Migrating Sockets for Networking
with Quality of Service Guarantees*

David K.Y. Yau and Simon S. Lam

Department of Computer Sciences

The University of Texas at Austin
Austin, Texas 78712-1188
{yau,lam} @cs.utexas.edu

Abstract

Migrating Sockets is the protocol processing component of an end
system architecture designed for networking with QoS guarantees.
The architecture provides (1) adaptive rate-controlled scheduling of
protocol threads in Migrating Sockets, (2) rate-based flow control
for reserved rate connections in future integrated services networks,
and (3) a constant overhead active demultiplexing mechanism. Mi-
grating Sockets achieves its efficiency by allowing user applications
to manage a network endpoint with minimal system intervention,
providing user level protocols read-only access to routing informa-
tion in a “well-known” shared memory region, and integrating effi-
cient kernel level support we previously built. It is backward com-
patible with Unix semantics and Berkeley sockets, and has been
used to implement Internet protocols such as TCP, UDP and IP
(including IP multicast). We also show that active demultiplex-
ing supported by Migrating Sockets can be transparently enabled
in wide-area TCP/IP internetworking (although it is not restricted
to TCP/IP). We have an implementation of Migrating Sockets in
Solaris 2.5. We discuss our implementation experience, and present
performance results of our system running on the Ultra-1, SPARC
10 and SPARC 20 architectures.

1 Introduction

It is increasingly important for end systems to provide support for
networking with quality of service (QoS) guarantees. This trend is
in part due to the emergence of continuous media (such as video
and audio) applications having real-time constraints. Such work on
end system support complements recent research on integrated ser-
vices networks. QoS guarantees provided by network level packet
scheduling and admission control through Internet resource reser-
vation protocols being developed [1, 5, 16] can thus be extended
to the ultimate endpoints of an end-to-end communication, namely
applications running in user space of general purpose operating sys-
tems.

End system support for networking with QoS guarantees is a chal-
lenging problem. To meet various timing constraints, user processes
must be given guaranteed access to diverse system resources, in-
cluding time-shared resources such as CPU and network interface,
and space-shared resources such as memory buffers. Moreover,
the run time environment for protocol processing, which provides
such services as timer management, buffer management and demul-
tiplexing table lookup, should be designed to support predictable
performance.

Besides QoS guarantees, recent proliferation of heterogeneous net-

Research supported in part by National Science Foundation under grant
no. NCR-9506048, an equipment grant from AT&T Foundation, and an
IBM graduate fellowship. David K.Y. Yau is now with the Department of
Computer Sciences, Purdue University, West Lafayette, IN 47907 (email:
yau@cs.purdue.edu).

0-8186-8061-X/97 $10.00 © 1997 IEEE

73

working technologies and user application requirements will make
customized development and flexible deployment of network pro-
tocols highly desirable. Protocol implementation at user level can
help achieve these goals. With fault containment in user processes
and the availability of sophisticated tools for developing user level
code, the cost of protocoel development and experimentation will go
down, and the lead time to deployment of protocols in a produc-
tion environment will be reduced [12]. Moreover, without the need
to configure and load protocols into kernel space, user applications
can be given access to a wider choice of protocol stacks and choose
the one that is most suitable for their particular needs.

1.1 Our contributions

We discuss our experience implementing Migrating Sockets as a
framework for user level protocols that can run with guaranteed
progress. In addition, we highlight several novel ideas implemented
in Migrating Sockets. First, we discuss how Migrating Sockets can
minimize hidden scheduling in protocol processing. This allows
protocol threads to run with progress guarantees within the context
of adaptive rate-controlled (ARC) scheduling. Second, we present
the use of delayed caching and recali-on-access for socket migra-
tion that improves caching performance for the widely used con-
current server model in client/server programming. Third, we show
how the use of a “well-known’ shared memory region can enable
extremely efficient sharing of routing information between network
and higher layer protocols in a user level implementation model.
Fourth, Migrating Sockets has been integrated with operating sys-
tem techniques that minimize data copying and system call over-
head for network communication [14]. Lastly, “exclusive packet
receiver” information exported by Migrating Sockets enables a con-
stant overhead packet demultiplexing mechanism called active de-
multiplexing. By eliminating table search, active demultiplexing is
highly efficient and is suitable for networking with QoS guarantees.

1.2 Organization of this paper

The balance of this paperis as follows. In the following subsection,
we discuss related work. In section 2, we give an overview of our
end system support architecture for networking with QoS guaran-
tees. We show how Migrating Sockets works together with other
system components to provide QoS guarantees in an end-to-end
path of network communication. Section 3 introduces Migrating
Sockets as a user level protocol implementation framework. The
framework is flexible, efficient and backward compatible with Unix
semantics and Berkeley sockets. Section 4 describes several novel
aspects of Migrating Sockets. ARC scheduling of protocol threads
is presented in section 5. Active demultiplexing is described in sec-
tion 6. We present experimental results on the performance of our
current system in section 7, and conclude in section 8.

1.3 Related work

Real-time upcalls were proposed in [6] to achieve QoS guarantees
in protocol processing. While the approach is an interesting alterna-
tive to real-time threads, it is specifically designed for periodic pro-
tocol processing and appears to be less general than our approach.
Protocol processing with predictable performance has also been in-
vestigated in the context of Real-Time Mach [10] based upon design
principles for CPU scheduling different from ours.

There has been growing interest in user level protocol implementa-
tion in recent years [8, 12]. A user level TCP implementation on top
of the Jetstream high-speed network interface is describedin [3]. U-
Net [13] integrates interface firmware with host software in a design
that provides user level access to a network without kernel interven-
tion. These works target high performance on the send/receive path,
without paying much attention to the issues of connection manage-
ment, routing management, and the semantics of sharing network
endpoints. Performance benefits of Integrated Layer Processing in
user level protocols are evaluated in [2]. Migrating Sockets simi-
larly enables the integration of protocol functions at the presenta-
tion, session, transport and network layers.

2 Architectural Overview

Our end system architecture for networking with QoS guarantees
has the following major components: (1) ARC scheduling for time-
shared resources in an end system, such as CPU and network inter-
face, (2) a migrating sockets framework for user level protocols that
minimizes hidden scheduling in protocol processing, and (3) a con-
stant overhead packet demultiplexing mechanism suitable for wide
area internetworking. Figure 1 illustrates the architecture. A packet
path from the sender system on the left to the receiver system on the
right is shown.

Migrating Sockets (see section 3) takes its name because the state
and management right of a network endpoint can move between a
network server and client processes. With Migrating Sockets, per-
formance critical protocol services such as send and receive are ac-
cessed as a user level library linked with applications. Send side
protocol code is accessed in usual application threads of control. In
addition, user processes have protocol threads for network receive
and timer processing. From a QoS perspective, Migrating Sockets
has the advantage of minimizing “hidden” scheduling.' For exam-
ple, the role of network interrupt handlers in our system is only to
deliver packets to a set of destination processes. The bulk of receive
side processing is done in the context of a user thread of control.

With hidden scheduling minimized, user applications can more eas-
ily determine and negotiate an appropriate rate of progress with an
end system, such that their real-time constraints can be met. In our
architecture, progress requirements are specified with two parame-
ters: a reserved rate (between 0 and 1) and a time interval known
as period (in us). Based on the progress requirements of all threads
in the system, an ARC CPU scheduler can perform admission con-
trol and provide conditional progress guarantees to threads. The
ARC scheduler in [15] provides the following progress guarantee:
a “punctual” thread with rate r and period p is guaranteed at least
krp CPU time over time interval kp, fork = 1,2,

On the send side, ARC scheduling enables applications to respond
to media events and generate network packets “in time.” These
packets then enter a network connection, which may have a reserved

! Hidden scheduling occurs when protocol processing is done in the con-
text of interrupt handling or “background” threads of control that do not
belong to a user process.

74

Receiver

User space

%" ARC
¥ scheduler

+ Rate-based
flow control

“prActive

demultiplexiny

3

Ketnel space

Network
interface

metwork

Figure 1: End system architecture for networking with
QoS guarantees.

rate negotiated with a future integrated services network. If the net-
work connection is shared by multiple processes, it is possible for
a sudden burst of packets by one process to block out access to the
network connection for an extended period of time [14], thereby
jeopardizing the bandwidth requirements of other processes. This
problem is especially pronounced if the connection has a moderate
or low reserved rate. To solve the problem, an end system should
provide rate-based flow control to reserved-rate network connec-
tions. In our proposal [14], flow control is enforced by a lightweight
kernel thread. The approach is quite flexible in that different flow
control policies can be provided by different loadable kermnel mod-
ules.

On the receive side, packet arrivals to a network interface are pro-
cessed by the interrupt handler of the interface. Kemel level code
must then demultiplex the packets to their destination processes.
Traditionally, such demultiplexing is performed by packet filters
[4, 9] Our system makes use of packet filters, but, in addition, can
exploit “exclusive packetreceiver” information exported by Migrat-
ing Sockets to perform active packet demultiplexing. A network
endpoint that is an exclusive packet receiver has the property that
packets destined for it should not be delivered to any other endpoint
in the system.

In active demultiplexing, an exclusive packet receiver advertises to
a peer sender an OS handle for packet delivery. On learning the ad-
vertisement, the sender encloses this OS handle in packets it sends
to the receiver. The kemel demultiplexing code in the receive sys-
tem can then make use of the handle to deliver packets directly to
the receiver, without table searching. For safety reasons, the receive
kernel checks that a handle is indeed associated with an exclusive
packetreceiver and ensures the “freshness” of the handle by using a
nonce included with the handle. From a QoS perspective, active de-
multiplexing is desirable since it is a constant overhead mechanism,
contributing to predictable performance.

In the receive end system, demultiplexed network packets may
cause their receiver processesto be scheduled. An ARC CPU sched-
uler in the receive system enables such processes to respond to the
packet arrivals “in time.”

3 Migrating Sockets

In choosing an application programming interface (API) for our sys-
tem, one of our goals is that the API should allow us to run existing
and future Unix multimedia applications (such as the mbone suite
of teleconferencing tools) with minimal modifications. We there-
fore decided to maintain backward compatibility with the widely
used Berkeley socket interface. In concept, our migrating sockets
framework draws upon previous experience in user level protocol
implementation [8, 12]. In what follows, we give an overview of
Migrating Sockets. Several novel ideas implemented in the frame-
work are presented in section 4.

3.1 Endpoint management

Figure 2 gives an overview of the protocol implementation model
of Migrating Sockets. The model uses a network server process
for “boundary” protocol operations like opening and closing net-
work connections. User applications are client processes in the
model. They register themselves with the network server. When
a client process opens a socket, it creates a local data structure for
the socket and contacts the network server with an RPC call. The
network server likewise creates a data structure for the socket, and
performs most of the “real” work for socket creation. Apart from
using the socket () call, client processes can implicitly gain ac-
cess to socket descriptors, such as after a fork. In the case of a
fork, the network server copies socket descriptors from the parent
process to the child process and uses callback RPC to ask the child
process to create data structures for the sockets inherited. In sum-
mary, a client process knows about all the sockets for which it holds
a socket descriptor, whereas the network server knows about all the
sockets in an end system,

Since the network server has global knowledge of all the network
endpoints in a system, it is suitable for the tasks of connection man-
agement. For example, it will be able to enforce uniqueness of net-
work connections requested by different client processes. However,
it is expensive to go through the network server for every socket
operation. This is especially true of operations on the “performance
critical” path, namely sending and receiving network data. In Mi-
grating Sockets, after a network connection has been established,
the state and management right of a socket can be cached to the
client process holding an exclusive socket descriptor for the socket.
Caching involves transferring the current state of the socket (includ-
ing any data buffered for send and receive, and any protocol state
associated with the socket) from the network server to the client pro-
cess. A client process can then send to and receive from the cached
socket without going through the network server.

For connectionless protocols, such as UDP, a socket can be cached
after the bind () system call, which fills in a local address and
port number for the socket. For connection oriented protocols, such
as TCP, a socket can be cached after the accept () system call,
which fills in both local and remote addresses and port numbers for
the socket.

A socket continues to be cached until a condition unfavorable to
caching occurs, at which time the socket is flushed to the network
server. This involves transferring the state and management right of
the socket from the client process back to the network server. As an
example, flushing is required before a fork, since cached access is
incompatible with the semantics of sharing network endpoints. It is
also required before a close. After flushing, the network endpoint
may continue to exist within the network server. Therefore, flush-
ing before a close takes care of the requirement of certain protocols
(such as TCP) that the lifetime of a network endpoint may exceed

75

Client

Client

Well known
routing
region

°

. Cached end point
@ Flushed end point

Figure 2: The protocol implementation model of Mi-
grating Sockets.

the lifetime of the process having access to the endpoint. All oper-
ations on a flushed socket go through the network server, using an
RPC interface.

Whereas shared access to a socket can prevent the socket from being
cached, caching may be re-enabled by the close () operation. The
situation occurs if, after a close by some process, another process
becomes the only one holding a socket descriptor to the socket in
question. When that happens, our system caches the socket to the
latter process.

Besides the cache and flush operations, our system supports a third
operation for socket migration known as recall. The operation is
a callback RPC for the network server to ask a client process to
transfer the state and management right of a cached socket back to
the network server. It is needed, for example, in the optimization
described in section 4.2,

3.2 Implementation considerations

Our implementation of Migrating Sockets leverages protocol code
from 4.4 BSD. However, parts of the runtime support system have
been rewritten. First, we replaced BSD mbuf buffer management
by message blocks similar to those used in SVR4 streams. This
is because mbuf has been found to treat small and large messages
non-uniformly and hence exhibit undesirable performance idiosyn-
crasies [7]. Moreover, message blocks can very naturally handle
both normal data buffers and nemwork buffers (see section 4.4) sup-
ported in our system (using the esballoc () library call).

Second, we implemented a timer management interface for timer
activities. Unlike 4.4 BSD, timer processing is driven by a timer
thread of control.

Third, it is not feasible to protect critical code sections by raising
interrupt level in a user level implementation. Instead, we make
use of mutex locks and condition variables for mutual exclusion
and condition synchronization. The current locking granularity is
quite coarse. To illustrate, it is often convenient to think of protocol
processing as consisting of an “upper” and a “bottom” half. The up-
per half is driven by protocol send activities, while the bottom half
is driven by packets received from the network. Figure 3 shows the
multi-threaded structure of a typical client process accessing cached
sockets. A timer thread and application threads with send side pro-
tocol code run in the upper half. Protocol receive threads run in the
bottom half. Notice that we use a thread of control for receiving

Upper half

s

Application threads

Timer threas with sépd side protocol
for caflout code
processing

* Receive side

(one for each cached
end point)

S
Bottom half

N/

Packet filter or
active OS handle

Figure 3: Multi-threaded process structure for applica-
tions accessing cached sockets.

from each cached endpoint.

In our locking model, a mutex lock syslock protects system data
structures that are not modified by bottom half threads. The pur-
pose of the lock is then to synchronize access by multiple upper
half threads. For example, an upper half thread opening a socket
and another one doing a close may both be trying to modify a set of
file descriptors associated with a process. Locking is required to se-
rialize the two operations. Another mutex lock intrlock protects
system data structures that may be modified by bottom half threads.
Its purpose is to synchronize access by bottom half threads, as well
as between the upper and bottom halves. For example, a bottom
half thread may be trying to append data to a receive socket buffer,
while an upper half thread may be trying to remove data from it.

Upper half protocol threads normally acquire syslock before
intrlock. Consistent use of this locking order avoids dead-
locks between threads in acquiring the two locks. There are sit-
uations, however, in which the normal locking order is not fol-
lowed. For these situations, the code fragment shown in Figure 4
is used to avoid deadlocks. Specifically, an upper half thread is try-
ing to read from a socket. The thread first acquires syslock and
then intrlock before it checks the receive socket buffer. If it
finds no data available for reading, the thread blocks on a condi-
tion readable protected by intrlock (intrlock will be au-
tomatically released when blocking occurs inside cond_-wait ()).
Before the thread calls cond_wait (), however, it explicitly re-
leases syslock to allow other upper half threads access to data
structures protected by syslock.

When the thread wakes up because data have arrived, it will have
acquired intrlock while also needing to re-acquire syslock.
In the figure, the call mutex_trylock({syslock) tries to ac-
quire syslock but returns a failure condition of 0 if the lock can-
not be acquired. Notice that if mutex_trylock() succeeded,
the thread will have acquired both syslock and intrlock.
If mutex_trylock() failed, however, the thread first releases
intrlock and then tries again to acquire both locks in the normal
order of syslock before intrlock, thus avoiding the possibility
of deadlock with another thread.

4 Novel Aspects of Migrating Sockets

Our migrating sockets framework exports information on exclusive
packet receivers, which has the following meaning: If a network
endpoint is an exclusive packet receiver, then packets destined for
it should not be delivered to any other endpoint in the system. No-
tice that in Migrating Sockets, network connections are established

76

Algorithm LOCKING
mutex_lock(syslock);
mutex.lock(intrlock);

while (no data available for reading) {
mutex_unlock(syslock);
cond_wait(readable, intrlock);
if (mutex_trylock(syslock) == 0) {
mutex.unlock(intrlock);
mutex dock(syslock);
mutex_lock(intrlock);

Figure 4: Locking algorithm for deadlock avoidance.

through the network server, which knows about all the existing net-
work endpoints in the system. Hence, when the network server
allows a socket to be cached, it knows whether the socket being
cached is an exclusive packet receiver or not.

Information on exclusive packet receivers can be used to reduce
the search time for matching packets with packet filters, since a
match with the filter of such a receiver means that further matching
would be unnecessary. Moreover, as we will show in section 6,
the information enables a constant overhead packet demultiplexing
mechanism known as active demultiplexing.

We now elaborate on several other aspects of our system that are
novel or pertaining to the provision of QoS guarantees. They are (1)
minimizing hidden scheduling in protocol processing, (2) caching
optimization for the concurrent server programming model, (3)
sharing of routing information between network and higher level
protocols using a “well-known” shared memory region, and (4) a
kernel/user interface that provides user level protocol code with ac-
cess to efficient kernel level support [14] through Unix file descrip-
tors.

41 Minimizing hidden scheduling

Our experience {15] has been that it is difficult to provide QoS guar-
antees in certain protocol implementation frameworks. In SVR4
streams, for example, network send and receive can take place in
service routines Tun by “background” system threads of control. In
BSD Unix, a single system timeout invocation has to handle out-
standing timer activities of all the network endpoints in the system.
The main problem of these background system services is that there
is no easy way to determine suitable reserved rates of progress for
the system services, such that the real time constraints of user ap-
plications can be met.

Aside from the use of background system services, traditional ker-
nel level protocols perform entire receive side protocol processing
in the context of interrupt handling. From a QoS perspective, it is
similarly difficult to control the rate of progress of interrupt han-
dling code.

Migrating Sockets reduces the use of such hidden scheduling for
cached sockets. First, each user process has a dedicated timer thread
that handles timer events only for network endpoints local to the

Algorithm CSERVER
begin

/* socket fd is used for accepting service requests */
listen(fd, ...);
while (1) {
/* Request served through socket newfd */
newfd = accept(fd, ...);
if (fork()== 0) { /* child */
close(fd);
/* serve request */

exit(0);

else /* parent */
close(newfd);

end
Figure 5: Concurrent server using sockets.

process. Second, the role of the network receive interrupt handler
in our system is minimal, i.e., only to demultiplex packets to their
destination processes. Receive side protocol processing is done in
the context of the receive thread associated with a cached endpoint.
Section 5 discusses ARC scheduling for protocol threads in Migrat-
ing Sockets.

4.2 Optimization for concurrent server model

In client/server programming, there are two principal programming
models. They are the iterative server model and the concurrent
server model. In the latter model, the server’s role is only to lis-
ten for service requests from remote hosts. Once a request has been
received, the server forks a child process to handle it, and itself goes
back to listening for more requests. Because it allows new service
requests to be accepted while previous ones are still being served,
many programs, including the Internet Superserver (inetd), use
the concurrent server model.

A typical program template for concurrent servers using sockets is
shown in Figure 5. The program uses a socket £4 to listen for in-
coming service requests. When a request arrives from a remote end-
point, it is accepted and a network connection is established. The
local endpoint of the new connection is accessible through newfd.
The server then forks a child process to serve the request and itself
closes newfd.

In the caching mechanism described so far, newfd will be cached
to the server on being returned by accept (). Immediately after-
wards, however, the server does a fork () to serve the request in
a child process, forcing newfd to be flushed in Migrating Sockets,
because it is now shared between the server and the child. In fact,
though, the server no longer needs access to newfd. When it closes
newfd, the socket becomes cached to the child process.

Notice that although the final objective is to cache the accepted
socket in the child process, two cache and one flush operations are
involved, of which one cache and one flush would be unnecessary.
To solve the problem, Migrating Sockets supports a new socket op-
tion called SO_.CONCURRENT.SERVER. When the option is set

77

for a socket, say S, in the listen state, it serves as a hint that sockets
accepted through S should ultimately be cached to a child process
forked by the process, say P, doing the listen. Hence, when a socket
is accepted through S, it is merely marked cacheable instead of be-
ing cached to P. If later, P does access S for send/receive, S will
be cached (this is known as delayed caching). If, however, P does
a fork before it accesses .S, S will be cached to the forked process,
say @, as part of copying file descriptors from P to Q. Moreover,
S is marked “recall-on-access” in the network server, meaning that
if P later accesses S, the network server will recall S from @, in
effect causing S to be flushed. However, it is more likely that P will
soon close S, and the recall-on-access status of S can be cleared.

4.3 Routing information management

The Intemet protocol suite owes much of its flexibility and robust-
ness in a heterogeneous and dynamic networking environment to
protocols at (or below) the network layer. These protocols include,
among others, IP, ICMP, IGMP, EGP and ARP. Together, they al-
low network routes to be dynamically discovered and reconfigured,
and network connectivity is not lost even as network interfaces and
routers come up or go down. In our system, we refer to the data
structures that keep track of various kinds of routing information
collectively as the routing table.

Dynamic routing interacts with caching of network endpoints. The
reason is that even after a network connection has been established
between a sender and receiver, the next “hop” (represented by an IP
address) to which the sender must send its packets in order to reach
the receiver may still change over time. This can happen, for ex-
ample, by way of an ICMP redirect message, and the routing table
must be updated to reflect the change. Moreover, the network inter-
face to which some IP address has been assigned may be replaced
by another interface, and ARP must update its translation of the IP
address (in the routing table) to the link level address of the new
interface.

In our design, we consider routing table management a global sys-
tem function. As such, the network server is the only process re-
sponsible for its management. This has two advantages. First, rout-
ing table management functions do not have to be duplicated in the
address space of every application process. Second, application pro-
cesses do not need to be interrupted by (and process) routing mes-
sages that do not affect them. However, since application processes
need read access to the routing table even for common case send
and receive, such access must be as inexpensive as if the routing
table were local to each process.

To satisfy the efficiency requirement, the network server creates a
shared memory region, and allocates routing table entries exclu-
sively from that region. Moreover, data pointers in the routing table
must retain their intended meaning (without translation) irrespec-
tive of the process accessing them. This requires the network server
and each application process to map? the shared memory region at a
“well-known” virtual address. This virtual address can be returned
by the network server to a client process at client registration time.

Our shared memory solution allows application processes to freely
read the system routing table. We believe, however, that this does
not represent a security problem in most cases. For example, users
on a Unix system are often permitted to use the netstat(1) command
to return the same kind of information.

2This region is mapped read-only by application processes.

Senc/recaive
Control
oo butters

KERNEL

Network Interface

Figure 6: OS architecture for multimedia networking.

4.4 Protocol/kernel interface

For efficiency, Migrating Sockets runs on top of an OS architecture
(Figure 6) we have previously prototyped for supporting continuous
media (CM) applications [14].

Send/receive buffers shown in Figure 6 are allocated using the
IOBuffer: :I0Buffer () method in Table 1. The method cre-
ates a network buffer region for direct send/receive to/from the
network (i.e. no intermediate data copies are required). If the
network interface for send/receive uses DMA, the allocated net-
work buffers will be automatically backed by required DMA re-
sources. Moreover, buffers can be pinned in physical memory for
predictable performance. A memory allocator associated with a
buffer region supports flexible memory allocation/deallocation sim-
flar tomalloc (3C) and free (3C) in the standard C library.

To send a packet, a user process appends control information in the
form of a send request to a send control queue, managed through
the SendControlQueue object in Table 1. The send request is
then handled by the kernel through either a system call or a kernel
thread introduced below. Notice that for some systems, even after
kernel code processing of a send request has completed, the packet
to send may only have been queued to a network interface, instead
of really sent. Therefore, the buffer for sending cannot be reused or
freed until the network interface has completed its part of the send
and updated the status of the send request. That is why a method
such as reapall () in Table 1 is necessary.

On the receive side, driver code for a network interface informs user
processes of data to read by appending receive notifications to a re-
ceive control queue, managed through the RecvControlQueue
object. For efficient control transfer, send/receive control queues
are shared between user processes and the kernel.

A lightweight kernel thread provides shared access to a reserved-
rate network connection in future integrated services networks.
The kernel thread is periodically scheduled and implements a rate-
based packetscheduling algorithm such that multiple user processes
can send packets to the network connection with guaranteed data
rates. For this purpose, a process creates a MultiplexGroup
objectusing the MultiplexGroup (int, int, int, void
*, int) method shown in Table 1. The method causes a mulsi-
plex group, a data structure used by the kernel thread for rate-based
packet scheduling, to be created within the kernel. The alg parame-
ter specifies the packet scheduling algorithm to use for the multiplex
group. Currently, the KT_RC algorithm in [14] is supported. Param-

78

eters of the scheduling algorithm can be passed with the params
pointer. For example, the KT_RC algorithm takes the scheduling pe-
riod (in ps) of the kernel thread as a parameter. Once a multiplex
group (identified by a key which is unique within an end system)
has been created by a process, other processes can gain access to
the group using the MultiplexGroup (int) method. Processes
having access to a multiplex group can use the Join () method to
add traffic flows to the group with specified parameters. A rate pa-
rameter (in kbps), for example, is needed for a flow using the KT_RC
algorithm. Flows can be deleted from a multiplex group using the
leave () method.

Lastly, notice that, although the interface presented in Table
1 is designed to be general and device independent, some of
the operations accessed through the interface are device depen-
dent. For example, the SendControlQueue: : send () method
calls a device specific send function within the kernel. The
IOoBuffer::I0Buffer () method creates device dependent
DMA resources backing allocated network buffers.

5 ARC Scheduling of Protocol Threads

Application and protocol threads in Migrating Sockets can specify
their CPU requirements using the rate-based reservation model of
ARC scheduling [15]. The rate-based model has two parameters:
(D rate, r, (0 < r < 1), and (2) period, p, in ps. Informally, the
rate specifies a guaranteed fraction of CPU time that a thread with
the reservation will be allocated over time intervals determined by
p.

Progress guarantees of rate-based reservations are provided by in-
stances of a family of ARC schedulers. ARC schedulers have the
following properties: (1) reserved rate can be negotiated, (2) QoS
guarantees are conditional upon thread behavior, and (3) firewall
protection between threads is provided. The first property is pro-
vided by a monitoring module and a rate-adaptation interface as
discussed in [15]. The second and third properties are provided by
using an on-line CPU scheduling algorithm with the firewall prop-
erty, such as the RC scheduler in [15]. Subject to the admission
control criterion that the aggregate reserved rate in a system should
not exceed one, RC provides the following progress guarantee: a
“punctual” thread with rate r and period p is guaranteed at least
krp CPU time over time interval kp, for k = 1,2,.... Because
ARC schedulers offer firewall protection between “well-behaved”
and “greedy” threads, they are appropriate for integrated schedul-
ing of continuous media and other applications found in a general
purpose workstation.

In our current system, ARC scheduling has been implemented for
multiplexing kernel threads onto the CPU, but not for a separate
user level thread scheduler. In Solaris, however, user threads can be
bound one-one to kernel threads. This allows ARC scheduling to
work for all the protocol threads in Migrating Sockets.

6 Active Demultiplexing

An important task of protocol processing is to demultiplex incoming
packets to their network endpoints. Traditionally, the receive side
of a kernel level transport protocol looks for matches by searching
a list of protocol control blocks known to the system. Recent user
level protocol implementations have relied on packet filters installed
with the driver of a network interface to accept or reject packets.
While highly flexible, these methods involve searching. Although
techniques such as hashing and one behind cache can significantly
reduce the search time on the average, the actual search time may
still be highly variable when the number of network endpoints in a

Class Method Synopsis
10Buffer IOBuffer(int fd, caddr_t addr, int size); Create a network buffer region of size bytes and map the region at
user address addr. fd is a file descriptor for the network interface
for which the buffer region is being allocated.
void *malloc(int size); Allocate a properly aligned buffer of size bytes from network
buffer region.
void free(void *buf); Free to network buffer region buffer buf previously allocated by
malloc().
SendControlQueue | SendControlQueue(int fd, caddr_t addr, | Allocate a send control queue of size send notifications for the net-
int size); work interface identified in fd. The send control queue is to be
mapped at user address addr.
void attach(IOBuffer *iob); Attach network buffer region iob to send control queue.
int send(void *buf, int len); Send len bytes starting at user address buf by appending a send
notification to send control queue.
struct status *reap(int block); Return pointer to status of last newly completed send.
void reapall(); Free buffers in all newly completed sends by calling free() method
of attached IQBuffer
RecvControlQueue | RecvControlQueue(int fd, caddr.t addr, | Allocate a receive control queue of size receive notifications and
int size); map it at user address addr. fd is a file descriptor for the network
interface for which control queue is allocated.
int recv(caddrt *buf, int *len, int | Receive len bytes of data in network buffer whose pointer is re-
block); turned in buf. If no data are available for receive, block calling
thread iff block is set.
void unmap(caddr.t buf); Give back buffer buf previously returned by recv() to kernel.
MultiplexGroup MultiplexGroup(int key, int bw, int alg, | Create multiplex group with key key for a reserved rate network
void *params, int perm); connection, with bandwidth bw Mbps. Multiplexing algorithm is
specified by alg, with algorithm parameters pointed to by params.
Permission for other processes to access multiplex group is speci-
fied in perm.
MultiplexGroup(int key); Get a multiplex group previously created with key key.
int setoption(int optname, void *optval); | Set option for multiplex group. Option name is optﬁa_me and value
is pointed to by optval.
int join(void *pararns); Let a flow join multiplex group with parameters pointed to by
params. Return id for the flow in multiplex group.
void leave(int id); Delete flow with id id from multiplex group.

Table 1: Kernel interface for protocol code in Migrating Sockets.

system is large.

Since predictable performance is an important goal of our architec-
ture, our system supports a constant overhead packet demultiplex-
ing mechanism known as active demultiplexing. The basic idea is
that, under certain conditions, an OS handle identifying a receive
process can be included in packets destined for that process. An
end system can then make use of the OS handle to deliver packets
directly to the receive process, without any searching.

Currently, active demultiplexing exploits the notion of exclusive
packet receivers introduced in section 3. In situations where active
demultiplexing cannot be applied or is not preferred, our system
provides packet filters.

6.1 Mechanism

We have implemented active demultiplexing in the context of
TCP/IP. The mechanism can be transparently enabled when both
sender and receiver hosts in a TCP connection support it. Figure 7
illustrates the mechanism, triggered when a socket, say S, that is
an exclusive packet receiver becomes cached to a user process. An
OS handle for the user process to receive from S becomes known
as part of the process of caching. The newly cached socket S ad-
vertises the OS handle when it next sends a packet to the remote
endpoint, say R, of the network connection. This happens when

either S has data to send to R, or when .S acknowledges packets
received from R. The advertisement is carried in a new TCP option

called TCPOPT_DEMUX_ADVERTISE.

On processing TCPOPT_DEMUX_ADVERTISE, R learns about
S’s OS handle. R then caches the handle and can later enclose
it in subsequent packets it sends to .S, by way of a new IP op-
tion IPOPT_ DEMUX_ENCLOSED. The enclosed OS handle en-
ables active demultiplexing by S’s end system. To allow a link
level device driver to easily locate IPOPT_DEMUX_ENCLOSED,
the option is always inserted as a first IP option. In addition, we use
a currently unused bit in the service field of IP header to indicate to

the device driver whether an OS handle has been enclosed.

An OS handle should be revoked when a cached socket be-
comes no longer exclusive, or when an exclusive socket be-
Handle revocation is achieved using a new
TCP option TCPOPT_.DEMUX_REVOKE. On receiving a han-
dle revocation from its peer, a network endpoint stops including
IPOPT_DEMUX_ENCLOSED in packets sent to the peer. Figure
8 shows the formats of the various options used for active demul-
tiplexing. Notice that a sequence number is included in handle ad-
vertisements and revocations. We prescribe that the two operations
be applied only in increasing sequence number order, thereby pre-

comes flushed.

venting an earlier operation from overwriting a more recent one.

79

Client
process

Client
process

2. Caching process advertises
0OS handle for cached socket
using TCPOPT_DEMUX_WDVERTISE

packet receiver
becomes cached

3. Peer endpoint encloses OS handle
in subsequent packets sent

using IPOPT_DEMUX_ENCLOSED
option.

Figure 7: Mechanism of active demultiplexing for
TCP/IP.

Option

name

Option
length

Sequence

nonce
number

OS handle

TCP handle advertisement

Option ! Sequence

Option
length ! number

‘ name

TCP handle revocation

Option

’ Option ‘ lengih

name

nonce 1 OS handle J

IP enclose handle option

Figure 8: Formats of active demultiplexing options.

The complete state transition diagram for handle advertisement and
revocation using TCP/IP is shown in Figure 9. If (and only if) an
endpoint is in the “advertising” state, the advertisement option will
be used for TCP segments sent by the endpoint. Similarly, if (and
only if) an endpoint is in the “revoking” state, the revocation option
will be used for TCP segments sent by the endpoint.

6.2 Security considerations

Taking an OS handle in an incoming packet and using it to deliver
the packet directly to a receive process is a “powerful” mechanism.
Without proper precautions, the mechanism can raise some seri-
ous security concerns. First, a malicious process can advertise an
indiscriminate OS handle (i.e. one that is not associated with an
exclusive packet receiver) and “hoard” packets that should also be
delivered to other processes in the system. Second, an OS han-
dle can become obsolete, such as when a cached endpoint becomes
flushed. Third, a faulty process can enclose a wrong or fabricated
OS handle in sending packets.

To guard against such security problems, we generate a nonce when
a network endpoint is installed and associate it with the endpoint.
The nonce is used in conjunction with the OS handle for active de-
multiplexing. Nonces have the properties that each newly generated
nonce has a fresh value, and it is difficult to guess the value of a
nonce that is not explicitly passed. Before accepting an OS han-
die, receive side demultiplexing code performs security checks as
shown in algorithm ACTIVE (Figure 10). Notice that the check at
line 2 guards against the first security threat in the preceding para-
graph, while the checks at lines 1 and 3 guard against the second
and third security threats. We fall back on a conventional packet

80

‘TCP handle revocation option used with seq. # n
Socket

@ TCP handle advertisement option used with seq. # n created/n:=0

Revoked

A /n:=n+1

Advertised

A: Cached socket b ive or E: ive socket becomes cached

B: New TCP data acked or TCP data received past the receive window
when the revoking state was last entered

C: Cached socket becomes non—exclusive or Exclusive socket becomes
flushed

D: New TCP data acked or TCP data received past the receive window
when the advertising state was last entered

Figure 9: State transition diagram for handle adver-
tisement and revocation in TCP/IP.

Algorithm ACTIVE

begin
1. Remember enough execution state to transfer to
fallback on data fault;
2. if (handle is not for an exclusive packet receiver)
goto fallback;
3, if (nonce in handle does not match nonce for
receive endpoint)
goto fallback;
4. Deliver packet directly to process identified in
handle;
5. return;
fallback:
6. Match packet against installed packet filters in
system;
end ;

Figure 10: Specification of active demultiplexing algo-
rithm.

filter mechanism if an enclosed OS handle is found unacceptable.

Finally, we note that, in practice, security can be better enforced if
an OS handle is inserted by kernel level code (i.e. by a link level
device driver supporting active demultiplexing). In this case, secu-
rity safeguard is mainly to limit the cycle time of nonces, and it is
sufficient to generate a new nonce by incrementing it cyclically.

7 Experimental Results

We have an implementation of Migrating Sockets on Solaris 2.5.
We are currently running it on SPARC Ultra-1/140, SPARC 10/30
and SPARC 20/50 machines interconnected by a 10 Mbps Ethernet
network. Kemel level support as discussed in section 4.4 is run-
ning on the Ultra-1 and SPARC 10, but not currently on the SPARC
20. The ARC scheduling framework presented in section 5 is being
ported from Solaris 2.3 to Solaris 2.5. Major Internet protocols in-
cluding TCP, UDP, and IP (with IP multicast) have been ported from
4.4 BSD to Migrating Sockets. For UDP, we have incorporated the
following optimization techniques proposed in [11]: (1) Integrated

Code TCP send UDP send
1400 bytes | 1byte | 1400 bytes | 1 byte
Socket send 90(74) | 72(62) 16(9) 15(9)
TCP/UDP 144(73) 25(4) 101¢62) | 28(7)
P 10(8) 10(2) 133) | 13(3)
Link layer 9(2) 9(2) 153) | 14(3)
Device driver 20 19 20 20
Total 273 135 165 90

Table 2: Breakdown of Migrating Sockets TCP/UDP
send path latency (us) for Ultra-1.

checksumming and copying of data from application buffers to net-
work buffers, (2) replacement of general purpose socket send code
with more efficient UDP specific code, and (3) delete of pseudo-
connect in UDP send. Moreover, since Internet checksumming is
heavily used, we replaced the 4.4 BSD checksum routine with a
more efficient routine optimized for the SPARC Ultra-1 architec-
ture. Apart from optimized checksumming, the TCP code is largely
ported as is from 4.4 BSD.

7.1 TCP/UDP performance

We measured the performance of the current implementation of
TCP/IP and UDP/IP protocol stacks accessed through a cached
socket in Migrating Sockets. Table 2 gives a breakdown of the var-
ious (average) component costs (the numbers in brackets are corre-
sponding standard deviations) due to host software on the send path
of a packet. Each packet carried either 1400 bytes or one byte of
user data. The relatively high costs of socket and TCP send code
for 1400 bytes were mainly due to data copy and TCP checksum-
ming. For UDP, socket send code had minimal cost because it called
a UDP specific send function very early on. The UDP function
performed integrated checksum and copy of data from application
to network buffers. Performance benefits of replacing “baroque”
socket send code with protocol specific code can also be seen by
comparing the costs of socket send for one byte of TCP and UDP
data, respectively.

The row labeled “Link layer” in Table 2 gives the cost of link layer
processing such as ARP address translation by Migrating Sockets.
Also notice from the last row of the table that the kernel level over-
head, i.e., processing by the network device driver, was largely in-
sensitive to the packet size. This is because protocol code allocated
network buffers for sending and data did not have to be copied from
user to kernel space.

Table 3 gives a breakdown of the various (average) component costs
(the numbers in brackets are the corresponding standard deviations)
due to host software on a TCP/IP or UDP/IP packet receive path.
As for the send path, a packet carried either 1400 bytes or one byte
of user data. The “Kernel interrupt” number is the total time spent
in the interrupt handler of the receive network device driver, which
includes the cost of matching a packet to a BSD packet filter (which
took roughly 10 us). A matched packet woke up a receive thread of
Migrating Sockets and caused the thread to be scheduled. The cost
of context switching to the receive thread is given by the “Switch to
recv thread” number.

Protocol processing of a received packet by Migrating Sockets starts
at the link layer. The “Link layer” number includes costs such as
inspecting the type field of the Ethernet header and dispatching the
packet to IP. TCP or UDP processing of a packet took longer for
1400 bytes than for one byte of user data, due to checksumming
of a longer packet. After the transport layer, the receive thread ap-

81

Code TCP receive UDP receive
1400 B 1B | 1400B 1B
Return from read 71(28) | 52(24) | 45(24) | 30(11)
Switch to read thread | 79(16) | 92(51) | 56(18) | 56(16)
TCP/UDP 90 56 89 57
IP 15 14 9(3) 10(3)
Link layer 8(7) 7(5) 6(3) 7(3)
Switch to recv thread 34 33 38 32
Kernel interrupt 33 32 33 31
Total 330 286 276 223

Table 3. Breakdown of Migrating Sockets TCP/UDP
receive path latency (us) for Ultra-1.

pended the packet to a socket receive buffer and woke up an upper
half application thread that was blocked reading from the socket.
The “Switch to read thread” number gives the overhead of context
switching to the application thread. Finally, the “Return from read”
number includes the cost of copying any user data from a socket
receive buffer to an application buffer. Hence, it was higher for a
larger packet size.

We note that although high performance is not the main concern in
our work, our TCP/UDP latency numbers do seem to compare very
well with those reported in the literature (e.g. [8]).2

7.2 Optimized checksumming

This set of experiments quantifies the performance benefits of using
an Internet checksum routine that is optimized for a specific com-
puter architecture, namely the SPARC Ultra-1. Figure 11 compares
the performance between the original 4.4 BSD checksum routine
and an optimized checksum routine for various data sizes. By ex-
ploiting knowledge of the most efficient data size and alignment for
memory access, the optimized routine achieves significant improve-
ment over the original one.

We next investigate the performance benefits of integrated check-
sum and copy. In the experiments, the destination address of a copy
was double-word aligned. For the separate checksum and copy ap-
proach, the copy loop was done immediately after the checksum
loop. Figure 12 shows the results when the test program had a
small memory footprint (less than 8 M-Bytes). For the integrated
approach, the performance was very slightly better if the source ad-
dress was also double-word aligned than if it was word or byte-
aligned. Also, the integrated approach showed minimal improve-
ment over the separate approach because of cache effects. Figure
13 shows the results when the test program had a large memory
footprint (41 M-Bytes). In this case, the integrated approach was
significantly more efficient than the separate approach.

7.3 Active demultiplexing

Table 4 shows the per packet active demultiplexing overhead in
our current system. For comparison, we note that it took about
10 ps to match a packet with a BSD packet filter on the Ultra-
1. Notice that the kernel level overhead for executing Algorithm
ACTIVE (Figure 10) is quite small. The dominant cost of in-
serting TPOPT_DEMUX_ENCLOSED option (of size 8 bytes) in an
IP packet is due to the fact that our current system treats in-
serting any IP option as an “exceptional” case. Hence, every
time TPOPT_DEMUX_ENCLOSED is to be inserted in a packet,
the TCP/IP headers of the packet must be moved to make room

30ur numbers are smaller. However, a direct comparison is unfair be-
cause of the use of different hardware platforms.

for the option.
IPOPT_DEMUX_ENCLOSED as part of the header template for
packets to be sent from relevant sockets.

Checksum in 4.4 BSD ——
Optimized checksum, word aligned -+~

50

Data checksum and copy overhead {in microseconds)
8

.........

o
o 500 1000 1500 2000 2500 3000 3500 4000 4500

Data size (bytes)

Figure 11: Checksum overhead (in us) versus data
size (in bytes) for Ultra-1.

Separate checksunyoopy ~— (,
source yte-aligned —+-- 2ay-]
aligned -a- -

, s0urca doubl

Data checksum and copy ovethezd (in mirosecands)

o 500 1000 1500 2000 2500 9000 3500 4000 4500

Data size (bytes)
Figure 12: Data checksum and copy overhead (in us)’

versus data size (in bytes) for small memory footprint
(Ultra-1).

A straightforward optimization is to include

Machine Insert IP | Data fault | Other kernel | Total
option | protection overhead

SPARC 10 5.9 0.702 0.256 | 6.858

Ultra-1 2.5 0.225 0.056 | 2.781

Table 4: Breakdown of per packet active demultiplex-

ing overhead (in pus).

8 Conclusion
We presented Migrating Sockets as a framework for user level pro-
tocol implementation, and discussed its relations to other system
components in an end system architecture for networking with QoS

guarantees.

Acknowledgment
The authors wish to thank Long Ma for helping with performance
measurements of the system.
REFERENCES

1. S. Bradner and A. Mankin. The recommendation for the IP
next generation protocol. Internet RFC 1752, January 1995.

2. Torsten Braun and Christophe Diot. Protocol implementation

using integrated layer processing. In Proc. ACM SIGCOMM
’95, Boston, MA, August 1995.

. Chris Dalton, Greg Watson, David Banks, Costas Calamvokis,
Aled Edwards, and John Lumley. Afterburner. IEEE Network,
7(4):36-43, July 1993,

82

Separate checksum/copy -+
1!’\(%;8‘& checksum/copy -+

Data checksum and copy overhead {in microseconds)

1000 1500 2000 2800 3000 3500 4000 4500

Data size (bytes)

Figure 13: Data checksum and copy overhead (in us)
versus data size (in bytes) for large memory footprint
(Ultra-1).

4. DR. Engler and M.F. Kaashoek. DPF: fast, flexible message

10.

11.

12.

13.

14.

15.

16.

demultiplexing using dynamic code generation. In Proc. ACM
SIGCOMM °96, Stanford, CA, August 1996.

ATM Forum. ATM traffic management specification, version
4.0, 1995.

R. Gopalakrishnan and G.M. Parulkar. Real-time upcalls: A
mechanism to provide real-time processing guarantees. Tech-
nical report, Washington University, 1995.

N.C. Hutchinson, S. Mishra, L.L. Peterson, and V.T. Thomas.
Tools for implementing network protocols. Software ~ Prac-
tice and Experience, 1989.

Chris Maeda and Brian N. Bershad. Protocol service de-
composition for high-performance networking. In Proc. 14th
SOSP, pages 244-255, December 1993.

S. McCanne and Van Jacobson. The BSD packet filter: A new
architecture for user-level packet capture. In USENIX Techni-
cal Conference Proceedings, pages 259269, San Diego, CA,
Winter 1993.

Clifford W. Mercer, Jim Zelenka, and Ragunathan Rajkumar.
On predictable operating system protocol processing. Tech-
nical Report CMU-CS-94-165, Camnegie Mellon University,
Pittsburgh, PA, May 1994.

C. Partridge and S. Pink. A faster UDP. IEEE/ACM Transac-
tions on Networking, 1(4):429-440, August 1993.

C.A. Thekkath, T.D. Nguyen, E. Moy, and E.D. Lazowska.
Implementing network protocols at user level. IEEE/ACM
Trans. Networking, 1(5):554-565, October 1993.

Thorsten von Eicken, Anindya Basu, Vineet Buch, and Werner
Vogels. U-Net: A user-level network interface for parallel and
distributed computing. In Proc. 15th SOSP, November 1995.

David K.Y. Yau and Simon S. Lam. An architecture towards
efficient OS support for distributed multimedia. In Proc.
IS&T/SPIE Multimedia Computing and Networking, pages
424-435, San Jose, CA, January 1996.

David K.Y. Yau and Simon S. Lam. Adaptive rate-controlled
scheduling for multimedia applications. IEEE/ACM Transac-
tions on Networking, August 1997.

Lixia Zhang, Stephen Deering, Deborah Estrin, Scott Shenker,
and Daniel Zappala. RSVP: A new resource ReSerVation Pro-
tocol. IEEE Network, pages 8-18, September 1993.

