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Abstract

In most systems, authorization is specified
using some low-level system-specific mecha-
nisms, e.g. protection bits, capabilities and ac-
cess control lists. We argue that authorization
is an independent semantic concept that must
be separated from implementation mechanisms
and given a precise semantics. We propose a
logical approach to representing and evaluat-
ing authorization. Specifically, we introduce
a language for specifying policy bases. A pol-
icy base encodes a set of authorization require-
ments and is given a precise semantics based
upon a formal notion of authorization policy.
The semantics is computable, thus providing
a basis for authorization evaluation. We also
introduce two composition operators for policy
bases, which are appropriate for modeling dis-
tributed systems with multiple administrative
domains.

1 Introduction

To guarantee the security of a distributed sys-
tem, many concerns need to be addressed.
These include authentication, authorization,
auditing, accounting and availability, among
others. In this paper, we propose a new foun-
dation for authorization, specifically, one that
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is appropriate for the design and implementa-
tion of distributed systems.

The problem of authorization can be di-
vided into two related subproblems: represen-
tation and evaluation. Representation refers to
the specification of authorization requirements,
while evaluation refers to the actual determi-
nation of the authorities of subjects given the
authorization requirements. The authority ofa
subject is its rights to access objects. (Thus our
view of authorization is limited to access con-
trol; we do not consider issues of covert chan-
nels and secure information flow [5, 11, 16].)

Conceptually, the rights of subjects to ac-
cess objects can be stored in an access matriz
(15, 14], with rows corresponding to subjects,
columns corresponding to objects, and matrix
entries indicating various access rights. (See
examples in Section 2.) Practical implementa-
tions of an access matrix usually take advan-
tage of the sparseness of the matrix, and are
based upon capabilities (access rights stored by
row), access control lists (access rights stored
by columns), or some hybrid combination of
these approaches [5, 7].

Distributed systems and the prevalent client-
server style of computing give rise to new prob-
lems in the specification of authorization re-
quirements. For examples:

o New kinds of attributes need to be con-
sidered. For instance, an authorization re-
quirement in a distributed system may in-



clude the location of a subject as an at-
tribute in addition to the identity of the
subject. That is, it is possible that a sub-
ject U is authorized to update a file F
from node N but not from another node
N’. Other attributes include: the role a
subject is assuming, the groups a subject
belongs to, any delegations a subject may
have, and such.

e A large-scale distributed system is typ-
ically composed of multiple independent
domains, which are managed by possi-
bly different administrative authorities. In
fact, even a single domain may have sev-
eral security administrators. In these situ-
ations, authorizations in one domain may
affect those in other domains in unex-
pected ways. For instance, let X,Y and
Z be three independent domains within
a distributed system administered respec-
tively by authorities A, B and C. Suppose
A authorizes requests from Y to access re-
sources in X but denies requests from Z.
If B authorizes requests from Z to access
resources in Y, such authorization would
indirectly contradict the one by A, because
a user in Z might be able to access re-
sources in X by “going through” domain
Y.

Existing models of authorization have not
been designed to address these problems [18].
Furthermore, existing approaches are unsatis-
factory in the following respect: authorization
requirements can only be specified using some
low-level system-specific mechanisms. For ex-
ample, in Unix, accesses to the file system
are specified by protection bits associated with
each file, and authorization is determined by
how these protection bits are set. Such embed-
ding of authorization requirements into mech-
anisms presents serious drawbacks. First, au-
thorization requirements are limited to those
that can be specified by these low-level mecha-
nisms. Second, the semantics of authorization
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is dependent on the semantics of the low-level
mechanisms, which is not formally defined and
indeed may vary from one implementation to
another.! This poses problems in large-scale
distributed systems with heterogeneous imple-
mentations.

For example, many people have recognized
the limitations of protection bits in Unix and
have proposed various ad-hoc extensions to it.
Each of these extensions addresses one type
of authorization requirements or another with-
out solving the above problems as a whole.
Furthermore, there can be subtle interactions
among these extensions, which may render a
security administrator unable to comprehend
what actually has been authorized.? In fact,
such confusion can be a major source of secu-
rity violations.

We advocate the following view: Authoriza-
tion is an independent semantic concept that
should be separated from its implementation
in system-specific mechanisms. For its repre-
sentation, we need a language that is expres-
sive enough for specifying commonly encoun-
tered authorization requirements. The lan-
guage must be given a formal semantics so that
the meaning of an authorization requirement
stated using the language can be precisely de-
termined. This way, a security administrator
is able to reconcile easily between what he in-
tends to authorize with what he has actually
authorized.

With this approach, authorization evalua-
tion reduces to computation of semantics. The
complexity of such computation is highly de-
pendent on the particular language used. The
computation mechanism can range from a triv-
ial table lookup (e.g. if the language is sim-
ply an access matrix) to a full-fledged theorem

1A vivid example of this is the assortment of
setuid/setgid function calls available in different flavors
of Unix.

2Gee for example [13] and the POSIX Security Draft
Standard P1003.6 which discuss how to supplement
Unix protection bits with access control lists.



proving procedure (e.g. if the language is first
order logic). In general, the more expressive
the representation language, the more complex
the computation mechanism. Thus issues of
representation and evaluation must be exam-
ined hand in hand with careful consideration
of various tradeoffs.

In this paper, we propose a new foundation
for representing and evaluating authorization.
Our contributions are as follows. We first iden-
tify three types of structural properties inher-
ent in authorization requirements. We argue
that such structural properties can be effec-
tively exploited to reduce the complexity of
representing and evaluating authorization in
large-scale distributed systems. We introduce a
representation language in which the structural
properties can be represented in a straightfor-
ward manner. The language is designed to
specify policy bases. A policy base encodes a
set of authorization requirements and is given
a precise semantics based upon a formal no-
tion of authorization policy. The semantics is
computable via a translation to eztended logic
programs (see Theorem 2 in Section 6.3), thus
providing an efficient computation mechanism
based on the interpretation of extended logic
programs. We also introduce two composition
operators for policy bases, which are appropri-
ate for modeling distributed systems with mul-
tiple administrative domains.

In relating our research to previous work,
we observe that our concerns are orthogo-
nal to those of others in security modeling
[11, 10, 21, 22]. These references are concerned
with modeling abstract security properties of
a system as a whole, which includes authoriza-
tion as a key component. The papers by Abadi,
et al. [2] and Lunt [19] are similar in spirit
to ours, in that their focus is on understand-
ing the semantics of authorization. Concrete
models such as those proposed in [6, 12, 17] ad-
dress the same general concerns as ours, but for
application-specific domains. Lastly, our com-
position operators are designed for authoriza-
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tion requirements, and are different from the
one in [20] which is designed for a particular
notion of security.

The balance of this paper is organized as fol-
lows. In the next section, we identify three
types of structural properties in authorization
requirements. In Section 3, we discuss the re-
quirements of a language for representing au-
thorization. In Section 4, we present our model
of authorization. In Section 5, we introduce au-
thorization policy as a semantic notion. In Sec-
tion 6, we introduce our language for specifying
policy bases and describe its syntax and seman-
tics as well as some guidelines for its usage. In
Section 7, we provide some examples of policy
bases, including the Bell-LaPadula model [4]
and some inheritance rules. In Section 8, we
examine two notions of composition for policy
bases. In Section 9, we outline an implemen-
tation of our model. Lastly, in section 10, we
provide some concluding remarks.

2 Three Types of Structural
Properties

Authorization requirements are highly struc-
tured because the set of subjects and the set
of objects in a system are usually highly struc-
tured. For example, users belonging to the
same working groups are likely to share sim-
ilar authorizations; while objects pertaining to
a common task are usually given similar autho-
rizations.

To illustrate such structures, we look at some
examples. Consider the authorization specified
by the following access matrix:

P.src | P.exe | P.doc
A| rw e,w T, W
B e T

Subject A, who is the developer of software
P, can read/write the source file P.src, exe-
cute and write the executable file P.eze, and
read/write the documentation file P.doc; while



subject B, who is a user of P, is only allowed to
execute P.eze and read P.doc. Certain struc-
tures in the authorization are readily apparent:

(1) A, being the developer of P, must be able
to update all the files related to P, ie. A
must have write access to all three files.
Similarly, B should be allowed to read the
documentation P.doc if he is allowed to ex-
ecute P.eze.

(2) Denials of access rights are represented im-
plicitly by their absence in an entry. (Thus
explicit denials are not possible and more-
over, a denial is indistinguishable from a
lack of information about an authoriza-
tion.)

We call the structures exhibited in (1) clo-
sure properties among authorizations. In gen-
eral, a closure property stipulates that a set
of authorizations should either be simultane-
ously authorized or denied, because a partial
authorization produces an “unusable” system.
Closure properties can be used to ensure the
“consistency” of authorizations as in the above
example or to derive new authorizations from
existing ones.

The structure exhibited in (2) is called a de-
fault property. A default property can be used
as a convention to represent implicit knowledge
as in the example above (i.e. absence implies
denial) or as a deduction rule when information
is incomplete. In fact, most real systems em-
ploy default properties in one way or another.
For example, two kinds of policies are typically
used: a restrictive policy is one whereby a re-
quest is denied unless explicitly authorized and
a permissive policy is one whereby a request is
always granted unless explicitly denied. Both
make use of default properties.

We now turn to another example. Consider
the authorization specified by the following ac-
cess matrix (where, for an access right a, we
use —a to denote its explicit denial):
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F1|F2| F | H

A
Gi| 7 w T
Gz T ow | e
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Suppose A is a member of groups G and Ga,
and F.1 and F.2 are two components of an ob-
ject F (e.g. two tables in a database). Several
questions can be asked about the authoriza-
tion:

(1) G, is authorized to read F.1. Is A, who
is a member of G;, also authorized to do
the same? This is easy to resolve as both
groups to which A belongs are allowed to
read F.1; hence, A should be authorized to
read F.1. Consider now file H for which
only one of the two groups is authorized
to read. Is A authorized to read H? The
answer is not obvious. So is F.2 for which
G, and G3 have been given opposite au-
thorizations.

(2) Consider object F. A is authorized to ex-
ecute F. However, G to which A belongs
is explicitly denied the same access. Does
the denial of G, revoke the authorization
of A? Or does A’s explicit authorization
override the denial of G»?

All of the above questions can be answered
by precisely defining another kind of structural
properties, called inheritance properties. In-
heritance is especially important in large-scale
distributed systems where the granularity of
authorization ranges from an individual to an
entire domain. Inheritance properties are used
to relate authorizations specified with these dif-
ferent granularities.

In sum, it is important that the structural
properties described in this section be exploited
to obtain succinct representation and efficient
evaluation of authorization requirements.
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3 Language Requirements

From the above discussions, a language for
representing authorization requirements should
satisfy the following criteria:

e it should be declarative and have a seman-
tics that is independent of implementation
mechanisms

¢ the semantics should be efficiently com-
putable, hence allowing efficient autho-
rization evaluation

o it should allow easy expression of the clo-
sure, default and inheritance properties
discussed in Section 2.

In the following, we discuss four more require-
ments for such a language.

First, authorization is nonmonotonic. That
is, if a set of authorization requirements is aug-
mented by a new requirement, a subject who
was previously allowed access to an object may
no longer be allowed the same access. A good
example of such nonmonotonicity arises in the
use of defaults. For example, suppose the set
of authorization requirements includes the fol-
lowing default:

if s is not explicitly denied read access to o
then by default s is allowed read access to o

If the set of requirements is later augmented
with an explicit requirement denying s read
access to o, the previous grant should be re-
tracted. Thus, the semantics of a language for
authorization must allow such nonmonotonic
behavior.

Second, authorization may be incomplete.
That is, there may be authorization requests
such that insufficient information is available
to determine if they should be granted or de-
nied. Such incompleteness should be allowed in
the semantics of a language for authorization.
There are two reasons:
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e An incompleteness may be the result of
an oversight or error on the part of secu-
rity administrators. Thus when an incom-
pleteness is detected, it can serve as an
alarm signalling potentially more serious
problems. Therefore, it is advantageous
that such incompleteness not be masked
out automatically by the language seman-
tics.

o An incompleteness may be intentional so
that it can be “filled in” later when com-
position is performed (see below). Thus,
it is important that such intentional in-
completeness be allowed by the language
semantics.

Note that this strictly generalizes the idea of a
reference monitor [7], where no incompleteness
is allowed.

Third, authorization may be inconsistent.
That is, it is possible for an authorization re-
quest to be both granted and denied. The
reasoning is similar to that of incomplete au-
thorization: An inconsistent authorization may
signal errors on the part of security adminis-
trators or they can arise from the composition
of authorization requirements, especially in a
large scale distributed system. Therefore, the
semantics of a language for authorization must
be able to handle inconsistencies.

Fourth, multiple authorities may coexist in
a distributed system environment. These au-
thorities can be peers who coadminister a
system or they can be hierarchically related
in a supervisor-subordinate fashion. Each of
them may contribute authorization require-
ments pertinent to the part of the system he
is concerned with. The authorization of the
entire system is a composition of these individ-
ually contributed authorization requirements.
Thus a language for authorization should in-
clude operators for composing authorization
requirements. (Composition is discussed in
greater detail in Section 8.)




Authorization
Requirements
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req(r,s,0) ——————>

Authorization Module

L » grant(r,s,o)
L fail(r,s,0)
L deny(r, s,0)

!

System State

Figure 1: Model of authorization

4 Our Model

Our model of authorization is shown in Fig-
ure 1. Before a subject s can perform a
particular access r on an object o, s must
first obtain the access right r for o. Sub-
ject s does so by submitting a request of the
form regq(r,s,0) to the authorization module,
which responds with grant(r, s, 0), deny(r, s, 0)
or fail(r,s,0). A grant(r,s,o) is returned if
the authorization module can determine that
s is authorized to have r access to o, while
a deny(r, s,0) is returned if the authorization
module can determine that s is denied r access
to 0. A fail(r,s,o0) is returned if the autho-
rization module fails to establish either one of
the previous two cases.

To make an authorization decision, the au-
thorization module consults the authorization
requirements and the system state. The system
state is needed for authorization requirements
that contain system state variables as parame-
ters. Some examples of this kind of authoriza-
tion requirements are “At most 5 copies of a
program P can be running concurrently in all
nodes of the system” and “User A is allowed to
execute program P only if the current system
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load is less than 2”.

In our model, an authorization requirement
is stated as a rule and a collection of such rules
constitutes a policy base (see Section 6). There
can be multiple policy bases in a system, each
corresponding to an administrative domain or
the jurisdiction of a security administrator. A
composition of all policy bases defines the au-
thorization in the entire system.

The authorization module is an interpreter
which takes as input a set of policy bases
{B;}, the current system state, and a re-
quest reg(r, s,0), and tries to verify that either
grant(r, s,o0) or deny(r, s,0) “follows” from the
composition of {B;} and the current system
state. If grant(r,s,o0) follows, the request is
granted. If deny(r, s, 0) follows, the request is
denied. If neither follows, a fail(r,s,o) is re-
turned. The pathological case in which both
grant(r, s, 0) and deny(r, s, 0) follow can be re-
solved by enforcing certain priorities between
grants and denials. A precise definition of the
“follows” relation is given by a formal seman-
tics of policy bases to be presented below.

Note that Figure 1 is actually a simplified
picture of our model. In general, the policy
bases can be located in different parts of a dis-



tributed system, and multiple instantiations of
the authorization module can be running con-
currently across the system. More discussions
on implementation are provided in Section 9.

5 Authorization Policy

Informally, an authorization policy is the set-
theoretic equivalent of an access matrix. Its
precise meaning is defined in what follows.

Definition An authorization policy (or pol-
icy in short) over a set of subjects S, a set of ob-
jects O and a set of access rights Ris a 4-tuple
(P*,P~,N*,N~) where each component is a
subset of {(r,s,0)|r € R,s€ S,0€0}. O

The intuitive meaning of a policy A =
(P*,P~,N*,N-) is as follows: P% records
the rights that are explicitly granted, i.e. if
(r,s,0) € P*,subject s is explicitly granted ac-
cess right r to object o. Similarly, N* records
the rights that are explicitly denied. P~ (N~
respectively) records those rights that should
not be explicitly granted (denied respectively)
under this policy. P~ and N~ are useful for
defining the semantics of policy composition.

A policy A = (P*,P~,N*,N7) is sound if
there does not exist a triple ¢ = (r,s,0) such
that t € P*N P ort € N* N N~. A policy
A = (Pt,P~,N*t,N") is strongly sound if it
is sound and Pt NNt =0.

A policy A = (P*,P7,N*,N7) is com-
plete if for all s € 5, 0 € O and 7 € R,
(r,8,00 € P UP UNtUN-. A policy
A = (Pt,P~,N* N-)is strongly complete if
it is complete and both P~ and N~ are empty.
Thus it is sufficient to represent a strongly com-
plete policy with an ordered pair (P, N).

Given a strongly sound policy A =
(Ppt,P~,N*,N~). We can define three au-
thorization relations between A and a triple
(r,3,0):

A grants (r,s,0) iff (r,s,0)€ P*
A denies (r,s,0) iff (r,s,0)€ NT
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A fails (r,s,0) iff (r,s,0)¢ PrUN?*

Authorization evaluation can proceed as fol-
lows: Given a request from a subject s for ac-
cess T to an object o, grant(r, s,0) is returned
if A grants (r,s,0), deny(r,s,0) is returned if
A denies (r,s,0) and fail(r, s, 0) is returned if
A fails (r,s,0). Note that if A is also strongly
complete, then fail(r,s, o) would never be re-
turned.

6 Policy Base

In this section, we present a language for stat-
ing authorization requirements in policy bases.
The language is essentially a many-sorted first-
order language with a rule construct. The rule
construct is similar to the default construct in
default logic [24]; however, we provide it with a
different semantics. The rule construct is use-
ful for stating structural properties of autho-
rization requirements.

From some domain-specific considerations,
we impose several restrictions on the kind of
first-order formulas allowed. We briefly de-
scribe the restrictions and their motivations:

o We desire to have a computable semantics.
As validity in an infinitary theory is typi-
cally semi-decidable, we restrict ourselves
to finitary theories. To achieve this, we
do not allow function symbols in our lan-
guage and postulate only finite sets of ac-
cess rights, subject and object constants.
This also allows us to eliminate quantifi-
cations.

¢ We allow the use of disjunction only in
highly restricted ways. For example, we
cannot state in our language the autho-
rization requirement “Subject A is either
allowed to read file F or write file G”. Nei-
ther can we state “There is a subject z
who can read file F” in our language. Our
view is that such disjunctive authorization




requirements provide insufficient informa-
tion for determining the exact extent of
authorization.

On a closer look, this limitation is not as
restrictive as it seems. In a realistic autho-
rization policy, disjunctive authorization
requirements are stated mostly for conve-
nience and their disjunctive nature is usu-
ally immediately resolved when other re-
quirements are taken into consideration.
This is analogous to the case in classical
logic where the statement A V B when
combined with ~A yields B, which is non-
disjunctive. Purely disjunctive authoriza-
tion requirements are rare and counterin-
tuitive.

6.1 Syntax

The alphabet of our language is derived from
the system to be modeled. Consider a system
with S as its set of subjects, O its set of objects
and R its set of access rights. (Note that S, O
and R are all finite sets.) We postulate the
following alphabet for our language:

o a set of ordinary variables V,

e a set of propositional variables P,

¢ two propositional constants T and F
e a finite set of subject constants S,

o a finite set of object constants O,

e a finite set of binary predicate symbols
R={rt,r"|r€R}
¢ two special predicate symbols “=", and

uen

The set S (O) contains at least a constant sym-
bol for each subject (object) in § (O). In other
words, each subject or object in the system is
explicitly represented by a constant symbol in
the language.

40

A term is an ordinary variable, a subject
constant or an object constant. An atom is
a propositional constant, a propositional vari-
able or a predicate p(t,t’) where p is a predicate
symbol and t,t’ are terms. We adopt the con-
vention of writing predicates involving = or €
in the infix form, i.e. we write =(¢,t') ast =1’
and €(t,t') as t € t'. An atom formed from a
predicate symbol in R is called a distinguished
atom; and the rest ordinary atoms.

A literal is an atom or the negation of an
atom. Negation is denoted by the symbol -.
A literal formed from a distinguished atom
is called a distinguished literal, while a literal
formed from an ordinary atom is called an or-
dinary literal. A literal is positive if it is an
atom, and negative if it is the negation of an
atom. Let a be an atom, then the two literals
a and —a are called complementary literals. We
define @ to be —a and =@ to be a. Thus, £ and
7 are always complementary for any literal £

A formula is a literal, a conjunction of two
formulas f and f’, denoted by f A f',ora
disjunction of two formulas f and f’, denoted
by f V f'. A basic formula is a formula that
only contains propositional constants and dis-
tinguished literals. A subclass of basic formu-
las that does not contain disjunctions is called
conjunctive formulas. Note that in our formu-
las, unlike those of first order logic, negation
occurs only at the level of literals. A formula is
closed if it does not contain ordinary variables,
otherwise it is open.

A ruleis written in the form f_;L’ where fisa
formula, f' a basic formula and g a conjunctive
formula. f, f' and g are respectively called the
prerequisite, assumption and consequent of the
rule.

Notation To simplify our presentation, we
introduce a syntactic operator neg for basic for-
mulas. Let f be a basic formula:

e neg(T)is F,

o neg(F)is T,
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¢ f is a positive literal a, then neg(f) is a,

e f is a negative literal —a, then neg(f) is
a‘)

e fis a conjunction f; A fa, then neg(f) is
neg(f1) V neg(f2),

e fis a disjunction fi V fa, then neg(f) is
neg(f1) A neg(f2).
Thus the effect of the neg operator is similar

to that of applying negation to the entire basic
formula and then pushing it inward using De

Morgan’s law. o

Convention To be succinct, we use several
abbreviations. First, if any component formula
is missing from a rule, it is assumed to be T.
Second, we use the notation f = g to represent
a rule of the form Lil Third, T = g is further
abbreviated to g. ]

Example1 LetV = {z,y,...}, P = {p,q},
S = {A,B,G}, O = {X,Y,Z}, and R =
{read, write}. Then the following are rules:

read” (G, z)

readt(A,X) = read*(A,Y)

z€G A read (G,Y) = read™(z,Y)
-p V writet(z,Z) = -read?(z,y)
pAaread? (z,2): read? (z,Y)

read¥ (z,Y)
z€G Awritet (G,y) : write® (z,9) A ~write (z,y)
write*(z,y)
a
Definition A policy base (or base in short)

is a finite set of rules. 0

A rule f—‘gﬁ is closed if f, f' and g are all
closed; otherwise it is open. A rule is pure if
f is also a basic formula. A base is closed if it
contains only closed rules. A base is pure if it
contains only pure rules.

6.2 Semantics for Closed Policy Base

We present a semantics for closed bases here.
The semantics for open bases is in Section 6.4.
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Thus every mention of base in this subsection
is taken to mean a closed base unless explicitly
stated otherwise.

The semantics of a base is given by its ez-
tensions. An extension is a set of distinguished
literals®. An extension provides a straightfor-
ward interpretation for distinguished literals:
such a literal is true if and only if it is contained
in the extension. An extension is similar in con-
cept to a model in the standard semantics for
classical logic.

An extension naturally defines a policy.
More precisely, let £ be an extension and let

pt {(r,s,0)| r*(s,0) € X}
P~ = {(r,s,0)| ~r*(s,0) € L}
Nt = {(r,s,0)| r(s,0) € T}
N- = {(r,s,0)| ~r~(s,0) € T}

Clearly, (P*,P~,N*,N™) is a policy. We call
it the policy defined by X, and denote it by
a(X). This establishes a one-one correspon-
dence between an extension and a policy.

To provide meanings for ordinary literals,
we use an assignment function Z : P —
{true, false} and a group relation G. An as-
signment function provides interpretation for
propositional variables, while a group relation
provides interpretation for the predicate “€”;
they together model the system state. The
equality predicate “=" is interpreted as the
identity relation. We also adopt the unique
names assumption, i.e. ¢ # ¢ for all ¢,c’ in
SuO0.

Before we give our definition for extension,
we first define a satisfaction relation between
a set ¥ of distinguished literals and a closed
formula f with respect to an assignment Z and
a group relation G. We denote the satisfac-
tion relation by ¥ [=7,¢ f. The definition is by
structural induction:

e f is a propositional constant, then
Skrgf iff fisT

3An extension is similar to a Herbrand base except
that it contains literals instead of just atoms.




e f is a propositional variable, then
Lkrg f iff  I(f)=true

o fist=1¢, then
E}:I'gf iff t=+¢

o fist €t/ then

Skrgf iff (Lt)eg
e f is a distinguished literal L, then

z |=I,g f iff LeX
e fis —~f where f’ is an ordinary literal,

then

kg f iff Tz f
e fis fi A fa, then

Tkrgf il ZFrgfiand g fo
° flS fl \Y f2,then

kg f ff TkrgfiorT kg f

Note that our semantics is different from
the standard semantics for classical logic in
several ways. First, F A -F represents a
contradiction in classical logic and hence does
not admit any model. In our case, we have
{F,~-F} Fzg F A =F. Second, in classi-
cal logic, if ¥ satisfies both F' V G and -F,
then it must also satisfy G. This is not true
in our semantics as {F,-~F} 76 F V G and
{F, -1F} |=1',g -F, but {F, -‘F} bél',g G. A
semantics that exhibits such non-classical be-
havior is often called paraconsistent.

Given a base, we are now ready to define its
extensions. Let B be a base, 7 an assignment
and G a group relation. We define an operator
I'p 1,g that given a set of distinguished literals,
returns a new set of distinguished literals. The
formal definition of I'p 7,6 is as follows: Let &
be a set of distinguished literals. Define

M is a set of
distinguished literals and
for all Lj;!—' € B,

if M Frg f and T g6 neg(f')
then M |=I,G g
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then
I'p1,g(X) = the intersection of all
elements in S};’f‘:

The intuitive meaning of a rule £:L is as fol-
lows: If a set X of distinguished literals satisfies
f, and there is no evidence that the negation of
f! is satisfied (hence it is consistent to assume
that ¥ satisfies f’), then ¥ must also satisfy g.

Definition Let B be a base, T an assign-
ment, G a group relation and ¥ a set of dis-
tinguished literals. X is an eztension of B
under assignment Z and group relation G if
Y =TI'pzg(X), ie. X is a fixed point of the
operator I'p 7¢. ]

Since each extension of a base defines a pol-
icy, in the case that B admits a unique exten-
sion ¥ under Z and G, the policy defined by £
can be taken to be the semantics of B under
Z and G. We formalize this in the following
definition.

Definition Let B be a base, Z an assign-
ment and G group relation. Suppose B admits
a unique extension X under Z and G. Then
oY), the policy determined by B under T and
G, will be denoted by &7,¢(B). a

The authorization relations introduced in
Section 5 can be naturally extended to a base
as follows. (Note that this is well defined only
when &7, g(B) itself is well-defined and is a
strongly sound policy.)

Definition Let B be a base, Z an assign-
ment and
G group relation. Let s€ §S,0€ O and r € R:

B grants (r, s, 0) under Z,G iff
¢1,6(B) grants (r,s,0)

B denies (r,s,0) under I,G iff
&1,6(B) denies (r, s, 0)

B fails (r,s,0) under I,G iff
E1,6(B) fails (r,s,0)



These three relations represent the authoriza-
tion defined by a base B, and are taken to be
its semantics. a

Clearly, the above semantics is well-defined
only when B admits a unique extension under
7 and G. However, as shown in the examples
below, this unique extension property is not
true in general.

Consider the base

;read? (A X) A -readt(AY)

read” (A,X) ’
;readt(AY) A ~read*(AZ)

read™ (A)Y) ’
:read® (A, Z) A -read? (A,)ﬁ)}

read™ (A,Z)

B, does not admit any extension under all

assignments and group relations. Note that
B; does not contain any ordinary literal, thus

the assignment or group relation cannot be the
cause for its lack of extension. (S|

Example 2

B, ={

Example 8 Consider the base

s Wi + s wri +
B, = {4 writet (A X) :-write (Am}

writeT(A)Y) ' writet(AX)
B; admits two extensions {write*(A,Y)} and

{writet(A,X)} under all assignments and group
relations. o

Example 4 Consider the base

_ + p A read (A X): ~write” (A7)
By = {read™(A,X), write™ (A,Z) }
If Z(p) = false then {read™(A,X)} is an exten-
sion. However if Z(p) = true, B3 does not ad-
mit any extension. Thus both 7 and G do affect
the extensions (if any) of a base. o

Although these examples demonstrate that
the unique extension property is not true in
general, they also serve to illustrate a common
underlying cause for failure. In the above ex-
amples, there is a kind of circularity in the
rules involving atoms that occur both posi-
tively and negatively. For instance, in Ex-
ample 3, each of the atoms writet(A,X) and
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writet(A,Y) occurs positively in the conse-
quent of one rule but negatively in the assump-
tion of the other rule. Thus the application
of one rule would necessarily disable the ap-
plication of the other rule, hence resulting in
two different extensions. However, if priorities
are enforced between the two rules (e.g. the
derivation of writet(A, X) is more “important”
than the derivation of write*(A,Y)), then only
{write* (A, X)} would be considered an exten-
sion of By. This idea can indeed be generalized
and a notion of stratification can be defined on
the set of distinguished atoms, so that a strat-
ified base always possesses a unique extension.
We omit the details here and refer the readers
to [3, 8, 23).

The semantics of bases can also be given by
first “factoring out” the effects of assignments
and group relations. We formalize this below.

Let B be a base, 7 an a.ssignment and G a
group relation. Let d = L:L pe a rule in B.
Suppose we apply the following transformation
to d:

e replace all occurrences of p in f by T if
Z(p) = true and F otherwise

o replace all occurrences of t € t'in f by T
if (¢,¢') € G and F otherwise

e replace all occurrences of t =¢'in fby T
ift = t' and F otherwise

Clearly, the resulting rule is pure. We denote
by [Z,G](B) the base obtained by applying the
above transformation to each rule in B. By
definition, [Z,G](B) is a pure base. Note that
the extensions of a pure base are independent
of the assignment and the group relation.

Theorem 1 Let B be a base, 7 an assign-
ment and G a group relation. Let ¥ be a set of
literals. Then ¥ is an extension of B under I
and G iff ¥ is an extension of [Z,G](B).

Proof Omitted; see [26]. o



6.3 Computation of £7,4(B)

For our semantics, authorization evaluation
reduces to the computation of £7g5(B). In
this subsection, we present a simple semantics-
preserving translation of a base B into an ez-
tended logic program Ilg, thus reducing the
computation of £7,¢(B) to the computation of
IIp [9]

We first introduce the concept of an extended
logic program. An eztended program clause is
a statement of the form:

L « Ly,...,Ly,not Lpyq,..not Ly,

where L and L;’s are literals. An extended logic
program is a finite collection of extended pro-
gram clauses. Extended logic programs are a
strict superset of general logic programs, be-
cause literals rather than just atoms are al-
lowed in the program clauses.

For extended logic programs, we have devel-
oped a paraconsistent semantics (expressed in
terms of models) using ideas from stable model
construction [8]. Our semantics is an exten-
sion to the one proposed in [9], and is similarly
computable via reduction to general logic pro-
grams. Details can be found in [26].

The essence of our approach is to translate a
base into an extended logic program as follows:
Let B be a base and let d = .L;L' be a rule in
B. We translate d into the extended program
clause

9 « f A not(neg(f'))

where not is an operator with a definition sim-
ilar to neg: Let h be a basic formula:

e not(T)is F,
not(F)is T,

h is a literal £, then not(h) is not ¢,

kL is a conjunction hy A hg, then not(h) is
not(hy1) V not(hz),

h is a disjunction hy V hg, then not(h) is
not(h1) A not(hy).

We denote by IIp the extended program ob-
tained by applying the above translation to
each rule in B.

Theorem 2 Let B be a pure base and ¥ a
set of literals. Then X is an extension of B iff
¥ is a model of IIg.

Proof Omitted; see [26]. 0

Corollary Let B be a base, 7 an assignment
and G a group relation. Let T be a set of liter-
als. Then X is an extension of B under 7 and
G iff £ is a model of Il[z g)(B)-

Proof Omitted; see [26]. o

6.4 Semantics for Open Policy Base

Let B be an open base. We view each open rule
in B as standing for all its ground instances. In
other word, let d(Z) be a rule whose free vari-
ables are z. d(Z) should actually be understood
as representing the set of closed rules

{d(¢) | € is a ground substitution for Z}
For example, if § = {A,B} and O = {X,Y},

write? (z,X) :read* (z,y)
then read¥ (z,y)

stands for:

{ writet (A X):read* (A X)
read™ (A,X) ’
writet (A X): read* (A X)
read” (A,X) ’
write® (B,X): read*(B,Y)
read¥(BY) ’
writet (B,X): read* (B,Y) }
read* (B,Y)

Thus each open base B can be associated with
an “equivalent” closed base B’. The semantics
of B is defined to be the same as that for B'.

6.5 Application Guidelines

Having defined the syntax and semantics of
policy bases, we now turn to the practical as-
pects of specifying policy bases. In particular,
we provide some guidelines for representing the



three kinds of structural properties discussed in
Section 2.

Consider a rule £:£. Its intuitive meaning is
that the authorization specified by g is allowed
if the authorization specified by f is allowed
and no authorization contradicting f’ has been
specified. Informally, f specifies some prerequi-
site authorization required for g, while f’ spec-
ifies assumptions that can be used to deduce
the authorization specified by g. In the follow-
ing, we discuss different forms of our rule and
show how they can be used.

Consider a rule of the form T—;II, or simply
g. Such a rule expresses basic authorization
requirements that must be satisfied in a system.
There is no prerequisite nor assumption. For
example, to say that a user A must be able to
read and write his home directory, we write:

readt(A,A.home) A write™ (A, A.home)

where A.home denotes user A’s home directory.
These basic authorization requirements form
the core upon which other authorizations can
be deduced.

A rule of the form I’TT—, or simply f = g,can
be used for two purposes. First, it can be used
to express a closure property between autho-
rization requirements. For example, consider
the rule:

executet(z, P.exe) = read¥(z,P.doc)

which says that a user who is authorized to
execute a program P.exe should also be allowed
to read its associated documentation P.doc.

Another use of the above rule is to define new
authorization requirements in terms of others.
For example, in Unix, the right to delete a file
is equivalent to the right to write the directory
containing the file. This can be made explicit
as:

writet(z,d) A f €d = deletet(z, f)

where f and d are variables standing for a file
and a directory respectively.
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Rules can also be used to represent implicit
authorizations. There are several reasons why
an authorization is left implicit. First, it can
be a convention. For example, in general, the
number of negative authorizations in a sys-
tem far exceeds the number of positive ones.
Thus for efficiency, a security administrator
may specify only the positive ones and leave
the negative ones implicit. In other words, the
convention is that if a right has not been ex-
plicitly authorized, then it is denied. This con-
vention can be formalized in a policy base with
the following schema:

: 17(s,0)
r=(s,0)

where r € R.

An inheritance property is another example
of implicit authorizations that can be formal-
ized as rules. An example is given in Section 7.

6.6 Specifying Exceptions

In the following, we explore several strategies
to specify exceptions. We first introduce the
concept of virtual rights. Virtual rights are not
access rights per se, but are introduced for stat-
ing exceptions. We explain this with an exam-
ple. Suppose we have the following authoriza-
tion requirements:

(1) User A is not allowed to write file
X. (2) A user who is not allowed to
write file X is also not allowed to read
X ezcept for those who belong to group
G and those who can read file Y.

As a first attempt, we can express this as two
rules:

write ™ (A, X)
write=(z,X) A ~(z € G) A -read¥(z,Y)
= read”(z,X)

Clearly, these rules correctly represent the re-
quirements. However, they are inflexible and



error prone in the following sense: They require
every exception to be known and be included in
the left hand side of the second rule. Thus for
a subject whose exception status is unknown
(e.g. subject A above), it will not be explicitly
denied the right to read X.

A better way to represent this would be to
introduce a virtual right except to represent ex-
ceptions and a rule to limit exceptions to the
ones explicitly specified.

( write” (A, X)
write™(z,X) A -except?(z, X)
= read™(z,X)

z € G => exceptt(z,X)
read*(z,Y) = exceptt(z,X)

:—-excegt*’g::SX)
\ -exceptt(z,X)
Subject A is denied read access to X by the
second rule in B4. This is the case because A
is assumed to be not an exception by the last
rule in By. Thus this specification errs on the
safe side from a security viewpoint.

Another way of stating the same require-

ments without using the virtual right except
is the following,.

By =4

write™ (A, X)

z €G = -read (z,X)

read*(z,Y) = -read”(z,X)

write ™ (z,X) : read " (z,X)
read ™ (z,X)

Bs =

The main difference between B4 and Bs is
that in B4, we only have sufficient conditions
for exceptions while in Bs, we can conclude
that —read™(z,X) holds for all excepted indi-
viduals.

Yet another way to specify the requirements,
one that can be viewed as a hybrid of By and
Bs, is the following.

write™ (A, X)

z €G = exceptt(z,X)

readt(z,Y) = exceptt(z,X)

write " (z,X) : ~except*(z,X)
read " (z,X)

Bg
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Bg is similar to By in that only sufficient con-
ditions for exceptions are specified. However,
for any subject, such as A, who is not explicitly
specified as an exception, its exception status
remains unknown.

Although By, Bs and Bs are different with
respect to what can be concluded about the
excepted individuals, they all have the same
semantics with respect to write™ and read™. In
particular, read™ (A, X) holds in each case.

7 Examples of Policy Bases

In this section, we present two examples of us-
ing policy bases to specify authorization re-
quirements. The first example is the Bell-
LaPadula model (BLP) [4]. We present a
straightforward formulation of the basic BLP
model in the policy base notation and also an
enhancement with need-to-know restrictions.
The second example shows how to formalize
inheritance properties (as illustrated by exam-
ples in Section 2).

The essence of the basic BLP model can be
summarized by two rules, “no read up and no
write down”. To simplify our presentation, we
consider only two security levels low and high.
We specify the BLP model as follows:

BLP=R UW-URtuWwW?
where
(No Read Up)

R~ ={s€low A o€ high = read™(s,0)}

(No Write Down)

W~ = {s € high A o € low = write™(s,0)}
(Can Read Down)

Rt = {0 € low => read*(s,0)}

(Can Write Up)
W+ = {s € low => write*(s,0)}

In the above, denials are absolute in the sense
that no exception is allowed. Given a complete



description of the group relation, the above pol-
icy base uniquely defines a strongly sound and
strongly complete authorization policy that
satisfies the simple and *-security properties
[4].

However, this basic model suffers from two
drawbacks. First, the group relation must be
completely defined in order to give a strongly
complete authorization policy. Second, al-
though positive authorizations that are granted
do satisfy the simple and x-security property,
they violate the principle of minimal privileges
[25].

We remedy this by adding need-to-know re-
strictions and denials by default. We modify
R’ and W' to be:

R' = {o€low A need-to-know™(s,0)
= read*(s,0)}
W' = {sclow A need-to-know™(s,0)
= write*(s,0)}
and BLP to be

BLP =R UW-UR UW'UD

where D is

{ :read " (s,0) :write”(s,0) :—-need-to-know"'(a,o)}
read " (s,0) ’  write " (s,0) ’ -.need-to-know+(s,o)

The virtual right need-to-know formalizes the
need-to-know restrictions and can be defined in
terms of compartments of subjects and objects
using other rules.

We now turn to our second example. Con-
sider the following inheritance properties:

(1) If a subject s has not been explic-
itly granted a right r to an object o,
then s will inherit a denial of r to o if
it belongs to a group that has a denial
of r to o. (2) If a subject s has not
been ezplicitly denied a right v to an
object o, then s will inherit a grant of
r to o if all groups to which s belongs
have grants of r to o.
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These can be expressed respectively by the
following schemas:

_s€g Ar™(g,0) : ~rT(s,0) A 17(s,0)
- r=(s,0)

dy

and
Vs,9,0[~(s € g) V r*(g,0)]
:7r¥(s,0) A ~r~(s,0)
rt(s,0)

dy

where V s,g,0[f(s,g,0)] in d2 is a shorthand
for the conjunction of all formulas of the form
f(A,G,X) where A,G€ S and X € O.

8 Composition of Policy

Bases

There are two notions of composition for pol-
icy bases that are important in a distributed
system environment. We next examine the sit-
uations that give rise to multiple policy bases,
and point out the different needs in these situ-
ations.

First, a system may be administered by mul-
tiple security administrators, each responsible
for a distinct part of the system. Each secu-
rity administrator specifies a policy base for the
part of the system he is responsible for. In this
case the different policy bases complement each
other, in the sense that each fills in a part that
has not been specified by others. Thus a com-
position gives the “sum” of all authorization
requirements in the policy bases. We call this
type of composition peer or horizontal compo-
sition.

Second, a security administrator may dele-
gate his responsibilities to a number of sub-
ordinate administrators. This gives rise to a
root policy base corresponding to the delegat-
ing administrator and a number of leaf policy
bases corresponding to the subordinate admin-
istrators. The leaf policy bases are more spe-
cific and detailed than the root policy base and
typically contain refinements of the root policy



base. Composition in this case would combine
all of the authorizations present in the root pol-
icy base together with their refinements in the
leaf policy bases. We call this type of compo-
sition hierarchical or vertical composition.

The key difference between horizontal and
vertical compositions is in their resolution of
conflicts. In horizontal composition, a conflict
is resolved in favor of the base with the positive
authorization, while in vertical composition, a
conflict is resolved in favor of the first (i.e. the
more authoritative) base if the conflict involves
a negative authorization in the first base and a
positive authorization in the second base. The
definitions of horizontal and vertical composi-
tions are given below. Let 1 = 2 and 2 = 1.

Definition (Horizontal Composition) Let
B, and B; be two bases. Apply the following
to B; (i = 1,2): For all distinguished atoms a
such that @ occurs in the consequent of a rule d
in B; and a occurs in the consequent of a rule
d’ in B;, remove all occurrences of @ from the
consequent of d. Let B} be the resulting base.
Then

B [h] B; = B U B}
a

Definition (Vertical Composition)  Let
By, B; be two bases. Apply the following to
B,: For all distinguished atoms a such that @
occurs in the consequent of a rule d in B; and a
occurs in the consequent of a rule d' in B;, re-
move all occurrences of a from the consequent
of d’. Let B} be the resulting base. Then

By B, =B,V B;
a
Because of space limitation, we relegate a

study of the properties of these two types of
composition to another paper [26].
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9 Implementation

Our model can be implemented as follows in a
distributed system. Each policy base is stored
and managed by a node in the system. We
call such a node a policy server. These pol-
icy servers are organized in a hierarchical man-
ner. Policy servers at the same level are called
peers. Clients submit their access requests to
appropriate policy servers for authorization de-
cisions. The policy servers communicate with
each other in authorizing an access request.
Thus both peer and hierarchical composition
are implemented by passing messages between
policy servers.

The assignment function used in interpret-
ing propositional variables is implemented by
a set of distributed monitors that keep track of
the status of propositional variables in a dis-
tributed manner.

The group relation is implemented by a set of
group servers that collectively maintain group
membership information for all subjects and
objects in the system. Thus all updates of
group memberships (e.g. additions and dele-
tions) in the system are handled by the group
servers.

Both the distributed monitors and group
servers are regularly queried by the policy
servers in making authorization decisions. The
evaluation mechanism used in each policy
server is based on an interpreter for general
logic programs. In fact, a suitably modified
Prolog interpreter is sufficient.

10 Concluding Remarks

We have presented a new approach to repre-
senting and evaluating authorization. In our
approach, a set of authorization requirements
is specified declaratively by a policy base. Un-
like most existing approaches, the semantics of
authorization is defined independently and is
separate from implementation mechanisms.



Our approach is readily extensible. First,
new predicate symbols can be added to our
representation language to increase its expres-
siveness without a significant increase in com-
putational requirements. Second, new notions
of composition for policy bases can be defined
based upon the semantic notion of authoriza-
tion policy.

For future work, there are some general prob-
lems that deserve further investigation. These
include: (1) the use of disjunctive information
in authorization, and (2) the incorporation of
structured subjects (e.g. one subject being a
role or delegate of another subject) and struc-
tured objects (e.g. one object being an imple-
mentation of another object) into our represen-
tation language.
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