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Abstract

We present an account of the entire development cycle (i.e.,
design, specification and verification, and implementation)
of a realistic authentication protocol, which is part of a se-
curity architecture proposed by us. The protocol’s design
follows a stepwise refinement process, which we illustrate.
Our account of its specification and verification provides
a practical demonstration of a proposed formal analysis
approach. For its implementation, we adopt the recently
proposed GSS-API standard. We describe the mapping
from our protocol to GSS-API, which can serve as a refer-
ence for other protocol implementations. We believe that
the global perspective presented in this paper would be of
great value to protocol designers, verifiers, and implemen-
tors, and contribute toward bridging the gap between the
theory and practice of authentication protocol design.

1 Introduction

Authentication is a fundamental concern in the design of
secure distributed systems [10, 21]. For example, in the
prevalent client-server computing paradigm, a server must
verify a client’s identity before it can make authorization
decisions; similarly, a client must ascertain a server’s legit-
imacy before it would proceed with its service request. In
a distributed environment, authentication is typically car-
ried out by protocols, called authentication protocols. The
primary goal of an authentication protocol is to establish
the identities of principals that participate in the protocol.
Typical principals include users, workstations, processes,
and so on. Many authentication protocols, however, also
accomplish a secondary goal, namely, the distribution of

*Research supported in part by NSA INFOSEC University Research
Program under contract no. MDA 904-91-C7046 and MDA 904-93-
C4089, and in part by National Science Foundation grant no. NCR-
9004464.

tThe current affiliation of Thomas Woo is Wireless Networking Re-
search Department, AT&T Bell Laboratories.

0-8186-6685-4/94 $4.00 © 1994 IEEE

81

a new secret session key for future private communication
among the participating principals.

The design of authentication protocols is notoriously
error-prone. Indeed, many authentication protocols have
been published and later found to contain subtle weaknesses
or flaws [4, 13]. Two factors contribute to this: (i) the lack
of well-established guiding principles for authentication
protocol design; and (ii) the use of informal operational
reasoning in protocol analysis.

Recently, much research has been directed toward rem-
edying these two problems. To address (i), basic design
principles corresponding to symmetric and asymmetric
cryptosystems are discussed in [21], and the design of a
family of authentication protocols is systematically demon-
strated in [3]. To address (ii), a number of formal ap-
proaches have been proposed specifically for the analysis
of authentication protocols [4, 6, 9, 23]. These research
efforts represent useful steps toward understanding how to
design and analyze authentication protocols.

However, there is still a significant lag between the
development of formal methods and their practical appli-
cation. Part of the reason can be attributed to the relative
immaturity of some of the proposed methods. But a more
important reason, we believe, is the lack of practical and
systematically worked-out examples that protocol design-
ers and implementors can study and use as a reference in
their work. Most expositions of analysis techniques are
illustrated with toy examples, specified in a highly abstract
notation, with little guidance as to how the techniques can
be applied to more realistic protocols. It is rare, if at all,
to see a presentation of the entire development cycle (i.e.,
design, specification and verification, and implementation)
of an authentication protocol. We believe that such a com-
plete account is crucial in bridging the gap between theory
and practice, and would be of great value to practitioners.
Moreover, it can serve as an empirical demonstration of
the practical strength of a proposed formal approach, and
the protocol will be useful as a benchmark for comparing
different formal approaches.



Addressing this need is an important goal of this paper.
Specifically, we take a realistic peer-to-peer authentication
protocol that is a key component of a security architecture
(proposed by us) together with an analysis approach we
have chosen, and walk the reader through the protocol’s
design, specification and verification, and implementation
phases. We explore the main issues, and their relationships,
encountered in each of these phases. Our work is in the
same spirit as a number of previous studies where a realistic
system is formally specified and verified, except that our
study is for a different problem domain [5, 8].

Additionally, this paper has several other contributions.
First, it presents a stepwise refinement process for deriving
authentication protocols. The process, albeit informal, is
useful in developing new protocols. Second, the authenti-
cation protocol presented in this paper is interesting in its
own right. It overcomes many of the drawbacks found in
existing client-server authentication protocols (e.g., Ker-
beros [18], SPX [20]). It is based on the use of both
symmetric and asymmetric cryptosystems and can be made
adaptive in systems with a changing communication topol-
ogy. The protocol can be viewed as a simple extension of
the three-way handshake protocol used in the connection
establishment phase of TCP [7], and hence can be readily
adapted to provide transport level authentication. Third,
it provides a detailed and practical demonstration of the
application of a particular analysis approach. Fourth, we
adopt the recently proposed Generic Security Service Ap-
plication Program Interface (GSS-API) draft standard [11]
for our protocol implementation. We describe the map-
ping from our protocol to GSS-API, which can serve as a
valuable reference for other implementations.

The balance of this paper is organized as follows. In
the next three sections, we present, in order, the design,
specification and verification, and implementation of the
authentication protocol mentioned above. In Section 5, we
discuss various issues encountered in different phases of the
development cycle and suggest topics for further research.
Section 6 is our conclusion. Due to length limitation, we
omit the detailed proofs in this paper.

2 Protocol Design

The protocol in this paper is a peer-to-peer authentica-
tion protocol. It is similar in functionality and structure
to most existing authentication protocols (e.g., Kerberos
[18], SPX [20]). Specifically, it mutually authenticates
two communicating peers with the help of a trusted third-
party server. In this paper, we consider only intradomain
authentication; that is, we assume that all principals are
under a single authority and trust a common server. For
interdomain authentication, additional mechanisms (e.g.,
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certificate hierarchy navigation) are needed, which are be-
yond the scope of this paper.

Our protocol design follows a stepwise refinement pro-
cess. We start with a very simple protocol that is intuitively
correct. Then we successively analyze and refine it to relax
certain assumptions. We try to make small changes in each
refinement step, so that we can informally observe that the
desirable security properties are preserved. Most of our re-
finements steps are based on known design principles [1].
We caution however that such a refinement process is infor-
mal, and does not obviate a formal analysis of the protocol
at the end. On the other hand, a protocol obtained from
such a refinement process, using known design principles,
is more likely to be correct and easier to be proved correct.
A stepwise derivation procedure has previously been used
in [3]; their focus is on a much lower level of detail (eg.,
message content) while we focus more on protocol steps.

A key idea in our design is separation of key distri-
bution and mutual authentication functions. That is, we
partition the protocol design task into two smaller compo-
nents: (1) the design of a protocol that distributes a new
session key to two principals; (2) the design of a protocol
that mutually authenticates two principals using the newly
distributed session key. The final protocol is obtained from
a “composition” of these two protocols.

We made a number of other design decisions. First, the
protocol should not be based solely on the use of symmetric
cryptosystems. Asymmetric cryptosystems should be used
for control functions (e.g., key distribution), whereas sym-
metric cryptosystems are preferred for key handshake and
data transfer. This is partly because asymmetric cryptosys-
tems generally allow easier key management and require
less “trust”, and partly because the rest of our security
architecture (e.g., the login protocol) makes use of asym-
metric cryptosystems. Second, the protocol should avoid
the use of timestamps; nonces should be used exclusively
instead. (This eliminates the need for synchronized clocks.)
Third, the protocol should be symmetric with respect to the
participating principals. In other words, the processing re-
quirements of both peers are similar; hence their roles can
be easily interchanged. This is unlike most existing pro-
tocols, e.g., Kerberos, where client and server processing
requirements are very different.

Notation. Principals are denoted by upper case letters,
e.g., P,@. The shared key between P and Q is denoted
by kpg. The public and private keys of P are denoted
respectively by kp and kp'. The concatenation of mes-
sages m and m’ is denoted by m,m’. Encryption of a
message m by a key k is denoted by {m},. A protocol is
presented as a sequence of protocol steps. Each protocol
step is written in the form “P — @ : m” which represents



the communication of message m from P to Q; or in the
form “P : action” which represents an internal action of
P, a

2.1 Key Distribution

We begin with the following simple distribution protocol,
to be referred as IT,:

a s
2 S>> P

generate secret s
{{P> T, S}k;‘ }kP

S is a server (a fixed principal) whose sole function is to
generate secrets and distribute them to various principals
in the system. 7 is a timestamp.

The correctness of II, can be informally argued as
follows: Assuming synchronized clocks, T provides a
timeliness guarantee. The inner encryption by S’s private
key certifies that s does indeed come from S (i.e., origin
authenticity), assuming that S’s public key is known by
all principals in the system. The outer encryption by P’s
public key ensures the secrecy of s. Lastly, the inclusion of
P’s name binds P with s, thus making explicit the intended
receiver of s.

The problem of key distribution is simply a specialized
form of secret distribution, in which a secret (i.e., a new
session key) is distributed to a pair of principals. Thus, IT,
can be refined to the following key distribution protocol,
II,:

1 s generate key k
290 S—> P {{PyQ’T,k}k;‘}kP
(Zb) S - Q {{P7Q1T1 k}k;‘}kq

The second and third lines above are 1abeled as (2a) and (2b)
to reflect that the order of their executions is unimportant.
Note that each key k is generated for a specific pair of
principals.

I1, is unsatisfactory in two ways: (1) The distribution
is initiated by S, instead of P or Q. Thus, P and @ may
to have wait indefinitely before communication can begin.
(2) The use of a timestamp requires synchronization of
clocks. We fix them in IT; below. Specifically, a challenge-
response step with a nonce is used in place of timestamps.
Note that each principal generates its own nonce.

(la)y P generate nonce np
(v Q generate nonce nq
a) P> S P,np,Q

2b) Q@ » S Q,nqg,P

3) S generate key k

4 S>> P {{P,Q,np,k}kgl}kp
@) S —=+Q {{P1Qv"Q)k}k;‘}ko
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Although IT; allows either principal to initiate, it does
not eliminate the problem entirely. Specifically, the re-
quests from P and @ are asynchronous, and S responds
only after it has received both requests, thus it is possible
for either party to wait indefinitely. We can easily remedy
this by having the request from one principal forwarded
through the other principal, as shown in I below:

(K1) P generate nonce np

K2) P->Q P,np

X3 @ generate nonce ng

K4 @ S P,np,Q,nq

K5 S generate key k

K6) S —@Q {{Pa nPyQ)"ka}kgl}kQ
(K7) Q - P {{P,np,Q,nQ,k}kgx}kP

Strictly speaking, line (K7) above is not a forwarding step.
@ has to decrypt the message it receives in line (K6) and re-
encrypt the result with P’s publickey before it can send out
the message in line (K7). This is, however, “equivalent” to
asimple forwarding if P’s publickey is consistently known
by both S and Q.

2.2 Mutual Authentication

The key distribution protocol in the last subsection estab-
lishes a new secret session key between two principals.
This key can be used to mutually authenticate the two
principals.! We show below a fairly straightforward two-
party mutual authentication protocol; we refer toitas I, .
Note that IT,, assumes that a key k is already shared be-
tween the principals.

M1 P generate nonce np
M2) P—Q P,np

M3) Q generate nonce ng
M4) Q= P {np, g}k

M5 P - Q {nolx

It might appear that IT,, is susceptible to interleaving
attacks [3]. This is, however, not the case because we
assume that k is distributed afresh each time just prior to an
authentication exchange. Thus, unlike the typical setting
of a usual two-party mutual authentication, authentication
is never performed again using the same key k.

A number of other two-party mutual authentication pro-
tocols have been proposed in the literature [3]. Several
of them fit our requirements; we prefer the above for its
simplicity. In any case, with our compositional design ap-
proach, it is relatively easy to substitute another protocol
in place of IT ;. (See Section 5 for more discussion.)

LThis step is sometimes referred to as key handshake.



(KM1) P generate nonce np

KM2) P> Q P,np

(KM3) @ generate nonce ng

KM4) Q> S P, np,Q,nQ

KMS) S generate key &

(KM6) S — Q {{P,np,Q,nQ,k}k;x}ko

XKM7) @ - P {{P,np,Q,nQ,k}kgl}kP,
{nPanQ}k

(KMg) P - Q {nQ}k

Figure 1. Protocol IT . ,,
2.3 Combined Protocol

We obtain the final protocol by “composing” the two sub-
protocols IT, and IT,,. The resulting protocol, denoted
by Il s, is shown in Figure 1.

The “composition” is carried out as follows: The nonces
np and ng generated in IT g can be reused in IT,,. Thus,
steps (M1) to (M3) can be combined with steps (K1) to
(K3) in I, and hence eliminated. The message sent in
step (M4) of IT;, can be piggybacked onto the message in
step (K7) of IT. In the sequel, we will refer to P as the
initiator and Q the responder.

Besides satisfying the design requirements laid out
above, protocol ITg ,, is interesting in another regard: it
can be viewed as a “secure” extension of the ordinary three-
way handshake used in TCP connection establishment.
Specifically, steps (KM2), (KM7) and (KMS$) correspond
to the three steps of three-way handshake. In (KM2), the
initiator communicates its sequence number (nonce np)
to the responder. In (KM7), the responder acknowledges
the initiator’s sequence number as well as forwarding its
own (nonce ng). Finally, the initiator acknowledges the
responder’s sequence number in (KM8). The encryption
required for (KM2), (KM7) and (KM8) together with the
extra messages to S represent the “cost” of adding security
to three-way handshake.

3 Protocol Specification and Verifi-
cation

There are three tasks in verifying a protocol: (i) Specify the
protocol in a notation that has a precisely defined semantics.
(ii) Formalize the high level goals of the protocol, e.g., as
correctness properties in the form of assertions with well-
defined semantics. (iii) Demonstrate that the assertions of
correctness properties are satisfied by the protocol specifi-
cation based upon a well-defined notion of satisfaction.

In this paper, we employ the verification methodology
proposed by Woo and Lam [23, 24], which was designed
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at a level of abstraction relatively close to that of protocol
implementation. In other words, the semantic gap between
the formal protocol being verified and the protocol being
implemented is small and can be intuitively justified (as
opposed to most logical approaches such as BAN logic
whose idealization step may introduce a large semantic
gap).

In the next subsection, we provide a brief overview of
Woo and Lam’s methodology. Then in the following sub-
sections, we present, in order, a formal specification of
I1x , in the notation of [23], a correctness specification
and a summary of the proof that the correctness specifica-
tion is satisfied by the formal protocol specification.

3.1 Methodology Overview

Typical high-level goals of an authentication protocol are
the following:

o Authentication — For each participating principal,
upon successful termination of its protocol execution,
it should be assured that it is “talking” to the principal
it has in mind.

o Key Distribution — The new session key distributed
should at most be known by the principals it is in-
tended for.

In Woo and Lam’s methodology, these goals are for-
malized using two types of correctness properties, namely,
correspondence and secrecy. Informally, correspondence
specifies that different principals in an authentication pro-
tocol execute the protocol in a locked-step fashion. In
particular, when an authenticating principal finishes its part
of the protocol, the authenticated principal must have been
present and participated in its part of the protocol. Cor-
respondence addresses the authentication goal. Secrecy
specifies that certain information (e.g., private keys, new
session keys) should not be accessible to an intruder. Se-
crecy addresses the key distribution goal.

Correspondence and secrecy are two distinct properties,
although their verification may be inter-dependent. Corre-
spondence properties are formalized using correspondence
assertions. A correspondence assertion specifies that cer-
tain transitions must be related in a one-to-one fashion.
Secrecy properties consist of the general secrecy condition
(GSC) which specifies that a session key being distributed
in an ongoing exchange cannot be discovered by an in-
truder; and secrecy assertions, which specify that certain
message terms are not accessible to an intruder.

A correspondence assertion is typically proved by ap-
plying a set of proof rules; while a secrecy assertion is
proved using standard invariance verification techniques.



Initial Conditions:

AC1) Vz,y:zhasy A zhask,

(IC2) Vz,y:zhask;lﬁzzy

(IC3) ZhasX & [X €SYS
viz:X=k, V X=kz'1]

Initiator (z} Protocol:

(1) Beginlnit (r)

(I2) NewNonce (n)

(I3)  Send (r, [, n])

(I14)  Receive (r,[{{i,n, N, K}ks-x}k.., {n,N}K])
(I5)  Send (r, [{N}k])

(I6) Accept (K)

(7) Endlnit (r)

Responder (r) Protocol:

(R1) BeginRespond ()

(R2) Receive (i, [¢,N])

(R3) NewNonce (n)

(R4) Send (S, [i{,N,r,n])

(R5) Receive (S,[{{i,N, r,n,K}ks-:}k,])

®6)  Send (i, [{{i,N,r,n, K}, 1 }i,, {n,N}K])
(R7)  Receive (i, [{n}g])

(R8) Accept (K)

(R9) EndRespond (i)

Server (S) Protocol:

(S1) Receive (r, [i,n,r,n])

(S2) NewSecret ({i,7},k)

(S3) Send (r,[{{i,n,r,n’, k}ks-x e D

Figure 2: Formal Specification Il as

The reader should consult [23, 24] for a more thorough
presentation.

3.2 Protocol Specification

The formal specification of Il ,,, denoted by Ik s, is
given in Figure 2. We explain the notation: SYS denotes
the set of all principals in the system. In particular, Z, a
distinguished principal who represents the intruder, and S,
a principal representing the fixed server, belong to SYS.
Lower case variables (e.g., i, r, p, n) range over primitive
terms. In addition, ¢, r, p are assumed to range over names
inSYS — {S, Z}, while z, y over SYS. Bold face variables
(e.g., N) range over arbitrary non-null terms.
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The translation of IIx,, to Ik s is fairly straightfor-
ward. The key observation is that I, actually consists
of three distinct pieces, each of which is independently
specified as a local protocol in IIx . The statements
Beginlnit, Endlnit, etc. are added to facilitate the formal-
ization of correctness. In particular, the Accept statements
help differentiate session keys whose distribution have been
completed from those that have not.

Among the initial conditions, (IC1) specifies that all
principals know the names of every principal (including its
own) and its public key. (IC2) specifies that the private key
of a principal is known only to itself. (IC3) specifies that Z
knows precisely the terms allowed under (IC1) and (IC2).

3.3 Correctness Specification

The mutual authentication goal is formalized using the two
correspondence assertions below. (C1) specifies that when-
ever an initiator (i) finishes execution of its local protocol,
it must be the case that the intended responder (r) has taken
part in the exchange. (C2) specifies a similar property, but
with respect to the responder.

(i, EndlInit(r)) <> (r, BeginRespond(7)) (C1)

(r, EndRespond(i)) <+ (i, Beginlnit(r)) (C2)

In addition to the GSC, we specify the following se-
crecy assertion, (S), which says that the private key of each
principal other than Z should not be learned by any other
principal as a result of executing the protocol. Z is ex-
cepted because it is not bound by any protocol and is free
to divulge its own private key.

()

specification is

Vr,p:xhask;1¢>x:p

The final correctness

({(C1), (€2}, {(S)})

3.4 Proof Summary

First, we prove that I1x »s satisfies (S). Informally, we can
see that (S) is satisfied because the private keys of non-
server principals (except Z) are only used internally for
decrypting incoming messages; they are never used in out-
going messages. For S, its private key is only used in
encrypting messages and is never transmitted as a compo-
nent in a message.

Lemma 1. Ty satisfies V i,r,n,n',k
—(Z has {i,n,r,n’, k}“s")’

Lemma 1 says that Z can never learn a term of the form
{i,n,r,n', k} k71 Intuitively, this is because all such terms



are always sent out under the encryption of either k; or k..,
and hence cannot be recovered by Z. Using Lemma 1, we
can prove the following two lemmas.

Lemma 2.

(I’ T, Comm([{{l! n,) nn, k}ks‘l }kr])) —
(S, 9 Comm([{{i,n’,7,n, K}, -1 }a.]))

Lemma 2 says that any message received by the responder
at step (R5) must have originally been sent by S at step
(S3).

Lemma 3.

(z,%, Comm([{{t,n,r n k}ks..l}k_, {n,n'}x])) —
(r,y, Comm([{{¢,n,r,n’, k}ks—l }eis {n, ' }k]))

Lemma 3 is similar to Lemma 2. It says that any message
received at step (I4) must have originally been sent by the
responder at step (R6).

Lemma 4.

(2,7, Comm([{n}s])) = (i,y, Comm([{n}]))
Lemma 4 says that any message received at step (R7) must

have originally been sent by the initiator at step (I5).

Using the above lemmas, we can prove that I1x s sat-
isfies GSC, (C1) and (C2). Thus we conclude that the
protocol is correct.

Proposition. gar
({(C1),(C}L,{(S)D-

is correct with respect to

4 Protocol Implementation

Our protocol implementation adopts the recently pub-
lished GSS-API draft standard [11]. GSS-API is an
implementation-independent interface through which se-
curity services are provided to callers. Specifically, it
provides mutual authentication and per-message security
services (e.g., confidentiality, integrity). Any application
that makes use of the GSS-API interface can choose to use
our protocol implementation as its underlying authentica-
tion mechanism. Qur adoption of GSS-API facilitates the
integration of our protocol implementation into any exist-
ing security architecture conforming to GSS-APIL.

Before we describe implementation details, it is im-
portant to emphasize that GSS-API is only an interface
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Calling Principal

GSS-API

Protocol Implementation
Generic Crypto
Interface

Cryptographic Functions
Figure 3: Structure of our Implementation

specification. In other words, it specifies only the functions,
together with the semantics of their parameters and return
values, that are available to a GSS-API user. In particular,
many of the data structures (e.g., credentials, contexts) ref-
erenced are left unspecified at the interface level, and must
be properly instantiated in an actual implementation.

'We have also designed a generic interface for accessing
all cryptographic functions needed to support our protocol
implementation. This interface allows modular separation
of protocol processing from cryptographic processing, thus
facilitating easy substitution if a different cryptosystem is
desired. We show the overall structure of our implementa-
tion in Figure 3.

Due to length limitation, we cannot cover every aspect of
our implementation. Instead, we will focus our discussion
on the mapping of our protocol steps onto GSS-API func-
tions. In particular, we will discuss mainly context level
calls, and mention per-message and support calls only to
the extent that they are related. The ensuing discussion
assumes basic familiarity with the design of GSS-API. The
reader should consult [11] for clarification of any unfamil-
iar concepts.

Consider protocol IT,, in Figure 1. The basic con-
trol flow of the initiator and responder is described below
(Figure 4):

1. A principal must first acquire a set of credentials that
allow verification of its identity by other principals.
Credentials are used in the establishment of security
contexts between authenticating principals, and are
stored in credential structures internal to GSS-API.
They are not directly accessible to a principal; in-
stead they are referenced through opaque credential
handles.

Credentials can be acquired from various sources,
e.g., smart cards, user files, or network. Typically,
a credential contains the following items: name of the
principal it certifies, name of the issuer, cryptographic
keys, validity period, etc.

2. To establish a pair of security contexts (one each
at the initiator and responder), the initiator and
the responder must issue a pair of matching
calls: GSS_Init_sec_context for the initiator and
GSS_Accept_sec-context for the responder. Each



Initiator Responder
— Control flow
+ «=p Data flow +
GSS_Acquire_cred GSS_Acquire_cred

'

J -
GSS_Init_sec_context ——)-DGSS_AocepLsec_comext

KM
GSS_Init_sec_context —L-s)—bGSSAccepLsec_context

V

Context established

GSS Per-Message
Calls

'

/

Context established

GSS Per-Message
Calls

/

GSS_ Delete_sec_contex temmmmm—- GS S _Delete_sec_context

/

'

Figure 4: Control and Data Flow

function is called twice because mutual (as opposed to
one-way) authentication is desired. These functions
are responsible for generating the required protocol
messages, called fokens in GSS-API, according to the
protocol specification. The data flow arrows show the
token flow between the two principals. The label of
each data flow arrow corresponds to the protocol step
label in Figure 1. Specifically, the token transferred
over a particular data flow arrow encodes the proto-
col message in the corresponding protocol step. As
we noted before, the data flows (KM2), (KM7) and
(KM8) correspond precisely to steps of the three-way
handshake protocol used in TCP connection estab-
lishment. These tokens are shown in greater detail in
Figure S below.

We note that communications between the respon-
der and the server are completely encapsulated within
GSS_Accept_sec_context and hence do not appear as
token flows in Figure 4. (A more detailed discussion
of security context and tokens is given below.)

. After a joint security context is established at both
principals, per-message security services such as con-
fidentiality, integrity and data origin authentication
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can be invoked. These services make use of infor-
mation in a security context for their operations. For
example, GSS_Seal uses the session key stored in the
security context for its encryption operation.

GSS-API provides the following per-message calls:
GSS_Seal, GSS_Unseal, GSS_Sign and GSS_Verify.
The functions of these calls should be self-
explanatory.

4. Atthe completion of a communication session, a prin-
cipal can destroy the associated security context by
calling GSS_Delete_sec_context. This function re-
turns a control token that can be passed to the other
principal to effect a similar deletion of the correspond-
ing security context.

Considering the lifecycle of a communication session,
the control flow in Figure 4 can be broken down as follows:
the GSS_Initsec_context and GSS_Accept_sec_context
calls belong to the connection establishment phase, the
per-message calls belong to the data transfer phase and
the GSS Delete_sec_context call belongs to the connection
teardown phase. Indeed, as we will see below, Il ,, is
mapped completely within the GSS_Init_sec_context and
GSS_Accept_sec_context calls.




Initiator Responder
\ {]
Server
- — ";Tq'

‘i [P, np,cert] 3

[ ;

< GSS_CONTINUE_NEEDED g Pinp,Q,ng
= <

@ (3]

d 9] {{PlnP)Q!nQYk}k;l}kQ)
-5 <] cert

‘q [{{P!nP)Q)nQ)k}k;I}kpy b

- S [=¥
- {Tlp, nQ}k] [-%3

= GSS.CONTINUE_NEEDED S

| -
wn <
7] [{nql] 7))
&) GSS_COMPLETE 175)
GSS_.COMPLETE
—-———t

Figure 5: Mapping of I1 . ,, onto GSS-API

Consider Figure 5. A token is denoted by [. . ] (with {]
denoting the NULL token). For the two boxes correspond-
ing to GSS_Init_sec_context and GSS_Accept_sec_context,
each arrow pointing inward into the box represents a call
while each arrow pointing outward from the box rep-
resents a refurn. The label of each arrow represents
either an input argument (for call arrows) or an output
argument and return value (for return arrows). For ex-
ample, consider the second arrow from the top of the
GSS Init_sec_context box, it represents a return from a
call to GSS_Init_sec_context with token [P, np, cert] as its
output argument and GSS_.CONTINUE_NEEDED as the
return value.

One subtlety about GSS-API which may not be obvious
is the fact that communications between the initiator and the
responder are the responsibility of the (initiator and respon-
der) principals who call GSS-API. The GSS-API functions
only generate and process tokens, and do not handle the for-
warding of tokens. In Figure 5, we illustrate this explicitly
with disconnected call and return arrows. In our current im-
plementation, this forwarding is via a socket channel. On
the other hand, communications between the responder and
the server are carried out within GSS_Accept_sec_context
and are the responsibility of GSS-APL. Our current imple-
mentation uses a UDP socket connection for this purpose.
We will switch to the use remote procedure call (RPC) in
the next version.
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In our protocol design, we assume that the public key
of each principal is known to every other principal. This
assumption can be realized with several approaches: (1)
Each principal can maintain a local file of all public keys it
would ever use. (2) A separate public key retrieval proto-
col can be implemented, which retrieves a specified public
key certificate from a certificate depository on demand.
The certificate depository needs not be trusted and can be
widely replicated. A certificate cache can also be main-
tained locally to improve efficiency. (3) Certificates can be
piggybacked onto protocol messages. Either a push or a
pull model can be followed. In a push model, the initiator
piggybacks its public key certificate onto its first message
to the responder (step (KM2)). In a pull model, the server
piggybacks the public key certificate of the initiator onto
its reply to the responder (step (KM6)). We illustrate both
scenarios in Figure 5 (cert denotes a publickey certificate).

Approach (1) is not satisfactory because of the difficulty
in maintaining consistency and the lack of a priori knowl-
edge of all the principals one wants to communicate. Our
implementation is based on approach (3); but it falls back
to approach (2) when a certificate is not locally available
(e.g., following expiration).

We encode all protocol messages in XDR format [19].
This allows our implementation to be portable in a hetero-
geneous environment. We pick XDR over other represen-
tation schemes (e.g., ASN.1 encoding [2]) mainly for its
simplicity and availability.



We choose respectively RSA [17] and DES [14] as
the underlying asymmetric and symmetric cryptosystems.
Both are de facto standards for their respective purposes.
We use MDS [16] as our message digest algorithm. In par-
ticular, it is used in the signing of all certificates. Lastly,
we note that the inner encryption by the private key of S in
steps (KM6) and (KM?7) is actually implemented as a sign
operation, this is sufficient because secrecy is already pro-
vided by the outer encryption under the respective intended
receiver’s public key.

5 Discussion

A systematic way of designing authentication protocols
is to follow a stepwise refinement process (starting with
small and intuitively correct protocols), while observing
known design principles [1]. From our experience and that
of others, such a process can help avoid many common
protocol errors, and often provide protocols that are easier
to verify. Much research is needed to identify useful design
principles and refinement heuristics.

Given the current state of authentication protocol re-
search, it does not appear that such a stepwise refinement
process can be completely formalized. Certain refinement
steps, however, appear to be easier to formalize than others.
For example, in deriving IT; from I in Section 2.1, it
is apparent that the two protocols are essentially the same
except that in one, certain messages are forwarded while
in the other, they are sent directly. A notion of protocol
equivalence which captures such variations can be pro-
posed. Equivalent protocols satisfy similar properties and
verification can proceed with the one that is easier to verify.

Concerning verification, one must bear in mind that the
properties established hold only for the formal protocol,
and may or may not hold for an actual protocol implemen-
tation (unless verification is carried out at the code level).
Thus, it is desirable to use a verification methodology that
minimizes the semantic gap between what is verified and
what is implemented. In other words, the mapping between
the formal protocol and its actual implementation should
be relatively simple and intuitively justifiable. Woo and
Lam’s methodology is based on the use of transition-based
semantics for both specification and verification, and allows
a simple mapping from the formal protocol to the actual im-
plementation. On the other hand, most logical approaches
(e.g., [4, 6]) assume a very high level of abstraction, making
them prone to misuse and misinterpretation. For example,
BAN logic [4] application requires a protocol to be first
idealized. The idealization process is at best informal, and
at worst error prone. Indeed, there have been several cases
where invalid conclusions were drawn from its application,
mainly resulting from invalid idealizations [12, 15].
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The verification in Section 3 is carried out on Il ,,,
rather than on its components I, and IT,,. That is, the
modularity of II . ,, is not exploited in its verification. It
is worthwhile to investigate how the verification task of
a “composed” protocol can be broken down so that the
verification of its individual components can be reused.

Our current prototype implementation operates above
the transport layer. Indeed, it makes use of services from
the transport protocols (i.e., TCP and UDP). This restricts
the users of our implementation to be application layer
programs, e.g., TELNET, FTP. We plan to extend our im-
plementation for use at the transport layer. The major
consideration in such an extension would be performance.
In particular, efficient credentials/contexts/cache manage-
ment and connection demultiplexing are crucial. We will
report our findings in a future paper.

The choice of XDR eliminates many of the portability
concerns and simplifies some of our coding. However,
XDR does have various quirks that hamper flexibility. In
particular, the range of data types offered is fairly restricted.
Both Kerberos and SPX adopt ASN.1. It would be inter-
esting to compare and contrast the way XDR is used in our
implementation with their use of ASN.1.

For cryptographic operations, we have been using some
relatively inefficient software implementations of RSA and
DES. Thus, we are not able to draw much conclusion about
performance. In any case, our focus in this paper is on
the connection establishment phase, performance is not
as important a concern as in the data transfer phase (i.e.,
per-message calls). We hope to switch over to ahighly opti-
mized cryptographic package, and perform a more detailed
analysis of performance. The design of a cryptographic in-
terface for protocol support turned out to be a difficult task.
For example, a design that optimizes related invocations of
cryptographic functions could significantly improve per-
formance. More research is needed.

6 Conclusion

We have provided a complete account of the development
cycle of a realistic authentication protocol. Specifically,
we discuss its design, specification and verification, and
implementation. Hopefully, this global perspective on au-
thentication protocol development would be a valuable
reference to protocol designers, verifiers, and implemen-
tors.

The protocol was derived through a systematic stepwise
refinement process. Although the process is informal, it is
useful in light of the highly error-prone nature of authenti-
cation protocol design [1].

The protocol presented is part of an overall security ar-
chitecture we have proposed. An implementation of the



basic protocol have been completed. An application pro-
gramming interface for the protocol along with more details
of the implementation are reported in [25]. We are currently
integrating the protocol implementation with the rest of the
security architecture.

Due to length limitation, we have omitted many practi-
cal details. We hope to include them in a future paper which
describes the entire architecture. Many of the implemen-
tation details are as important from a security viewpoint as
the overall design.

Research on authentication protocols is still a relatively
young area. We believe that more experience of the sort
reported in this paper is useful in bridging the gap between
theory and practice and in improving our understanding of
authentication protocols.

For future work, we are looking at systematic ways of
extending intradomain authentication protocols such as the
one presented in this paper to interdomain authentication
needs. Again, a modular extension is preferred.
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