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A distributed system is
susceptible to a variety
of security threats
mounted by intruders.
We describe a number
of protocols to
authenticate users,
hosts, and processes.
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distributed system — a collection of hosts interconnected by a network —
poses some intricate security problems. A fundamental concern is au-
thentication of local and remote entities in the system. In a distributed
system, the hosts communicate by sending and receiving messages over the
network. Various resources (like files and printers) distributed among the hosts
are shared across the network in the form of network services provided by servers.
Individual processes (clients) that desire access to resources direct service requests
to the appropriate servers. Aside from such client-server computing, there are
many other reasons for having a distributed system. For example, a task can be
divided into subtasks that are executed concurrently on different hosts.

A distributed system is susceptible to a variety of threats mounted by intruders
as well as legitimate users of the system. Indeed, legitimate users are more
powerful adversaries, since they possess internal state information not usually
available to an intruder (except after a successful penetration of a host). We
identify two general types of threats.

The first type, host compromise, refers to the subversion of individual hosts in a
system. Various degrees of subversion are possible, ranging from the relatively
benign case of corrupting process state information to the extreme case of assum-
ing total control of a host. Host compromise threats can be countered by a
combination of hardware techniques (like processor protection modes) and soft-
ware techniques (like reference monitors). Because these techniques are outside
our scope, we refer interested readers to Denning! for an overview of computer
systems security. Here, we assume that each host implements a reference monitor
that can be trusted to properly segregate processes.

The second type, communication compromise, includes threats associated with
message communications. We subdivide these into

* (T1), eavesdropping of messages transmitted over network links to extract
information on private conversations;

* (T2), arbitrary modification, insertion, and deletion of messages transmitted
over network links to confound a receiver into accepting fabricated messages;
and

* (T3), replay of old messages (a combination of (T1) and (T2)).
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(T1) is a passive threat, while (T2)
and (T3) are active. A passive threat
does not affect the system being threat-
ened, whereas an active threat does.
Therefore, passive threats are inherent-
ly undetectable by the system and can
only be dealt with by using preventive
measures. Active threats, on the other
hand, are combated by a combination
of prevention, detection, and recovery
techniques. We will not consider threats
of “traffic analysis” and “denial of ser-
vice” because they are more relevant to
the general security of a distributed sys-
tem than to our restricted setting of
authentication.

Some basicsecurity requirementscan
be formulated. For example, secrecy
and integrity are two common require-
ments for secure communication. Se-
crecy specifies that a message can be
read only by itsintended recipients, while
integrity specifies that every message is
received exactly as it was sent, or a
discrepancy is detected.

A strong cryptosystem can provide a
high level of assurance for secrecy and
integrity (see “Basiccryptography”side-
bar). More precisely, an encrypted mes-
sage provides no information regarding
the original message, hence guarantee-
ing secrecy; and an encrypted message,
if tampered with, would not decrypt
into a legal message, hence guarantee-
ing integrity.

Replay of old messages can be coun-
tered by using nonces or time stamps.’?
A nonce is information that is guaran-
teed fresh, thatis, it has not appeared or
been used before. Therefore, a reply
that contains some function of a recent-
ly sent nonce should be considered time-
ly because the reply could have been
generated only after the nonce wassent.
Perfect random numbers are good nonce
candidates; however, their effectiveness
is dependent upon the randomness that
is practically achievable. Time stamps
are values of a local clock. Their use
requires at least some loose synchroni-
zation of all local clocks, and hence
their effectiveness is also somewhat re-
stricted.

What needs
authentication?

Insimple terms, authenticationisiden-
tification plus verification. Identifica-
tion is the process whereby an entity
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Figure 1. Principals in a distributed
system.

claims a certain identity, while verifica-
tion is the process whereby that claim is
checked. Thus. the correctness of an
authentication relies heavily on the ver-
ification procedure employed.

The entities in a distributed system
that can be distinctly identified are col-
lectively referred to as principals. There
are three main types of authentication
in a distributed computing system:

¢ (Al), message content authentica-
tion — verifying that the content of
a received message is the same as
when it was sent;

¢ (A2), message origin authentication
— verifying that the sender of a
received message is the same one
recorded in the sender field of a
message; and

* (A3), general identity authentica-
tion — verifying that a principal’s
identity is as claimed.

(A1) iscommonly handled by tagging
a key-dependent message authentica-
tion code (MAC) onto a message be-
fore it is sent. Message integrity can be
confirmed upon reception by recom-
puting the MAC and comparing it with
the one attached. (A2) is a subcase of
(A3). A successful general identity au-
thentication usually results in a belief
held by the authenticating principal (the
verifier) that the authenticated princi-
pal (the claimant) possesses the claimed
identity. Hence, subsequent claimant
actions are attributable to the claimed
identity; for example, general identity
authentication is needed for both au-
thorization and accounting functions.
Here, we restrict our attention to gener-
al identity authentication.

In an environment where both host
and communication compromises can
occur, principals must adopt a mutually
suspicious attitude. Therefore, mutual
authentication, whereby both commu-

nicating principals verify each other’s
identity, rather than one-way authenti-
cation, whereby only one principal ver-
ifies the identity of the other principal,
is usually required.

In a distributed computing environ-
ment. authentication is carried out us-
ing a protocol involving message ex-
changes. We refer to these protocols as
authentication protocols.

Most existing systems use only very
primitive authentication measures or
none at all. For example,

* The prevalent login procedure re-
quires users to enter their passwords in
response to a system prompt. Users are
then one-way authenticated by verify-
ing the (possibly transformed) password
against an internally stored table. How-
ever, no mechanism lets users authen-
ticate a system. This design is accept-
able only when the system is trust-
worthy. or the probability of compro-
mise 1s low.

¢ Inatypicalclient-serverinteraction,
the server — on accepting a client’s
request — has to trust that (1) the resi-
dent host of the client has correctly
authenticated the clientand (2) theiden-
tity supplied in the request actually cor-
responds to the client. Such trustis valid
only if the system’s hosts are trustwor-
thy and its communication channels are
secure.

These measures are seriously inade-
quate because the notion of trust in
distributed systems is poorly understood.
A satisfactory formal explication of trust
has yet to be proposed. Second. the
proliferation of large-scale distributed
systems spanning multiple administra-
tive domains has produced extremely
complex trust relationships.

In a distributed computing system,
the entities that require identification
are hosts, users, and processes.® They
thus constitute the principals involved
in an authentication, which we describe
(also see Figure 1).

Hosts. These are addressable entities
at the network level. A host is distin-
guished from its underlying supporting
hardware. For example, host H running
on workstation A can be moved to work-
station B by performing the bootstrap
sequence for H on B. A host is usually
identified by its name (for example, a
domain name) or its network address
(for example, an Internet address),
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Basic cryptography

A cryptosystem comes with-one procedure for encryption
and another for decryption. A formal description of a crypto-
system includes specifications for message, key, and cipher-
text spaces, and encryption and decryption functions.

There are two broad classes of cryptosystems, symmetric
and asymmetric.! in the former, encryption and decryption
keys are the same and hence must be kept secret. In the lat-
ter, the encryption key differs from the decryption key, and
the decryption key is kept secret. The encryption key, howev-
er, can be made public. Consequently, it is important that no
one be able to determine the decryption key from the encryp-
tion key. Symmetric and asymmetric cryptosystems are aiso
referred to as shared key and public key cryptosystems, re-
spectively.

Knowledge of the encryption key allows one to encrypt arbi-
trary messages from the message space, while knowledge of
the decryption key allows one to recover a message from its
encrypted form. Thus, the encryption and decryption func-

Yme MV (k k') e Kex Ky {{m}a}=m (C2)
hence yielding a signature capability. That is, suppose k and
k' are P’s asymmetric keys, then {m},.: can be used as Ps
signature on m since it could only have been produced by P,
the only principal that knows k. By (C2), P's signature is
verifiable by any principal with knowledge of k, P’s public key.
Note that in (C2), the roles of k and k' are reversed; specifi-
cally, k' is used as an encryption key while k functions as a
decryption key. To avoid confusion with the more typical roles
for kand k* as exemplified in (C1), we refer to encryption by
k' as a signing operation. In this article, asymmetric crypto-
systems are assumed to be commutative.

Since, in practice, symmetric cryptosystems can operate
much faster than asymmetric ones, asymmetric cryptosys-
tems are often used only for initialization/control functions,
while symmetric cryptosystems can be used for both initial-
izations and actual data transfer.

tions satisfy the following relation: M is the message space,
Ke x K is the set of encryption/decryption key pairs:

Vme MV (k k') e Kex Ky {{m}} et =m

where {x}, denotes the encryption operation on message x if y
is an encryption key and the decryption operation on x if y is 2.
a decryption key. (In the case of a symmetric cryptosystem

with identical encryption and decryption keys, the operation 3

should be clear from the context.)

Two widely used cryptosystems are the Data Encryption
Standard {DES),? a symmetric system, and RSA,? an asym-
metric system. in RSA, encryption-decryption key pairs satis-

fy the following commutative property*:

whereas a particular host hardware is
usually identified by its factory-assigned
serial number (for example, a worksta-
tion on an Ethernet can be identified by
the unique address of its Ethernet adapt-
er board).

Users. These entities are ultimately
responsible for all system activities. In
other words, users initiate and are ac-
countable for all system activities. Most
access-control and accounting functions
are based on users. (For completeness,
a special user called root can be postu-
lated, who is accountable for system-
level activities like process scheduling.)
Typical users include humans, as well as
accounts maintained in the user data-
base. Note that users are considered to
be outside the system boundary.

Processes. The system creates pro-

cesses within the system boundary to
represent users. A process requests and
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consumes resources on behalf of its
unique associated user. Processes fall
into two classes: client and server. Cli-
ent processes are consumers who ob-
tain services from server processes, who
are service providers. A particular pro-
cesscan act as both aclient and a server.
For example, print servers are usually
created by (and hence associated with)
the user root and act as servers for print-
ing requests by other processes. How-
ever, theyactas clients whenrequesting
files from file servers.

Authentication
exchanges

We identify the following major types
of authentication exchanges in a dis-
tributed system.

Host-host. Host-level activities often
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require cooperation between hosts. For
example, individual hosts exchange link
information for updating their internal
topology maps. In remote bootstrap-
ping, a host, upon reinitialization, must
identify a trustworthy boot server to
supply the information (for example, a
copy of the operating system) required
for correct initialization.

User-host. A user gains access to a
distributed system by logging in a host
in the system. In an open-access envi-
ronment where hosts are scattered across
unrestricted areas, a host can be arbi-
trarily compromised, necessitating mu-
tual authentication between the user
and host.

Process-process. Two main subclass-
es exist:

® Peer-process communication. Peer
processes must be satisfied with each
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other’s identity before private commu-
nication can begin.

e Client-server communication. An
access decision concerning a client’s
request can be made only when the
client’s identity is affirmed. A client is
willing to surrender valuable informa-
tion to a server only after verifying the
server’s identity.

As shown later, these two classes of
communication authentication relate
closely and can be handled by similar
protocols.

From now on, we use authentication
to refer to general identity authentica-
tion.

Paradigms of
authentication
protocols

Authentication indistributed systems
is always carried out with protocols. A
protocol is a precisely defined sequence
of communication and computation
steps. A communication step transfers
messages from one principal (sender)
to another (receiver), while a computa-
tion step updates a principal’s internal
state. Two distinct states can be identi-
fied upon protocol termination, one sig-
nifying successful authentication and the
other failure.

Although the goal of any authentica-
tion is to verify the claimed identity of a
principal, specific success and failure
states are highly protocol dependent.
For example, the success of an authen-
tication during the connection estab-
lishment phase of a communication pro-
tocol is usually indicated by the
distribution of a fresh session key be-
tween two mutually authenticated peer
processes. On the other hand, in a user
login authentication, success usually
results in the creation of a login process
on behalf of the user.

We present protocolsin the following
format. A communication step where-
by P sends a message M to Q is repre-
sented as P — Q: M, whereas a compu-
tation step of P is written as P: ...,
where “. . .” is a specification of the
computationstep. For example, the typ-
ical login protocol between host H and
user U is given below (f is a one-way
function; that is, given y, it is computa-
tionally infeasible to find an x such that

fx) =y).

4?2

U->H: U

H — U: “Please enter password”
U->H:p

H : compute y = f(p)

: retrieve user record (U,
f(passwordy,)) from user
database

: if y = f(password,) then
accept; otherwise reject

We next examine the key ideas that
underlie authentication protocol design
by presenting several protocol para-
digms.

Since authentication protocol para-
digms directly use cryptosystems, their
basicdesign principles also follow closely
the type of cryptosystem used.

Note that the protocol paradigms il-
lustrate basic design principles only. A
realistic protocol is necessarily a refine-
ment of these basic paradigms and ad-
dresses weaker environment assump-
tions, stronger postconditions, or both.
Also, a realistic protocol may use both
symmetric and asymmetric cryptosys-
tems.

Protocols based upon symmetric
cryptosystems. In a symmetric crypto-
system, knowing the shared key lets a
principal encrypt and decrypt arbitrary
messages. Without such knowledge, a
principal cannot obtain the encrypted
version of a message or decrypt an en-
crypted message. Hence, authentication
protocols can be designed according to
the (SYM) principle: If a principal can
correctly encrypt a message using a key
that the verifier believes is known only to
aprincipal with the claimed identity (out-
side of the verifier), this act constitutes
sufficient proof of identity.

Thus (SYM) embodies the proof-by-
knowledge principle for authentication,
that is, a principal’s knowledge is indi-
rectly demonstrated through encryption
(see “Approaches to authentication”
sidebar). Using (SYM), we immediate-
ly obtain the following basic protocol (k
is a symmetric key shared between P

and Q).

P : create m = “l am P.”
: compute m’ = {m},
Po>Q:mm ‘
- verify {m), £ m’
: if equal then accept;
otherwise reject

Clearly, the (SYM) design principle
is sound only if the underlying crypto-

system is strong (one cannot find the
encrypted version of a message without
knowing the key) and the key is secret
(it is shared only between the real prin-
cipal and the verifier). Note that this
protocol performs only one-way authen-
tication. Mutual authentication can be
achieved by reversing the roles of P
and Q.

One major weakness of the protocol
isits vulnerability to replays. More pre-
cisely, an adversary could masquerade
as P by recording the message m” and
later replaying it to Q. As mentioned,
replay attacks can be countered by us-
ing nonces or time stamps. We modify
the protocol by adding a challenge-and-
response step using nonces (nisanonce).

P—>Q: “lamP.”
O->P:.n
P : compute 1’ = {n},
P->Q:n
Q . verify {n}, I
. if equal then accept;
otherwise reject

Replay is foiled by the freshness of n.
Thus, even if an eavesdropper has mon-
itored all previous authentication con-
versations between P and Q, itstill could
not produce the correct n’. (This also
points out the need for the cryptosys-
tem to withstand known plaintext at-
tack. In other words, the cryptosystem
must be unbreakable given the knowl-
edge of plaintext-ciphertext pairs.) The
challenge-and-response step can be re-
peated any number of times until the
desired level of confidence is reached
by O.

This protocol is impractical as a gen-
eral large-scale solution because each
principal must store in memory the se-
cretkey forevery other principal it would
ever want to authenticate. This presents
major initialization (the predistribution
of secret keys) and storage problems.
Moreover, the compromise of one prin-
cipal can potentially compromise the
entire system. These problems can be
significantly reduced by postulating a
centralized authenticationserver A that
shares a secret key k, with every princi-
pal X in the system.? The basic authen-
tication protocol then becomes

P—Q: “lam P.”

Q—>P:n

P : compute n’ = {n},,

P>Q:n

Q : compute n” = {P, n'},
COMPUTER



Q- A:n”
A : recover (P, n’) from n” by
decrypting with ko
: compute m = {{n’}kp}kg
A->QO:m
Q : verify {n},, im
: if equal then accept;
otherwise reject

Thus Q’s verification step is preceded
by A’s key translation step. The proto-
col correctness now also rests on A’s
trustworthiness — that A will properly
decrypt using P’s key and reencrypt us-
ing Q’s key. The initialization and stor-
age problems are greatly alleviated be-
cause now each principal needs to keep
only one key. The risk of compromise is
mostly shifted to A, whose security can
be guaranteed by various measures, such
as encrypting stored keys using a master
key and putting A in a physically secure
room.

Protocols based upon asymmetric
cryptosystems. In an asymmetric crypt-
osystem, each principal P publishes its
public key k, and keeps secret its pri-
vate key k;'. Thus only P can generate
{m}: for any message m by signing it
using k;'. The signed message {m},., can
be verified by any principal with knowl-
edge of k, (assuming a commutative
asymmetric cryptosystem). The basic
design principle is (ASYM): If a princi-
pal can correctly sign a message using
the private key of the claimed identity,
this act constitutes sufficient proof of
identity.

This (ASYM) principle follows the
proof-by-knowledge principle for au-
thentication, in that a principal’s knowl-
edgeisindirectly demonstrated through
its signing capability. Using (ASYM),
we obtain a basic protocol as follows (n
is a nonce):

P—Q: “lam P.”

Q->P n

P : compute 1’ = {n};.
P-Q:n

Q : verify n 2 "'},

: if equal then accept;
otherwise reject

This protocol depends on the guaran-
tee that {n}, cannot be produced with-
out the knowledge of k;' and the cor-
rectness of k, as published by P and
kept by Q.

As in protocols that use symmetric
keys, the initialization and storage prob-
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Approaches to authentication

All authentication procedures involve checking known information about a
claimed identity against information acquired from the claimant during the identi-
ty-verification procedure. Such checking can be based on the following three ap-
proaches.'

Proof by knowledge. The claimant knows information regarding the claimed
identity that can only be known or produced by a principal with that identity. For
example, password knowledge is necessary to most login procedures. A proof by
knowledge can be conducted by a direct demonstration, like typing in a pass-
word, or by an indirect demonstration, such as correctly computing replies to veri-
fier challenges. Direct demonstration is not preferable from a security viewpoint,
since a compromised verifier can record the submitted knowledge and later im-
personate the claimant by presenting the recorded knowledge. Indirect demon-
stration can be designed to induce high confidence in the verifier without leaving
any clue to how the claimant’s replies are computed. For example, Feige, Fiat,
and Shamir? propose a zero-knowledge protocol for proof of identity. This proto-
col allows claimant C to prove to verifier V that C knows how to compute replies
to challenges without revealing the replies. These protocols are provably secure
(under complexity assumptions). However, additional refinements are needed be-
fore they can be applied in practical systems.

Proof by possession. The claimant produces an item that can only be pos-
sessed by a principal with the claimed identity, for example, an ID badge. The
item has to be unforgeable and safely guarded.

Proof by property. The verifier directly measures certain claimant properties
with such biometric techniques as fingerprint and retina print. The measured
property has to be distinguishing, that is, unique among all possible principals.

Proof by knowledge and possession (and combinations thereof) can be applied
to all types of authentication needs in a secure distributed system, while proof by
property is generally limited to the authentication of human users by a host
equipped with specialized measuting instruments.
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lems can be alleviated by postulating a
centralized certification authority A that
maintains a database of all published
public keys. The protocol can then be
modified as follows:

P> Q: “IamP.”

Q->P:n

P : compute n’ = {n};

P-Q:n

Q — A: “I need P’s public key.”

A : retrieve ¢ = (P, kp}, . from
key database

A->Q: Pc

o "t recover (P, kp) from c by
decrypting with k

LIl

. 2 ’
: verify n ={n’},,
: if equal then accept;
otherwise reject

Thus public key certificate ¢ repre-
sents a certified statement by A that P’s
public key is k. Other information such
as a specified lifetime and the classifica-
tion of principal P (for mandatory ac-
cess control) can also be included in the
certificate (such information is omitted
here). Each principalin the system need
only keep a copy of the public key k, of
A.

In this protocol, A is an example of an
on-line certification authority, which
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supports interactive queries and is ac-
tively involved in authentication ex-
changes. A certification authority can
also operate off line so that a public key
certificate is issued to each principal
only once. The certificate is kept by the
principal and forwarded during an au-
thentication exchange, thus eliminating
the need to query A interactively. Al-
ternatively, the certificate can be kept
in an on-line database that is publicly
accessible. Forgery is impossible, since
a certificate is signed by the certifica-
tion authority.

Notion of trust. Correctness of both
types of protocol paradigms requires
more than the existence of secure com-
munication channels between principals
and the appropriate authentication serv-
ers (or certification authorities). In fact,
such correctness is critically dependent
on the capability of the servers (author-
ities) to faithfully follow the protocols.
Each principal bases its judgment on its
own observations (messages sent and
received) and its trust of the server’s
judgment.

Insome sense, less trust is required of
a certification authority than of an au-
thentication server, because all infor-
mation kept by the authority is public
(except for its own private key). Fur-
thermore, a certification authority has
no way of masquerading as a principal
because a principal’s private key is not
shared.

Our formal understanding of trust in
a distributed system is at best inade-
quate. In particular, a formal under-
standing of authentication would re-
quire both a formal specification of trust
and arigorous reasoning method where-
in trust is a basic element.

Authentication
protocol failures

Despite the apparent simplicity of the
basic design principles for authentica-
tion protocols, designing realistic pro-
tocols is notoriously difficult. Several
published protocols have exhibited sub-
tle security problems.!2#

Several reasons for this difficulty ex-
ist. Most realistic cryptosystems satisfy
algebraic identities additional to those
in (C1) and (C2). These extra proper-
ties may generate undesirable effects
when combined with protocol logic.
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Despite the apparent
simplicity of basic design
principles for authentication
protocols, designing realistic
protocols is notoriously
difficult.

Second, even assuming that the under-
lying cryptosystem is perfect, unexpect-
ed interaction among the protocol steps
can lead to subtle logical flaws. Third,
assumptionsregarding the environment
and the capabilities of an adversary are
not explicitly specified, making it ex-
tremely difficult to determine when a
protocol is applicable and what final
states are achieved.

We illustrate the difficulty by show-
ing an authentication protocol proposed
by Needham and Schroeder? that con-
tains a subtle weakness.! Symmetrickeys
k,and k, are shared between P and A,
and Q and A, respectively, where A is
an authentication server. Let k be a
session key.

(1) P> A:P,Q,n,

(2) A - P: {np Q. k. |k, Pl b,
(3) P — Q: {k, Py,

(4) Q - P: ),

(5) P— Q:fno+ 1}

The message {k, P}, instep 3canonly
be decrypted, and hence understood, by
Q. Step 4 reflects Q’s knowledge of &,
while step 5 assures Q of P’s knowledge
of k; hence the authentication hand-
shake is based entirely on knowledge of
k. The subtle weakness in the protocol
arises from the fact that the message {k,
P}, sentin step 3 contains no informa-
tion for Q to verify its freshness. (Note
thatonly Pand A know k tobe fresh.) In
fact, this is the first message sent to Q
about P’sintention to establish a secure
connection. An adversary who has com-
promised an old session key &k’ can im-
personate P by replaying the recorded
message {k’, P}, in step 3 and subse-
quently executing steps 4 and 5 using k.

To avoid protocol failures, formal
methods may be employed in the design
and verification of authentication pro-
tocols. A formal design method should
embody the basic design principles as

illustrated in the previous section. In
addition, informal reasoning should be
formalized within a verification meth-
od. Such informal reasoning would in-
clude statements like “If you believe
that only youand Bob know k, then you
should believe any message you receive
encrypted with k was originally sent by
Bob,” which must be formally speci-
fied.

Early attempts at formal verification
of security protocols mainly follow an
algebraic approach.” Messages ex-
changed in a protocol are viewed as
terms in an algebra. Various identities
involving the encryption and decryp-
tion operators (for example, (C1) and
(C2)) are taken to be term-rewriting
rules. A protocol is secure if it is impos-
sible to derive certain terms (for exam-
ple, the term containing the key) from
the terms obtainable by an adversary.
The algebraic approach is limited, since
it has been used mainly to deal with one
aspect of security, namely secrecy. Re-
cently, logical approaches have been
proposed to study authentication pro-
tocols.* Most of these logics adopt a
modal basis, with belief and knowledge
ascentral notions. The logical approach-
es appear to be more general than the
algebraic ones, but they lack the rigor-
ous foundation of more well-estab-
lished systems like first-order and tem-
poral logics. A satisfactory semantic
model for these systems has not been
developed. Much research is needed to
obtain sound design methods and to
formally understand authentication is-
sues.

Authentication
framework

We synthesize basic concepts into an
authentication framework that can be
incorporated into the design of secure
distributed systems. We identify five
aspects of secure distributed system
design and the associated authentica-
tion needs. (This section is not exhaus-
tive in scope because other issues may
have to be addressed in an actual dis-
tributed system security framework.
Also, the presented protocols are not
meant to be definitive or optimal.) The
five aspects are

* Host initializations. All process ex-
ecutions take place inside hosts. Some
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hosts (like workstations) also act as sys-
tem-entry points by allowing user log-
ins. The overall security of a distributed
system is highly dependent on the secu-
rity of each host. However, in an open
network environment, not all hosts can
be physically protected. Thus resistance
to compromise must be builtinto ahost’s
software to ensure secure operation.
This suggests the importance of host
software integrity. Loading a host that
employs remote initialization with the
correct host software is necessary to its
proper functioning. In fact, one way to
compromise a public host is to reboot
the host with incorrect initialization in-
formation. Authentication can be used
to implement secure bootstrapping.

e User logins. User identity is estab-
lished at login, and all subsequent user
activities are attributed to this identity.
All access-control decisions and account-
ing functions are based on this identity.
Correct user identification is thus cru-
cial to the functioning of a secure sys-
tem. Since any host in an open environ-
ment is susceptible to compromise, a
user should not engage in any activity
with a host without first ascertaining
the host’s identity. A mutual user-host
authenticationcan achieve the required
guarantees.

e Peer communications. Distributed
systems can distribute a task over mul-
tiple hosts to achieve a higher through-
put or more balanced utilization than
centralized systems. Correctness of such
a distributed task depends on whether
peer processes participating in the task
can correctly identify each other. Au-
thentication can identify friend or foe.

o Client-server interactions. The cli-
ent-server model provides an attractive
paradigm for constructing distributed
systems. Servers are willing to provide
service only to authorized clients, while
clients are interested in dealing only
with legitimate servers. Authentication
can be used to verify a potential con-
sumer-supplier relationship.

e Interdomain communication. Most
distributed systems are not centrally
owned or administered; for example, a
campus-wide distributed system often
interconnects individually administered
departmental subsystems. Identifying
principals across subsystems requires
additional authentication mechanisms.

In the kind of malicious environments

postulated in our threats model, some
basic assumptions about the system must
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be satisfied to achieve a reasonable lev-
el of security. We offer a set of assump-
tions (for other possible assumptions,
see Abadi et al.5 and Linn®). Figure 2
also depicts these assumptions.

¢ Each host hardware W has a unique
built-in immutable identity idy and con-
tains a tamperproof cryptographic fa-
cility that encapsulates the public key
k, and the private key ky' of W. The
cryptographic facility can communicate
with the host reference monitor via a
secure channel. Each host that supports
user logins also has a smart card reader
that communicates with the host refer-
ence monitor via a secure channel. Last-
ly, the host reference monitor has a
secure channel to the network inter-
face.

LAl

;‘igure 2. Distributed system configuration.

e Each legitimate user U is issued a
smart card C that has a unique built-in
immutable identity id.. Each smart card
C performs encryption and decryption,
and encapsulates its private key k', the
public key for the certification authori-
ty k,, and a pin number Pinc for its
legitimate holder. (The pin number is
assigned by a card-issuing procedure.)
The channel between the smart card
and reader is secure. Each smart card
has its own display, keypad, and clock.

e A physically secure centralized
bootstrap server B maintains a data-
base of host information. More precise-
ly, for each host H, it keeps a record
(idy, kg, k', idy, ky, k') specifying the
unique hardware W that can be initial-
ized as H. All database records can be
encrypted under a secret master key for
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added security. B has a pub-

lic key k, and a private key (1) W =all: “boot,” idy, {ny, idyle,

k3. . ) B : retrieve record (idy, ky, k7', idy, ky, k')
¢ A physically secure cen- for Wt datab

tralized certification author- or rom database

ity A maintains a database © recover ny from (ny, idy},,

on all principals. More pre- by decrypting with k!

cisely, for each user U, A . t nd Kev k

keeps a record (U, id., k.), + generate a random key

binding U to its smart card C. : compute m = {ny, k,, kg, k}kw

For each host H, A keeps a B)YB>W: m

record (idy, idy), specifying .

the hardware W that H can @ w - recover (nw,.k,,, k'B' k) from m

run on. Also, for each server by decrypting with ky/

S, A keeps a record of its (5) W— B: {ny, “ready”},

public key certificate (S, k). 6)B - W- . -

The certification authority A (6) B > W: {ny. ny, idy, (ki k,» 05}

has a public key k, and a (HW- B {{nli}k;,‘}k

private key k3'. (8) B »W: {idy, id,, k,, T}“E‘

L . 9 H : validate certificate {idy, idy, ky, T},

Each assumptionisachiev- . . ‘

able with current technolo- by encrypting with k,

Step 6is the actual loading
of 0§ and the transferring of
host H’s private key k;'. OS
includes its checksum, which
should be recomputed by W
to detect any OS tampering
in transit. W acknowledges
receipt of k' and OS by re-
turning the nonce n, signed
with k;'. B verifies that the
correct ny is returned. Then
in step 8, a license signed by
B affirming the binding of
host id, with public key k,
and hardware id,, is sent to
W. Afterreceiving the license,
W officially “becomes” H,
which retains this license as
proof of successful bootstrap-
ping and of its own identity.
The time stamp field 7 with-
in the license denotes its ex-

gy. In particular, the technol-
ogy of a battery-powered
credit-card-sized smart card
with a built-in LCD and key-
pad that can perform special-
ized computations has steadi-
ly progressed. Also, many vendors
include specialized cryptographic facil-
ities and smart card readers for hosts as
options. The use of a smart card or
other forms of computational aid is es-
sential to realizing mutual authentica-
tion between a host and a user. Unaided
human users simply cannot carry out
the intensive computations required by
an authentication protocol.

We assume the bootstrap server and
certification authority are centralized.
Decentralized servers/authorities can be
supported by adding authentication be-
tween them, as we discuss later. Such
authentication can be carried out in a
hierarchical manner as suggested in the
protocol standard CCITT X.509.

Although we have a certification au-
thority in our framework, we chose to
omit an authentication server because
we deemed the trust level needed in a
certification authority (which distrib-
utes public key certificates) to be less
than that of an authentication server.

Secure bootstrapping. The following
protocol is initiated when host hard-
ware attempts a remote initialization.
This could occur after a voluntary shut-
down, a system crash, or a malicious
attack by an adversary who attempts to
penetrate the host. The secure boot-
strap protocol allows areinitialized host
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Figures 3. Secure bootstrap protocol.

toattain a “safe” state prior to resuming
normal operation. In particular, a cor-
rectlyloaded reference monitor is ready
to assume control of the host in this
state.

Suppose that the hosts and the boot-
strap server B are on the same broad-
cast network, allowing the message in
step 1 of Figure 3 to be received by B.
In that protocol, ny and n, are nonces,
k is a session key, OS is a copy of the
operating system, and 7 is a time
stamp.

In step 1, W announces its intention
to reboot by broadcasting a boot re-
quest. Only B (which has knowledge of
ky') canrecover the nonce ny,. In step 2,
B generates a fresh key & to be used for
loading OS. In step 4, W ascertains that
m is not a replay by checking the com-
ponent ny, since only B could have com-
posed message m. Thus k,, k,, and k in
m can be safely taken to be the public
key of certification authority A, the
public key of B, and the session key to
be used for loading OS. At this point, B
has been authenticated by W,

When the message “ready” encrypt-
ed with k is received in step 5, B is
certain that the original boot request
actually came from W, since only W can
decrypt mtoretrieve k. Hence, Band W
have mutually authenticated each
other.

piration date.

Ifitssecrecyisnot required,
OS can be transferred unen-
crypted. However, the check-
sum of OS must be sent in
encrypted form.

User-host authentication. This func-
tion occurs when user U walks up to
host H and attempts to log in. The au-
thentication requires smart card C. A
successful authentication guarantees
host H that Uis the legitimate holder of
C and guarantees user U that H is a
“safe” host to use. The host is safe if it
holds a valid license (which may have
been obtained through secure bootstrap-
ping) and possesses knowledge of the
private key k3.

In most systems, the end result of a
successful user authentication is the cre-
ation of a login process by the host’s
reference monitor on the user’s behalf.
The login process is a proxy for the user,
and all requests generated by this pro-
cess are taken as if they are directly
made by the user. However, a remote
host/server has no way of confirming
such proxy status, except to trust the
authentication capability and integrity
of the local host. Such trust is unaccept-
able in a potentially malicious environ-
ment because a compromised host can
simply claim the existence of user login
processes to obtain unauthorized ser-
vices.

This trust requirement can be al-
leviated if a user explicitly delegates
authority to the login host.*® The del-
egation is carried out by having the
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user’s smart card sign a login ]
certificate to the login host (1) € = H: idc, nc
upon the successful termi- (2) H » A: idg, lidy, idy, ky, T}k;;
nation of a user-host au- 3) A : check time stamp of certificate
thentication protocol. The e .
. o : if time stamp expired, abort

login certificate asserts the . ]
host’s proxy status with re- (4) A - H: {idy, idy, kg T}y, U, ide, kel
spect to the user and can be ) H : generate new delegation key pair
presented by the host in (kg k3Y)
il]l];l:gzsaUthenucauon ex- (6) H » C: {idy, idy, kp, T}k;h {U, ky, nc}k,;l

Because forgery can occur, (1) € - U: idy, idy
the possession ofa lggin cer- (8) U : verify if ldH /ldw is the desired host
tificate should not be taken . if not, abort
as sufficient proof of delega- (9) U - C: Pin
tion. The host also must dem- (10) € . ifv Pin 2 Pi
onstrate the knowledge of a ) ’ fzen y = fe
private delegation key k;! : if not equal, abort
whose public component k, (11) C » H: {U, id,, k,, T[}kc.x
is named in the certificate. (12) H : verify correct delegation by decrypting
Also, to reduce the potential . . .
. . the login certificate {U, id,, k;, T .}y
impact of a host compromise, R c
the login certificate is given with k¢

lishes a new session key for
their future communication
(np and n, are nonces, while
k is a fresh session key).
Instep 1, Pinforms A of its
intention to establish a se-
cure connection with Q. In
step 2, A returns to P a copy
of Q’s public key certificate.
In step 3, P informs Q of its
desire to communicate, and
sends a nonce np. Instep4, Q
asks A for P’s public key cer-
tificate and requests a ses-
sion key at the same time. In
order for Q to subsequently
prove to P that the session
key k is actually from A (not
(Q’s own creation), A sends a
signed statement containing
the key k, np, and Q’s name.
This basically says that kis a
key generated by A on behalf

only a finite lifetime by in-
cluding an expiration time
stamp.

We present such a user-
host authentication protocol
in Figure 4. We assume that the host
holds a valid license {idy, idy, kg, T}k;,
as would be the case if the host has
executed the secure bootstrap protocol.
In the figure, n. is a nonce, k, is the
public delegation key whose private
counterpart k;' is kept secret by the
host, and 7, is a time stamp denoting
the expiration date of the login certifi-
cate.

A user inserts his/her smart card into
the host’s card reader. The card’s iden-
tity id and a nonce n are sent through
the card reader to the host in step 1. In
step 2, H requests user information as-
sociated with id. from certification au-
thority A. Since the license held by H
was signed by B and hence is not deci-
pherable by C, a key translation is re-
quested by H in the same step. (Note
that these licenses can be cached by H
and need not be requested for every
user authentication.) After receiving a
reply from A instep 4, H knows both the
legitimate holder U of the card C and
the public key k. associated with the
smart card. Knowledge of U can be used
to enforce the local discretionary con-
trol to provide service (or not), while k.
is needed to verify the authenticity of C.
In step 5, H generates a new delegation
key pair (k,, k;'). H keeps k7' private, to
be used as proof of a successful delega-
tion from U to H.
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Figure 4. User-host authentication protocol.

Instep 6, H returns the nonce n. with
the public delegation key k, and a copy
of its license to C. In step 7, C retrieves
(idy;, idy), the identity of H, from the
license by decryptingit with k,. A check
ensures that the time stamp in the li-
cense has not expired. The identity (id,;,
idy) is then displayed on the card’s own
screen. To proceed, the user enters the
assigned pin number on the card’s key-
pad. In step 10, the pin number is com-
pared with the one stored in the card. If
they are equal, C signs a login certifi-
cate binding the user U with the host idy
and the public delegation key k. This is
sent to H in step 11. The host (and
others) can verify the validity of the
login certificate using k., the card’s pub-
lic key.

When user U logs out, the host erases
its copy of the private delegation key k'
to void the delegation from U. If H is
compromised after the delegation, the
effect of the login certificate is limited
by its lifetime, 7.

Peer-peer authentication. This type
of mutual authentication and crypto-
graphic parameters negotiation is per-
formed in the connection-establishment
phase of a secure connection-oriented
protocol.

The protocol in Figure 5 mutually
authenticates peers P and Q, and estab-

LUl -

of Q’s request identified by
np. The binding of k and n,
assures P that k is fresh. In
step 6, A’s signed copy of
(np, k, Q) is relayed to P to-
gether with a nonce n, generated by Q.
P’s knowledge of the new session key k
is indicated to Q by the receipt of n, in
step 7.

Client-server authentication. Since
both clients and servers are implement-
ed as processes, the basic protocol for
peer-peer authentication can be applied
here as well. However, several issues
peculiar to client-server interactions
need to be addressed.

In a general-purpose distributed com-
puting environment, new services (hence
servers) are made available dynamical-
ly. Thus, instead of informing clients of
every service available, most implemen-

(P - A:
2)A > P:
B)yP -0Q:
4) 0 - A:
5)A->Q

P,Q
{0, kol
{np P)kg
O, P, {nP]kA
(P, kel
{{ns & Q}k;‘}ke
{{"P» k, Q}k;’ ”Q}k,,
{nols

6)Q - P:
(NP>

Figure 5. Peer-peer authentication
protocol.
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tations use a service broker

to keep track of and direct U-H : u
clients to appropriate provid- H — Kerberos: U, er
ers. A client first contacts the Kerberos retrieve k, and k¢, from database

service broker by using a pur-
chase protocol that performs
the necessary mutual authen-
tication prior to the granting

of a ticket. The client later H->U
uses the ticket to redeem ser- 1['-JI_> H

vices from the actual server
by using a redemption pro-
tocol.

Authentication performed
by the purchase protocol pro-
ceeds the same way as the

Kerberos — H:

generate a new session key k

create ticket-granting ticket
tickrgs ={U, TGS, k, T, L},

{TGS, k, T, L, tickygsh,

“Password?”

passwd

compute ¢ = f(passwd)

recover k, tickgs by decrypting
{TGS, k, T, L, tickygs},, with £

if decryption fails, abort login

ning all domains can be used
to provide globally unique
names to principals. A good
example of this is the Do-
main Name System used in
Internet.

Trust refers to the willing-
ness of a local certification
authority to accept a certifi-
cation made by a remote au-
thority regarding a remote
principal. Such trust relation-
ships must be explicitly es-
tablished between domains,

otherwise retain tick,sg and k
erase passwd from memory

which can be achieved by

protocol for peer-to-peer
authentication, while in the
redemption protocol authen-
tication is based upon pos-
session of a ticket and knowl-
edge of some information
recorded in the ticket. Such a ticket
contains the names of the client and
server, a key, and a time stamp to indi-
cate lifetime (similar to a login certifi-
cate). A ticket can be used only be-
tween the specified client and server. A
prime example of this approach is the
Kerberos authentication system, which
we later discuss.

Another special issue of client-server
authenticationis proxy authentication.’
To satisfy a client’s request, a server
often needs to access other servers on
behalf of the client. For example, a da-
tabase server, upon accepting a query
from a client, may need to access the file
server to retrieve certain information
on the client’s behalf. A straightfor-
ward solution would require the file
server to directly authenticate the cli-
ent. However, this may not be feasible.
In a long chain of service requests, the
client may not be aware of a request
made by a server in the chain and hence
may not be in a position to perform the
required authentication. Analternative
is to extend the concept of delegation
previously used in user-host authenti-
cation.” A client can forward a signed
delegation certificate affirming the del-
egation of its rights to a server along
with its service request. The server is
allowed to delegate to another server
by signing its own delegation certificate
as well as by relaying the client’s certif-
icate. In general, for a service request
involving a sequence of servers, delega-
tion can be propagated to the final serv-
er through intermediate ones, forming
a delegation chain.
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Figure 6. Kerberos credential-initialization protocol.

Various refinements can extend the
scheme. A form of restricted delegation
can be carried out by explicitly specify-
ing a set of rights and/or objects in a
delegation certificate.

Interdomain authentication. We have
assumed a centralized certification au-
thority trusted by all principals. How-
ever, a realistic distributed system is
often composed of subsystems indepen-
dently administered by different author-
ities. We use the term domain to refer to
suchasubsystem. Each domain D main-
tains its own certification authority A,
that has jurisdiction over all principals
within the domain. Intradomain authen-
tication refers to an exchange between
two principals belonging to the same
domain, whereas interdomain authenti-
cation refers to an exchange that in-
volves two principals belonging to dif-
ferent domains.

Using the previously described pro-
tocols, A, is sufficient for all intrado-
main authentications for each domain
D. However, a certification authority
has no way of verifying a request from a
remote principal, even if the request is
certified by a remote certification au-
thority. Hence, additional mechanisms
are required for interdomain authenti-
cation.

To allow this type of authentication,
two issues need to be addressed: nam-
ing and trust. Naming ensures that prin-
cipals are uniquely identifiable across
domains, so that each authentication
request can be attributed to a unique
principal. A global naming system span-

e sharing aninterdomain key
between certification au-
thorities that are willing to
trust each other,

e installing the public keys of
all trusted remote authori-
ties in a local certification authori-
ty’s database, and

¢ introducing an interdomain author-
ity for authenticating domain-level
authorities.

A hierarchical organization corre-
sponding to that of the naming system
can generally be imposed on the certifi-
cation authorities. In this case, an au-
thentication exchange between two
principals P and Q involves multiple
certification authorities on a path in
the hierarchical organization between
P and Q.* The path is referred to as a
certification path.

Case studies

We study two authentication servic-
es: Kerberos and SPX. Both address
client-server authentication needs. Their
services are generally available to an
application program through a program-
ming interface. While Kerberos uses a
symmetric cryptosystem, SPX uses an
asymmetric cryptosystem as well.

Kerberos. This system was designed
for Project Athena at the Massachu-
setts Institute of Technology.” The
project goal is to create an educational
computing environment based on high-
performance workstations, high-speed
networking, and servers of various types.
Researchers envisioned a large-scale
(10,000 workstations to 1,000 servers)
open-network computing environment
in which individual workstations can be
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privately owned and operated. There-
fore, a workstation cannot be trusted to
identify its users correctly to network
services. Kerberos is not a complete
authentication framework required for
secure distributed computing in gener-
al; it only addresses issues of client-
server interactions.

We limit our discussion to the Ker-
beros authentication protocols and omit
various administrative issues.

The design is based on using a sym-
metric cryptosystem with trusted third-
party authentication servers. It is a re-
finement of ideas presented in Needham
and Schroeder.? The basic components
include Kerberos authentication and
ticket-granting servers (TGSs). A data-
base contains information on each prin-
cipal. It stores a copy of each principal’s
key that is shared with Kerberos. For a
user principal U, its shared key k; is
computed from its password password,;
specifically, k, = f(password ) for some
one-way function f. Kerberos servers
and TGSsread the database in the course
of authentication.

Kerberos uses two main protocols.
The credential-initialization protocol
authenticates user logins and installs
initial tickets at the login host. A client
uses the client-server authentication
protocol to request services from a
server.

The credential-initialization protocol
uses Kerberos servers. Let U be a user
who attempts to log into host H, and f
be the one-way function for computing
ky from U’s password. The protocol is
specified in Figure 6 (here, Kerberos
refers to the server):

If passwd is not the valid password of
U, ¢ would not be identical to k,, and
decryption in the last step would fail.
(In practice, f may not be one-to-one. It
suffices to require that given two dis-
tinct elements x and y, the probability
of f(x) being equal to f(y) is negligible.)
Upon successful authentication, the host
obtains a new session key k and a copy
of the ticket-granting ticket

tick;gs={U, TGS, k, T, L}km:,

where T is a time stamp and L is the
ticket’s lifetime. The ticket-granting tick-
et is used to request server tickets from
a TGS; note that ticksss is encrypted
with k;g, the shared key between TGS
and Kerberos.

Because a ticket is susceptible to in-
terception or copying, it does not con-
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: recover k from tick;ss by decrypting with kg

: recover T, from {C, T}}, by decrypting with k

: check timeliness of T, with respect to local clock
: create server ticket tick; = {C, S, K/, T', L},

: recover k’ from tickg by decrypting with kg
: recover T, from {C, T}, by decrypting with k&’
: check timeliness of T, with respect to local clock

(1) C > TGS: §, tickrgs, {C, T))i

(2) TGS

(B)YTGS —» C: {8, K, T, L', tickg},

“@cC : recover k’, tick by decrypting with k
(BYCoS : ticks, |C, T}

©s

MNHS-C :{T,+1)

Figure 7. Kerberos client-server authentication protocol.

stitute sufficient proof of identity.
Therefore, aprincipal presenting a tick-
et must also demonstrate knowledge of
the session key k£ named in the ticket.
An authenticator (to be described) pro-
vides the demonstration. Figure 7 shows
the protocol for client C to request
network service from server S (7, and
T, are time stamps).

Instep 1, client C presents its ticket-
granting ticket tick;gs to TGS to re-
quest a ticket for server S. (Note that
each client process associates with the
unique user who created the process. It
inherits the user ID and the ticket-
granting ticket issued to the user dur-
ing login.) C’s knowledge of k is dem-
onstrated using the authenticator
{C,T),. In step 2, TGS decrypts tick s,
recovers k, and uses it to verify the
authenticator. If both step 2 decryp-
tions are successful and T is timely,
TGS creates a ticket rick for server S
and returns it to C. Holding tickg, C
repeats the authentication sequence
with S. Thus, in step 5, C presents S
with tickg and a new authenticator. In
step 6, S performs verifications similar
to those performed by TGS in step 2.
Finally, step 7 assures C of the server’s
identity. Note that this protocol requires
“loosely synchronized” local clocks for
the verification of time stamps.

Kerberos can also be used for au-
thentication across administrative or
organizational domains. Each domain
is called a realm. Each user belongs to
a realm identified by a field in the us-
er’s ID. Services registered in a realm
will accept only tickets issued by an

authentication server for that realm.

An interrealm key supports cross-
realm authentication. The TGS of one
realm can be registered as a principal in
another by using the shared interrealm
key. A user can thus obtain a ticket-
granting ticket for contacting a remote
TGS from its local TGS. When the tick-
et-granting ticket is presented to the
remote TGS, it can be decrypted by the
remote TGS, which uses the appropri-
ate interrealm key to ascertain that the
ticket was issued by the user’s local
TGS. An authentication path spanning
multiple intermediate realms is possi-
ble.

Kerberos is an evolving system on its
fifth version. Bellovin and Merritt'® dis-
cuss limitations of previous versions,
some of which have been remedied.

SPX. This authentication service is
also intended for open-network envi-
ronments." SPX is a major component
of the Digital Distributed System Secu-
rity Architecture® and its functionalities
resemble those of Kerberos. It has cre-
dential-initialization and client-server
authentication protocols. In addition, it
has an enrollment protocol that regis-
ters new principals. We focus on the
first two protocols and omit the last,
along with most other administrative
issues.

SPX has a Login Enroliment Agent
Facility (LEAF) and a Certificate Dis-
tribution Center (CDC) that corre-
sponds to Kerberos servers and TGSs.
LEATF, similar to a Kerberos server, is
used in the credential-initialization pro-
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{{klyl]hQ(passwardL‘)’ hl(passwordu)}h {k}k[.EAF

: recover {Kki') passworay) and hy(password,) by

: recover k' by decrypting first with n and then with

. generate (RSA) delegation key pair (k,, k;')

(WHWU-H : U, passwd
(2) H— LEAF : U, (T, n, h,(passwd)}
(3) LEAF - CDC: U
(4) CDC — LEAF:
(5) LEAF : recover k by decrypting with ki Ar
decrypting with k
. verify hy(passwd) £ hy(password,)
: if not equal, abort
(6) LEAF > H  : {{ki'hpussmorio s
(7 H
h,(passwd)
: create ticket ticky = {L, U, k}, 2
(8) H—> CDC U
(9)CDC—>H DA ko

KLEAF

Figure 8. STX credential-initialization protocol.

tocol. CDCis an on-line depository con-
sisting of public key certificates (for
principals and certification authorities)
and the encrypted private keys of prin-
cipals. Note that CDCneed not be trust-
worthy because everything stored in it
is encrypted and can be verified inde-
pendently by principals.

SPX also contains hierarchically or-
ganized certification authorities (CAs),
which operate off line and are selective-
ly trusted by principals. Their function
is to issue public key certificates (bind-
ing names and public keys of princi-
pals). Global trust is not needed in SPX.
Each CA typically has jurisdiction over
just one subset of all principals, while
each principal P trusts only a subset of
all CAs, referred to as the trusted au-
thorities of P. Systemscalability is greatly
enhanced by the absence of global trust
and on-line trusted components.

The credential-initialization protocol
is performed when a user logs in (see
Figure 8). It installs a ticket and a set of
trusted-authority certificates for the user
upon successful login. In the protocol,
Uisauser who attempts to login to host
H; passwd is the password entered by U;
T is a time stamp; L is the lifetime of a
ticket; nis a nonce; h, and h, are publicly
known one-way functions; k is a (DES)
session key; ky, ki g ap, k4 are respective-
ly the public keys of U, the LEAF serv-
er, and a trusted authority A of U; and
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ky' and kigap are respectively the pri-
vate keys of U and LEAF.

In step 1, user U enters its ID and
password. In step 2, H applies the one-
way function /4, to the password U en-
tered and sends the result, along with a
time stamp T and a nonce n, in a mes-
sage to LEAF. Upon receiving the mes-
sage from H, LEAF forwards a request
to CDC for U’s private key. This key is
stored as a record ({kg‘},,:“,mu.m,,l,,
hy(password,)) in CDC. Note that a
compromise of CDC would not reveal
these private keys. Instep 4, CDC sends
the requested private-key record to
LEAF using a temporary session key k.
In step 5, LEAF recovers both
{k M hpassworay @nd Ay(passwordy) from
CDC’s reply. LEAF then verifies
passwd by checking h (passwd) against
h\(password,). If they are notequal, the
login session is aborted and the abor-
tion logged. Because h,(password,) is
not revealed to any principal except
LEAF, password-guessing attacks would
require contacting LEAF for each guess
or compromising LEAF’s private key.

Having determined the password to
be valid, LEAF sends the first part of
the private-key record encrypted by n
to H instep 6. (The nonce n sent in step
2 is used as a symmetric key for encryp-
tion.) In step 7, H recovers k;' by de-
crypting the reply from LEAF first with
n and then with h,(passwd). H then gen-

erates a pair of delegation keys and
creates a ticket tick,. In step 8, H re-
quests the public key certificate for a
trusted authority of U from CDC. CDC
replies with the certificate in step 9. In
fact, multiple certificates can be returned
in step 9 if U trusts more than one CA.
These trusted authorities’ certificates
were previously deposited in the CDC
by U using the enrollment protocol.

The authentication-exchange proto-
col between a client C and a server §
follows. To simplify the protocol speci-
fication so that a single public key cer-
tificate is sent in step 2 and in step 5, we
made the following assumption: Let C’s
public key certificate be signed by A,
where A-denotes a trusted authority of
S.Similarly, let $’s public key certificate
be signed by A where A denotes a
trusted authority of C. Below, T is a
time stamp, and k is a (DES) session
key:

(1) C>CDC: §

(2) CDC - C: {8, k)

(3)CoS i T, (K, ticke, (ki')s
(4)S>CDC: C

(3) CDC - S : [C, kche,

6) S : validate tick. by
encrypting with k.
(HS->C T+ 1),

In step 1, C requests S’s public key
certificate from CDC. In step 2, CDC
returns the requested certificate. C can
verify the public key certificate by de-
crypting it with k, , which is the public
key of Asobtained by C when it execut-
ed the credential-initialization proto-
col. In step 3, tick and the private del-
egation key k;' generated in step 7 of
the credential-initialization protocol, as
well as a new session key k, are sent to
S. Only S can recover k from {k}, and
subsequently decrypt {k;'}, to recover
k;'. Possession of rick. and knowledge
of the private delegation key constitute
sufficient proof of delegation from C to
S. However, if such delegation from C
to S is not needed.

[[k}k‘}k—\

d

is sent in step 3 instead of {k;'},; this
acts as an authenticator for proving
C’s knowledge of k' without revealing
it. In steps 4 and 5, S requests the
public key certificate of C, which is
used to verify tick.instep 6. Instep 7, §
returns {7 + 1}, to C to complete mu-

COMPUTER



1N g ]

tual authentication between C and S.

Since SPX is a relatively recent pro-
posal, its security properties have not
been studied extensively. Such study
would be necessary before it could be
generally adopted.

Although SPX offers services similar
to those of Kerberos, its elimination of
on-line trusted authentication servers
and the extensive use of hierarchical
trust relationships are intended to make
SPX scalable for very large distributed
systems.

ith the growth in scale of dis-
tributed systems, security has
become a major concern —

and a limiting factor — in their design.
Security has been strongly advocated as
one of the major design constraints in
both the Athena project at the Massa-
chusetts Institute of Technology and
the Andrew projectat Carnegie Mellon
University. Most existing distributed sys-
tems, however, do not have a well-
defined security framework and use au-
thentication only for their most critical
applications, if at all.

Most of the protocols we present are
practically feasible, and their adop-
tion and use should be just a matter of
need.

The complexity of understanding and
managing the security of a distributed
system requires a formal approach that
allows precise specifications of both the
system’s architecture and its protocols.
Lam, Shankar, and Woo'? have pro-
posed a basis for developing such an
approach. B

Acknowledgments

This work was partly supported by a grant
from the Texas Advanced Research Pro-
gram and by the National Science Founda-
tion Grant NCR-9004464. We thank Clifford
Neuman of the University of Washington
and John Kohl of the Massachusetts Insti-
tute of Technology for reviewing the section
on Kerberos, and Joseph Tardo and Kannan
Alagappan of Digital Equipment Corp. for
reviewing the section on SPX. We are also
grateful to the anonymous referees for their
constructive comments.

References

1. D.E. Denning, Cryptography and Data
Security, Addison-Wesley Publishing Co.,
Reading, Mass., 1982.

2. RM. Needham and M.D. Schroeder,
“Using Encryption for Authentication in
Large Networks of Computers,” Comm.
ACM,Vol.21,No. 12, Dec. 1978, pp. 993-
999.

3. J.Linn, “Practical Authentication for Dis-
tributed Computing,” Proc. [IEEE Symp.
Research in Security and Privacy, IEEE
CS Press, Los Alamitos, Calif., Order
No. 2060, 1990, pp. 31-40.

4. M. Burrows, M. Abadi, and R. M. Need-
ham, “A Logic of Authentication,” ACM
Trans. Computer Systems, Vol. 8, No. 1,
Feb. 1990, pp. 18-36.

5. D.Dolev and A.C. Yao, “On the Securi-
ty of PublicKey Protocols,” IEEE Trans.
Information Theory, Vol. 1T-30, No. 2,
Mar. 1983, pp. 198-208.

6. M. Abadi et al., “Authentication and
Delegation with Smart Cards,” Tech.
Report 67, Systems Research Center, Dig-

/DN
AERR
W,

A\

IC3N

Sponsor:

CALL FOR PAPERS

First International Conference
on

Computer Communications and Networks (IC3N)

June 8 - 10, 1992
San Diego, California

The International Society for Mini and Microcomputers

ISIVIVI

The first IC3N will be devoted to all aspects of computer communications and networks. Authors are invited to submit all
work which will contribute to the state-of-the-art. Topics to be covered include, but are not limited to:

ISDN Local Area Networks Satellite Communications

FDDI Wide Area Networks Communication Protocols
SONET High Speed Networks Network Management

ATM Switching Interconnection Networks Network Design and Planning
Broadband ISDN Metropolitan Area Networks Network Modeling and Analysis

Four copies of the double-spaced manuscript must be received by one of the Program Co-Chairs no later than February
28, 1992. The papers will be reviewed and notification will be mailed by March 31, 1992. The final camera-ready
manuscripts are due by April 27, 1992.

General Chair: Dr. Victor O. K. Li, Department of Electrical Engineering, University of Southern California, Los
Angeles, CA 90089-2565, (213) 740-4665; (FAX) (213) 740-7290, vli@irving.usc.edu; Program Co-Chairs: Kijoon
Chae, (410) 267-3032 and E. K. Park, (410) 267-3037, Computer Science Department, United States Naval Academy,
Annapolis, MD 21402, (FAX) (410) 267-4883, chae@usna.navy.mil (to Dr. Chae), eun@usna.navy.mil (to Dr. Park)

LI T




ital Equipment Corp., Palo Alto, Calif.,
Oct. 1990.

. M. Gasser and E. McDermott, “An Ar-

chitecture for Practical Delegation in a
Distributed System,” Proc. IEEE Symp.
Research in Security and Privacy, IEEE

Los Alamitos, Calif., Order No. 2168,
1991, pp. 232-244.

12. S.S.Lam, A.U. Shankar,and T.Y.C. Woo,

“Applying a Theory of Modules and In-
terfaces to Security Verifications,” Proc.
IEEE Symp. Research in Security and

Privacy, IEEE CS Press, Los Alamitos,

CS Press, Los Alamitos, Calif., Order
Calif., Order No.2168, 1991, pp. 136-154.

No. 2060, 1990, pp. 20-30.

Simon S. Lam is a professor of computer
sciences at the University of Texas at Austin,
where he holds an endowed professorship.
His research interests are in computer net-
works, communication protocols, perfor-
mance models, formal verification methods,
and network security. He serves on the edi-
torial boards of Performance Evaluation and
IEEFE Transactions on Software Engineer-
ing.

Lam received the BSEE degree (with Dis-
tinction) from Washington State University
in 1969, and the MS and PhD degrees in
engineering from the University of Califor-
nia at Los Angeles in 1970 and 1974. He
organized and was program chair of the first
ACM SIGComm Symposium on Communi-
cations Architectures and Protocols in 1983.
He is an IEEE fellow and corecipient of the
1975 Leonard G. Abraham Prize Paper Award
from the IEEE Communications Society. He
is a member of the Computer Society and
ACM.

8. M. Gasser et al., “The Digital Distribut-
ed System Security Architecture,” Proc.
Nat’l Computer Security Conf., Nat’l In-
stitute of Standards and Technology, 1989,
pp. 305-319.

9. J.G. Steiner, C. Neuman, and J.I. Schill-
er, “Kerberos: An Authentication Ser-
vice for Open Network Systems,” Proc.
Winter Usenix Conf., Usenix Assoc., Ber-
keley, Calif., 1988, pp. 191-202.

Thomas Y.C. Woo is a PhD student in the
Department of Computer Sciences at the
University of Texas at Austin. His research
interests include computer networking and
distributed systems.

Woo received a BS (First-Class Honors)
in computer science from the University of
Hong Kong and an MS in computer science
from the University of Texas at Austin.

10. S.M. Bellovin and M. Merritt, “Limita-
tions of the Kerberos Authentication Sys-
tem,” Proc. Winter Usenix Conf., Usenix
Assoc., Berkeley, Calif., 1991, pp. 253-
267.

11. J.J. Tardo and K. Alagappan, “SPX: Glo-
bal Authentication Using Public Key Cer-
tificates,” Proc. IEEE Symp. Research in

Readers may contact Simon S. Lam at the Department of Computer Sciences, University
Security and Privacy, IEEE CS Press,

of Texas at Austin, Austin, TX 78712-1188.

OFC "92

FDDI .

OPTICAL FIBER

COMMUNICATION

TELECOM . LAN . MAN . ISDN . CATYV . VIDEO .

FEBRUARY 2—7, 1992 ¢ SAN JOSE CONVENTION CENTER ® SAN JOSE, CALIFORNIA

SWITCHING

OFC IS CONSIDERED THE MOST IMPORTANT
CONFERENCE ON FIBER-OPTIC SYSTEMS,
NETWORKS, COMPONENTS, AND DEVICES FOR
COMMUNICATIONS AND RELATED FIELDS.

SEE HOW THE TECHNOLOGIES OF OPTICAL FIBER DEVICES, COMPONENTS, AND SYSTEMS
DOMINATE THE WORLD’S COMMUNICATIONS AND RELATED FIELDS.

Visit the OFC 350-booth exhibition
with over 200 companies displaying
the the most current products and
services used in components, devices,
and fiber-optic systems for the field of
communications and related fields.

The OFC Technical conference features
over 250 refereed papers in four
principal areas: Fibers, Cables and
Glass Technologies; Optoelectronic
and Integrated-Optics Devices and
Components; System Technologies;
and Networks and Switching

1234

FIBERS CABLES, COMPONENTS, NETWORKS & SYSTEMS FOR VOICE, VIDEO. & DATA

e



