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Abstract

We present a new approach to the analysis of authenti-
cation protocols. The approach consists of several ele-
ments: a specification language for formally specifying
authentication protocols, a semantic model for char-
acterizing protocol executions, an assertion language
for stating secrecy and correspondence properties, and
procedures for verifying these properties. The main
emphasis of this paper is on the assertion language,
its semantics, and verification procedures. In partic-
ular, we present a set of proof rules. We also present
an example to illustrate our approach.

1 Introduction

Authentication plays a foundational role in the se-
curity of distributed systems. In a distributed envi-
ronment, authentication is typically carried out using
authentication protocols. The primary goal of an au-
thentication protocol is to establish identities of the
entities participating in the protocol. Typical entities
include users, workstations, processes and so on. We
refer to these entities as principals. Many authentica-
tion protocols, however, also accomplish a secondary
goal, namely, to distribute a new secret session key for
future private communication among the principals.
The design of authentication protocols is highly
error-prone, even more so than communication proto-
cols. Indeed, many authentication protocols have been
proposed and later found to contain subtle weaknesses
or flaws [3, 6, 8, 12, 13]. Various formal methods have
been proposed and applied to the analysis of com-
munication protocols. Unfortunately, these methods
cannot be directly applied to authentication protocols.
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This is because authentication protocols must operate
correctly in a hostile environment where all kinds of
attacks may be perpetuated by intruders (e.g., mas-
querade and replay attacks).

Our research is aimed at developing formal tech-
niques that can be used to ascertain the “security” of
an authentication protocol. This entails first under-
standing precisely what it means for an authentication
protocol to be secure, and then developing a verifica-
tion methodology based on this understanding. In our
view, security is no more than a specialized notion of
correctness, and verification of security is simply ver-
ification of this specialized notion of correctness.

Problems with Existing Approaches

Many approaches have been proposed for the analy-
sis of authentication protocols [4, 6, 9, 10, 11, 12, 15].
However, they are not satisfactory for several reasons.
First, most approaches do not clearly separate cor-
rectness and verification concerns. That is, the precise
notion of correctness is not independently stated but
rather is built into the verification procedure. This
can hamper understanding as the correctness criteria
must be extracted out from the verification proce-
dure. Applicability is also restricted to cases where
the built-in correctness notion coincides with the in-
tended one. We believe that there should be a clear
distinction between the two. In particular, correct-
ness is a specification problem while verification is a
procedure problem.

Second, the notion of correctness adopted is often
limited and does not adequately capture the entire
intuitive notion of correctness an authentication pro-
tocol designer has in mind. For example, the proposals
in [9, 11} adopt secrecy as their main correctness crite-
rion; while others [6, 10] specify correctness in terms of
state of belief and make implicit the secrecy concerns.



This discrepancy can lead to potential misinterpreta-
tions.

Third, the supposedly “formal” notion of correct-
ness is often not sufficiently formalized. Such impre-
cision can lead to difficulties in protocol analysis. In
the extreme case, it can allow an intuitively flawed au-
thentication protocol to be proved “correct.” A good

example of this is the BAN logic construct “P & Q
whose meaning is only informally explained in [5]. The
informal explanation was widely misunderstood and
led directly to the criticism by Nessett in [14]. In fact,

the precise meaning of “P & Q” only became clear
with the publication of a new semantics for BAN logic
in [2].

Fourth, the analysis in certain approaches is con-
ducted at a very high level of abstraction. The results
obtained from such analysis can be easily misinter-
preted when trying to relate them to protocol exe-
cutions. Examples include most of the modal logical
approaches [4, 6, 10, 15]. We stress, however, that
these approaches are certainly useful in their own
right. But we also believe that it is important to be
able to analyze a protocol at different levels of abstrac-
tion. Therefore, concrete and operational approaches
should also be devised to complement these high-level
approaches.

An Overview of our Approach

Our approach addresses these inadequacies. We view
correctness and verification as two separate but re-
lated problems: Correctness is established by verifi-
cation, while verification requires a precise notion of
correctness. This separation of concerns allows us to
first tackle the correctness problem and then focus on
the verification problem.

To tackle the correctness problem, we first identify
the basic security properties of an authentication pro-
tocol. Our research has thus far identified two such
classes of properties, namely, secrecy and correspon-
dence. These two classes of properties are distinct!
and are sufficient for formalizing the typical high-level
correctness concerns of authentication and key distri-
bution. We have defined a formal assertion language
for stating these two classes of properties. The formal
semantics of this assertion language is specified using a
semantic model we have developed for authentication
protocols [17]. Roughly speaking, the model defines
an operational semantics for authentication protocols.
In particular, it characterizes all their executions.

1That is, an authentication protocol may satisfy a secrecy
property while failing a correspondence property or vice versa.
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For the verification problem, we investigate pro-
cedures for proving the two classes of properties. It
turns out that secrecy properties can be simply viewed
as invariance properties. Thus the standard invari-
ance verification procedure can be used. On the other
hand, the verification of correspondence properties is
more involved; we make use of an axiomatic proof sys-
tem. Our proof procedure has two steps: (1) Identifi-
cation of a set of primitive correspondence properties.?
These primitive correspondence properties must be
justified either by the protocol specification or by
appealing directly to the semantic model. (2) Appli-
cation of a sequence of proof rules to infer the desired
conclusion. Thus the main task in solving the verifica-
tion problem is to identify an appropriate set of proof
rules.

The major merit of our approach is its formality
and concreteness. Our semantic model is based on
states and transitions, which can be easily related
to protocol implementations. Such an approach also
resembles techniques used for analyzing communica-
tion protocols. Our assertion language allows users
to specify correctness properties tailored to a specific
protocol. The semantics of these correctness proper-
ties are completely formalized in the semantic model.
Therefore, there is no ambiguity in interpreting the
precise meaning of security. We believe that our
work represents the first attempt to identify various
classes of basic security properties, and to advocate a
language-based approach to define the operational se-
mantics of authentication protocols. Our proof rules
are formal, and can be proved to be sound with re-
spect to our semantic model.

The balance of this paper is organized as follows. In
Section 2, we informally discuss the secrecy and cor-
respondence properties. In Section 3, we present the
syntax and semantics of our assertion language. The
material here is a significant extension of a prelimi-
nary version given in {17]. For example, the language
now includes infinitely disjunctive terms and two new
kinds of assertions, namely, restricted correspondence
and equivalence. This section makes heavy use of the
semantic model developed in [17]. Due to length lim-
itation, we are not able to include a summary of the
model; we refer readers to that paper instead. In
Section 4, we describe proof procedures for the cor-
rectness properties. In particular, we present a set
of proof rules for correspondence properties. In Sec-
tion 5, we work out an example in its entirety using
our methodology. We start with a specification of the

2They play a role similar to that of axioms in a typical proof
system.




protocol example; then we present a specification of
correctness and finally the key steps in its verification.
In Section 6, we conclude the paper with several ob-
servations. Proofs can be found in [16].

2 Two Basic Correctness Prop-
erties

In this section, we take an informal look at the two
classes of basic correctness properties for authentica-
tion protocols. We guide our discussion with a simple
authentication protocol. This protocol also serves as
the example in Section 5. Due to space limitation,
our discussion is necessarily brief. We encourage the
readers to consult [17] for a more detailed discussion.

Before we proceed, we first review the notation
generally used in the literature for specifying authen-
tication protocols. This notation is sufficient for the
informal discussion in this section. We adopt a more
specialized notation with rigorous syntax in our ap-
proach, which was first introduced in [17].

Notation.  Principals are denoted by upper case
letters, e.g., P, Q. The shared key between P and Q
is denoted by kpg. The public and private keys of
P are denoted respectively by kp and lc;l. The con-
catenation of messages m and m’ is denoted by m, m’.
Encryption of a message m by a key k is denoted by
{m}s. A protocol is presented as a sequence of pro-
tocol steps. Each protocol step is written in the form
“P — @ : m” which represents the communication
of message m from P to Q. o

Consider the following protocol, P: (n is a nonce)

1) P—-Q: “lam P>

2 Q-P: n

(@ P—-Q: {PQnk,,

4 Q@ —A: {PQn, {P:Qvn}kPA }koA
(B) A—Q: {PQn}g.

P is a one-way authentication protocol; it authenti-
cates P to Q. It does not distribute any key® P is
the initiator of the protocol and also the authenticated
principal, while Q) is the responder of the protocol and
also the authenticating principal. A is a distinguished

3We have deliberately kept the example simple for ease of
exposition. The example can be easily extended to include mu-
tual authentication and key distribution. As we will see, secrecy
is already a concern even in the absence of key distribution.
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principal who is universally trusted? by all principals
in the system. In particular, it shares a secret key kp 4
with each principal P in the system.

The central question we want to ask is whether P
is correct. That is, does P perform its intended goal
of authenticating P to Q7 Informally, authentica-
tion can be understood as follows: Upon termination
of protocol execution, the authenticating principal
should be assured that it is “talking” to the principal
it expects. In other words, the protocol should not
succeed if the authenticated principal has not partic-
ipated in the authentication exchange. We note that
the notion of authenticating and authenticated prin-
cipals are relative to a particular instance of authenti-
cation exchange. This is because multiple concurrent
authentication exchanges are allowed, even between
the same two principals. The steps in these different
exchanges can be arbitrarily interleaved.

Clearly, the above understanding of correctness is
highly imprecise. For example, the meaning of “termi-
nation” and “talking” is unclear. One way to clarify
it is to use a correspondence property:®

Every time @Q receives a valid response in
step (5), it must be the case that P has gen-
erated an authentication initiation request in
step (1) earlier.

A correspondence property essentially relates the
occurrence of a transition to an earlier occurrence of
some other transition. The relation is one-to-one.
Thus there is a correspondence between the occur-
rence of a transition and the occurrence of the transi-
tion it is related to.

In the above example, the correspondence is be-
tween the transition “Q receives a valid response in
step (5)” and the transition “P sends an authentica-
tion initiation request in step (1).” Referring to the
original informal statement of correctness, the corre-
spondence property is basically refining “termination”
to mean @’s receipt of a valid response in step (5), and
“talking” to mean P’s sending of an authentication
initiation request.

Besides the obvious authentication concern, there
is an often neglected secrecy concern that P should
satisfy in order for it to be correct. Specifically, it must
be the case that in executing P, the secret keys of each
principal remain secret. This is a secrecy property.

4The precise meaning of trust is difficult to formulate. In
this paper, we take it to mean that A would faithfully follow its
protocol and does not divulge any key to other principals.

5Since we have not yet introduced our assertion language, we
use English here to state the property informally. The formal
statement is given in Section 5.



Although this is somewhat trivial in the case of P, it
must nevertheless be included as one of the correctness
criteria.

Furthermore, for authentication protocols that per-
form key distribution, there is a secrecy property con-
cerned with the secrecy of the keys being distributed.
Essentially, the secrecy property specifies that keys
destined to be shared among a set of principals should
be known only to members of that set.

3 Assertion Language

We informally discussed the classes of correspondence
and secrecy properties in Section 2. In this section, we
present an assertion language for formally specifying
these properties.

This section makes heavy use of the notation in-
troduced in [17]. We provide a brief summary below.

Notation.  Given a term 7y, we denote by var(y)
the set of variables that occur in 7. To make explicit
the fact that a term contains certain variables, we
sometimes denote a term as y(V'), where V is a set
of variables that occur in the term ¥ (among others).
Thus, we always have V C var(y(V)). When V is a
singleton {z}, we simply write ¥(z).

A substitution is a nonempty set of pairs of the form
t/x where t is a term and z a variable, with the restric-
tion that it does not contain two pairs ¢/z and t'/z
where t differs from ¢’. The application of a substitu-
tion @ to a term v, denoted by « : 8, is defined as the
concurrent replacement of all occurrences of z in v by
t, for every pair t/z in 8. We denote by domain(6) the
set {z | t/z € 0} and range(#) the set {t | t/z € 6}.
We say a substitution @ is over the set domain(8) of
variables. A substitution # is ground if every term in
range(#) is ground.

An ezecution is a finite alternate sequence of global
states and transitions. We generally write it in the
form s;,018202...5,, where s;’s are states and f;’s
transitions. o

3.1 Correspondence

A global transition can be viewed as a ground
term. For example, the communication transition
(P.(1),Q.(5), Comm([N])) can be viewed® as a term
formed by the tuple operation on the terms P.(1),

8This represents a communication of term N from P to Q.
(1) labels the sending step in P’s protocol, while (5) labels the
receiving step in Q's protocol.
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Q.(5) and Comm([N]). These terms can themselves be
further broken down, e.g., Comm([N]) into the func-
tion symbol Comm and the term [N]. If we extend this
term formation process to include variables as well as
ground terms, we obtain the language of transition
terms. Thus the general form of a transition term is

(z.£,emd(t)) or (z.£,y.,cmd(t))

where cmd is one of the command words allowed in
a protocol statement. The left term corresponds to
internal transitions while the right one corresponds
to communication transitions. For compactness, the
label variables (i.e., £ and ¢ above) can be omitted
when there is no ambiguity. We will omit the formal
definition of this term language.

Starting with transition terms, we can form com-
pound transition terms (or compound term in short).
Let v; be transition terms, then the following is a com-
pound term (n > 1):

Nl lm

The symbol “|” is read “or” and has similar meaning
as logical disjunction in classical logic. We can further
extend this to include an infinite number of disjunc-
tion. Thus the most general form of a compound term
is the following:
ItET Tt

Here each transition term is assumed to be indexed
by an index ¢ in the set T of indices. We note that an
index can itself be a term.

Let g be a global transition and v be a transi-
tion term. We say match(g,v) holds if there exists
a substitution @ such that ¢ = ¥ : 8. This can
be easily extended to a compound term as follows:
match(g, |ter 7:) holds if there exists t. € T such
that match(g,~:.) holds.

Terminology. Let |ter v+ and |terr g be two
compound terms. We say |¢er v: is less general than
lteT’ pt, denoted by |ter ¥t <|ter’ pit, if for all ground
term g:

match(g, |ter 1) implies match(g, lieT pt)

Note that < induces a partial ordering on compound
terms.

We say |ter 7: and |ter pq are disjointif there does
not exist a ground term g such that

match(g, |ter 1t) and match(g, |t pe)

Next, let II be a set of executions. We say |ier 72
is replay-free relative to II if for all executions £ =
51815202 . .sp € It




[i # 7 A match(Bi, |ter 1) A match(B;, lier 1))
implies §; # B;

[m]

There are two types of correspondence assertions:
general and restricted. Their semantics are almost
identical except that restricted correspondence relaxes
the one-to-one correspondence requirement for multi-
ple identical transitions. The main use of restricted
correspondence is for transitions that may be subject
to replay.

3.1.1 General Correspondence Assertions

A general correspondence assertion has the form

ltET (I |teT' He

The symbol < denotes the general correspondence
relation. We refer to the left hand side of such an
assertion as the head and the right hand side as the
body.

We distinguish two cases in defining the semantics
for a general correspondence assertion: Case 1. The
variables occurring in the head and body are disjoint.
Case 2. There are common variables occurring in head
and body.

Formally, let

P = lhernt = ler
be a general correspondence assertion.
Case 1. var(fier 71) Nvar(lier pe) = 0.

Let £ = 51815202. . .5, be an execution. Define

I = {i| mateh(B:, lier 1)}

Then £ satisfies p if there exists a function f from I
to the set of natural numbers such that

e f(i) < i, and
o match(B;iy, |terr pe), and
¢ f is one-to-one.

Case 2.  war(lier 1) Nvar(feer pe) # 0.

We would view p as an abbreviation for the fol-
lowing (possibly infinite) set, S(p), of correspondence
assertions:

Sp) =

{p:6] 8 is a ground substitution over
var(lier 1) Nvar(fier: )}
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Then ¢ satisfies p if and only if € satisfies all assertions
in S(p).

This definition is well-defined because the asser-
tions in S(p) do not share common variables in their
heads and bodies, and hence their satisfaction relation
is provided by Case 1.

3.1.2 Restricted Correspondence Assertions

The syntax for a restricted correspondence assertion
is identical to that of a general correspondence asser-
tion, except the relation symbol is <> instead. Their
semantics are almost identical too, except that a (po-
tentially) different set I’ is used is in place of I in the
definition in Case 1 above. The definition of I’ is as
follows:

, _ a maximal subset S of I such that
for all i,j € S :i # j implies §; # §;

Essentially, this condition says that exactly one tran-
sition would be included in I’ if there are multiple
identical transitions matching the head.

3.2 Secrecy

The secrecy specification of an authentication protocol
can be divided into two parts: a general part and a
specific part. The general part applies to all protocol
specifications while the specific part is customized for
each authentication protocol.

The general part consists of a general secrecy con-
dition, saying that the intruder Z cannot discover any
secret not intended for it other than those it has suc-
cessfully compromised using a predefined GetSecret
action. We refer readers to its precise formulation in
[17].

The specific part consists of secrecy assertions. A
secrecy assertion is specified using formulas similar to
those used for initial conditions (see example in Sec-
tion 5). The formulas however are interpreted in the
final state of an execution, as opposed to the initial
state for initial conditions. Again, we omit the def-
initions here and refer readers to [17] for the precise
syntax and semantics.

3.3 Equivalence

Many proofs can be simplified if we define an addi-
tional class of assertions, namely, equivalence asser-
tion. The general form of an equivalence assertion is

ler 10 = ItGT’ Mt



Its semantics is as follows. Let £ = 5;01520,. . .5,
be an execution and let p denote the above equivalence
assertion. Then £ satisfies p if the following holds:

Vi: [match(B;, lter 1) it match(Bi, lier 1))

The basic idea of an equivalence assertion is that as
far as € is concerned, the two sides of the equivalence
would match the same set of transitions.

3.4 Correctness Specification

A correctness specification is an order pair (C,S)
where C is a set of correspondence assertions and S
a set of secrecy assertions.

Definition. Let II be a protocol specification and
® = (C,S) a correctness specification. Then II is cor-
rect with respect to ® if

o for all correspondence assertion f € C, for all ex-
ecution £ € II, £ satisfies f, and

o for all secrecy assertion f € S, for all execution
¢ €11, € satisfies f, and

o for all execution £ € II, { satisfies the general
secrecy condition.
[m]

4 Procedures and Rules

4.1 Proof Procedures

The procedure to establish a correspondence asser-
tion is not unlike the typical proof procedure in logic.
First, a set of primitive correspondence assertions is
identified. These primitive correspondence assertions
play a role similar to that of axioms in a typical proof
system. In our approach, they are justified either
directly by inspecting the protocol specification or
from first principles using the semantic model. Then
starting from these primitive correspondence asser-
tions, new correspondence assertions can be derived
by applying proof rules, until the desired conclusion
is reached. The semantic meaning of such a proof is
given by an entailment relation. We define entailment
and present a set of proof rules for correspondence in
the next subsection.

A secrecy assertion can be viewed as a special-
ized invariant. Thus the usual invariance verification
procedure can be used. That is, to prove a secrecy
assertion p, we must establish: (1) p is satisfied in
all executions that contain only an initial state. Or
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equivalently, it is logically entailed by the initial con-
ditions. (2) If p holds for an execution &, then for all
global transition (3 enabled at the last state, s, of &,

and s 2 &', then p holds for 85’ as well. We note that
B can be a transition of intruder Z. Thus establishing
(2) may involve characterizing the set of transitions Z
is capable of performing.

Verification of the general secrecy condition is more
protocol dependent. Typically, it involves inspect-
ing the protocol specification and observing that a
secret is always bound” to a nonce, hence an old com-
promised secret would not be accepted in a current
authentication exchange. We omit the details here
due to space limitation.

Verification of an equivalence assertion can be syn-
tactic (i.e., by inspecting the assertion itself), by in-
specting the protocol specification, or by appealing to
the semantic model. This is illustrated in the proof of
the example in Section 5.

4.2 Prqof Rules

Definition. (Entailment) Let II be a set of execu-
tions, X a set of assertions, and p a correspondence
assertion. Then X entails p relative to II if for all
executions € € II
[V € £ : € satisfies 9] implies ¢ satisfies p
o

A proof rule is an ordered pair (X, p), where L is a
set of assertions and p is an assertion.

Definition. (Soundness) Let R = (X, p) be a proof
rule. R is sound if for all sets of executions II, ¥ entails
p relative to II. o

We typically present a proof rule R = (X, p) in the
form

P1,P2;---
p

where ¥ = {p1,p2,...}. We call p1,p2,... the
premises of R, and p the conclusion of R.

A sound proof rule can be applied to all sets of ex-
ecutions. Often times, we are also interested in proof
rules that apply only to sets of executions that satisfy
certain extra conditions. We call them conditional
proof rules. A conditional proof rule is specified by

an ordered pair as in an ordinary proof rule together

7A typical example of such a “bonding” is if the key be-
ing distributed (i.e., the new session key) is always encrypted
together with a nonce generated by the intended recipient.




with a statement of the conditions. Typically, it is
presented as

P1,P2; - -
p

where cond denotes the conditions.

A conditional proof rule is said to be sound if it is
sound in the sense of an ordinary proof rule when only
sets of executions satisfying its conditions are consid-
ered.

(cond)

Restriction Rule

lter 11 < ltert e

|teT Tt < lteT' Hi

Promotion Rule

IteT Tt < |te'l" Hi
lter 1t = lrer e

(lteT 7t is replay-free)

Substitution Rule

Suppose var(|ier v1) Nvar(|ier: pe) =
var(lserr vi) Nvar(lier pe). Then

lter 11 — lieT B, lter 1t = lteT v
lteT" vy —* |t€T' Ht

A similar rule holds for substitution in the body. The
Substitution Rule is often used together with the fol-
lowing rule for equivalence assertions:

lier 10 = [teT pe

[ter 7t lier vi = |t6T' Hi |t€T“ Ve

Abstraction Rule

Suppose var(Jter i) Nvar(|ter: i) =
var(leer ¥¢) N var(lterr vi) and e e <|terr Wi
Then

lter 1t = lter Mt
leer 11 = lier vt

Weakening Rule

Let @ be a substitution such that domain(d) C

var(leer v:) Nvar(Jeer pi) and
range(8) Nvar(lter v:) Nvar(jter: ) = 8. Then

|teT Yt |teT’ Hi
(lter 7)1 0 — (leerr pe) : 0
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Disjunction Rule

Let V be a set of variables, T a set of indices, and
{m(V) |t € T} a set of terms.

Suppose the following holds for terms in T": Let g, ¢’
be ground terms and @ a ground substitution over V.

[match(g, 1:(V) : O)Amatch(g’, y:(V) : 8)] impliest =

o~

Then
VieT :y(V) < uV)

lter 1 (V) — p(V)

Transitivity Rule

Suppose |ie7 p: and |y vy are disjoint and
T" CT'. Then

lter vt = lier p11,  ltern pr = lieTv 0a

lier 72 == lieTi—T e lreTr v

A similar rule can be formulated for the head. Also,
by using the Restriction Rule, general and restricted
correspondence assertions can be mixed together in a
transitivity inference. The result is a restricted corre-
spondence assertion, if there is at least one restricted
correspondence assertion in the premises.

Recursion Rule

Let tp be a term, and s(z) a term that contains
a variable z. We denote the application of a sub-
stitution {t/z} by s(t). Let T be the set of term
{to,s(to), s(s(t0)),...}. Then, fort. €T

YieT v = paayl Ts(r)
Ve = In>0 Ban(e,)

where s™(t) = s(s(...5()...)).

n

5 An Example

In this section, we apply our methodology to proto-
col P presented in Section 2. Specifically, we first
present a specification of the protocol, then a spec-
ification of correctness and finally an outline of the
verification. Our intent is to provide a general flavor
of our approach and to illustrate the use of our proto-
col specification and assertion languages, our semantic
model and proof rules.

Notation.  Let SYS denote the set of all princi-
pals in the system. We use lower case variables (e.g.,



Initial Conditions:

Vz,y:xz has y
V:c,y:zhaskyAﬁ[:czy V& =A]
Zhas X ¢ [X €SYS V X =kzp]

Initiator (i) Protocol:
(1)

(2)
(3)

Beginlnit (r)

Send (r, [“I am i.”})
Receive (r, [X])

(4)  Send (r,[{i,r, X} ]
(5) Endinit (r)

Responder (r) Protocol:

(1)
(2)
(3)
(4)
(3)
(6)
™M
®)

Server A Protocol:

(1) Receive (r,[{i,r,X,{i,‘l‘,X}k'_A}krA])
(2) Send (r,[{3, T’x}krA])

BeginRespond (i)
Receive (i,[“I am 1.”])
NewNonce (n)

Send (i,n)

Receive (i, [X])

Send (A, [{i,7,n, X}, A])
Receive (A, [{i,7,n}s TA])
EndRespond (i) ’

Figure 1: Protocol P

1,7, p,n) to range over primitive terms. In particular,
i,7 and p are assumed to range over names of legiti-
mate principals in the system, i.e., SYS—{A, Z}, while
z,y range over any principal in SYS. n ranges over the
set of nonce constants. Bold face variables (e.g., X)
range over arbitrary non-null terms. ]

5.1 Protocol Specification

We give a formal specification of P in our notation
in Figure 1.8 As is shown there, the original “global”
protocol description given in Section 2 is formally rep-
resented by three separate local protocols, one for the
initiator, one for the responder and one for the trusted
principal.

Note that both the initiator and responder proto-
cols can be instantiated by arbitrary principals, and
are called instantiable protocols; while the server pro-
tocol can only be performed by the constant principal

8For brevity, we abbreviate key(p,A) to kpA'
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A, who represents a trusted server, and is called a fized
protocol.

The protocol specification also makes explicit the
initial conditions. The first initial condition specifies
that each principal in the system knows (and hence
can use) the names of all other principals in the sys-
tem. The second condition specifies that the secret
key k,a of principal « is shared only between itself and
A. The third condition specifies that Z knows only the
names of other principals and its secret key initially.
This is not strictly necessary nor is it particularly re-
strictive, but its adoption would considerably simplify
the statements of certain assertions later.

5.2 Correctness Specification

The minimal correspondence assertion one would ex-
pect any one-way authentication protocol to satisfy
is:

(r,EndRespond(i)) «— (7, Beginlnit(r)) (C1)

This says that every time a responder 7 finishes the re-
sponder protocol with 7 as the initiator, it must be the
case that 7 have actually initiated the authentication
earlier.?

In the case of P, we can in fact specify a stronger
assertion:

(r,EndRespond(i)) — (4,y, Comm([{i,r,n}k‘A]))
(€
(C2) can in turn be strengthened to (C3) as follows.
This is the main correspondence property for P.

(z,r.(7), Comm([{i, 7, n}x A]))

o oy Comm([firne ) (P

The constant label (7) is needed to distinguish the
two Receive statements in step (5) and step (7) in the
responder protocol. The correspondence is only re-
quired for the receive in step (7). (C3) is a formal
statement of the correspondence property informally
presented in Section 2.

For secrecy, there is only one secrecy assertion:

chask & [z=pVz=A]

®)

This is almost identical to the initial condition, ex-
cept that we are not concerned about whether Z’s
secret key is divulged or not.

Thus the correctness

{(CHLAGID-
9For mutual authentication, an additional correspondence
(¢, Endlnit(r)) — (r,BeginRespond(:))
should be added.

specification is




5.3 Proof of Correctness

We note that the general secrecy condition is vacu-
ously true for P, as it does not generate any new
secret. Proof of the secrecy assertion (S) is based on
invariance and is omitted for brevity (see [16]).

To prove correspondence, we first define two sets of
terms. These sets would be used in the statement of
intermediate assertions that are needed in the proofs.

The first set, referred to as £, is defined as follows.
Let

L, = X
Ln+1 = Lny{iy r, Ln}k A
and g
L={L,|n>0}

Thus, for examples, X and X, {i,r, X}kA are ele-
ments of L. '

The second set, referred to as £’, is defined as fol-
lows. First let

b = X
boyr = {i,T,Za.-~-7€n}k|A
Then define

L, =¢,...0

and
£ ={L; |n >0}

If we take a closer look at the two sets above, they
are in fact parameterized by the variable X. Thus, to
be more accurate, we will refer to them as Lx and

s respectively.
or brevity, we present only the key lemmas below.
Their proofs are contained in [16].
Lemma A. Lx = C'x. 0
Let £, denote the instantiation of Ly with n.

The terms in £, are pairwise disjoint.
0

Lemma B.

Note that this is not true for Ly .

Lemma C.

(Z,z, Comm([{X}k’A])) < (y,Z, Comm([{X}k,A]))
(]

Lemma C says that Z is not able to produce terms
of the form {X}, A Thus if it sends a term of this

form out, it must be the case that it has gotten it
earlier from some other principal. This is a restricted
correspondence rather than a general correspondence
because Z may replay a message multiple times.
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Lemma D.

(:c,r.(7),Comm([{i,r,n}krA])) —
ILEL,, (r, Y, Comm([{i,r,L,{i,r, L}k.A}krA]))

Lemma D says that whenever a responder r re-
ceives a message of the form {i,r,n}; A in step (7)
of its protocol, it must be the case that r has sent
out earlier a message matching one of the forms
{i,r,L,{i,r,L}kvA}k A’ where L € £,. Since there
are only two Send in the responder protocol, and the
first Send in step (4) always sends out a primitive
terms, only the Send in step (6) could have matched
the body of the assertion.

Let L € £,,. Then

(r,z, Comm([{s,r,L, {i,r, L}k.-A}krA]))
= (i, Comm([{i, 7 "}kiA]))

Lemma E.

O

Lemma E says that whenever a responder r sends
out a message of the form {i,r,L, {z,r, L}k,A}k A’ for
some L € £, it must be the case that 7 has sent out
earlier a message of the form {i,r,n}x ,. Since 7 sends

out a string in its first Send, only its second Send in
step (4) can match the body of the assertion.

Proof of (C3)
From Lemma E and Disjunction Rule, we have

|L€Ln (‘I‘,Z,Comﬂ\([{i,r,L,{i,T,L}kiA}krA]))
— (i,y, Comm([{i,r,n}kiA]))

Then (C3) follows from Lemma D and above using
the Transitivity Rule. o
Proof of (C2)

From the sequentiality of the responder protocol,
we have

(r, EndRespond(i)) — (z,r, Comm([{i,r,n}s ,1))

Then from this and (C3), we obtain (C2) by the
Transitivity Rule. (]

6 Conclusion

We have presented a new approach to the analysis
of authentication protocols. A key principle of our
approach is the separation of correctness and veri-
fication. We have defined a specification language



for formally specifying authentication protocols and
an assertion language for stating correctness require-
ments. The semantics of each language is rigorously
defined using the semantic model developed in [17].
We have also discussed procedures for verifying the
two classes of correctness properties.

We have presented an example to illustrate most
of the elements in our approach. We start from a
protocol specification, and then present a correctness
specification and its verification. Although some of
the proofs may appear mathematical rather than for-
mal, most of them could be refined to the lowest level
of details.

Our approach focuses on characterizing the positive
aspects of a protocol, i.e., what properties a correct
execution would have, while most other approaches
tend to focus on the negative aspects, i.e., what an
intruder cannot obtain or do. In this sense, our ap-
proach is similar to the BAN logic approach [6] and
to conventional program verification [7].

We have also successfully used our approach to un-
cover errors in some protocols that we thought were
correct. Typically, this arises in an attempted verifica-
tion of an assertion. The failed proof usually suggests
a counterexample.

Our approach is not amenable to full automation.
This is evident from the proof in Section 5, where
the equivalence of two sets (which is a potentially in-
tractable problem) is established. However, we believe
that it does fit well in a user-guided proof checking
system, as many of the primitive assertions can be
verified quite easily by inspecting the protocol speci-
fication or by using the semantic model.

We are currently exploring a more general syntax
for protocol specification. The variables in our specifi-
cation act more as a “template” than a value-holding
variable in conventional programs. It appears that an
accurate modeling of timestamp authentication proto-
cols may require value-holding variables. We are also
considering the addition of conditionals (i.e., if-then-
else statements) to the language.
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