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Abstract

We specify authentication protocols as formal
objects with precise syntax and semantics, and
define a semantic model that characterizes pro-
tocol executions. We have identified two basic
types of correctness properties, namely, corre-
spondence and secrecy, that underlie the correct-
ness concerns of authentication protocols. We
define assertions for specifying these properties,
and a formal semantics for their satisfaction in
the semantic model. The Otway-Rees protocol
is used to illustrate the semantic model and the
basic correctness properties.

1 Introduction

Authentication is a fundamental concern in the
design of secure distributed systems {14, 25]. In
distributed systems, authentication is typically
carried out by protocols, called authentication
protocols. The primary goal of an authentica-
tion protocol is to establish the identities of the
parties (referred to as principals in the security
literature) who participate in the protocol. Many
authentication protocols, however, also accom-
plish a secondary goal, namely, to distribute a
new secret session key for further communication
among the principals (see discussion in Section 2).
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The design of authentication protocols is noto-
riously error-prone. Many authentication proto-
cols have been published and later found to con-
tain subtle weaknesses or flaws [3, 6, 7, 17, 19, 20].
Two factors contribute to this: (i) the lack of well-
established guiding principles for protocol design,
and (ii) the use of informal operational reason-
ing for protocol analysis. Recently, a great deal
of research has been directed to remedy these
two problems. With respect to (i), basic design
principles corresponding to symmetric and asym-
metric cryptosystems are discussed in [25], and
the design of a family of authentication protocols
is systematically demonstrated in [5]. With re-
spect to (i), many formal approaches have been
proposed for the analysis of authentication pro-
tocols [4, 6, 8, 10, 11, 12, 17, 23].

There are, however, two shortcomings in exist-
ing formal analysis approaches. First, there is a
significant gap between the formal and intuitive
notions of correctness. The formal notion of cor-
rectness is often highly specialized and does not
always capture the entire intuitive notion of cor-
rectness an authentication protocol designer has
in mind. For example, some approaches [8, 12]
adopt secrecy as their main correctness criterion,
and do not address concerns not directly related
to secrecy; while others {6, 10, 11] specify correct-
ness in terms of state of belief and make implicit
secrecy concerns. This gap can lead to potential
misinterpretations.

Second, the “formal” notions of correctness
adopted in most existing approaches are not suf-
ficiently formalized. Such imprecision can lead to
difficulties in protocol analysis. In the extreme




case, it can allow an intuitively flawed authentica-
tion protocol to be proved “correct.” A good ex-

ample of this is the BAN logic construct “P & Q”
whose meaning is only informally explained in [6].
The informal explanation was widely misunder-
stood and led directly to the criticism by Nessett
in [21]. In fact, the precise meaning of “P &Q
only became clear with the publication of a new
semantics for BAN logic in {2].

Furthermore, with an insufficiently formalized
notion of correctness, it is difficult to judge the
generality of a proposed analysis approach. In
particular, the questions of soundness and com-
pleteness cannot be answered.

The goal of our research is to address these two
shortcomings. To precisely define any notion of
correctness, we need a semantic model that char-
acterizes authentication protocol executions. We
define such a semantic model for authentication
protocols by specifying them as formal objects
with rigorous syntax and semantics. We propose
a formalization of correctness based on two types
of correctness properties, namely, correspondence
and secrecy. Correspondence properties address
authentication concerns, while secrecy properties
address secrecy concerns. We define the syntax
of assertions for specifying both kinds of proper-
ties, and a formal semantics for their satisfaction
in terms of the semantic model.

We maintain a clean separation between the
underlying semantic model and the correctness
properties being defined. Thus if new correct-
ness properties (other than correspondence and
secrecy) are needed for a particular application,
they can be easily defined using the semantic
model.

The balance of this paper is organized as fol-
lows. In Section 2, we introduce informally the
correspondence and secrecy properties. In Sec-
tion 3, we present our semantic model for au-
thentication protocols. In Section 4, we introduce
the syntax of correspondence and secrecy asser-
tions and define their semantics in terms of our
semantic model. In Section 5, we compare our
approach with several other formal analysis ap-
proaches. In Section 6, we discuss some design

decisions in formulating our approach and discuss
work for further research.

2 Correctness Properties

In this section, we take an informal look at vari-
ous correctness properties for authentication pro-
tocols. We guide our discussion by examining
several toy authentication protocols as well as a
realistic authentication protocol proposed by Ot-
way and Rees [22]. The discussion here would
hopefully provide sufficient motivation for our
formalization to be presented in Sections 3 and
4.

2.1 Two Basic Properties

Correctness is no more than satisfying a set of
specified goals. Thus to understand correctness,
we begin by looking at the goals an authenti-
cation protocol is supposed to accomplish. As
mentioned in the Introduction section, there are
two such goals:

(G1) Authentication — The primary goal of an
authentication protocol is for an authenticat-
ing principal to be ascertained of the iden-
tity of an authenticated principal.! In other
words, upon the successful termination of
protocol execution, an authenticating prin-
cipal should be assured that it is “talking”
to the principal it has in mind.

(G2) Key Distribution — While (G1) assures that
the “right” principals are present during an
authentication exchange, it provides no guar-
antee of the authenticity and privacy of any
ensuing communication. To achieve this, a
secret session key can be distributed dur-
ing the authentication exchange. This secret
session key can then be used to ensure the
authenticity and privacy of future communi-
cations.

In a two-party mutual authentication protocol, each
principal assumes the role of an authenticating principal
as well as an authenticated principal.



(G1) and (G2) are high level goals. They rep-
resent the expected end results from running a
particular authentication protocol. For protocol
analysis, these high level goals should be trans-
lated into more primitive correctness properties.
In our research, we have identified two such basic
types of correctness properties, namely, corre-
spondence and secrecy.

Informally, correspondence means that the ex-
ecution of the different principals in an authenti-
cation protocol proceeds in a locked-step fashion.
In particular, when an authenticating principal
finishes its part of the protocol, the authenticated
principal must have been present and partici-
pated in its part of the protocol. Correspondence
addresses (G1). Secrecy specifies that certain in-
formation should not be accessible to an intruder.
Secrecy addresses (G2).

Correspondence and secrecy are two distinct
properties, as can be illustrated by the following
examples. Before we proceed, we first review the
notation generally used for the specification of
authentication protocols.

Notation. Principals are denoted by upper
case letters, e.g. P, Q. The shared key between
P and @Q is denoted by kpg. The public and
private keys of P are denoted respectively by kp
and kp'. The concatenation of messages m and
m' is denoted by m,m’. Encryption of a message
m by a key k is denoted by {m};. A protocol is
presented as a sequence of protocol steps. Each
protocol step is written in the form “P — Q : m”
which represents the communication of message
m from P to Q. a

The following one-way? authentication proto-
col II; is supposed to authenticate Q to P and to
distribute a new session key from P to Q:

(1) P—Q: P{klip,
(2 @-P: Q’{k}kpq

2The example can be easily extended to mutual au-
thentication. But it is sufficient here to look at one-way
authentication protocols.
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Protocol II, is incorrect because the following sce-
nario is possible: (Z denotes an intruder. The
principal enclosed in brackets is the intended
sender or receiver.)

P > (@Q)z
@2 - P

P9 {k}kpq
Qv {k}kpq

Specifically, P succeeds in finishing its execution
of II; even without the participation of Q. Thus
correspondence fails. However, IT; does preserve
the secrecy of the session key k from intruders.
That is, an intruder would not be able to obtain
the key distributed in any run of II;. Of course,
this secrecy property is not too interesting in light
of the correspondence failure.

Now consider the following one-way authenti-
cation protocol II;. Like II;, II, is also intended
to authenticate @ to P and to distribute a new
session key from P to Q.

(1) P—Q: P{kPh
® @-P: Q{kQho

Protocol II; is incorrect as the session key be-
ing distributed can be easily discovered by an
intruder Z as shown below:

P - (@)Z: P {k,P}k;x
Z : recover k by encrypting with kp
(PYZ - Q : P, {k,P}k;x
Q - P Q9{kaQ}k51

However, II; does satisfy correspondence. That
is, @ must participate in order for P to finish
its execution of the protocol. Thus, secrecy fails
while correspondence is satisfied in this case.

2.2 Where is Timeliness?

A technique often used to compromise authen-
tication protocols is the so called replay attack.
This refers to the playback of previously recorded
message communications by an intruder in an at-
tempt to sabotage an ongoing exchange. In fact,
the first well-publicized authentication protocol




failure is concerned with a combination of replay
attack and compromise of old keys [7}]. In light of
this, it seems that the timeliness of an authenti-
cation exchange ought to be included as a basic
correctness property. For example, BAN logic in-
cludes a special freshness construct to distinguish
information that belongs to the current session.

In our approach, this is not necessary. In fact,
in our model, a timeliness failure would manifest
itself in the form of a correspondence failure or a
secrecy failure. This is possible in part because
of our correspondence definition and the intro-
duction of an explicit action GetSecret to model
the compromise of old secrets (see discussion in
Section 3). For example, the failure reported in
[7] is in fact a correspondence failure due to the
inability of one of the principals to ensure time-
liness. Thus in our approach, we do not have
timeliness as a basic correctness property. In-
stead, it is indirectly taken care of by ensuring
both correspondence and secrecy.

2.3 A Realistic Protocol

We have introduced two basic types of correct-
ness properties by looking at several flawed toy
authentication protocols. We can gain additional
insights by examining a more realistic one. We
choose the Otway-Rees protocol [22] for this pur-
pose.

The protocol has a standard cast, consisting
of two mutually authenticating principals and a
third commonly trusted principal. The protocol
is intended to achieve the two goals described in
Section 2.1: mutual authentication and key dis-
tribution. Here is the Otway-Rees protocol as it
appears in {22] (with minor notational changes):

(1) P—-@Q: n, P,Qa{ann,PaQ}sz

(2) Q — 5 naPst{nPan’PaQ}sza
: {nQ’nv P»Q}kqs

(3) S - Q : n, {nP’k}kps,{nQik}kQS

(4) @ — P: n,{np,k}ips

P and @ are the principals authenticating each
other. S is an authentication server trusted by
both P and @, and is also responsible for the

generation of the new session key k. The proto-
col makes use of several nonces,® namely n,np
and ng. As is the case with most authentication
protocols, there is an initiator, P in this case,
who initiates the authentication exchange, and
a responder, @ in this case, who responds to a
request for authentication. There exist authen-
tication protocols with multiple initiators*; they
are in general uninteresting and we do not con-
sider them in our model.

Before we can proceed to prove correspondence
and secrecy properties for the protocol, we found
that various subtle assumptions are necessary:

o The shared keys of each principal are differ-
ent. At the least, we must have for all prin-
cipal P, kps # kzs where Z is the intruder.
Otherwise, the protocol can fail trivially.

In practice, it is still safe when some keys are
the same because the principals may not be
aware of the fact. This is similar to the sit-
uation in which multiple people can pick the
same password without compromising secu-
rity. However, unless a formal approach can
explicitly model awareness, this assumption
is necessary.’

o Encryption is ideal. That is, it is not possible
to produce {m}; without knowing  and k,
except by eavesdropping. And to recover m
from {m}, one must know k™. In addition,
we have the following:

{m}r, = {m}s,

{ml}k = {mz}k

= ki=k

> mp =Mm2

3They are called challenges in [22].
*Here is an example:

(13) P - S: Pva{nP:PvQ}“PS

(i) Q—S: Q, P, {nq,Q, Pligs
(2a) S —P: {np,k}xps
(2b) S - Q: {nq, k}xqs

5This assumption is in the same spirit as the so called
Unique Names Assumption often used in logical reasoning.



which can in turn be replaced by an even
stronger assumption:

{ml}h = {mz}k2 > my=mo Aky=k,
(H)
(H) resembles an equality axiom often used
for axiomatizing Herbrand models and unifi-
cation. Note that these assumptions are not
satisfied by realistic (hence finite) cryptosys-
tems.

Assumptions such as the ones above can be made
explicit using a semantic model.

3 A Semantic Model

The first step toward defining a rigorous semantic
model for authentication protocols is to precisely
characterize authentication protocols themselves.
Although the notation used in Section 2.1 is in-
tuitive and has been adopted in the general lit-
erature, it lacks the formality needed for our
purpose. Referring to the Otway-Rees protocol
specification given in Section 2.3, the following
observations can be made:

o The specification should be viewed as a
protocol schema. Specifically, the symbols
P,Q,n,np,nq and k should be viewed as pa-
rameters that can be instantiated with spe-
cific values for different executions of the pro-
tocol. Note however that S does represent a
fixed principal that does not vary across dif-
ferent executions. Such use of variables and
constants should be made explicit.

o The specification in fact describes three dis-
tinct local protocols, each of which specifies
the actions of one of the participating princi-
pals. The “global” specification as shown in
Section 2.3 can be misleading. For example,
in step (1) of the protocol, a more accu-
rate description of the receive action of Q
should be n, P,Q, m (where m is a variable)
instead of n, P,Q,{np,n, P,Q}s,,. This is
because @ is not in a position to determine if
m is indeed {np,n, P,Q}r,, due to its lack
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of knowledge of kps. We believe that it is
more appropriate to specify the individual
local protocols, and we pursue this in our
approach.

¢ The specification includes only communica-
tion actions. The assumption is that possible
internal actions performed by a principal can
be abstracted away. For example, the gen-
eration of the two nonces n and np by P
is implicit and so is the checking by S to
see that the principals named in the mes-
sage sent by @ in step (2) match. We find
certain abstractions to be beneficial (e.g. the
checking by S can be left implicit as long
as a consistent pattern matching rule is as-
sumed); but certain other abstractions (e.g.
nonce and key generation) should be made
explicit to allow a clean and simple semantic
model.

Our approach addresses all these points. We
start by presenting a formal syntax for specifying
authentication protocols. This characterizes the
class of authentication protocols of interest to us.
The semantic model is defined following the stan-
dard state-transition approach. The execution of
an authentication protocol is formalized as runs
in a state-transition system.

3.1 Syntax

We assume a given set of constant symbols, vari-
able symbols and function symbols. Typical con-
stant symbols include names of principals, nonces
and keys®, while the set of function symbols in-
cludes the following: the concatenation function
[---], the set construction function {.,...,-},
the encryption function {-}., the shared key func-
tion key(-,-) and so on.”

®In other words, there should be a constant symbol for
each principal in the system and for each nonce or key that
will ever appear.

Note that the more conventional way of denoting these

functions are concat(-,...,-), sei(-,...,.) and encrypt(-,-).
We chose our notation for brevity. Also, for simplicity, we
take [-,...,] and {-,...,-} to be variable arity functions.




A term is either a variable symbol, a constant
symbol, or a function symbol applied to a list of
terms. A term is ground if it does not contain
any variable. A primitive term is a ground term
that is a constant symbol.

Notation. We typeset constant symbols in
Sans Serif font, e.g. P, N. The set of names for all
principals in the system is denoted by SYS. Note
that all such names are primitive terms. In par-
ticular, SYS contains the distinguished constant
symbol Z, which denotes the intruder. In the
Otway-Rees example, SYS also contains another
distinguished constant symbol S, which denotes
the trusted server.

In our protocol specification language, vari-
ables are typeset in two ways. Lower case vari-
ables stand for primitive terms, while upper case
bold face variables stand for arbitrary terms. We
assume that variables z,y range over SYS, vari-
ables i,r range over SYS — {S,Z} and variable
p ranges over SYS — {Z}. The same convention
is followed in the assertion language to be intro-
duced in Section 4. m]

We also assume a given set of labels. A proto-
col statement (statement in short) is of the form
£ : act where £ is a label and act is an instance
of one of the following action schema (where
i,7,n,p,M,N,S are terms):

Beginlnit (r)
Endinit (r)
BeginRespond (?)
EndRespond (%)
Accept (N)

NewNonce (n)
NewSecret (S,n)
Send (p, M)
Receive (p, M)
GetSecret (n)

Thus each action consists of a keyword (e.g. Be-
gininit, Endlnit, and so on), called the command
of the action and a list of terms, called the argu-
ments of the action.

The informal meaning of each action should be
intuitive from its command, perhaps with the ex-
ception of Accept and GetSecret. For example,
Beginlnit(r) and EndlInit(r) mark the beginning

183

and end of an initiator protocol with r denot-
ing the responder. Similarly, BeginRespond and
EndRespond mark the beginning and end of a
responder protocol with i denoting the initia-
tor. NewNonce(n) returns a new nonce n; while
NewSecret(S,n) returns a new secret n to be
shared among the principals named in the set S.
Secrets are mainly used for keys.  Accept(N)
is intended to make explicit the acceptance of a
new session key N being distributed. A key be-
comes old as soon as all of the principals that are
intended to share the key have accepted the key.
An old key can be compromised (e.g. by using
off-line cryptanalysis) and this is modeled by the
GetSecret statement, which returns an old key.
The precise semantics of each action is defined
formally in Section 3.2.

A statement is ground if all arguments of its
action are ground. A local protocol (protocol in
short) is a finite sequence of statements that does
not include a GetSecret statement. A protocol is
ground if it contains only ground statements.

An initial condition is a first order formula
constructed using two binary predicates, namely,
“has” for possession and “=" for equality, and
standard logical connectives. Informally, z has M
holds if the term M is in the possession of prin-
cipal z (see Section 3.2 for a more precise defi-
nition). An initial condition specifies the set of
terms each principal has before protocol execu-
tion begins.

Definition. A protocol specification is an or-
dered pair (Init, ProSet) where Initis a finite set
of initial conditions and ProSet a finite nonempty
set of protocols such that all statement labels ap-
pearing in protocols of ProSet are distinct. =]

As an example, Figure 1 shows the Otway-Rees
protocol formally specified using our syntax. It
consists of two initial conditions and three sepa-
rate protocols, one for each of the participating
principals. Thus formally, the protocol specifica-
tion for the Otway-Rees protocol is

({(1),(2)}, {Initiator(i), Responder(r), Server(S)})



Initial Conditions
(1) Vz,y:zhasy

Initiator () Protocol

Server (S) Protocol
(51):

(52):
(53):

NewSecret ({i,r},k)

(2) Vz,y:yhaskey(z,S)e[z=yVy=9

(I1):  Beginlnit (r)

(I12):  NewNonce (n)

(I3): NewNonce (n')

(14):  Send (ry[n,d,r, {n, n»ivr}key(i.S)])
(1'5): Receive (rv [nv {nlv K}key(i.S)])
(16):  Accept (K)

(I7):  Endlnit (r)

Responder (r) Protocol

(R1):  BeginRespond (i)

(R2):  Receive (i,[N,i,r,X])

(R3): NewNonce (n)

(R4):  Send (S,[N,i,7,X,{n,N,, 7}eey(,S)))
(R5):  Receive (S,[N,Y, {n,K}i.y(r5)))
(R6):  Send (i,[N,Y])

(R7):  Accept (K)

(R8):  EndRespond (i)

Receive (r,[N,,r, {X,N,1, T}eey(i,5) {Ys N 6y 7} keyr5)))

Send (Ta [N1 {x’ k}key(i,S) ’ {Yﬂ k}kcy(r,S)])

Figure 1: Otway-Rees Protocol Specification

(1) specifies that each principal in the system
knows the names of all other principals in the
system, whereas (2) specifies that the secret key
key(z,S) of principal z is shared only between it-
self and S. This condition implies that the secret
key of each principal is distinct, i.e. Vz,y: z #
y = key(z,S) # key(y,$).

Note that both the initiator and responder pro-
tocols can be instantiated by arbitrary principals,
and are called instantiable protocols. The server
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protocol, on the other hand, can only be per-
formed by the constant principal S (a trusted
server in the system) and is called a fized pro-
tocol, with S as its fized principal.

3.2 Semantics

The semantics of a protocol specification is given
by the set of its possible executions. From a se-
mantic viewpoint, a protocol specification can be
viewed as a shorthand representation of the set




of executions. In our research, we characterize
these executions using a state-transition based
approach.

To simplify the presentation, we assume
throughout this subsection a given protocol spec-
ification Il = (Init, {P1(z1),...,Pr(zL)}) where
Init is a set of initial conditions and each Pi(z;)
is a protocol where z; stands for a variable or
constant principal.

A substitution is a nonempty set of pairs of the
form t/x where ¢ is a term and z a variable, with
the restriction that it does not contain two pairs
t/z and t'/z where t differs from ¢'. A substitu-
tion can be applied to a term, a statement or a
protocol. Let obj be an object to which a substi-
tution @ is to be applied. Then the application
of @ to obj, denoted by obj : 8, is defined as the
concurrent replacement of all occurrences of z in
obj by t, for every pair t/z in 8. We denote by
domain(@) the set {z | t/z € 6} and range(f)
the set {t | t/z € 8}. We say a substitution
is over the set domain(d) of variables. A sub-
stitution @ is ground if every term in range(f)
is ground. For example, consider the statement
stmt = (I4) Send(r,[n,i,r,{n',n,i,7};.i5)))
and the ground substitution @
{P/i,Q/r,N/n,N/n'}. We have domain(f) =
{i,r,n,n'}, range(8) = {P,Q,N, N’} and stmi : 6
is (14) Send(Q, [N’ P, Q, {Nl’ Na P, Q}key(P,S)])'

A step is of the form (id, stmt) where id is a
session id and stmt a ground statement. Let
be a sequence of steps. £ is said to be a partial
instance of a protocol P; if all steps of £ contain
the same session id and there exists a substitution
6 such that P;(z;) : 8 is ground and the sequence
of statements appearing in £ is a prefix of P;(z;) :
. For example, the following is a partial instance
of the Initiator protocol of Otway-Rees:

(5, (11): Beginlnit (Q))

(5, (12): NewNonce (N))

(5, (I3): NewNonce (N'))

(57 (14) Send (Q) [N, Py Q7 {Nl, N, P’Q}key(P,S)]))

Intuitively, a partial instance models the partial
execution of an instance of a protocol. Note that
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a partial instance of a protocol always starts from
the beginning of a protocol, and the empty se-
quence is a partial instance of any protocol.

Let £ be a sequence of steps. We denote by &4
the subsequence of £ consisting of all steps whose
session id is id. Let X be a principal. If X # Z,
we say £ is a fragment of X if for all session id id,
£:4 is a partial instance of some protocol P;(X).®
If X = Z, any arbitrary sequence of steps is a
fragment of Z. Thus a fragment of a principal X
(X # Z) is simply an interleaving of partial exe-
cutions of protocols that X can perform. In the
case of Z, any sequence of steps is a fragment as Z
is not required to follow any protocol. Note also
that by definition a protocol does not include a
GetSecret statement, thus no fragment of a prin-
cipal X (X # Z) can contain a GetSecret step.
In other words, only Z can perform a GetSecret
action.

A local state of X is an ordered pair
(frag,info) where frag is a fragment of X and
info a set of ground terms. A local transition
is simply a ground statement. For brevity, we
sometimes identify a local transition simply by
its action. For example, we may refer to the lo-
cal transition (I1):Begininit(Q) as a Beginlnit(Q)
transition or even simply as a Beginlnit transition
when the argument Q is not relevant. Let a be
a local transition. Then a is enabled at a local
state (frag,info) of X if:

o there exists a session id id such that
frag@(id,a) is a fragment of X, where @
denotes the concatenation operation, and

e if a is a Send(Y, M) transition, then M €
info. This stipulates that a principal can
only send messages that it possesses.

Notation. In a meta-level discussion such as
the above, we use upper case italic letters to rep-
resent ground terms. For example, Send(Y, M)

8Thus if P is a fixed protocol {e.g. the server protocol
of Otway-Rees), then its partial instance can only appear
in the fragments of its fixed principal (e.g. S in the case of
the server protocol of Otway-Rees).



(Ul) uweU = uce update(U,t)

(U2) t € update(U,t)

(U3)  [v1,...,us] € update(U,t) & uy € update(U,t) A ... A u, € update(U,t)
(U4)  {u}, € update(U,t) A v™! € update(U,t) = u € update(U,t)

(U5)  u € update(U,t) A v € update(U,t) = {u}, € update(U,t)

(U6) {{u}s},-1 € update(U,t) = u € update(U,t)

(U7)  {{u},—1}v € update(U,t) = u € update(U,1t)

Table 1: An axiomatization of update

above stands for a specific transition, with Y de-
noting the constant name of a principal and M
denoting a ground message term. (]

Let (frag,info) and (frag’,info’) be two lo-
cal states of X, and a a local transition. Then a
takes (frag,info) to (frag’,info’), denoted by

(frag,info) = (frag’,info')
if
¢ «a is enabled at (frag,info),
o frag' = fragQ@(id,a) for some session id id,
¢ if a is a Beginlnit, EndInit, BeginRespond, En-
dRespond, Accept or Send tramsition, then
info' = info,

o if o is a Receive(Y, M) transition, then
info’ = update(info, M),

o if a is a NewNonce(N), NewSecret(S,N)
or GetSecret(N) transition, then info

update(info, N)

where update(U,t) denotes a procedure that re-
turns a new set of terms and whose inputs are a
set U of terms and a term t. It models the up-
date of the state of knowledge of a principal after
some new information has been obtained. The
precise definition of update is determined by the
computation power and knowledge of a principal.
For example, a reasonable definition of update is
the smallest set of terms that satisfies the axiom-
atization in Table 1.
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Note that (U3)-(U5) imply unlimited compu-
tation power, while (U6)-(U7) encode informa-
tion about the underlying cryptosystem. Addi-
tional axioms can be included when more knowl-
edge about the cryptosystem is available. It is
also possible to customize the definition of update
for each principal to reflect the particular rea-
soning power each principal has. This can be
achieved by defining a different updatex for each
principal X.

A global state is a tuple of local states, one
for each principal in the system. Given a global
state s, we denote the local state of principal X
in s by s.X. A global transition can be: (i) an
internal transition of the form (X.f,act) where
X is a principal and £ : act a local transition
other than Send or Receive, or (ii) a communica-
tion transition of the form (X.£,Y.¢/, Comm(M))
where X,Y are principals, ¢, ¢ labels and M a
ground term.

Let s be a global state and 8 a global transi-
tion. g is enabled at s if:

¢ B = (X.f,act) is an internal transition and
the local transition £ : act is enabled at s.X,

o B = (XL,YLl,Comm(M)) is a communi-
cation transition and there exists principals
S,T,U,V (not all distinct) such that the fol-
lowing three conditions hold:

— the local transition £ : Send(T, M) is
enabled at 3.5,

~ the local transition £’ : Receive(V, M) is
enabled at s.U,

— one of the following holds: Case (i) if
X#ZandY #Z,then S =V =X




andT =U =Y. Case (ii)if X = Z and
Y#Z then S=Zand T=U =Y.
Case (iii)if X # Z and Y = Z, then
S=V=XandU =1

Note that the caseof X =Z andY =Z
is not possible.

We call (5.¢,5end(T, M))
and (U.Z,Receive(V, M)) the send and re-
ceive components of 3 respectively.

Let s and s’ be two global states and 3 a global
transition. We say [ takes s to s', denoted by

s B o it
¢ [ is enabled at s,

o if 3 = (X.{,act) is an internal transition,
then s.X 5 s'.X holds where a = £ : act,
and forallY # X, s'.Y =s.Y,

oif B (X.6,Y.l!/,Comm(M)) is a com-
munication transition and (S.¢,Send(T', M))
and (U.¢, Receive(V, M)) are respectively the
send and receive components of [, then
3.8 % &S, s U % §.U where a = £ :
Send(T, M) and o’ = ¢ : Receive(V, M), and
for all W such that W # S and W # U,
s W =3sW.

An initial state is a global state that satisfies
the set of initial conditions. The precise satis-
faction relation, denoted by =, is similar to that
of standard first order logic and can be defined
via recursion on the syntax of the formulas. We
omit the definition here except to note that for
a formula of the form X has M and a global
state s, s = X has M if s.X = (frag,info) and
M € info.

Definition.  An ezecution is a finite alternate

sequence of global states and transitions, of the
form s10618202. . .8, such that:

(i) s1 is an initial state

(ii) forall 1 < i< n, s; 5 Si+1 holds
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(iii) if B; = (X .£, GetSecret(N)), then there exists
1<j<4 Y #Zand S such that (a) 8; =
(Y.2',NewSecret(S,N)), and (b) § = {U |
j<k<iA Br=(UrL" Accept(N))}

(iv) (Uniqueness of Secrets)

if B; = (X.£, NewSecret(S, N)), then N must
be a new primitive term.

(v) (Uniqueness of Nonces)

if B; = (X.¢,NewNonce(N)) then N must be
a new primitive term.

(iii) specifies that a GetSecret transition can only
return old keys, and not one whose distribution
is still ongoing. (iii){a) ensures that the secret
must have been generated earlier in the execu-
tion; while (iii)(b) ensures that all principals for
whom the secret is intended have accepted the
secret, and hence its distribution has been com-
pleted. (iv) specifies that secrets are always new
and primitive. This ensures that principals can-
not stumble onto a secret (hence violating its
secrecy), thus avoiding the problem of “acciden-
tal” discovery of a secret by another principal due
to reuse. (v) specifies a condition similar to (iv)
for nonces. It ensures the freshness or “used only
once” property for nonces. It avoids the problem
of “chance” equalities between a nonce and an
arbitrary message term. We assume nonces to be
globally fresh, and they are secret. If nonces are
only locally fresh®, then (v) can be replaced by
the following:

if 8; = (X.{,NewNonce(N)), then N
must be a primitive term and that
N ¢g{N |1<j<iANDP
(X.€',NewNonce(N"))}.

That is, relative to each principal, a nonce cannot
be generated twice. However, the same nonce can
be generated by two different principals indepen-
dently. ]

9For example, when nonces are implemented by a
timestamp or a counter. Note that a locally fresh nonce is
by definition not secret.



Definition. Let II be a protocol specification.
The semantics of II is the set of all executions. O

In what follows, we use II to refer also to the
semantics of I when the context is clear. We
observe the following important property of our
semantics.

Proposition. The semantics of a protocol
specification is prefiz closed. That is, let IT be
a protocol specification and ¢ € II. Then any
prefix of ¢ that ends in a state also belongs to II.

Proof.
cution.

Immediate from the definition of exe-
a

This prefix closure property is crucial from the
point of view of analysis. It provides the basis for
inductive techniques such as invariance verifica-
tion.

4 Formalizing Correctness

Given the semantic model in Section 3, we are
now ready to examine how correctness can be for-
malized. In particular, we present a formalization
of correspondence and secrecy properties intro-
duced informally in Section 2.1. A complete pre-
sentation, with extended syntax and additional
assertion types, can be found in [26]. The fol-
lowing presentation is intended to illustrate the
essential ideas and general flavor of our approach.

4.1 Correspondence

Correspondence properties are specified using
correspondence assertions. We first consider the
ground case, and then extend our definition to the
general case. A ground correspondence assertion
is a formula of the form:

Tl = pa oo pe

where v;’s and p;’s are global transitions. The
meaning of the assertion is defined with respect
to an execution. Informally, an execution satisfies
the assertion if for each appearance of a global
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transition 7; (1 < ¢ < k) in the execution, there
exists an appearance of a global transition in the
set {{1,..., ¢} that strictly precedes 7; in the
execution. The operator “|” can be interpreted
as “or”.

For example, the following are two ground
correspondence assertions appropriate for the
Otway-Rees protocol: Let P,Q be two principals
in SYS distinct from Z and $:1°

(P.(17), Endlnit(Q)) —

(Q.(R1), BeginRespond(P)) (1)
(Q.(R8), EndRespond(P)) —
(P.(I1), Beginlnit(Q)) (2)

(1) specifies that every time P takes a EndInit(Q)
transition, Q must have taken a distinct Begin-
Response(P) transition earlier. That is, whenever
P finishes executing an authentication exchange
with Q, Q must have taken at least its first step
in such an exchange. The distinctness guarantees
that there are at least as many BeginResponse(P)
transitions by Q as there are Endlnit(Q) by P.
(2) specifies a similar property, but from Q’s per-
spective. (1) and (2) together guarantee that
authentication exchanges between P and Q pro-
ceed in a “locked-step” fashion, thus addressing
the authentication concerns of Section 2.1.

The labels in a correspondence assertion can
be omitted if the actions uniquely identify the
labels. For example, this is the case for (1) and
(2)-

Clearly, assertions similar to (1) and (2) should
be stated for all principals in the system (except
Z and S). This is achieved by using the following
general correspondence assertions:

(4, EndInit(r)) — (r,BeginRespond(i)) (A1)

(r,EndRespond(¢)) — (i, Beginlnit(r)) (A2)

1S trictly speaking, S can also initiate or respond to au-
thentication exchanges. Its behavior would however be no
different from an ordinary principal. Thus for simplicity,
we only consider S for its special role as a server and do
not consider its own authentications.




where ¢ and r are variables. (Recall that ¢ and
r range over SYS — {S,Z}.) A general corre-
spondence assertion is similar to a ground cor-
respondence assertion except that some of its
component terms may not be ground. A gen-
eral correspondence assertion can be viewed as a
shorthand for the set of ground correspondence
assertions that can be obtained from it using
some ground substitution.!! For example, (A1)
subsumes (1) and (A2) subsumes (2) with the
substitution {P/i,Q/r}. The semantics described
for the ground case can thus be naturally ex-
tended to the general case.

We now define a formal satisfaction relation
between an execution and a ground correspon-
dence assertion. Let £ = 3$;01820;...5, be an
execution and p =y | ... |7 — p1 || pe
be a ground correspondence assertion. Define

I={i|Bi€{m, -~w}}

Then £ satisfies p if there exists a function f from
I to the set of natural numbers such that

e f(i) < t,and
e Bsiy € {1, - - pe}, and

e f is one-to-one.

Definition. Let II be a protocol specification
and p a correspondence assertion. Then II sat-
isfies p if for all execution ¢ € II, £ satisfies p.

a

4.2 Secrecy

The secrecy specification of an authentication
protocol can be divided into two parts: a gen-
eral part and a specific part. The general part
applies to all protocol specifications while the spe-
cific part is customized for each authentication
protocol.

1gtrictly speaking, this is true only for correspondence
assertions whose left and right hand sides contain the same
set of variables. The semantics is different if this is not the
case. See [26] for details.
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The general part consists of a general secrecy
condition, saying that the intruder Z cannot dis-
cover any secret not intended for it other than
those it has successfully compromised using Get-
Secret. Formally, the condition is defined as fol-
lows: Let £ = $131320;...8, be an execution.
Define:

3i: B; = (X .£, NewSecret(S, N))
ANX#£ZIANLES

Ve N AVY €S
3j : B; = (Y., Accept(N))
GS; = {N|3i:p; = (Z.L,GetSecret(N))}

Now let 8,.Z = (frag,info). Then £ satisfies the
general secrecy condition if

(NS{-GS{)FIiTLfO: 0

Note that NS, contains all secrets that have been
generated by a principal other than Z in the
course of protocol execution and are not intended
for Z, while GS¢ contains all secrets that Z has
successfully compromised using GetSecret. Thus
(NS¢ — GS¢) represents the set of secrets that
should not be accessible to Z.

The specific part consists of secrecy assertions.
A secrecy assertion is specified using formulas
similar to those used for initial conditions. The
formulas however are interpreted in the finalstate
of an execution, as opposed to the initial state
for initial conditions. That is, an execution
£ = 8151820,. . .8, satisfies a secrecy assertion f
if s, |E f. As an example, the following secrecy
assertion is appropriate for the Otway-Rees pro-
tocol: (Recall that p ranges over SYS — {Z}.)

Vz,p:z has key(p,S) o [z=pV z=5] (5)

Note that (S) is similar to the initial condition
(2) specified in Figure 1, which says that the se-
cret key of each principal should be shared only
between itself and S. The main difference is that
(S) does not specify that key(Z,S) remains secret
because Z can always choose to reveal its secret
key to others (as it is not bound by any proto-
col), and this should not constitute a violation of
secrecy.



Definition. Let II be a protocol specification.
Then II satisfies the general secrecy condition if
for all execution ¢ € II, ¢ satisfies the general
secrecy condition. (m]

Definition. Let IT be a protocol specification
and f a secrecy assertion. Then II satisfies fif
for all execution £ € II, € satisfies f. (]

4.3 Timeliness

We mention in Section 2.2 that timeliness con-
cerns can be taken care of by correspondence and
secrecy properties. We illustrate this here using
the Otway-Rees protocol as an example.

Informally, timeliness means that a principal
should be able to distinguish messages of a cur-
rent authentication exchange from those of earlier
exchanges. In particular, a principal should only
accept keys being distributed in a current authen-
tication exchange, and not old keys from earlier
exchanges that might have been compromised.

The requirement that a principal cannot ac-
cept compromised old keys is part of the general
secrecy condition. The following assertion spec-
ifies the requirement that a principal can only
accept keys previously generated by the trusted
server S:

(S, NewSecret({i, },n))
| (S, NewSecret({r, i},n))
(T)
We can now make precise our statement that
timeliness concerns are taken care of by corre-
spondence and secrecy properties. Formally, this
means if the Otway-Rees protocol satisfies corre-
spondence assertions (A1) and (A2), the secrecy
assertion (S) and the general secrecy condition,
then it also satisfies (T). Of course, this state-
ment remains to be proved.

(7, Accept(n)) —

4.4 Correctness Specification

A correctness specification is an order pair c,8)
where C is a set of correspondence assertions and
S a set of secrecy assertions.
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Definition. Let II be a protocol specification
and ® = (C,S) a correctness specification. Then
I is correct with respect to ® if

¢ for all correspondence assertion f € C, II sat-
isfies f

o for all secrecy assertion f € §, I satisfies f

o II satisfies the general secrecy condition

5 Comparison with Other

Work

Many approaches have been proposed for the for-
mal analysis of authentication protocols. For
brevity, we will only attempt to compare our ap-
proach with those that are closely related to ours.

Dolev and Yao [8] proposed the first model for
formalizing protocol correctness.!?> The model
they proposed is algebraic in nature. The cor-
rectness concern is the secrecy of some specific
initial message terms, and their focus is on find-
ing efficient algorithms for deciding correctness.
The class of protocols we consider is more gen-
eral than theirs; thus most of their formalization
and techniques are not directly applicable. How-
ever, our approach does rely on an underlying
algebraic foundation similar to theirs, and so do
several other approaches, including the work by
Meadows [17].

The work of Meadows [17] is similar in spirit
to ours. Her model is an adaptation of the Dolev
and Yao model, and her interest is in protocols
similar to ours. In her approach, a protocol is
specified by a set of formal rules for generating
words in a term-rewriting language. Correct-
ness concerns (e.g. authentication and secrecy)
are formulated as questions on the unobtainabil-
ity of certain words in a formal language. Such
questions are in turn answered by showing that
certain states are unreachable. However, except

12The protocols they considered were called ping pong
protocols as they involve only two parties. These protocols
are mainly intended for distributing secrets rather than for
mutual authentication.




for the underlying algebraic model, Meadows’s
approach and focus are different from ours. Our
protocol specifications are designed to resemble
programs, and our semantic model characterizes
all possible protocol executions. Meadows’ pro-
tocols, on the other hand, are specified from the
viewpoint of the intruder and her model is con-
cerned mainly with the evolution of the intruder’s
state. In her approach, high level correctness
concerns (e.g. authentication) are reduced to low
level questions of unobtainability, while our ap-
proach reduces the high level concerns to two
basic types of correctness properties. Qur secrecy
assertions can be used to express unobtainability,
while our correspondence assertions are flexible
and can be customized for individual protocols.

Another major class of formal analysis ap-
proaches is based on the use of formal logic.
This includes BAN logic [2, 6] and its extensions
[10, 11], Syverson’s KPL [23] and Bieber’s logic
[4]. Kemmerer’s approach [12] can also be in-
cluded here as it is formalized using a first order
logic. Most of these approaches (except Kem-
merer’s) are based on the use of some sort of
modal logic of belief or knowledge with a possi-
ble worlds semantics.

The BAN logic approach is probably the most
widely studied one because of its intuitive ap-
peal. The BAN logic approach assumes a much
higher level of abstraction than ours. For exam-
ple, a belief of the form P believes P & @ does
not directly reduce to any combination of corre-
spondence and secrecy properties. (However, we
conjecture that a protocol satisfying an appropri-
ate set of correspondence and secrecy properties
would also satisfy some of the goals suggested in
[6, p. 12].) In general, the constructs in BAN
logic and our assertions are not comparable. For
example, the control construct is not express-
ible in our model, as our model does not address
trust issues. Another major difference between
our approach and the BAN logic approach is in
the formal representation of protocols. In BAN
logic, an authentication protocol is specified by
a sequence of formulas in the logic. This spec-
ification can only be obtained by an informal
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idealization process that requires a thorough un-
derstanding of the protocol. We find idealization
undesirable because of the potentially large se-
mantic gap that exists between the original pro-
tocol and the idealized version (see for example
the idealization of the Yahalom protocol in [6,
pp. 29-30]). Our specifications are concrete alge-
braic programs. Thus we trade abstraction for
concreteness. We gain by being able to focus
more concretely on some specialized properties,
and we lose in expressive power and the ability
to capture certain notions (e.g. trust). A formal
semantic model was defined for BAN logic in [2].
However, the model is intended more for explain-
ing the constructs in the logic than as a basis for
a general formalization of correctness. Lastly, the
primary focus of BAN logic is on authentication
concerns while secrecy concerns are left implicit
[6, p. 2]. Our approach treats both kinds of con-
cerns explicitly.

The work in [23] and [4] are much more ab-
stract and are more concerned with meta-level
investigations than with the analysis of concrete
authentication protocols. For example, one of the
goals of Syverson’s KPL is to clarify the two kinds
of “knowing” that are possible, namely, knowing
that a proposition is true and knowing (possess-
ing) a concrete message term. Bieber does discuss
both secrecy and authentication. However, his
focus is on message authentication, rather than
identity authentication. Their logics are general,
and can easily express the kind of correctness
properties we have defined. Such generality is
however not necessary and our goal is to precisely
identify and define the kinds of assertions needed
to specify correctness.

The importance of semantics has also been em-
phasized by Syverson in [23, 24], but his focus
is on logic rather than a general formalization
of correctness. He gave similar observations on
potential misinterpretations when correctness no-
tions are insufficiently formalized.

Finally, we would like to mention the work by
Millen et. al. [18] on the Interrogator protocol
analyzer. In their model, a protocol is viewed



as a collection of communicating finite state ma-
chines. Each such machine is similar in concept
to a local protocol, although a local protocol is
potentially of infinite states. Their model is also
state-transition based. Their network global state
corresponds roughly to a global state in our model
except that they use a network buffer to model
messages in transit. Their message history corre-
sponds roughly to our ezecutions except that they
include only communication transitions. Their
main concern is on secrecy of particular message
terms and their focus is on a software tool.

6 Discussion

Our approach is not unlike various approaches
taken in the study of programming language se-
mantics and program verification. In some sense,
the syntax we have defined for authentication
protocols can be viewed as a very small program-
ming language. An authentication protocol corre-
sponds to a program and its operational meaning
is given by our semantic model. Of course, the
technical machineries used in defining our seman-
tics are quite different from those used for most
programming languages. In particular, our se-
mantics has to allow for an intruder Z who does
not follow a specified protocol.

Our use of an explicit GetSecret transition to
model the compromise of old keys is novel. This is
a reason why we can eliminate timeliness as a sep-
arate correctness property. In fact, it is possible
to define a more restrictive semantics for authen-
tication protocols where GetSecret is not allowed
in any execution. A protocol that does not en-
sure timeliness may be correct under this more
restrictive semantics but not in the semantics we
have defined.

Our current model focuses only on nonce-based
authentication protocols. It should be possible
to extend our model to handle timestamp-based
protocols. The abstract properties of nonces and
timestamps are similar, except that a window of
acceptance is needed for timestamps but not for
nonces.
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In formulating our semantic model, we have
avoided tackling the more philosophical issue of
awareness. We make the implicit assumption
that a principal is immediately aware of the dis-
covery of a secret even if it just accidentally
stumbles upon it. This is certainly pessimistic.
To pursue the alternative approach of making a
distinction between awareness and possession, a
clear understanding of how to formalize aware-
ness is required. Some initial attempt in adding
awareness to an algebraic model is reported in
[16]. General logical perspectives on formalizing
awareness can be found in [9, 13, 15].

We have presented a semantic model for au-
thentication protocols and a formalization of two
basic types of correctness properties. We believe
that these are necessary groundwork that must be
in place before we can propose and study analy-
sis techniques. In particular, given the semantic
model and our correctness properties, the ques-
tion of soundness and completeness of a particu-
lar analysis technique can be precisely answered.

We are currently studying analysis techniques
for proving correspondence and secrecy proper-
ties.
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