
Digital Signatures for Flows and Multicasts�

Chung Kei Wong Simon S. Lam

Department of Computer Sciences
The University of Texas at Austin

Austin, TX 78712-1188
E-mail: fckwong,lam g@cs.utexas.edu

Abstract
We present chaining techniques for signing/verifying

multiple packets using a single signing/verification opera-
tion. We then present flow signing and verification proce-
dures based upon a tree chaining technique. Since a sin-
gle signing/verification operation is amortized over many
packets, these procedures improve signing and verification
rates by one to two orders of magnitude compared to the ap-
proach of signing/verifying packets individually. Our pro-
cedures do not depend upon reliable delivery of packets,
provide delay-bounded signing, and are thus suitable for
delay-sensitive flows and multicast applications. To further
improve our procedures, we propose several extensions to
the Feige-Fiat-Shamir digital signature scheme to speed up
both the signing and verification operations, as well as to
allow “adjustable and incremental” verification. The ex-
tended scheme, called eFFS, is compared to four other dig-
ital signature schemes (RSA, DSA, ElGamal, Rabin). We
compare their signing and verification times, as well as key
and signature sizes. We observe that (i) the signing and ver-
ification operations of eFFS are highly efficient compared
to the other schemes, (ii) eFFS allows a tradeoff between
memory and signing/verification time, and (iii) eFFS allows
adjustable and incremental verification by receivers.

1. Introduction
Data confidentiality, authenticity, integrity, and non-

repudiation are basic concerns of securing data delivery
over an insecure network, such as the Internet.Confiden-
tiality means that only authorized receivers will get the data;
authenticity, an authorized receiver can verify the iden-
tity of the data’s source;integrity, an authorized receiver
can verify that received data have not been modified;non-
repudiation, an authorized receiver can prove to a third
party the identity of the data’s source.1

Most investigations on securing data delivery over
packet networks have focused on unicast delivery of data

�Research sponsored by Texas Advanced Research Program grant no.
003658-063.

1In the balance of this paper, we use “receiver” to mean “authorized
receiver” unless otherwise stated.

sent as independent packets. Exceptions include recent pa-
pers on scalable secure multicasting [1, 13, 20] and a flow-
based approach to datagram security [14]. All of these pa-
pers are mainly concerned with data confidentiality.

In this paper, our concerns are data authenticity, integrity
and non-repudiation for delay-sensitive packet flows, partic-
ularly flows to be delivered to large groups of receivers. For
an individual message (packet), these concerns can be ad-
dressed by one of many available digital signature schemes
[6, 15, 17, 19]. However, these schemes are not efficient
enough for signing/verifying packets individually for delay-
sensitive flows, such as packet video.

In the Internet, multicast has been used successfully to
provide an efficient, best-effort delivery service to large
groups [2]. Consider a packet flow multicasted to a group
of receivers. A consequence of best-effort delivery is that
many receivers will not receive all of the packets in the
multicasted flow. Furthermore, many multicast applications
allow receivers to have widely varying capabilities (e.g.,
to receive layered video and audio transmissions) or needs
(e.g., to receive different stock quotes, news, etc.). Con-
sequently, receivers get different subsequences of packets
from the same multicasted flow.

1.1. Existing techniques for signing flows
Conceptually, a digital signature scheme is defined by

functions for key generation, signing, and verification. The
signer (sender) uses the key generation function to create
a pair of keys, a signing key,ks, and a verification key,kv .
The signer keeps the signing key private, and makes the ver-
ification key publicly known to all verifiers (receivers).2

To sign a messagem using signing keyks, the signer
calls the signing function which returns the signature of
messagem. The signer then sends the signed message, con-
sisting of messagem and its signature, to verifiers. Having
received the signed message, a verifier calls the verification
function with keykv. If the verification function returns
true, then the verifier concludes that the signer did sign the
message and the message has not been altered. Moreover,

2The signing and verification keys are also referred to as private and
public keys, respectively.

the signer cannot deny having signed the message (non-
repudiation).

In practice, a message digest function, such as MD5 [18],
is first applied to the message to generate a fixed-size mes-
sage digest which is independent of message size. Signing
a message means signing the digest of the message. (MD5
message digests are 128 bits long.)

A flow is a sequence of packets characterized by some
attribute [16, 22]. Packets in a flow may be obtained from
segmenting the bit stream of digitized video, digitized au-
dio, or a large file. Or they may be related data items, such
as stock quotes, news, etc., generated by the same source.

It is easy and efficient to sign anall-or-nothingflow, that
is, a flow whose entire content is needed before any part of it
can be used, e.g., a long file. In this case, the signer simply
generates a message digest of the entire flow (file) and sign
the message digest.

Most applications, however, create flows that are not all-
or-nothing, i.e., a receiver needs to verify individual packets
and use them before the entire flow is received. For these
flows, a straightforward solution is to sign each packet in-
dividually and each packet is verified individually by re-
ceivers. This solution is called thesign-eachapproach.

The sign-each approach is computationally expensive.
The signing rate and verification rate are at most1=(Td(l)+
Tsign) and1=(Td(l)+ Tverify) packets per second, respec-
tively, whereTd(l) is the time to compute the message di-
gest of anl-byte packet,Tsign is signing time, andTverify
is verification time for the message digest. The signing and
verification rates,3 in packets per second, of two widely
used digital signature schemes, RSA [19] and DSA [15],
with 512-bit modulus and using 100% processor time of a
Pentium II 300 MHz machine are shown below.

packet size Signing rate Verification rate
(bytes) RSA DSA RSA DSA

512 78.8 176 2180 128
1024 78.7 175 1960 127
2048 78.0 172 1620 126

If a slower machine is used, or only a fraction of proces-
sor time is available for signing/verification (e.g., a receiver
machine has only 20% processor time for verification be-
cause the other 80% is needed for receiving and processing
packets), then the rates should be decreased proportionally.

The signing rate is not important for anon-real-time gen-
eratedflow, i.e., a flow whose entire content is known in
advance (such as stored video). This is because packets in
the flow can be signed in advance. For a real-time gener-
ated flow, however, the signing rate must be higher than the
packet generation rate of the flow. Furthermore, for delay-
sensitive flows, real-time generated or not, the verification

3The signing and verification rates are for signing and verifying 128-bit
MD5 message digests of packets.

rate is important. From the table, we see that the signing
and verification rates of the sign-each approach, using ei-
ther RSA or DSA, are probably inadequate for many appli-
cations.

Two techniques were proposed for signing digital
streams in [7] which, at first glance, may be used for sign-
ing packet flows. To describe the technique in [7] for sign-
ing a non-real-time generated flow, consider a sequence
of m packets. The sender first computes message digest
Dm of packetm (the last packet) and concatenates packet
m � 1 andDm to form augmented packetm � 1. Then,
for i = 1; :::;m � 2, the sender computes message di-
gestDm�i of augmented packetm � i, and concatenates
packetm � i � 1 andDm�i to form augmented packet
m � i � 1. Message digestD1 of augmented packet 1 is
computed and signed. In this manner, only one expensive
signing/verification operation is needed for the sequence of
m packets. However, a necessary condition for using the
above technique is the followingget-all-beforerequirement:
To verify packeti in the sequence, a receiver must have re-
ceived every packet from the beginning of the sequence.

For a real-time generated flow, a similar technique is
suggested in [7] with the same get-all-before requirement.
For a sequence ofm packets, only one expensive sign-
ing/verification operation is needed, plus one inexpensive
one-time signaturesigning/verification for each packet in
the sequence. However, since one-time signatures and keys
are very large, this technique has a large communication
overhead (around 1000 bytes per packet) [9, 10].

The get-all-before requirement of both techniques in [7]
is too strong for practical Internet applications. Reliable
packet delivery is not used by many applications for flows
and multicasts. For example, reliable delivery is generally
not used for video and audio flows due to the extra delays
associated with retransmissions; either losses are tolerated
or forward error correction techniques are used instead.

For large-scale multicast applications, reliable delivery
of multicast packets is a difficult problem [5]. Moreover,
even if reliable multicasting is available, receivers with dif-
ferent needs/capabilities may choose to get different sub-
sequences of packets in a multicasted flow. In short, the
get-all-before requirement is not satisfied.

1.2. Characteristics and requirements
We have observed various characteristics in the delivery

of flows and multicasts by an unreliable packet network,
such as the Internet. They are summarized below:
� Each packet in a flow may be used as soon as it is re-

ceived.
� A receiver may get only a subsequence of the packets

in a flow. Different receivers may get different subse-
quences.

� Delay sensitive flows require fast processing at a
sender as well as receivers. Some flows are generated

in real time by their senders.
� For a multicasted flow, many receivers are limited in

resources (processing capacity, memory, communica-
tion bandwidth, etc.) compared to the sender, which
is typically a dedicated server machine. In some envi-
ronments, both senders and receivers may be limited in
resources, e.g., mobile computers using wireless com-
munications.

� Receivers may have widely different capabilities/re-
sources. For example, receivers may be personal dig-
ital assistants, notebook computers, or desktop ma-
chines. Moreover, the resources available to a receiver
for verifying signatures may vary over time.

Given the above characteristics, we design procedures
for signing and verifying flows in Section 2 as well as a dig-
ital signature scheme in Section 3 to meet the the following
requirements:

� The signing procedure is efficient and delay-bounded
(for real-time generated flows).

� The verification procedure is highly efficient (since
many receivers have limited resources).

� Packets in a flow areindividually verifiable.
� Packet signatures are small (i.e., small communication

overhead).
� Adjustable and incremental verification: The verifica-

tion operation is adjustable to the amount of resources
a receiver has. It allows a receiver/verifier to verify a
message at a lower security level using less resources,
and later increase the security level by using more re-
sources (e.g., if the message is important).

1.3. Contributions of this paper
In Section 2, we first describe and compare two chain-

ing techniques (star and tree) for signing/verifying multiple
packets using a single signing/verification operation (with-
out the get-all-before requirement in [7]). We then present
flow signing and verification procedures based upon the tree
chaining technique. Since a single signing/verification op-
eration is amortized over many packets, these procedures
improve signing and verification rates by one to two or-
ders of magnitude compared to the sign-each approach.
The signing procedure also provides delay-bounded sign-
ing. Thus the procedures can be used for delay-sensitive
flows.

In Section 3, we turn our attention to improving the sign-
ing and verification operations in the procedures. Specif-
ically, we present several extensions to the Feige-Fiat-
Shamir digital signature scheme to speed up both signing
and verification as well as to allow adjustable and incre-
mental verification. In Section 4, the extended Feige-Fiat-
Shamir (eFFS) scheme is compared to four well-known sig-
nature schemes [6, 15, 17, 19]. We compare their sign-
ing and verification times, as well as key and signature

sizes. We observe that (i) the signing and verification op-
erations of eFFS are highly efficient compared to the other
schemes, (ii) eFFS allows a tradeoff between memory and
signing/verification time, and (iii) eFFS allows adjustable
and incremental verification by receivers.

2. How to Sign a Flow
To digitally sign/verify delay-sensitive flows, the sign-

each approach is computationally too expensive for many
applications, particularly those applications that generate
packet flows in real time.

As an alternative to the sign-each approach, we present
two chaining techniques (star and tree) for providing au-
thenticity to a group of packets, called ablock, using a
single signing operation. The basic idea is to compute a
block digest which is signed. In order to make packetsin-
dividually verifiable, each packet needs to carry its own au-
thentication information consisting the signed block digest
(block signature) together with some chaining information
as proof that the packet is in the block.

2.1. Star chaining
Considerm packets that constitute a block. In star chain-

ing, the block digest is simply the message digest of the
m packet digests (listed sequentially). Leth(�) denote the
message digest function being used (e.g., MD5). Consider,
for example, a block of eight packets with packet digests
D1; : : : ; D8. The block digest isD1�8 = h(D1; : : : ; D8),
and the block signature,sign(D1�8), is the block digest
signed with some digital signature scheme (such as RSA,
DSA or eFFS).

The relationship between the packet digests and the
block digest can be represented by a one-level rooted tree,
called anauthentication star. Figure 1 illustrates an authen-
tication star for eight packets, with packet digests at leaf
nodes, and the block digest at the root.

���
���
���

���
���
���

��
��
��

��
��
��

��
��
��

��
��
��

���
���
���

���
���
���

��
��
��

��
��
��

���
���
���

���
���
���

��
��
��

��
��
��

D1-8

D1 D2 D3 D4 D5 D6 D7 D8

Figure 1. Star chaining technique.
For packets to be individually verifiable, each packet

needs its own authentication information. Such authenti-
cation information, calledpacket signature, consists of the
block signature, the packet position in the block, and the
digests of all other packets in the block. (We use the term
chaining overheadto refer to all information in a packet
signature except the block signature.)

Suppose the third packet in the above example is re-
ceived. Its authenticity can be individually verified as
follows. The verifier computes the digestD0

3 of the

packet received, and then the block digestD0

1�8 =
h(D1; D2; D

0

3; D4; : : : ; D8), where D1; D2; D4; : : : ; D8

are carried in the packet signature. The verifier then calls
the verification operation to verifyD0

1�8, i.e., to determine
whetherD0

1�8 is equal to block digestD1�8 in block signa-
turesign(D1�8). The packet is verified if the verification
operation returns true, i.e.,D0

1�8 = D1�8.
Suppose the third packet is the first in the block to ar-

rive and its authenticity has been verified. Afterwards, the
verifier knows every node in the authentication star, i.e.,
all nodes in the authentication star are verified and can be
cached. With caching, when another packet in the block ar-
rives later, say the sixth packet, the verifier only needs to
compute the digestD0

6 of the packet received and compare
it to the verified nodeD6 in the authentication star. If they
are equal, the packet is verified.

2.2. Tree chaining
Tree chaining subsumes star chaining as a special case.

With tree chaining, the block digest is computed as the root
node of anauthentication tree.4 Consider, for example, a
block of eight packets with packet digestsD1; : : : ; D8. The
packet digests are the leaf nodes of a degree two (binary)
authentication tree, with other nodes of the tree computed
as message digests of their children, as shown in Figure 2.
For example, the parent of the leavesD1 andD2 is D12 =
h(D1; D2) whereh(�) is the message digest function being
used. The root is the block digest, with the block signature
being the signed block digest.

���
���
���

���
���
���

��
��
��

��
��
��

���
���
���
���

���
���
���
���

D1 D2 D3 D4 D5 D6 D7 D8

D1-8

D5-8D1-4

D1-2 D3-4 D5-6 D7-8

Figure 2. Tree chaining technique.
For a packet to be individually verifiable, each packet

needs to carry its own authentication information (packet
signature). In tree chaining, a packet signature consists of
the block signature, the packet position in the block, and the
siblings of each node in the packet’s path to the root. (Again
we use the termchaining overheadto denote all information
in a packet signature except the block signature.)

To verify a packet individually, a verifier needs to verify
its path to the root. Consider, for example, the dashed path

4Tree chaining was first presented in [11]. Any rooted tree can be used
as an authentication tree with packet digests at leaf nodes and the block
digest at the root. In particular, there is no need to use a balanced tree.

in Figure 2 for the third packet. Each node in the path needs
to be verified. A verifier computes the digestD0

3 of the
received packet, and then each of its ancestors in the tree.
That is,D0

3�4 = h(D0

3; D4), D0

1�4 = h(D1�2; D
0

3�4), and
D0

1�8 = h(D0

1�4; D5�8), whereD4; D1�2 andD5�8 are
carried in the packet signature. The verifier then calls the
verification operation to determine whetherD0

1�8 is equal
to block digestD1�8 in block signaturesign(D1�8). The
packet is verified if the verification operation returns true,
i.e.,D0

1�8 = D1�8.
Suppose the third packet is the first in the block to arrive.

After verifying it, the verifier knows the following nodes5 in
the authentication tree:D3; D4; D1�2; D3�4; D1�4; D5�8

and the block digestD1�8. These are verified nodes which
can be cached. By caching verified nodes, the verifier only
needs to compute each node in the authentication tree at
most once.

For example, after verifying the third packet, to verify
the sixth packet which arrives later, the verifier computes
the digest of the packet receivedD0

6, its parentD0

5�6 =
h(D5; D

0

6), and its grandparentD0

5�8 = h(D0

5�6; D7�8).
If D0

5�8 is equal to the cached nodeD5�8, the sixth packet
is verified.

2.3. Comparison of chaining techniques

We performed experiments on a Pentium II 300 MHz
machine running Linux, and compared star and tree chain-
ing. We used MD5 as the message digest function [18] for
generating 128-bit message digests.

For each chaining technique, an authentication tree is
first built for a block of packets,6 i.e., each node is computed
as the message digest of its children. The time to build an
authentication tree (excluding time to compute packet di-
gests) is called thetree build time. The block signature is
then obtained by signing the block digest at the root. Af-
ter that, the packet signature of each packet is built from
the authentication tree and the block signature. The time
to build a packet signature is calledpacket signature build
time. Thechaining timefor a block at a signer is the sum of
tree build time and packet signature build time for all pack-
ets in the block (excluding signing time of the block digest).
Table 1(a) shows the chaining time for a block of packets at
a signer.

Note that the total signing time for all packets in a block
is the block’s chaining time plus the signing time of the
block digest, which is 12.7 ms using 512-bit RSA and
5.6 ms using 512-bit DSA. Consider a block of 16 pack-
ets. From Table 1(a), the chaining time is 0.214 ms for a
degree two authentication tree. The total signing time is

5Some are carried in the packet signature and the others have been com-
puted.

6We will use “tree” instead of “tree/star” since star chaining is a special
case of tree chaining.

0:214 + 12:7 = 12:9 ms using 512-bit RSA. Thus the av-
erage signing time for one packet is12:9=16 = 0:81 ms,
which is more than 15 times smaller than one 512-bit RSA
signing operation.

To verify packets in a block, an authentication tree is
built from packet signatures as packets arrive. Thechain-
ing time for a block at a verifier is the sum of tree build
time and time to verify chaining information in the packet
signature of every packet in the block (excluding verifica-
tion time of the block signature). The chaining time for a
block at a verifierwith cachingof verified nodes is shown
in Table 1(b).

The total verification time for all packets in a block is
the block’s chaining time plus the verification time of the
block signature, which is 0.40 ms using 512-bit RSA and
7.6 ms using 512-bit DSA. Consider a block of 16 packets.
From Table 1(b), the chaining time is 0.241 ms for a de-
gree two authentication tree. The total verification time is
0:241+ 0:40 = 0:64 ms using 512-bit RSA. Thus the aver-
age verification time for one packet is0:64=16 = 0:04 ms,
which is 10 times smaller than one 512-bit RSA verification
operation.

block size (number of packets)
2 4 8 16 32 64 128

star 0.014 0.022 0.034 0.063 0.137 0.376 1.283
tree deg 2 0.016 0.043 0.100 0.214 0.445 0.912 1.852
tree deg 4 0.016 0.028 0.068 0.133 0.285 0.573 1.174
tree deg 8 0.016 0.028 0.058 0.131 0.262 0.531 1.098

(a) Chaining time (ms) at a signer.

block size (number of packets)
2 4 8 16 32 64 128

star 0.014 0.021 0.030 0.049 0.085 0.158 0.305
tree deg 2 0.016 0.047 0.109 0.241 0.499 1.036 2.153
tree deg 4 0.016 0.026 0.070 0.133 0.291 0.584 1.236
tree deg 8 0.016 0.026 0.044 0.110 0.221 0.440 0.963

(b) Chaining time (ms) at a verifier (with caching).

Table 1. Chaining time (ms) for a block.

For each chaining technique, a packet signature has two
parts, the block signature and the chaining overhead. In
general, if a tree is not balanced and full, the chaining over-
head sizes of different packets are different. Table 2 shows
the average chaining overhead size per packet. The size of
the block signature is not included in Table 2 since it de-
pends on which signature scheme is used (e.g., the block
signature is 64 bytes for 512-bit RSA, and 40 bytes for 512-
bit DSA).

From Table 1(a), note that for any block size smaller
than or equal to 64 packets, star chaining takes less time
at a signer than tree chaining (degrees two to eight). How-
ever, for a larger block size, star chaining takes more time
at a signer than tree chaining, because the chaining time
for a star isO(m2) and the chaining time for a tree is

block size (number of packets)
2 4 8 16 32 64 128

star 17 49 113 241 497 1009 2033
tree deg 2 18 35 52 69 86 103 120
tree deg 4 18 50 78 99 130 148 180
tree deg 8 18 50 114 172 204 227 290

Table 2. Average chaining overhead size
(bytes) per packet.

O(m log(m)) wherem denotes block size.
As shown in Table 1(b), star chaining takes less time at a

verifier than tree chaining for all block sizes.
From Table 2, note that the chaining overhead of star

chaining is much greater than tree chaining for block sizes
larger than eight. If a small communication overhead is
important, packet signature sizes should be reduced. We
recommend the use of degree two tree chaining which re-
quires the smallest chaining overhead. (Any improvement
in chaining time is insignificant if the signature scheme be-
ing used has a signing/verification time much larger than the
chaining time. See Table 3 in Section 2.4.)

2.4. Flow signing and verification procedures
A flow is signed by partitioning it into blocks of packets,

with each block signed using tree chaining. For a non-real-
time generated flow, blocks are of the same sizem, chosen
to be a power of the authentication tree degreed. The flow
signing procedure, flowsign(m; d), for a non-real-time gen-
erated flow is shown in Figure 3.

For a real-time generated flow, the packet generation
rate is time-varying for many applications, such as com-
pressed video and voice-activated audio. For these appli-
cations, partitioning the flow into fixed size blocks may
lead to an unpredictable (perhaps unbounded) signing de-
lay. Instead, the flow is partitioned by fixed time periods,
and packets generated in the same time period are grouped
into a block (see Figure 4). The flow signing procedure,
flowsignRT(T; d), for a real-time generated flow, whereT
is the time period andd is the authentication tree degree, is
shown in Figure 3.

For both real-time and non-real-time generated flows, the
flow verification procedure, shown in Figure 5, is the same.
For the first received packet in a block, i.e., the block sig-
nature carried in the packet signature is new to a verifier,
the verifier computes the packet digest, and every ancestor
of the packet digest.7 For the computed block digest (the
root of authentication tree), the verifier calls the verification
operation to verify that it is equal to the block digest in the
block signature. If so verified, then all computed nodes and
their children are verified and cached.

For a packet that is not the first received packet in a
block, the verifier computes the packet digest. If the packet

7A node is computed as the message digest of its children which are
either computed or carried in the packet signature.

procedure flowsign(m; d)
for each block ofm packets,P1; : : : ; Pm

compute packet digests;
build a degreed authentication tree;
let root be the block digest;
compute the block signaturesign(root);
for each packetPi in the block /* build its signature */

let p be its path toroot;
its signature consists of the block signaturesign(root),

siblings of each node inp, and the packet position
endfor

endfor

procedure flowsignRT(T; d)
for each periodT

let P1; : : : ; Pm be the packets generated
with digests computed in periodT ;

build a degreed authentication tree;
let root be the block digest;
compute the block signaturesign(root);
for each packetPi in the block /* build its signature */

let p be its path to theroot;
its signature consists of the block signaturesign(root),

siblings of each node inp, and the packet position
endfor

endfor

Figure 3. Flow signing procedures.

period Tperiod T

time

m packetsm packets

chain (m) + Tsigns

1 2

schain (m) + Tsign1 2

Figure 4. Signing a real-time generated flow.

digest has been cached and the cached value is equal to the
computed packet digest, then the packet is verified. Oth-
erwise, the verifier computes every non-cached ancestor of
the packet digest. For the highest non-cached ancestor, the
verifier computes its parent. If the computed parent and its
cached value are equal, then the packet is verified and all
computed nodes and their children are verified and cached.

We implemented the flow signing and verification proce-
dures, and performed experiments on a Pentium II 300 MHz
machine running Linux. We used MD5 as the message di-
gest function, and experimented with both 512-bit RSA and
512-bit DSA as the signature scheme for block signatures.

Table 3 shows the flow signing and verification rates for
1024-byte packets.8 Note that tree and star chaining are one
to two orders of magnitude more efficient than the sign-each
approach. The flow signing and verification rates increase
with block size. However, the rates vary only slightly with
the chaining technique used and with the tree degree in tree
chaining. Since degree two tree chaining has the lowest
chaining overhead (packet signature size), we recommend

8Verification rates were computed assuming no packet loss. Due to
page limitation, we only show results for RSA. Results for DSA can be
found in [21].

procedure flowverify()
for each received packet

if the block signaturesign(root) in the packet signature is new then
/* this is the first received packet in the block */
compute the packet digest;
compute each ancestor of the packet digest

as the message digest of its children;
let root0 be the computed block digest;
if (verify(root0 ; sign(root)) = false) then

the packet is not verified
else

the packet is verified;
cache all computed nodes and their children as verified

endif
else /* this is not the first received packet in the block */

compute the packet digest;
if (packet digest has been cached) then

if (computed packet digest6= its cached value) then
the packet is not verified

else
the packet is verified

endif
else

compute all non-cached ancestors of the packet digest;
let node be the highest node computed;
compute the parent ofnode;
if (computed parent6= its cached value) then

the packet is not verified
else

the packet is verified;
cache all computed nodes and their children as verified

endif
endif

endif
endfor

Figure 5. Flow verification procedure (with
caching of verified nodes).

the use of degree two tree chaining.
Table 4 shows the flow signing and verification rates for

packets of size 512, 1024, or 2048 bytes. We used degree
two tree chaining. From the tables, observe that the flow
signing and verification rates decrease as the packet size in-
creases. It is because more time is needed to compute the
message digest of a larger packet. The decrease is more pro-
nounced when the block size used is large, since more time
is used to compute packet digests for a large block than a
small block. Observe also that the flow signing and ver-
ification rates increase with block size and the increase is
greater for a smaller packet size.

2.5. Bounded delay signing
Consider Figure 4. Assume that, in periodT , at mostm

packets are generated and their packet digests computed.
The delay for signing a block of packets is bounded by
Ds = T + chains(m) + Tsign wherechains(m) is the
chaining time for a block ofm packets at a signer, andTsign
is the signing time of the block digest.

Table 5 shows the delay bound for periodT = 50 ms.
Note that the delay bound is fairly insensitive to the block
size since the block’s chaining time is much smaller than

block size (number of packets)
2 4 8 16 32 64 128

sign-each 78.7
star 152 302 582 1090 1920 3090 4310
tree deg 2 153 304 570 1080 1890 3010 4310
tree deg 4 153 301 579 1080 1900 3070 4380
tree deg 8 153 302 581 1080 1900 3060 4350

(a) signing rates using 512-bit RSA

block size (number of packets)
2 4 8 16 32 64 128

1960
3090 4530 5870 6900 7600 7930 8180
3020 4320 5540 6360 6910 7210 7350
3000 4400 5650 6640 7230 7590 7760
2960 4400 5680 6660 7340 7740 7860

(b) verification rates using 512-bit RSA
Table 3. Flow signing/verification rates (packets/sec) for 1024-byte packets.

packet size block size (number of packets)
(bytes) 2 4 8 16 32 64 128

512 157 310 605 1160 2130 3640 5670
1024 153 304 570 1080 1890 3010 4310
2048 153 296 552 982 1600 2330 3010

(a) signing rates using 512-bit RSA

block size (number of packets)
2 4 8 16 32 64 128

3600 5630 7740 9560 10800 11600 12000
3020 4320 5540 6360 6910 7210 7350
2320 2980 3520 3860 4040 4140 4160

(b) verification rates using 512-bit RSA
Table 4. Flow signing/verification rates (packets/sec) for degree two tree chaining.

the block digest’s signing time.
For a given application, with a specified delay bound,

Ds, for signing a real-time generated flow at a known
packet rate, we can work backwards and derive an ap-
propriate value for the parameterT needed for procedure
flowsignRT(T; d). From Figure 4, observe thatT must be
larger thanTsign + chains(m), andDs must be larger than
2(Tsign + chains(m)).

number of packets generated in periodT

2 4 8 16 32 64 128
tree deg 2 62.6 62.6 62.8 62.8 63.1 63.5 64.6
tree deg 4 62.6 62.7 62.7 62.7 63.0 63.2 64.0
tree deg 8 62.5 62.6 62.7 62.7 63.0 63.2 63.9

Table 5. Signing delay bound (ms) for period
T = 50 ms using 512-bit RSA.

2.6. Selecting a digital signature scheme

For non-real-time generated flows, signing efficiency is
not critical. Thus a signature scheme with an efficient ver-
ification operation, such as RSA, can be used in the flow
signing and verification procedures. For real-time gener-
ated flows, however, it is critical that both signing and ver-
ification are highly efficient. Furthermore, in choosing a
digital signature scheme, we must also consider machine
capabilities (sender and receiver), as well as the fraction of
processor time available for signing and verification.

Using 100% processor time of a Pentium II 300 MHz
machine, the flow signing and verification rates for 1024-
byte packets, degree two tree chaining, and block size six-
teen, are shown below.

signing rate verification rate
512-bit RSA 1080 packets/sec 6360 packets/sec
512-bit DSA 2100 packets/sec 1530 packets/sec

Note that using DSA, the flow verification rate is smaller
than the flow signing rate. This is undesirable because re-
ceivers/verifiers are generally less powerful than the signer/
sender, e.g., the receivers may be personal digital assistants
or low-end notebook computers. Using RSA, the flow sign-
ing rate may not be high enough for some applications. Al-
though we can increase the flow signing and verification
rates by using a longer period or a larger block size, nei-
ther option is desirable. A larger block size increases the
chaining overhead (packet signature size). A longer period
increases the delay for signing real-time generated flows.

To obtain a signature scheme better than RSA and DSA
for signing/verifying flows, we propose several extensions
to the Feige-Fiat-Shamir signature scheme. The extended
scheme, called eFFS, is presented in the next section. The
eFFS scheme has a very efficient signing operation (more
efficient than those of RSA and DSA) and a verification op-
eration as efficient as that of RSA. A performance compar-
ison of eFFS with four other signature schemes (including
RSA and DSA) is given in Section 4.

3. The eFFS Signature Scheme

The eFFS signature scheme is derived from the Feige-
Fiat-Shamir signature scheme [3, 4] with several exten-
sions. In Section 3.1, we describe the basic Feige-Fiat-
Shamir signature scheme. In Section 3.2, we describe an
improvement suggested in [12], called small verification
key (small v-key) which reduces verification time by an
order of magnitude. In Section 3.3, we propose to use
a speedup technique suggested by the Chinese Remainder
Theorem (crt), which reduces signing time. In Section 3.4,
we propose to use a technique, calledprecomputation(pre-
comp), which reduces signing and verification times by us-
ing more memory. With precomputation, the signing op-
eration time is reduced by a factor of two to three using

eFFS parameter(k; t)
(32; 1) (32; 2) (64; 1) (32; 4) (64; 2) (128; 1)

basic FFS 3.75 7.45 6.19 14.83 12.33 11.85
small v-key 3.71 7.38 6.42 14.75 12.79 12.45

crt + small v-key 3.24 6.41 5.44 12.78 10.83 9.91
4-bit precomp + crt + small v-key 2.00 3.95 3.03 7.85 5.98 5.11
8-bit precomp + crt + small v-key 1.48 2.92 2.03 5.79 4.00 3.14

Table 6. eFFS signing time (ms) with 512-bit modulus.

eFFS parameter(k; t)
(32; 1) (32; 2) (64; 1) (32; 4) (64; 2) (128; 1)

basic FFS 3.12 6.28 5.94 13.51 11.29 11.14
small v-key 0.30 0.58 0.39 1.14 0.71 0.60

4-bit precomp + small v-key 0.29 0.57 0.36 1.10 0.66 0.55
8-bit precomp + small v-key 0.28 0.56 0.36 1.09 0.65 0.54

Table 7. eFFS verification time (ms) with 512-bit modulus.

only a few hundred bytes of additional memory. Lastly, in
Section 3.5, we design an extension to provideadjustable
andincrementalsignature verification. With this extension,
a signature can be verified at different security levels, i.e.,
a verifier can use less resources to verify a signature at a
lower security level. Moreover, the verification is incremen-
tal, i.e., the verifier can first verify a signature at a lower
security level, and later increase the security level by using
more resources.

We implemented the basic Feige-Fiat-Shamir (FFS)
scheme and the eFFS scheme (i.e., with the improvements
and extensions mentioned above) using the large integer
arithmetic routines from CryptoLib [8]. Table 6 and Ta-
ble 7 show the times for signing and verifying (with 512-bit
modulus) 128-bit message digests, using different speedup
techniques and different eFFS/FFS parameters(k; t).9 The
results were obtained on a Pentium II 300 MHz machine
running Linux.

3.1. Feige-Fiat-Shamir signature scheme
In the basic FFS signature scheme with parameter(k; t)

[3, 4], each signer chooses two large primesp andq, and
computes modulusn = pq. Then, the signer chooses
k integersv1; : : : ; vk (or k integerss1; : : : ; sk), and com-
putes1; : : : ; sk (or v1; : : : ; vk) by s2i = v�1i modn. The
signing key isfs1; : : : ; sk; ng and the verification key is
fv1; : : : ; vk; ng.

To sign messagem, the signer does the following steps:
(1) chooset random integers,r1; : : : ; rt, between 1 andn,
and computexi = r2i modn for i = 1; : : : ; t; (2) calculate
the message digesth(m;x1; : : : ; xt) where the message di-
gest functionh(�) is public knowledge and the message di-

9Note that the productkt determines the security level of eFFS/FFS
for the same modulus. We discuss more about parameters(k; t) later in
Section 3.1.

gest is at leastk� t bits long; letfbijg be the firstk� t bits
of the message digest wherei = 1; : : : ; t, andj = 1; : : : ; k;
(3) computeyi = ri � (sbi11 � : : : � sbikk) modn for
i = 1; : : : ; t. The signature of messagem consists offyig
for i = 1; : : : ; t andfbijg for i = 1; : : : ; t andj = 1; : : : ; k.

To verify the signature of messagem, a verifier com-
puteszi = y2i � (vbi11 � : : :� vbikk) modn for i = 1; : : : ; t.
The signature is valid if and only if the firstk � t bits of
h(m; z1; : : : ; zt) are equal to thefbijg received.

Assumingjvij = jnj andjsij = jnj, wherejxj denotes
the size ofx in bits, both the signing key and verification
key sizes are(k + 1) � jnj bits, and the signature size is
t � jnj + k � t bits. The signing/verification key size only
depends onk, but the signature size is proportional tot. For
example, with 512-bit modulus and(k; t) = (128; 1), the
signing/verification key size is 8256 bytes, and the signature
size is 80 bytes.

The security level of FFS(k; t) depends on the following:
(1) the size of modulusn, (i.e., the size of the primesp and
q), and (2) the value of productkt. A system with a longer
modulus is more secure, and a system with a largerkt prod-
uct is more secure. If two systems with the same modulus
and samekt product (but differentk andt values), then their
security levels are about the same. For a fixedkt product,
we can reduce the signature size by using a smallert (and a
largerk). Fort = 1, the signature size is minimized, but the
signing/verification key size is maximized. Moreover, for
a fixedkt product, the signing/verification time is smaller
whent is smaller (see Table 6 and Table 7). Therefore, we
recommend to uset = 1 except when adjustable verifica-
tion is needed.10

10Our extension to provide adjustable and incremental signature verifi-
cation, which is described in Section 3.5, requirest > 1.

3.2. Small verification key components

In FFS, the sizes of signing key componentsfsig affect
the signing time, and the sizes of verification key compo-
nentsfvig affect the verification time. An improvement
idea suggested in [12] is to use small prime numbers11 as
the verification key componentsfvig and compute the sign-
ing key componentsfsig by s2i = v�1i modn. This im-
provement (labeled as “small v-key” in Table 6 and Table 7)
has two advantages. First, the verification time is an order
of magnitude smaller than without this improvement (and
the signing time is not affected). Second, the verification
key size becomes smaller. In practice, fork up to 128, the
verification key componentsfvig are always less than216.
Thus, for a 512-bit modulus andk = 128, the signing key
size is 8256 bytes, and the verification key size is 320 bytes.
Since a signing key is private to a signer, the relatively large
signing key size does not pose a problem.

3.3. Chinese remainder theorem speedup

We propose to use the following improvement (labeled
as “crt” in Table 6), which is based on the Chinese Re-
mainder Theorem, to speed up signing operation. In FFS,
the signing operation involves the computing ofyi = ri �
(sbi11 � : : : � sbikk) modn wherefsig do not change and
only frig and fbijg change from message to message.
Let f(ri; fbijg; s1; : : : ; sk) denote the arithmetic function
ri � (sbi11 � : : : � sbikk). Basically, the functionf(�) com-
putes the product of some large integers, andyi is the in-
tegerf(�) modn. Since onlyyi is needed (and the actual
value off(�) is not needed), the multiplication operations
in f(�) can be done in modn for efficiency.

Moreover, asn = pq, by using Chinese Remainder The-
orem,yi (= f(�) modn) can be computed from two smaller
integersai = f(�) modp, andbi = f(�) modq. In par-
ticular, the Chinese Remainder Theorem says thatyi =
(ai�q�p�1q +bi�p�p�1q) modnwherep�1q = p�1 modq
andq�1p = q�1 modp. Therefore, instead of computingyi
directly by onef(�) function call with multiplication opera-
tions in modn, a signer first computesai andbi by twof(�)
function calls, one with multiplication operations in modp,
and the other in modq. Then, the signer computesyi from
ai andbi by Chinese Remainder Theorem. Since there are
many multiplication operations inf(�) and multiplication
operations in modp and modq are more efficient than in
modn, the signing time is decreased.

This Chinese Remainder Theorem improvement can
only be used by a signer because knowledge of the factors
of modulusn is required. It reduces the signing time by

11Actually, [12] suggests using the firstk prime numbers as the verifica-
tion key componentsfvig. However, since not every prime numberp satis-
fies the condition that there exists an integers such thats2 = p�1 modn,
we use the firstk prime numbers that satisfy the condition as the verifica-
tion key components.

12% to 20% (see Table 6). The amount of additional mem-
ory needed is only a few hundred bytes for storing a few
large integers (with 512-bit modulus).

3.4. Precomputation: memory-time tradeoff
One important feature of FFS is that a signer/verifier can

trade memory for signing/verification time. We propose to
use the following improvement (labeled “precomp” in Ta-
ble 6 and Table 7) to speed up signing/verification operation
by using more memory at signer/verifier.

To illustrate the basic idea of this improvement, consider
the signing operation withk = 4. To sign a message, a
signer computesyi = ri � (sbi11 � : : : � sbi44) modn, for
i = 1; : : : ; t. Sinces1; : : : ; s4 do not change from mes-
sage to message, andbi1; : : : ; bi4 are either one or zero,
the signer can precompute and store the product (modn)
of every non-empty subset offs1; : : : ; s4g. Let Sb1:::b4

denote the precomputed productsb11 � : : : � sb44 modn.
Then, to sign a message, the signer can computeyi by
ri � Sbi1:::bi4 modn.

For largek, it is not practical to precompute the product
(mod n) of every non-empty subset offs1; : : : ; skg. In-
stead, the signer partitionsfs1; : : : ; skg into smaller sets
and precomputes each of them. If each smaller set contains
four si, then it is a 4-bit precomputation. Similarly, if each
smaller set contains eightsi, then it is an 8-bit precomputa-
tion.

Compared to the basic FFS (with small v-key), 4-bit pre-
computation plus crt speedup reduces the signing time by
45% to 55%, and 8-bit precomputation plus crt speedup re-
duces the signing time by 60% to 70% (see Table 6). For
4-bit precomputation withk = 128 and 512-bit modulus,
a signer needs to store128=4� (24 � 1) = 480 products.
That is, additional memory of480 � 512 bits or 31 kilo-
bytes is required. The additional memory required by 8-bit,
12-bit, and 16-bit precomputation are 261 kilobytes, 2.88
megabytes, and 33.6 megabytes, respectively. Given that
a low-end desktop PC or a notebook computer has at least
16 or 32 megabytes of memory, the additional memory re-
quired by 8-bit precomputation does not pose a problem.
In the remaining experiments, we use signing with small
v-key, 8-bit precomputation and crt speedup.

Although similar precomputation can be used in verifi-
cation operations, it is not effective with the small v-key
extension. This is because with the small v-key exten-
sion, small primes are used as public key components, and
their products can be computed very efficiently. For exam-
ple, with the small v-key extension, 8-bit precomputation in
verification operations reduces the verification time by less
than 10% (see Table 7). In the remaining experiments, we
use verification with small v-key and no precomputation.

3.5. Adjustable and incremental verification
In multicast or group communications, receivers typi-

cally have different amounts of resources, and the resources

available to a receiver for verification vary over time. It is
thus desirable to have an adjustable and incremental sig-
nature verification operation. An adjustable verification al-
lows a receiver/verifier to verify a message at a lower se-
curity level using less processor time. An incremental ver-
ification allows a receiver/verifier to verify a message at a
lower security level first, and later increase the security level
by using more processor time (e.g., if the message is impor-
tant).

Since the security level of a signature scheme depends
on its parameters, e.g., the modulus size, an obvious ap-
proach to provide adjustable and incremental verification is
to use multiple keys (with different modulus sizes) to gen-
erate multiple signatures for different security levels. To
verify at a lower security level, the verification key with a
shorter modulus size is used to verify the corresponding sig-
nature. This approach is simple but very inefficient. In the
following, we design an extension to FFS that provides ad-
justable and incremental verification efficiently.

The security level of FFS(k; t) depends on the prod-
uct kt as well as the modulus size. Generally speaking,
if two systems have the same modulus and samekt prod-
uct, then their security levels are about the same. Our
extension to provide adjustable and incremental verifica-
tion is to uset greater than one, and to includefxig for
i = 2; : : : ; t in signatures. This is called at-level signa-
ture.12 This extension is as secure as the original scheme
becausexi = y2i �(vbi11 �: : :�vbikk) modn for i = 2; : : : ; t
can be computed easily from the original signature, which
consists offbijg andfyig, together with the verification key
fv1; : : : ; vk; ng which is publicly known.

To verify a t-level signature of messagem at security
level l of t (wherel � t), a verifier does the following:
(1) computezi = y2i � (vbi11 � : : : � vbikk) modn for i =
1; : : : ; l, and (2) verify thatz2; : : : ; zl are equal tox2; : : : ; xl
respectively, and the firstk � t bits ofh(m; z1; x2; : : : ; xt)
are equal to thefbijg received.

To increase the verification security level froml1 to l2, a
verifier does the following: (1) computezi = y2i � (vbi11 �

: : :� vbikk) modn for i = l1 + 1; : : : ; l2, and (2) verify that
zl1+1; : : : ; zl2 are equal toxl1+1; : : : ; xl2 respectively.

The size of at-level signature iskt + (2t � 1) � jnj
bits. For a 512-bit modulus and productkt = 128, a 1-level
signature is 80 bytes and a 2-level signature is 208 bytes.

Table 8 shows differentt-level signature signing times.
For the samekt product, the signing time increases as the
t value increases. However, the signing time is still smaller
than using multiple keys for different security levels. For
example, the 2-level signature signing time, which is 4.08
ms forkt = 128, is smaller than the time to sign two (origi-
nal 1-level) signatures, one for(k; t) = (64; 1) and the other

12Note that the original (1-level) signature does not provide adjustable
and incremental verification.

kt product
kt = 32 kt = 64 kt = 128

1-level signature 1.48 2.03 3.14
2-level signature 3.02 4.08
4-level signature 5.89

Table 8. eFFS t-level signature signing times
(ms).

security kt product
level kt = 32 kt = 64 kt = 128

level 1 of 1 0.302 0.388 0.598
level 1 of 2 0.321 0.401
level 2 of 2 0.603 0.752
level 1 of 4 0.336
level 2 of 4 0.612
level 4 of 4 1.164

Table 9. eFFS verification times (ms) at differ-
ent security levels.

To level 1 level 2
From level 0 0.401 0.752
From level 1 0.368

(a) 2-level signature

To level 1 level 2 level 3 level 4
From level 0 0.336 0.612 0.884 1.164
From level 1 0.288 0.564 0.841
From level 2 0.287 0.567
From level 3 0.291

(b) 4-level signature

Table 10. eFFS incremental verification times
(ms) for kt = 128.

for (k; t) = (128; 1), which is2:06 + 3:19 = 5:25 ms.
Table 9 shows the (adjustable) verification times at dif-

ferent verification security levels. Table 10 shows the (in-
cremental) verification times from one level to a higher
level. Forkt = 128 and a 2-level signature, a verifier can
first verify a message at level 1 of 2 using 0.401 ms proces-
sor time, and later increase to level 2 (of 2) by using 0.368
ms additional processor time.

4. Comparison with other Signature Schemes
In this section, we compare eFFS(128,1) to four other

signature schemes available from CryptoLib [8], namely:
DSA [15], ElGamal [6], RSA [19], and Rabin [17]. We
compare their key and signature sizes, and signing and ver-
ification times. Then, we compare their signing and verifi-
cation rates for 1024-byte packets when each is used as the
signature scheme in our flow signing and verification proce-
dures presented in Section 2. Experiments were performed
on a Pentium II 300 MHz machine running Linux. Four
different modulus sizes, 384, 512, 768, and 1024 bits, were

used in the comparison. (Note that it is difficult to com-
pare the security levels of different signature schemes even
if they use the same modulus size.)

4.1. Key and signature sizes
Table 11 shows the signing/verification key and signa-

ture sizes. The signing keys are from 96 to 384 bytes in all
schemes except eFFS whose signing keys are much larger,
from 6,192 to 16,512 bytes. Note that a signing key is pri-
vate to a signer. We do not expect the relatively large eFFS
signing keys to pose a problem for sources/signers of packet
flows.13

modulus size (bits)
384 512 768 1024

RSA signing key 96 128 192 256
(e=3) verification key 48 64 96 128

signature 48 64 96 128
Rabin signing key 96 128 192 256

verification key 48 64 96 128
signature 48 64 96 128

DSA signing key 136 168 232 296
verification key 164 212 308 404
signature 40 40 40 40

ElGamal signing key 144 192 288 384
verification key 144 192 288 384
signature 96 128 192 256

eFFS signing key 6192 8256 12384 16512
(128,1) verification key 304 320 352 384

signature 64 80 112 144

Table 11. Signing key, verification key, and
signature sizes (bytes) of different signature
schemes.

In RSA and Rabin, verification keys are from 48 to 128
bytes. In DSA, ElGamal, and eFFS, verification keys are
slightly larger, from 144 to 404 bytes. Even for receivers
with limited resources, we believe that a verification key as
large as 400 bytes would not pose a problem.

The signature of DSA is the smallest and is 40 bytes for
all modulus sizes. For all of the other schemes, the signa-
tures are larger and about the same size, 48 to 256 bytes. In
particular, the signature sizes of eFFS and the popular RSA
are about the same.

4.2. Signing and verification times
Table 12 shows the signing and verification times for a

16-byte message (digest).14 DSA and ElGamal have been
designed to achieve efficient signing (e.g., for use in smart-
card applications), and RSA and Rabin have been designed
to achieve efficient verification. From Table 12, note that
the signing operations of DSA and ElGamal, with times

13Such signing keys are indeed too large for small devices, such as
smartcards, but it is unlikely that these devices would generate flows.

14We usee=3 in RSA to obtain its fastest verification time without af-
fecting its signing time.

modulus size (bits)
384 512 768 1024

RSA sign 6.2 12.7 36.2 79.4
(e=3) verify 0.26 0.40 0.70 1.14
Rabin sign 11.3 19.5 47.5 95.9

verify 0.14 0.20 0.38 0.56

DSA sign 3.9 5.6 10.2 16.3
verify 5.1 7.6 14.7 24.2

ElGamal sign 5.1 6.8 12.3 18.9
verify 24.4 51.9 157.5 350.3

eFFS sign 2.25 3.14 5.34 8.13
(128,1) verify 0.49 0.60 0.79 1.06

Table 12. Signing and verifying times (ms) of
different signature schemes.

from 3.9 to 18.9 ms, are much more efficient than those
of RSA and Rabin, with times from 6.2 to 95.9 ms. On the
other hand, the verification operations of RSA and Rabin,
with times from 0.14 to 1.14 ms, are much more efficient
than those of DSA and ElGamal, with times from 5.1 to
350.3 ms.

By comparison, eFFS has a signing operation even more
efficient than those of DSA and ElGamal, and a verification
operation as efficient as that of RSA. This combination of
the most efficient signing and highly efficient verification
makes eFFS the best choice for most applications.

4.3. Flow signing and verification rates

modulus size (bits)
384 512 768 1024

RSA flow signing 1910 1080 415 193
(e=3) flow verification 6730 6360 5590 4930
Rabin flow signing 1190 743 323 165

flow verification 7440 7130 6680 6170

DSA flow signing 2740 2100 1310 871
flow verification 2230 1530 935 606

ElGamal flow signing 2330 1850 1140 740
flow verification 602 294 99 45

eFFS flow signing 3750 3060 2180 1570
(128,1) flow verification 6140 5930 5540 4980

Table 13. Flow signing and verification rates
(packets/sec) for 1024-byte packets, degree
two tree chaining, and block size sixteen.

Table 13 shows the flow signing and verification rates
of our flow signing and verification procedures (for 1024-
byte packets, degree two tree chaining, block size sixteen,
and 100% of processor time of a Pentium II 300 MHz ma-
chine). Both DSA and ElGamal have low flow verification
rates, rendering them inappropriate for receivers with lim-
ited resources, such as personal digital assistants and low-
end notebook computers. Both RSA and Rabin have low
flow signing rates, rendering them inappropriate for real-
time generated flows, such as live video/audio applications.

By comparison, eFFS provides high flow signing rates suit-
able for real-time generated flows while its flow verification
rates are also very high.

5. Conclusions
We investigated the problem of signing/verifying delay-

sensitive packet flows to provide data authenticity, integrity,
and non-repudiation for Internet applications. We have de-
signed flow signing and verification procedures, based upon
a tree chaining technique, to meet the following require-
ments: (i) flow signing is efficient and delay-bounded (for
real-time generated flows), (ii) flow verification is highly ef-
ficient (for receivers with limited resources), (iii) packets in
a flow are individually verifiable (for best-effort multicast
delivery), (iv) packet signatures are small (for a small com-
munication overhead), and (v) verification at a receiver is
adjustable to different security levels and can be carried out
incrementally (for receivers with limited resources).

We implemented our flow signing and verification pro-
cedures and performed experiments to compare different
chaining techniques. From experimental results, we rec-
ommend the use of degree two (binary) tree chaining since
it requires the smallest packet signature size (i.e., smallest
communication overhead) while its signing and verification
rates are comparable to the rates of other chaining tech-
niques. Our flow signing and verification procedures are
very efficient and achieve one to two orders of magnitude
improvement compared to the sign-each approach.

To further improve our procedures, we propose sev-
eral extensions to the Feige-Fiat-Shamir digital signature
scheme [3, 4] to speed up both the signing and verification
operations, as well as to allow adjustable and incremental
verification. The extended scheme, called eFFS, is com-
pared to four other digital signature schemes, RSA [19], Ra-
bin [17], DSA [15], and ElGamal [6], on the same comput-
ing platform (Pentium II 300 MHz machine running Linux).

The signing operation of eFFS is more efficient than
those of the other four schemes. The verification operation
of eFFS is as efficient as that of RSA (tie for a close sec-
ond behind the verification operation of Rabin). In addition
to efficient signing and verification, we have extended the
eFFS scheme to allow a receiver to efficiently carry out ad-
justable and incremental verification. Such a capability is
useful for large-scale multicast applications with a variety
of receivers including some with limited resources.

Additional experimental results can be found in our tech-
nical report [21] available at the following URLs.
http://www.cs.utexas.edu/users/lam/NRL/networksecurity.html
http://www.cs.utexas.edu/users/ckwong

Acknowledgement
We would like to thank the anonymous reviewers for

their comments and suggestions.

References

[1] T. Ballardie. Scalable Multicast Key Distribution, RFC
1949, May 1996.

[2] S. E. Deering. Multicast Routing in Internetworks and Ex-
tended LANs. InProc. of ACM SIGCOMM ’88, Aug. 1988.

[3] U. Feige, A. Fiat, and A. Shamir. Zero Knowledge Proofs
of Identity. InProc. of the 19th Annual ACM Symposium on
Theory of Computing, 1987.

[4] A. Fiat and A. Shamir. How to Prove Yourself: Practi-
cal Solutions to Identification and Signature Problems. In
CRYPTO ’86, pages 186–194, 1987.

[5] S. Floyd, V. Jacobson, C.-G. Liu, S. McCanne, and
L. Zhang. A Reliable Multicast Framework for Light-
Weight Sessions and Application Level Framing. InProc.
of ACM SIGCOMM ’95, 1995.

[6] T. E. Gamal. A Public-Key Cryptosystem and a Signature
Scheme Based on Discrete Logarithms. InCRYPTO ’84.
Springer-Verlag, 1985.

[7] R. Gennaro and P. Rohatgi. How to Sign Digital Streams. In
CRYPTO ’97, 1997.

[8] J. B. Lacy, D. P. Mitchell, and W. M. Schell. CryptoLib:
cryptography in software. InProceedings of USENIX: 4th
UNIX Security Symposium, Oct. 1993.

[9] L. Lamport. Constructing digital signatures from a one-way
function. Technical Report CSL 98, SRI Intl., 1979.

[10] R. C. Merkle. A Digital Signature based on a Conventional
Encryption Function. InCRYPTO ’87, 1987.

[11] R. C. Merkle. A Certified Digital Signature. InCRYPTO
’89, 1989.

[12] S. Micali and A. Shamir. An Improvement on the Fiat-
Shamir Identification and Signature Scheme. InCRYPTO
’88, pages 244–247, 1990.

[13] S. Mittra. Iolus: A Framework for Scalable Secure Multi-
casting. InProc. of ACM SIGCOMM ’97, 1997.

[14] S. Mittra and T. Y. Woo. A Flow-Based Approach to Data-
gram Security. InProc. of ACM SIGCOMM ’97, 1997.

[15] National Institute of Standards and Technology. Digital Sig-
nature Standard. NIST FIPS PUB 86, U.S. Department of
Commerce, May 1994.

[16] C. Partridge.Using the Flow Label Field in IPv6, RFC 1809,
June 1995.

[17] M. Rabin. Digitized signatures and public-key functions as
intractible as factorization. Technical Report LCS/TR-212,
MIT Laboratory for Computer Science, 1979.

[18] R. L. Rivest. The MD5 Message Digest Algorithm, RFC
1321, Apr. 1992.

[19] R. L. Rivest, A. Shamir, and L. Adleman. A method for
obtaining digital signatures and public key cryptosystems.
Communications of the ACM, 21(2):120–126, 1978.

[20] C. K. Wong, M. Gouda, and S. S. Lam. Secure Group
Communications Using Key Graphs. InProc. of ACM SIG-
COMM ’98, Vancouver, B.C., Sept. 1998.

[21] C. K. Wong and S. S. Lam. Digital Signatures for Flows and
Multicasts. Tech Report TR 98-15, Department of Computer
Sciences, The University of Texas at Austin, May 1998.

[22] L. Zhang, S. Deering, D. Estrin, S. Shenker, and D. Zap-
pala. RSVP: A new resource ReSerVation Protocol.IEEE
Network Magazine, 9(5), 1993.

