] g I S e
o I T = P VI senrmr
/ ______ aal ORI W, -
e - LN
o o x Q e e
g L e g 14
a a
1 F= S B 12 £ " SRS SR
0 10
2 4 6 8 10 12 14~ 16 2 4 6 8 10 12 14 16
key tree degree key tree degree
() (b)

Fig. 13. Server processing time per request versus key tree degree (initial group size 8192). (a) Encryption only and (b) encryption and signature.

2 T T 15 T T T T T T
tree degree is4 ——
n=1024 —— 1.45 tree degreeis 8 - g
N =2048 -w-xe tree degree is 16 -
g 187 n=4086 ~x- 1 g AT
n=28192 —-a
§ analysis ---=-- g 1.35 i
5 16t . S 13¢f e T 1
S 5 sl
£ £ 125 .
5] 5 - 1
g 14 r g 1.2
£ E 1B |
> 3]s B Moo
€ 12t ; . g 1 E
L‘w‘.“&"\"n—\- 1.05 Lo
1 ; ; ; 1 ; . ; |
2 4 6 8 10 12 14 16 32 64 128 256 512 1024 2048 4096 8192
key tree degree group size

Fig. 14. Number of key changes by a client per request.

Security issues in the area of groupware or computer-supeen proposed for the Internet [1], [12], [13]. Their concern is
ported cooperative work (CSCW) are also related. In particuldinge distribution of group keying material to users joining a group.
Enclaves [11] is a toolkit designed for building applications foKo solution was proposed for changing the group keying material
secure collaboration over the Internet. However, the problemwhen users leave a group, except the obvious approach of estab-
scalable group key management was not addressed [11]. lishing a new secure group, which is clearly not scalable.

Security issues of IP multicast have been addressed to som&he scalability problem of group key management for a large
extent [2]. A number of group key management protocols hageoup with frequent joins and leaves was previously addressed

WONG et al. SECURE GROUP COMMUNICATIONS USING KEY GRAPHS 27

by Mittra with his lolus system [18]. Both lolus and our apB. Trust

proach solve the scalability problem by making use of a hier- o architecture requires a single trusted entity, namely, the

archy. The similarity, however, ends here. The system architggy, server. The key server may be replicated for reliability/per-

tures are very differentin the two approaches. We next COMpgigmance enhancement, in which case, several trusted entities

them by considering a tree hierarchy with a single root (i.e., ¢ needed. Each trusted entity should be protected using strong

single secure group). security measures (e.g., physical security, kernel security, etc.).
lolus's tree hierarchy consists of clients at the leaves with murlolus, however, there are many agents and all of the agents are

tiple levels of group security agents (agents, in short) above. Rausted entities. Thus the level of trust required of such system

each tree node, the tree node (an agent) and its children (cliesdmponents is much greater in lolus than in our approach.

or lower level agents) form a subgroup and share a subgroup key.

There is no globally shared group key. Thus a join or a leave @ Reliability

a subgroup does not affect other subgroups; only the local subtn |olus, agents are needed to securely forward message keys.

group key needs to be changed. When an agent fails, a backup is needed. It would appear that
Our tree hierarchy consists of keys, with individual keys aeplicating a single key server (in our approach) to improve re-

leaves, the group key at the root, and subgroup keys elsewhéeaility is easier than backing up a large number of agénts.

There is a single key server for all the clients. There are no

agents, but each client is given multiple keys (its individual key, VIl. CONCLUSION

the group key, and some subgroup keys). _ To address the scalability problem of group key management,
In comparing the two approaches,'thgr'e are several 'Ssueﬁlgjpropose the use of key trees (or graphs, in general). We in-
consider: performance, trust, and reliability. vestigated three rekeying strategieser-orientedkey-oriented
andgroup-orientedand specified join/leave protocols for them.
The rekeying strategies and protocols are implemented in a pro-
A. Performance totype key server we have built. From measurement results of
a large number of experiments, we conclude that our group key
Rgrver using any of the three rekeying strategies is scalable to
very large groups with frequent joins and leaves. In particular,

problem where: denotes group size. They differ, however, ir%he average server processing time per join/leave increases lin-

where and when work is performed to achieve secure rekeyi(ﬁ rly with the logarithm of group size. We found that the optimal

when a client joins/leaves the secure group. key tree degree i; around four: . .
On the server side, group-oriented rekeying provides the best

Secure rekeying after a leave requires more work than afE!rformance, with key-oriented rekeying in second place, and
a join because, unlike a join, the previous group key cannot figer_oriented rekeying in third place. On the client side, user-
used and: rekey messages are required (this is referred 10 §jiented rekeying provides the best performance, with key-ori-
[18] as al does not equal ntype problem). This is precisely gnted rekeying in second place, and group-oriented rekeying in
the problem solved by using a hierarchy in both approaches.ihirq place. In particular, for a very large group whose clients are

The main difference between lolus and our approach is in h@ennected to the network via low-speed connections (modems),
thel affects ntype problem [18] is addressed. In our approacley-oriented or user-oriented rekeying would be more appro-
every time a client joins/leaves the secure group, a rekeying qpiate than group-oriented rekeying.
eration is required, which affects the entire group. Note that thiswWe have not investigated the amount of network traffic
is not a scalability concern in our approach because the sergenerated by the three rekeying strategies. With group-oriented
cost isO(log(n)) and the client cost i€)(1). rekeying, a single rekey message is sent per join/leave via mul-

In |O|US, there is no g|0ba||y shared group key with the aﬂi.ca.st to the entire group. The netWOfk load generated would
parent advantage that whenever a client joins/leaves a subgrdlf§end upon the network configuration (local area network,
only the subgroup needs to be rekeyed. However, for a cligmpPus network, wide-area Internet, etc.) and the group's
to send a message confidentially to the entire group, the clig@ographic distribution. With key-oriented and user-oriented
needs to generatenaessage keipr encrypting the message and€keying, many smaller rekey messages are sent per join/leave
the message key has to be securely distributed to the entire grBigubgroups. If the rekey messages are sent via unicast (be-
via agents. Each agent decrypts using one subgroup key tog@aJuse the network provides no support for subgroup multicast),
trieve the message key and reencrypts it with another subgrdti nétwork load generated would be much greater than that of
key for forwarding [18]. group-oriented rekeying.

That is, most of the work in handling tte affects ntype It is possible to enable subgroup multicast by the method in
problem is performed in lolus when a client sends a messddé] or by allocating a large number of multicast addresses, one
confidentially to the entire group (rather than when a cliefi@r €ach subgroup that shares a key in the key tree being used.
joins/leaves the group). In our approach, most of the work fiy more practical approach, however, is to allocate just a small
handling thel affects ntype problem is performed when a clienflumber of multicast addresses (e.g., one for each child of the key
joins/leaves the secure group (rather than when a client Ia-tef(’Craig Partridge observed that agents can be implemented in existing fire-
sends messages confidentially to the entire group). walls and derive their reliability and trustworthiness from those of firewalls.

Roughly speaking, since both approaches make use of a h
archy, both attempt to change&n) problem into aJ(log(n))

28 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 8, NO. 1, FEBRUARY 2000

Level 0

Level i-1

Level i X soe

i i

XX u soe eee seooe

Fig. 15. Derivation ofProb[u changes keyq.

tree's root node) and use a rekeying strategy that is a hybridekeying periodically instead of after every join/leave. Any ef-
group-oriented and key-oriented rekeying. It is straightforwaftiency gain, however, is at the expense of allowing new mem-
to design such a hybrid strategy and specify the join/leave protters access to some past data and old members access to some
cols. Furthermore a hybrid approach, involving the use of sorfidure data. Such a tradeoff may be acceptable to some e-com-
lolus agents at strategic locations, such as firewalls or bordeerce applications, e.g., pay per view and information services,
routers, would also be appropriate. where a temporary breach in group confidentiality can be quan-
We have implemented a prototype system for group key mdified in monetary terms.
agement, called Keystone [15]. In designing the system, we had.ast, Keystone allows an application to have multiple secure
to deal with several practical issues not considered in this paggoups, and clients to simultaneously join (or leave) a subset of
To deliver rekey messages reliably to group members, an apiiese groups. For example, consider video conferencing where
cation program that uses Keystone can specify one of two dpere is video stream and a set of audio streams in different lan-
tions for rekey message delivery: reliable unicast (which is ngtiages. Each client joins (leaves) the video group and one audio
scalable) or IP multicast with forward error correction. In thgroup simultaneously. In this case, it is efficient for Keystone to
case of forward error correction, the application can specify thise a single key graph for all groups instead of separate key trees
ratio of orginal to repair packets such that the loss probability @fne for each group).
a rekey message is calculated to be at an acceptable level (such
as 0.001). For rekey messages that are not recoverable, a client
sends a resynchronization request to the Keystone server, which APPENDIX
then resends the missing rekey messages by reliable unicast. NUMBER OF KEY CHANGES BY A USER
For applications characterized by very frequent joins/leaves,
the amount of rekey message traffic can be substantially reduce@€onsider a secure group with a key tree that is full and bal-
by rekeying periodically instead of after each join/leave. Thanced with degreé and height,. Suppose each user is equally
also allows batch processing of join/leave requests at the Kigely to be the one who is joining/leaving. First, we derive the
server. An application that uses Keystone can specify a rekeyjrgbability that after a join or leave, a user, say,needs to
period. If one is specified, then the Keystone server performbange exactly keys, denoted bfrob[u changes keyd.

WONG et al. SECURE GROUP COMMUNICATIONS USING KEY GRAPHS

Suppose the individual key of useris atk-nodez;,_;. Let [8]
Zn_1,...,%o denote the path fronk-nodez;_; to the root
xo of the tree (see Fig. 15). Usarneeds to change exactly
keys if and only if it needs to change keysmat 1, ..., zo but [9]
notxy_1,...,x;. Lety,...,yq denote the children aof;_;.
Without any loss of generality, we assume= z;, that is, user [10]
u is in the subtree rooted gt. When the joining/leaving user

[11]

is in one of the subtrees rootedsat ..., yy (there ared — 1
of them), the keys at; 1,...,xzo are precisely the ones to be [12]
changed by uset. Note that these subtrees are of the same
height, and there aré subtrees of this height in the key tree. [13]
Therefore [14]
) ; [15]
Prob[u changes keyq = (d — 1)/d".
(16]
For a join/leave, the average number of key changes (or the ay,
erage number of key decryptions) by a nonrequesting user
denoted by, is given by the following expression: [18]
[19]
L—1
Cy = ZL x Prob[u changes keyq

i=1 [20]
Ih—1
=> ix(d—1)d" [21]
=1
d d
_ _ —(h—1) [22]
-1 <d_1+(h 1)>d
d
% [23]
R

which depends only on the degréef the key tree. 14

[25]

(26]
ACKNOWLEDGMENT

. . [27]
The authors wish to thank the anonymous reviewers and the

editor, C. Partridge, for their constructive comments. 28]

REFERENCES

[1] T. Ballardie, “Scalable multicast key distributionRFC 1949 May
1996.

[2] T. Ballardie and J. Crowcroft, “Multicast-specific security threats and
counter-measures,” iBroc. Symp. Network and Distributed System Se-
curity, 1995.

[3] S. Berkovits, “How to broadcast a secret,” Adlvances in Cryptology,

EUROCRYPT'91 D. W. Davies, Ed. Berlin, Germany: Springer

Verlag, 1991, vol. 547 Lecture Notes in Computer Sciencpp.

535-541.

R. Bird, I. Gopal, A. Herzberg, P. Janson, S. Kutten, R. Molva, and

Yung, “The kryptoknight family of light-weight protocols for authenti-

cation and key distribution,JEEE/ACM Trans. Networkingrol. 3, pp.

31-41, Feb. 1995.

[5] G.-H. Chiou and W.-T. Chen, “Secure broadcasting using the sect
lock,” IEEE Trans. Software Engvol. 15, pp. 929-934, Aug. 1989.

[6] T.H. Cormen, C. E. Leiserson, and R. L. Rivdstiroduction to Algo-
rithms Cambridge, MA: MIT Press, 1989.

[7] S.E. Deering, “Multicast routing in internetworks and extended LANS,
in Proc. ACM SIGCOMM'88Aug. 1988, pp. 55-64.

(4]

29

R. H. Deng, L. Gong, A. A. Lazar, and W. Wang, “Authenticated key
distribution and secure broadcast using no conventional encryption: A
unified approach based on block codes,’Froc. IEEE Globecom'95
Nov. 1995.

A. Fiatand M. Naor, “Broadcast encryption,”Advances in Cryptology,
CRYPTO'93D. R. Stinson, Ed. Berlin, Germany: Springer Verlag,
1994, vol. 773Lecture Notes in Computer Sciengg. 480-491.

A. O. Freier, P. Karlton, and P. C. Kocher, The SSL Protocol Version 3.0,
1996. Work in progress, Netscape Communications.

L. Gong, “Enclaves: Enabling secure collaboration over the internet,”
IEEE J. Select. Areas Commupp. 567-575, Apr. 1997.

H. Harney and C. Muckenhirn, “Group key management protocol
(GKMP) architecture,RFC 2094 July 1997.

——, “Group key management protocol (GKMP) specificatioRFC
2093 July 1997.

J. B. Lacy, D. P. Mitchell, and W. M. Schell, “CryptoLib: Cryptography
in software,” inProc USENIX 4th UNIX Security Symfct. 1993.
Keystone: A Group Key Management Service, S. S. Lam and C. K.
Wong. [Online]. Available: http://www.cs.utexas.edu/users/lam/NRL/
B. N. Levine and J. J. Garcia-Luna-Aceves, “Improving internet multi-
cast with routing labels,” ifProc. Int. Conf. Network Protocql4997.

R. C. Merkle, “A certified digital signature,” irAdvances in Cryp-
tology—CRYPTO'891989, pp. 241-250.

S. Mittra, “lolus: A framework for scalable secure multicasting,” in
Proc. ACM SIGCOMM'9,71997, pp. 277-288.

B. C. Neuman, “Proxy-based authorization and accounting for dis-
tributed systems,” inProc. 13th Int. Conf. Distributed Computing
SystemsMay 1993, pp. 283-291.

M. K. Reiter, “Secure agreement protocols: Reliable and atomic group
multicast in rampart,” ifProc. ACM Conf. Computer and Communica-
tions SecurityNov. 1994, pp. 68-80.

J. G. Steiner, C. Neuman, and J. |. Schiller, “Kerberos: An authentication
service for open network systems,”fmoc. USENIX Winter ConfFeb.
1988, pp. 191-202.

D. R. Stinson, “On some methods for unconditionally secure key dis-
tribution and broadcast encryptiorJesigns, Codes Cryptographyol.

12, no. 3, pp. 215-243, 1997.

J. J. Tardo and K. Alagappan, “SPX: Global authentication using public
key certificates,” inProc. 12th IEEE Symp. Research in Security and
Privacy, May 1991, pp. 232-244.

D. M. Wallner, E. J. Harder, and R. C. Agee, “Key management for
multicast: issues and architecturefsiformational RFC July 1997.

C. K. Wong, M. Gouda, and S. S. Lam, “Secure Group Communications
Using Key Graphs,” Department of Computer Sciences, The Univ. of
Texas at Austin, Tech. Rep. TR-97-23, July 1997.

C.K.Wong and S. S. Lam, “Digital signatures for flows and multicasts,”
in Proc. IEEE ICNP'980ct. 1998. Revised versioniBEE/ACM Trans.
Networking,vol. 7, pp. 502-513, Aug. 1999.

T. Y. C. Woo, R. Bindignavle, S. Su, and S. S. Lam, “SNP: An interface
for secure network programming,” iroc. USENIX'94 Summer Tech-
nical Conf, Boston, MA, June 1994.

T.Y.C.Woo and S. S. Lam, “Designing a distributed authorization ser-
vice,” in Proc. IEEE INFOCOM'98San Francisco, CA, Mar. 1998, pp.
419-429.

Chung Kei Wong (S'88—M'00) received the B.Eng.
degree from the University of Hong Kong, the
M.Phil. degree from the Hong Kong University of
Science and Technology, and the Ph.D. degree from
the University of Texas at Austin.

He is currently a Research Staff Member at HRL
Laboratories, Malibu, CA. His research interests in-
clude network security, multicast security, and multi-
cast communication.

IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 8, NO. 1, FEBRUARY 2000

Mohamed G. Gouda(M’93) was born in Egypt. His
received the B.Sc. degree in engineering and in matif
ematics from Cairo University, Cairo, Egypt. He re-|:

Simon S. Lam(S'71-M'74-SM’'80-F'85) received
the B.S.E.E. degree (with distinction) from Wash-
ington State University, Pullman, in 1969 and the
M.S. and Ph.D. degrees in engineering from the
University of California at Los Angeles (UCLA) in
1970 and 1974, respectively.

From 1971 to 1974, he was a Postgraduate Re-
search Engineer at the ARPA Network Measurement
Center, UCLA, where he worked on satellite and
radio packet switching networks. From 1974 to
1977, he was a Research Staff Member at the IBM

ceived the M.A. degree in mathematics from York* #

University, Toronto, Ont., Canada, and the master’r(“f o

and Ph.D. degrees in computer science from the Un 3

versity of Waterloo, Waterloo, Ont.

He worked for the Honeywell Corporate » <

Technology Center in Minneapolis, MN, during l)

1977-1980. In 1980, he joined the University of [1 3

Texas at Austin, where he currently holds the Mike i
A. Myers Centennial Professorship in Computer Sciences. He spent dné. Watson Research Center, Yorktown Heights, NY. Since 1977, he has been
summer at Bell Labs in Murray Hill, NJ, one summer at MCC in Austin, TXpn the Faculty of the University of Texas at Austin, where he is a Professor
and one winter at the Eindhoven Technical University in the Netherlandsf. computer sciences. He holds two anonymously endowed professorships
His research area is distributed and concurrent computing. In this area,amel served as Department Chair from 1992 to 1994. His research interests
has been working on abstraction, formality, correctness, nondeterminism,networking include protocol and switch design, performance analysis,
atomicity, convergence, stabilization, and efficiency. He has published malfistributed multimedia, quality-of-service guarantees, and security.
than 60 journal papers more than 100 conference papers. He was the foundirigr. Lam received the 1975 Leonard G. Abraham Prize Paper Award from
Editor-in-Chief of the Springer-Verlag journ@listributed Computingluring the IEEE Communications Society for his paper on packet switching in a
1985-1989. He is the author &lements of Network Protocol DesigNew multiacess broadcast channel. He is a Fellow of the Association for Computing
York: Wiley, 1998), the first ever textbook where network protocols ar&achinery (ACM). He has served on the editorial boards of IEEE/ACM
presented in abstract and formal setting. TRANSACTIONS ON NETWORKING, |EEE TRANSACTIONS ON SOFTWARE

Prof. Gouda received the Kuwait Award in Basic Sciences in 1993. He was tBRGINEERING, IEEE TRANSACTIONS ON COMMUNICATIONS, PROCEEDINGS OF

Program Committee Chairman of the ACM SIGCOMM Symposium in 1989HE IEEE, andPerformance EvaluatiarHe was Editor-in-Chief of IEEE/ACM
He was the first Program Committee Chairman of the IEEE International Cofi=EE/ACM TRANSACTIONS ONNETWORKING from 1995 to 1999. He organized
ference on Network Protocols in 1993 and of the IEEE Symposium on Advanaasd was Program Chair of the inaugural ACM SIGCOMM Symposium held at
in Computers and Communications, which was held in Egypt in 1995. He w®e University of Texas at Austin in 1983. He is a founding Steering Committee
the Program Committee Chairman of IEEE International Conference on Disember of the IEEE International Conference on Network Protocols.
tributed Computing Systems in 1999. He is on the steering committee of the
|IEEE International Conference on Network protocols and is an original member
of the Austin Tuesday Afternoon Club.

