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Migrating Sockets—End System Support for
Networking with Quality of Service Guarantees

David K. Y. Yau, Member, IEEE,and Simon S. LamFellow, IEEE

Abstract—We present an end system architecture designed to processes must be given guaranteed access to diverse system
support networking with quality of service (QoS) guarantees. The resources, including time-shared resources such as CPU and
protocol processing component of the architecture, called Migrat- network interface, and space-shared resources such as memory

ing_ Sockets, has been designed_ Wit_h minimal hidden sc_heduling buffers. Moreover. the run time environment for brotocol pro-
which enables accurate determination of the rate requirement : ! p P

of a user application. The end system provides QoS guaranteesC€Ssing, which provides such services as timer management,
using: 1) an adaptive rate-controlled scheduler; 2) rate-based buffer management and demultiplexing table lookup, should
flow control on the send side for access to reserved-rate network pe designed to support predictable performance.

connections; and 3) a constant overhead active demultiplexing  gagides QoS guarantees, recent proliferation of heteroge-

mechanism on the receive side which can be transparently en- . . L .
abled in wide-area TCP/IP internetworking (although it is not neous networking technologies and user application require-

restricted to TCP/IP). To achieve efficiency, Migrating Sockets ments [11], [12], [18], [29] will make customized development
lets user applications manage network endpoints with minimal and flexible deployment of network protocols highly desir-
system intervention, provides user level protocols read-only accessable. Protocol implementation at user level can help achieve
to routing information, and integrates kernel level support we  yhaga goals. With fault containment in user processes and the
previously built for efficient data movement. Migrating sockets S e .
is backward compatible with Unix semantics and Berkeley sock- availability of sophisticated tools for developing u§er IeV(.el
ets. It has been used to implement Internet protocols such as code, the cost of protocol development and experimentation
TCP, UDP, and IP (including IP multicast), and run existing will go down, and the lead time to deployment of protocols
applications such asvic. Migrating sockets has been implemented in a production environment will be reduced [24]. Moreover,
in Solaris 2.5.1. We discuss our implementation experience, and without the need to configure and load protocols into kernel
present performance results of our system running on Sun Sparc L - . .
space, user applications can be given access to a wider choice

and Ultra workstations, as well as Pentium-Il desktops. .
) ] ) of protocol stacks and select ones that are most appropriate
Index Terms—Bandwidth scheduling, CPU scheduling, packet to their needs.

demultiplexing, quality of service guarantees, user level protocol.

A. Our Contributions

| INTRODUCTION We discuss our experience implementing Migrating Sockets

T IS INCREASINGLY important for end systems to pro-as a framework for user level protocols that can run with

vide support for networking with quality of service (QoShuaranteed progress. Our system integrates many ideas for
guarantees. This trend is in part due to the emergence ppbviding QoS guarantees and achieving implementation effi-
continuous media (such as video and audio) applicatiosigncy. Some of these ideas are novel while others have been
having real-time constraints. Such work on end system supp@iécussed in prior work [16], [24], [27], [28]. We believe that
complements recent research on integrated services netwoiiggrating all these ideas into a single working system is a
QoS guarantees provided by network level packet scheduliggntribution in itself.
and admission control [2], [7], [29] can thus be extended to theOf the many techniques implemented in our system, we
ultimate endpoints of an end-to-end communication, namedpnsider the following ones to be novel. First, Migrating
applications running in user space of general purpose operat§grkets has been designed to minimizeden scheduling
systems. in protocol processing.This allows protocol threads to run

End system support for networking with QoS guarantees isvith well-defined rate requirements which are met in our
challenging problem. To meet various timing constraints, useystem by adaptive rate-controlled (ARC) scheduling. Second,

“exclusive packet receiver” information exported by Migrating
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model in client/server programming. Fourth, we introducevo respects. First, our resource reservation model is a CPU
the use of a well-known shared memory region to enabidate without any reference to packet processing. Second, we
efficient sharing of routing information between network anthckled the thread scheduling problem; in particular, priority
higher layer protocols in a user level implementation modehheritance is implemented to solve priority inversion that can
Fifth, we have implemented #hread folding mechanism, arise from lock contention.
whereby receive side protocol processing can be performedAqua [13] proposes integrated CPU and network 10 sched-
by an application thread reading directly from the networkiling in Solaris. It uses in-kernel Solaris protocol stacks for
This saves one context switch and simplifies determination pfotocol processing and an “extended rate-montonic” algo-
application’s rate requirement. rithm for CPU scheduling (both design choices are different
from those in Migrating Sockets). For network 10 in Aqua,
packets are divided into a real-time class and a best-effort
B. Related Work class. When real-time packets are received from the network,

User level protocol implementation was first proposed arifiey are eagerly processed in interrupt context, as usual. When
investigated by Thekkatt al. [24] who demonstrated that it best-effort packets are received, however, interrupt processing
can be as efficient as a kernel-resident implementation. Tigecurtailed, and any unfinished work is later handled by a
idea of using a server process for connection management &agkground streams service routine at a lower priority. In this
allowing client processes to cache socket states for efficiéiy, a two-level differential service is provided. Rather than
network access was proposed by Maeda and Bershad [ﬁsgifferential service, our system uniformly minimizes hidden
who also investigated issues in maintaining backward comp&gheduling (due to interrupt processing as well as background
ibility with Unix semantics. In designing Migrating Socketsfacilities such as streams service routines) in order to provide
we learned from their experience. Many other systems alggaranteed performance at the level of thread scheduling.
implemented protocols at the user level [3], [5], [25]. However, An idea similar to active demultiplexing can be found in
unlike our end system architecture, the issue of system supgbg buffer queue index (BQI) approach of Autonet-2 [4],
for quality of service guarantees was not a concern in any afhigh performance switching system built at DEC SRC.
these papers. Unlike Autonet-2, active demultiplexing is strictly a soft-

We next review several systems whose design objectiwgre approach and does not require special support from
are similar to ours, name|y, QoS support and efficient imp|§.etW0rk switches or interfaces. Also, we show that active
mentation. These systems (including ours) were designed f&multiplexing can be efficiently implemented in wide area
OS platforms with different capabilities. As a result, differenfiternetworking, such as using TCP/IP.
design decisions were made leading to a variety of solutions
for satisfying the objectives. C. Organization of this Paper

User level protocols are used in [14], [15] to provide QoS

support for multimedia applications. Theocessor capacity Irrl].Sectlonfll, we g“{f an .or\]/erwesw of our endv\fystim
reserve abstraction in real-time Mach is used for resourc@chitecture for networking with QoS guarantees. \We show

reservation and scheduling. Real-time Mach provides sch&?—w Migrating Socl_<dets Wgrks together_wnh otr;er sys(;cem h
uling algorithms such as rate-monotonic and earliest-deadliff@MPonents to provide QoS guarantees in an end-to-end pat

first. To protect well-behaving applications from mis-behavin network communication. Section lll introduces Migrating

ones, processor capacity reserves are periodically replenis %&kets as a user level protocol implementation framework.

and threads that have overrun their reserves are given-[) £ frgrr]nawprk is erx'ibIe, e;ficéenli de bac;(kward co'rnpalli;
depressegriority, and henceforth receive different schedulingﬂezc‘:\i’ges srg)\je?ZImr?Q\:gsaigectsero fe l\?l)i/grsz;%getgoflfe?slolR c
We took a different approach in our design by employ- X . . :

ing rate-based schedulers with a provable firewall prope@?hedu"ng of protocol threads is presented in Section V.

for protection between threads. (Neither rate-monotonic norive demultiplexing is described in Section VI. We present

earliest-deadline-first has the firewall property.) Furthermong','cr‘_) and macro-benchmgrk resglts of our current system in
bandwidth scheduling and packet demultiplexing are maj ection Vi and conclude in Section VIil.

concerns in our end system architecture. These issues are not

addressed in [14], [15].

A real-time upcall (RTU) mechanism is used in [8] to
implement user level protocols with QoS guarantees. TheOur end system architecture for networking with QoS
system is built on top of NetBSD, whose kernel is najuarantees has the following major components: 1) ARC
multithreaded. Designing a system without use of threads lscheduling for time-shared resources in an end system, such as
to an event-driven approach, in which RTU’s are handlers f@PU and network interface; 2) a Migrating Sockets framework
protocol events. Their resource reservation model is basedfon user level protocols that minimizes hidden scheduling in
the number of packets processed per time interval. RTU’s cparotocol processing; and 3) a constant overhead packet demul-
respond to protocol events in a timely manner. By delayirtgplexing mechanism suitable for wide area internetworking.
preemption until packet boundaries, concurrency in protoceig. 1 illustrates the architecture. A packet path from the
processing is achieved without using locks, which contributesender system on the left to the receiver system on the right
to performance gains. Our system is very different in at least shown.

Il. ARCHITECTURAL OVERVIEW
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Fig. 1. End system architecture for networking with QoS guarantees.

Migrating sockets (see Section lll) takes its name becausme.” These packets then enter a network connection, which
the state and management right of a network endpoint caray have a reserved rate negotiated with an integrated services
move between a network server and client processes. Witktwork. If the network connection is shared by multiple
Migrating Sockets, performance critical protocol services sughocesses, it is possible for a sudden burst of packets by
as send and receive are accessed as a user level library lintieel process to block out access to the network connection
with applications. Send side protocol code is accessed in usftalan extended period of time [27], thereby jeopardizing the
application threads of control. In addition, user processes harandwidth requirements of other processes. This problem is
protocol threads for network receive and timer processingspecially pronounced if the connection has a moderate or
From a QoS perspective, Migrating Sockets has the advantéme reserved rate. To solve the problem, an end system should
of minimizing hidden scheduling. For example, the role gfrovide rate-based flow control to reserved-rate network con-
network interrupt handlers in our system is only to delivemections. In our proposal [27], flow control is enforced by a
packets to a set of destination processes. The bulk of recelightweight kernel threadThe approach is quite flexible in that
side processing is done in the context of a user thread different flow control policies can be provided by different
control. loadable kernel modules.

With hidden scheduling minimized, user applications can On the receive side, packet arrivals to a network interface
more easily determine and negotiate an appropniate of are processed by the interrupt handler of the interface. Kernel
progresswith an end system, such that their real-time corevel code must then demultiplex the packets to their destina-
straints can be met. In our architecture, progress requiremetiig processes. Traditionally, such demultiplexing is performed
are specified with two parameters: a reservateé (between 0 by packet filters [6], [17] (also known as pacla@assifiersin
and 1) and a time interval known geriod (in ;s). Based [1]). Our system makes use of packet filters, but, in addition,
on the progress requirements of all threads in the systecan exploit “exclusive packet receiver” information exported
an ARC CPU scheduler can perform admission control ahg Migrating Sockets to performactivepacket demultiplexing.
provide conditional progress guarantees to threads. One forfnetwork endpoint that is an exclusive packet receiver has the
of progress guarantees provided by the ARC scheduler [2Btoperty that packets destined for it should not be delivered
[26] is as follows: a “punctual” thread with rateand period to any other endpoint in the system.

p is guaranteed at leastp CPU time over time intervakp, In active demultiplexing, an exclusive packet receiaelr
for k = 1,2,---. vertisesto a peer sender an OS handle for packet delivery. On

On the send side, ARC scheduling enables applicationsléarning the advertisement, the sendecloseghis OS handle

respond to media events and generate network packets ifirpackets it sends to the receiver. The kernel demultiplexing
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code in the receive system can then make use of the handle to
deliver packets directly to the receiver, without table searching.
For safety reasons, the receive kernel checks that a handle
is indeed associated with an exclusive packet receiver and
ensures the “freshness” of the handle by usinghance
included with the handle. From a QoS perspective, active
demultiplexing is desirable since it is a constant overhead
mechanism, contributing to predictable performance.
In the receive end system, demultiplexed network packets

Client
process

Client
process

=

may cause their receiver processes to be scheduled. An ARC
CPU scheduler in the receive system enables such processes . O
to respond to the packet arrivals “in time.”

Well known

ine regi
IIl. MIGRATING SOCKETS routing region

i icati o Cached endpoi
In choosing an application programming interface (API) for @ cuchc endoin

our system, one of our goals is that the API should allow us O Flushed endpoint

to run existing a”‘?' future Unix muIt|m§d|a appllcapons .(S_uchig. 2. The protocol implementation model of Migrating Sockets.

as the mbone suite of teleconferencing tools) with minimal

modifications. We, therefore, decided to maintain backward ) o o .
compatibility with the widely used Berkeley socket interface. Besides giving access to communication functions, socket
In concept, our Migrating Sockets framework draws upo#escriptors are more generally file descriptors in Unix. Hence,
previous experience in user level protocol implementaticiPCkets should support Unix semantics for file descriptors.
[16], [24]. In what follows, we give an overview of Migrating First, it should be possible to have shared access to sockets

Sockets. Several novel ideas implemented in the framewd¥ Multiple processes, such as after therk() system call,
are presented in Section IV. or after socket descriptors have been passed from one process

to another. Second, the:lect() system call, which waits for
input from any of a set of file descriptors, should work for

o ~ socket descriptors as well.
Sockets are used by applications to access local endpoints of

network connections. Function calls in the socket API can be ]
classified into three major categories: 1) those for connectibn ENdpoint Management
management, such ascket(),bind(), listen(), accept(), Fig. 2 gives an overview of the protocol implementation
and connect(); 2) those for sending and receiving datamodel of Migrating Sockets. The model uses a network
such assend(), sendto(), sendmsg(), recv(), recvfrom(), server process for “boundary” protocol operations like opening
recvmsg(); and 3) those for managing endpoint characteriand closing network connections. User applications are client
tics, such asioctl(), setsockopt(), andgetsockopt(). processes in the model. They register themselves with the
We elaborate somewhat on connection management, sinaeeitwork server. When a client process opens a socket, it
is needed to understand caching and flushing of network emdeates a local data structure for the socket and contacts the
points in Migrating Sockets. An application opens a socket metwork server with an RPC call. The network server likewise
using thesocket () call, which returns @ocket descriptof=or creates a data structure for the socket, and performs most
datagram (i.e. connectionless) communication, the applicatiohthe “real” work for socket creation. Apart from using the
then usesind() to associate a local address with the socketpcket() call, client processes camplicitly gain access to
which can then be used for sending and receiving data. Fmrcket descriptors, such as after a fork. In the case of a fork,
connection oriented communication, further operations aftédre network server copies socket descriptors from the parent
bind() are needed to establish network connections befgueocess to the child process and uses callback RPC to ask the
communication can occur. This can be done by eithmassive child process to create data structures for the sockets inherited.
open or aractiveopen. In a passive open, a server applicatidn summary, a client process knows about all the sockets for
uses thelisten() call to declare its intention of receivingwhich it holds a socket descriptor, whereas the network server
incoming connection requests. When a connection requ&sbws about all the sockets in an end system.
arrives from a remote endpoint for the socket in listen state,Since the network server has global knowledge of all the
a network connection will be established and a new sock&ttwork endpoints in a system, it is suitable for the tasks
will be created to access the newly established connectiarfi. connection management. For example, it will be able
The server application can then use theept() call to geta to enforce uniqueness of network connections requested by
socket descriptor for the new socket. In an active open, a cliatifferent client processes. However, it is expensive to go
application uses the:onnect() call to request connectionthrough the network server for every socket operation. This
with a remote endpoint. Whegonnect() returns, a network is especially true of operations on the “performance critical”
connection will have been established, accessible through tragh, namely sending and receiving network data. In Migrating
socket used inconnect(). Sockets, after a network connection has been established, the

A. Berkeley Sockets
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state and management right of a socket carcdzhedto the T
client process holding an exclusive socket descriptor for the

) ~ Upper half

socket. Caching involves transferring the current state of the /

socket (including any data buffered for send and receive, and imer threa A e o col

any protocol state associated with the socket) from the network jor <aleut code 1\

server to the client process. A client process can then send to

and receive from the cached socket without going through the /

network server. “ 1
For connectionless protocols, such as UDP, a socket can

be cached after th@ind() system call, which fills in a

local address and port number for the socket. For connection .

oriented protocols, such as TCP, a socket can be cached after \

the accept() system call, which fills in both local and remote

addresses and port numbers for the socket.

" Receive side |
protocol threéads
(one for each cached
end point) /

A socket continues to be cached until a condition unfavor- ~ Bottom half

able to caching occurs, at which time the sockeflished .\"
to the network server. This involves transferring the state and \\‘ /
management right of the socket from the client process back to Packet filter or
. . . active OS handle
the network server. As an example, flushing is required before
a fork, since cached access is incompatible with the semanfiés 3- Multithreaded process structure for applications accessing cached
. . . . sockets.
of sharing network endpoints. It is also required before a
close. After flushing, the network endpoint may continue to
exist within the network server. Therefore, flushing before e make use of mutex locks and condition variables for mutual
close takes care of the requirement of certain protocols (suekclusion and condition synchronization. The current locking
as TCP) that the lifetime of a network endpoint may exceapanularity is quite coarse. To illustrate, it is often convenient
the lifetime of the process having access to the endpoint. Adl think of protocol processing as consisting of an “upper” and
operations on a flushed socket go through the network sener;bottom” half. The upper half is driven by protocol send
using an RPC interface. activities, while the bottom half is driven by packets received
Whereas shared access to a socket can prevent the sofrket the network. Fig. 3 shows the multithreaded structure
from being cached, caching may be reenabled bythese() of a typical client process accessing cached sockets. A timer
operation. The situation occurs if, after a close by somkread and application threads with send side protocol code run
process, another process becomes the only one holdingn ahe upper half. Protocol receive threads run in the bottom
socket descriptor to the socket in question. When that happemalf. Notice that we use a thread of control for receiving from
our system caches the socket to the latter process. each cached endpoint.
Besides the cache and flush operations, our system support® our locking model, a mutex loclksyslock protects
a third operation for socket migration known eexall. The system data structures that are not modified by bottom-half
operation is a callback RPC for the network server to asktlareads. The purpose of the lock is then to synchronize access
client process to transfer the state and management rightogf multiple upper-half threads. For example, an upper-half
a cached socket back to the network server. It is needed, flaread opening a socket and another one doing a close may
example, in the optimization described in Section IV-B.  both be trying to modify a set of file descriptors associated with
a process. Locking is required to serialize the two operations.
) ) . Another mutex lockintrlock protects system data structures
C. Implementation Considerations that may be modified by bottom-half threads. Its purpose
Our implementation of Migrating Sockets leverages prds to synchronize access by bottom-half threads, as well as
tocol code from 4.4 BSD. However, parts of the runtimbetween the upper and bottom halves. For example, a bottom-
support system have been rewritten. First, we replaced B®BIf thread may be trying to append data to a receive socket
mbuf buffer management byessage blocksimilar to those buffer, while an upper-half thread may be trying to remove
used in SVR4 streams. This is because mbuf has been foulaga from it.
to treat small and large messages nonuniformly and, hencelUpper-half protocol threads normally acquigslock be-
exhibit undesirable performance idiosyncrasies [9]. Moreovdore intrlock. Consistent use of this locking order avoids
message blocks can very naturally handle both normal daeadlocks between threads in acquiring the two locks. There
buffers andnetwork buffers(see Section IV-D) supported inare situations, however, in which the normal locking order is
our system (using thesballoc() library call). not followed. For these situations, the code fragment shown
Second, we implemented a timer management interface forFig. 4 is used to avoid deadlocks. Specifically, an upper-
timer activities. Unlike 4.4 BSD, timer processing is drivemalf thread is trying to read from a socket. The thread first
by a timer thread of control. acquiressyslock and thenintrlock before it checks the
Third, it is not feasible to protect critical code sections byeceive socket buffer. If it finds no data available for reading,
raising interrupt level in a user level implementation. Insteathe thread blocks on a conditioneadable protected by
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Algorithm LOCKING context switch overhead and simplifying application progress
rate determination. We also describe our kernel/user interface
mutex.lock(syslock); which provides user level protocol code with access to efficient

;r;utex_lock(intrlock); kernel level support [27] through Unix file descriptors.

while (no data available for reading) { A. Minimizing Hidden Scheduling
mutex_unlock(syslock);

cond_wait(readable, intrlock); Our experience [28] has been that it is difficult to provide

if (mutex_trylock(syslock) == 0) { QoS guarantees in certain protocol implementation frame-

mutex_unlock(intrlock); works. In streams [21], for example, network send and receive
mutex_lock(syslock); can take place iservice routinesun by “background” system

mutex_lock(intrlock); threads of control. In BSD Unix, a single system timeout

} invocation has to handle outstanding timer activities of all

} the network endpoints in the system. The main problem of

these background system services is that there is no easy way
to determine suitable reserved rates of progress for the system
services, such that the real time constraints of user applications
intrlock (intrlock will be automatically released whencan be met.
blocking occurs insideond wait()). Before the thread calls Aside from the use of background system services, tra-
cond_wait(), however, it explicitly releasesyslock to allow ditional kernel level protocols perform entire receive side
other upper-half threads access to data structures protectegigtocol processing in the context of interrupt handling. From
syslock. a QoS perspective, it is similarly difficult to control the rate
When the thread wakes up because data have arrivedofiprogress of interrupt handling code (some researchers, such
will have acquiredintrlock while also needing to reacquireas [20], have considered disabling device interrupt for more
syslock. In the figure, the calhutex trylock(syslock) predictable performance).
tries to acquiresyslock but returns a failure condition of 0 if  Migrating Sockets reduces the use of such hidden schedul-
the lock cannot be acquired. Notice thamiftex trylock() ing for cached sockets to a minimum. First, each user process
succeeded, the thread will have acquired beflock and has a dedicated timer thread that handles timer events only for
intrlock. If mutex trylock() failed, however, the thread network endpoints local to the process. Second, the role of the
first releasesintrlock and then tries again to acquire botetwork receive interrupt handler in our system is minimal,
locks in the normal order ofyslock beforeintrlock, thus i.e., only to demultiplex packets to their destination processes.
avoiding the possibility of deadlock with another thread.  Receive side protocol processing is done in the context of the
receive thread associated with a cached endpoint.

Fig. 4. Locking algorithm for deadlock avoidance.

IV. NOVEL ASPECTS OFMIGRATING SOCKETS

Our Migrating Sockets framework exports information of: OPtimization for Concurrent Server Model
exclusive packet receiverarhich has the following meaning: In client/server programming, there are two principal pro-
If a network endpoint is an exclusive packet receiver, thegramming models. They are the iterative server model and the
packets destined for it should not be delivered to any otheoncurrent server model (see, for example, [22]). In the latter
endpoint in the system. Notice that in Migrating Sockets, natodel, the server’s role is only to listen for service requests
work connections are established through the network servieom remote hosts. Once a request has been received, the
which knows about all the existing network endpoints in theerver forks a child process to handle it, and itself goes back
system. Hence, when the network server allows a socketttolistening for more requests. Because it allows new service
be cached, it knows whether the socket being cached is raquests to be accepted while previous ones are still being
exclusive packet receiver or not. served, many programs, including the Internet Superserver

Information on exclusive packet receivers can be used {bnetd), use the concurrent server model.
reduce the search time for matching packets with packet filtersA typical program template for concurrent servers using
since a match with the filter of such a receiver means thedckets is shown in Fig. 5. The program uses a sotkdb
further matching would be unnecessary. Moreover, as Wisten for incoming service requests. When a request arrives
will show in Section VI, the information enables a constarftom a remote endpoint, it is accepted and a network connec-
overhead packet demultiplexing mechanism knowraetsve tion is established. The local endpoint of the new connection
demultiplexing is accessible throughewfd. The server then forks a child

In the following subsections, we elaborate upon sevenatocess to serve the request and itself clasasgd.
other novel aspects of our system, namely: 1) minimizing In the caching mechanism described so faspfd will
hidden scheduling in protocol processing; 2) caching optie cached to the server on being returned dwgcept().
mization for the concurrent server programming model; 3)nmediately afterwards, however, the server doegoak()
sharing of routing information between network and highdo serve the request in a child process, forcirgfd to be
level protocols using a well-known shared memory region; arfidished in Migrating Sockets, because it is now shared between
4) a thread folding mechanism on the receive side for reducittge server and the child. In fact, though, the server no longer
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Algorithm CSERVER send its packets in order to reach the receiver may still change
] over time. This can happen, for example, by way of an ICMP
begin redirect message, and the routing table must be updated to
i . . . reflect the change. Moreover, the network interface to which
socket fd is used for accepting service requests */ .
listen(fd, ..); some IP address has been assigned may be replaced by another
while (1) { interface, and ARP must update its translation of the IP address
/* Request served through socket newfd */ (in the routing table) to the link level address of the new
newfd = accept(fd, ...); interface.
if (fork()==0) { /* child */

In our design, we consider routing table management a
global system function. As such, the network server is the
only process responsible for its management. This has two

close(fd);
/* serve request */

;;(it(O); advantages. First, routing table management functions do not
} have to be duplicated in the address space of every application
else /* parent */ process. Second, application processes do not need to be
close(newfd);

interrupted by (and process) routing messages that do not affect
them. However, since application processes need read access
end to the routing table even for common case send and receive,

such access must be as inexpensive as if the routing table

were local to each process.

To satisfy the efficiency requirement, the network server
needs access taewfd. When it closesnewfd, the socket creates a shared memory region, and allocates routing table
becomes cached to the child process. entries exclusively from that region. Moreover, data pointers in

Notice that although the final objective is to cache thge routing table must retain their intended meaning (without
accepted socket in the child process, two cache and one flygfhs|ation) irrespective of the process accessing them. This
operations are involved, of which one cache and one flugfyuires the network server and each application process to
would be unnecessary. To solve the problem, a new soch%g the shared memory region at a “well-known” virtual
option called SO_CONCURRENT_SERVER is supported byjdress. This virtual address can be returned by the network
Migrating Sockets. When the option is set for a socket,$ay server to a client process at client registration time.
in the listen state, it serves as a hint that sockets acceptegy,r shared memory solution allows application processes to
through S should ultimately be cached to a child procesgeely read the system routing table. We believe, however, that
forked by the process, sdy, doing the listen. Hence, when agnis does not represent a security problem in most cases. For
socket is accepted throudh it is merely markectacheable example, users on a Unix system are often permitted to use the

instead of being cached tB. If later, > does access' for netstat(1) command to return the same kind of information.
send/receive,S will be cached (this is known adelayed

caching. If, however, P does a fork before it accessgssS ]

will be cached to the forked process, s@yas part of copying D+ Thread Folding

file descriptors fromP to Q. Moreover,S is marked “recall-  Beyond the basic multithreaded architecture described in
on-access” in the network server, meaning thatPiflater Section I1I-C and illustrated in Fig. 3, Migrating Sockets sup-
accesses, the network server will recalt from @, in effect ports a mechanism callethread folding The mechanism
causingS to be flushed. However, it is more likely th& works as follows. Before the system schedules a receive
will soon closeS, and the recall-on-access statusSo€an be protocol thread to read from a socket endpoint, it checks

Fig. 5. Concurrent server using sockets.

cleared. if there is already an upper-half application thread reading
from the same endpoint. If so, the receive protocol thread will
C. Routing Information Management not be scheduled. Instead, when packets arrive, they will be

The Internet protocol suite owes much of its flexibility an(ﬁ“reCtly delivered to the application thread, in whose context

robustness in a heterogeneous and dynamic networking eﬁSEeive side protocol processing will be performed. If not, then

ronment to protocols at (or below) the network layer. The§Be receive protocol thread will be scheduled as in the basic
protocols include, among others, IP, ICMP, IGMP, EGP arﬁ:{chitecture; this is needed to handle reliable protocols such
ARP. Together, they allow network routes to be dynamical TCP, where receive side ACK or exception processing is

discovered and reconfigured, and network connectivity is n :leeded even i.n the absence Of. applicatign rea_1ds.
Thread folding has two major benefits. First, when an

lost even as network interfaces and routers come up or go lication thread is alread dina f th ket endpoint
down. In our system, we refer to the data structures that ke%éo Ication thread 1S alréady reading Irom the Socket endpoint,

track of various kinds of routing information collectively agVe save a context switch from a receive protocol thread to

the routing table the application thread. Second, when an application thread is
Dynamic routing interacts with caching of network endgctively processing network data (e.g., it is receiving contin-

points. The reason is that even after a network connectidfYS media), it is sufficient to determine a progress rate for

has been established between a sender and receiver, the next
“hop” (represented by an IP address) to which the sender mustrhis region is mapped read-only by application processes.



YAU AND LAM: MIGRATING SOCKETS—END SYSTEM SUPPORT FOR NETWORKING 707

On the receive side, driver code for a network interface
progess informs user processes of data to read by appending receive
notifications to a receive control queue, managed through
the RecvControlQueue object. For efficient control transfer,
send/receive control queues are shared between user processes

Reads/ and the kernel.

e A lightweight kernel thread provides shared access to a
reserved-rate network connection in future integrated ser-
vices networks. The kernel thread is periodically scheduled

senarecove  @ND iIMmplements a rate-based packet scheduling algorithm

buffers such that multiple user processes can send packets to the
network connection with guaranteed data rates. For this pur-

pose, a process create@ltiplexGroup Object using the

——— MultiplexGroup(int, int, int, voidx, int) method shown

el ‘h'ead/ ) DMA in Table I. The method causeshaultiplex group a data struc-

- ture used by the kernel thread for rate-based packet scheduling,
to be created within the kernel. Thig parameter specifies the

USER

Control
queues

Recelve Status Send

3;};‘3 drver packet scheduling algorithm to use for the multiplex group.
KERNEL _ Currently, theKT_RC algorithm in [27] is supported. Parame-
|merrupts J kg ters of the scheduling algorithm can be passed withpthrems
T pointer. For example, theT_RC algorithm takes the scheduling
Network Interface period (in xs) of the kernel thread as a parameter. Once a
multiplex group (identified by a key which is unique within
e an end system) has been created by a process, other processes

can gain access to the group usingth@tiplexGroup(int)
method. Processes having access to a multiplex group can
use thejoin() method to add traffic flows to the group with
the application thread alone, without having to do so for $hecified parameters. A rate parameter (in kb/s), for example,
protocol receive thread. is needed for a flow using tH&T_RC algorithm. Flows can be
deleted from a multiplex group using theave() method.

Lastly, notice that, although the interface presented in

E. Protocol/Kernel Interface Table I is designed to be general and device independent, some

For efficiency, Migrating Sockets runs on top of an OSf the operations accessed through the interface are device
architecture (Fig. 6) we have previously prototyped for suglependent. For example, th&endControlQueue :: send()
porting continuous media (CM) applications [27]. method calls a device specific send function within the kernel.

Send/receive buffers shown in Fig. 6 are allocated usifdie I0Buffer :: I0Buffer() method creates device depen-
the T0Buf fer :: I0Butfer() method in Table I. The method dent DMA resources backing allocated network buffers.
creates anetwork bufferregion for direct send/receive to/from
the network (i.e. no intermediate data copies are required). If
the network interface for send/receive uses DMA, the allocated
network buffers will be automatically backed by required Application and protocol threads in Migrating Sockets can
DMA resources. Moreover, buffers can be pinned in physicapecify their CPU requirements using the rate-based reserva-
memory for predictable performance. A memory allocatdion model of ARC scheduling [28]. The rate-based model has
associated with a buffer region supports flexible memotwo parameters: 1) rate, (0<» < 1) and (2) periodp in
allocation/deallocation similar téalloc(3C) and free(3C) us. Informally, the rate specifies a guaranteed fraction of CPU
in the standard C library. time that a thread with the reservation will be allocated over

To send a packet, a user process appends control informatiome intervals determined by.
in the form of asend requedb a send control queue, managed Progress guarantees of rate-based reservations are provided
through theSendControlQueue object in Table I. The send by instances of &mily of ARC schedulers with the following
request is then handled by the kernel through either a systproperties: 1) reserved rate can be negotiated; 2) QoS guar-
call or a kernel thread introduced below. Notice that for somantees are conditional upon thread behavior; and 3) firewall
systems, even after kernel code processing of a send requestection between threads is provided. The first property
has completed, the packet to send may only have been queisegrovided by amonitoring moduleand arate-adaptation
to a network interface, instead of really sent. Therefore, tlierfaceas discussed in [28]. The second and third properties
buffer for sending cannot be reused or freed until the netwoake provided by using an on-line CPU scheduling algorithm
interface has completed its part of the send and updated thi¢h the firewall property such as the RC scheduler in [28].
status of the send request. That is why a method such @shject to the admission control condition that the aggregate
reapall() in Table | is necessary. reserved rate does not exceed one, RC provides the following

Fig. 6. OS architecture for multimedia networking.

V. ARC SCHEDULING OF PROTOCOL THREADS
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TABLE |
KERNEL INTERFACE FOR PrROCTOCOL CODE IN MIGRATING SOCKETS
Class Method Synopsis
I0Buffer IOBuffer(int fd, caddrit | Create a network buffer region of size bytes and map
addr, int size); the region at user address addr. fd is a file descriptor
for the network interface for which the buffer region
is being allocated.
void *malloc(int size); Allocate a properly aligned buffer of size bytes from
network buffer region.
void free(void *buf); Free to network buffer region buffer buf previously
allocated by malloc().
SendControlQueue | SendControlQueue(int Allocatc a send control queue of size send notifica-
fd, caddr_t addr, int size); | tions for the network interface identified in fd. The
send control queue is to be mapped at user address
addr.
void attach(IOBuffer | Attach network buffer region iob to send control
*iob); queue.
int send(void *buf, int | Send lenbytes starting at user address buf by append-
len); ing a send notification to send control queue.
struct  status  *reap(int | Return pointer to status of last newly completed send.
block);
void reapall(); Free buffers in all newly completed sends by calling
free() method of attached IOBuffer.
RecvControlQueue | RecvControlQueue(int Allocate a receive control queue of size receive noti-
fd, caddr_t addr, int size); | fications and map it at user address addr. fd is a file
descriptor for the network interface for which control
queue is allocated.
int recv(caddrt *buf, int | Receive len bytes of data in network buffer whose
*]en, int block); pointer is returned in buf. If no data are available for
receive, block calling thread iff block is set.
void unmap(caddr1 buf); | Give back buffer buf previously returned by recv()
to kernel
MultiplexGroup MultiplexGroup(int key, | Create multiplex group with key key for a reserved
int bw, int alg, void | rate network connection, with bandwidth bw Mbps.
*params, int perm); Multiplexing algorithm is specificd by alg, with algo-
rithm parameters pointed to by params. Permission
for other processes to access multiplex group is spec-
ified in perm.
MultiplexGroup(int key); | Get a multiplex group previously created with key
key.
int setoption(int optname, | Sct option for multiplex group. Option name is
void *optval); optname and value is pointed to by optval.
int join(void *params); Let a flow join multiplex group with parameters
pointed to by params. Return id for the flow in
multiplex group.
void leave(int id); Delete flow with id id from multiplex group.

progress guarantee: a “punctual” thread with ratend period  An ARC-H system administrator can partition the total CPU
p is guaranteed at leadtrp CPU time over time interval capacity into rates forn service classes, i.e., service class
kp, for k = 1,2,--.. Because ARC schedulers offer firewallk is allocated rateR;,1 < k < m, such thatR; >0 and
protection between “well-behaved” and “greedy” threads, theyR;, = 1. For & = 1,---,m, an overbooking parameter,
are appropriate for integrated scheduling of continuous media (0 < b, < o) is also specified.
and other applications found in a general purpose workstationThread j can request from service clagsa reservation
Besides RC, scheduling algorithms with improved fairnespecified by two parameterapminal rate; and periodp;.
have also been deployed in ARC, such as fhe rate- The request is granted if
controlled algorithm in [26]. A

ARC implements priority inheritance for threads that can VicauTi 75 = Fa(l+ br)
contend for synchronization resources such as semaphovesereC}, denotes the subset of threads already admitted into
mutex locks, and readers/writers locks. This reduces the exteatvice classk.
of priority inversion, wherein a lower priority thread blocks a After threadj has been admitted, it receives affective
higher priority thread by holding a lock required by the latterate given by
(When coupled with a dynamic priority ceiling protocol such vy = Ry % (73 /Siecs 1)
as [10], the extent of priority inversion can be bounded.) J k il =ieChli

Recently, we have extended ARC to ARC-H (where vhereCy is the subset of threads admitted into service class
stands for heterogeneous services) to explicitly handle divedsewhich by now includes thread. These effective rates,
classes of application requirements, including both guarantegd; = 1,---,n (n is the total number of threads) in ARC-
and best-effort services. An overview of ARC-H is giverH have the same interpretation as the reserved rates in ARC
below (see [26] for a detailed treatment). scheduling [28].
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The overbooking parameters are used for specifying dif-
ferent levels of service. Fdf, = 0, threads in service class
k are provided with a hard guarantee of their reserved rates, Network
For b, = oo, service classt can be used for flexible rate
allocation with excellent scalability (but threads in this class
receive no guarantee besides nonzero progress). Other valyes
of b, lead to service classes with a statistical guarantee
different strengths.

Note that ARC-H provides firewall protection between
service classes such that service cldsgeceives a hard
guarantee of reserved raf&,, for all %.

Client
process

Client
process

2. Caching proces advertises
0S handle for cached socket

using TCPOPT D
option

1. A socket that
is an exclusive

VI. ACTIVE DEMULTIPLEXING packet receiver .: |
. L . becomes cached l:
An important task of protocol processing is to demultiplex
incoming packets to their network endpoints. Traditionally, 3. Peer endpoint encloses OS handle
the receive side of a kernel level transport protocol looks for in subsequent packets sent using
matches by searching a list of protocol control blocks known IPOPT_DEMUX_ENCLOSED
to the system. option

Recent user level protocol implementations have relied @fy. 7. Mechanism of active demultiplexing for TCP/IP.
packet filters installed with the driver of a network interface to
accept or reject packets. While highly flexible, these methods —

involve searching. Although techniques such as hashing and + Option ~ Option | Sequence ;00 O handle
one behind cache can significantly reduce the search time on name | length - mumber i

the average, the actual search time may still be highly variable S @ o

when the number of network endpoints in a system is large.

Since predictable performance is an important goal of our ,
architecture, our system supports a constant overhead packet . Option ggtgigl“ Sequence
demultiplexing mechanism known active demultiplexing |
The basic idea is that, under certain conditions, an OS handle
identifying a receive process can be included in packets
destined for that process. An end system can then make use | i
of the OS handle to deliver packets directly to the receive Option f;ggg,“ nonce  OS handle
process, without any searching. ‘

Currently, active demultiplexing exploits the notion of ex- (c)
clusive packet receivers introduced in Section Il In situations, g
where active demultiplexing cannot be applied (such as mul-

ticast) or is not preferred, our system provides packet fIIterss‘ystem. To allow a link level device driver to easily locate

IPOPT_DEMUX_ENCLOSED, the option is always inserted
as a first IP option. In addition, we use a currently unused bit
We have implemented active demultiplexing in the context the service field of IP header to indicate to the device driver
of TCP/IP. The mechanism can be transparently enabled wivelnether an OS handle has been enclosed.
both sender and receiver hosts in a TCP connection supporfn OS handle should be revoked when a cached socket
it. Fig. 7 illustrates the mechanism, triggered when a sockégcomes no longer exclusive, or when an exclusive socket
say S, that is an exclusive packet receiver becomes cachedoecomes flushed. Handle revocation is achieved using a new
a user process. An OS handle for the user process to recéi@P option TCPOPT_DEMUX_REVOKE. On receiving a
from S becomes known as part of the process of cachingandle revocation from its peer, a network endpoint stops
The newly cached sockei advertisesthe OS handle when including IPOPT_DEMUX_ENCLOSED in packets sent to
it next sends a packet to the remote endpoint, Bayf the the peer. Fig. 8 shows the formats of the various options
network connection. This happens when eitlfehas data to used for active demultiplexing. Notice that a sequence number
send toR, or when S acknowledges packets received fronis included in handle advertisements and revocations. We
R. The advertisement is carried in a new TCP option callgatescribe that the two operations be applied only in increasing
TCPOPT_DEMUX_ADVERTISE. sequence number order, thereby preventing an earlier operation
On processing TCPOPT_DEMUX_ADVERTISIE, learns from overwriting a more recent one.
about S’s OS handle.R then caches the handle and can The complete state transition diagram for handle adver-
later encloseit in subsequent packets it sends f by tisement and revocation using TCP/IP is shown in Fig. 9. If
way of a new IP option IPOPT_DEMUX_ENCLOSED. Thegland only if) an endpoint is in the “advertising” state, the
enclosed OS handle enables active demultiplexingisyend advertisement option will be used for TCP segments sent by

(b)

Formats of active demultiplexing options.

A. Mechanism
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@ TCP handle revocation option used with seq. # n

socket

@ TCP handle advertisement option used with seq. # n

S

Advertising Ry

created / n = 0

i

&

A Cached socket becomes exclusive or exclusive socket becomes cached

Advertised
C/n:=n+1

B: New TCP data acked or TCP data received past the receive window
when the revoking state was last entered

C: Cached socket becomes non-exclusive or exclusive socket becomes flushed

D; New TCP data acked or TCP data received past the receive window
when the advertising state was last entered

Fig. 9. State transition diagram for handle advertisement and revocation in TCP/IP.

the endpoint. Similarly, if (and only if) an endpoint is in the Algorithm ACTIVE
“revoking” state, the revocation option will be used for TCP
segments sent by the endpoint. begin ,

Notice from Fig. 9 that handle advertisement for some L gﬁg;:l](bs;zr;f;%;‘uﬁecu“o" state 1o transfer to
network endpoint, sayS‘, should perSiSt until one of two 2. if (handle is not for a;l exclusive packet receiver)
conditions occurs. First, when new (i.e., non-retransmitted) goto fallback;

TCP data have been sent and acked $orin which case 3. if (nonce in handle does not match nonce for
a data packet carrying the handle advertisement in question receive endpoint)

goto fallback;

will have been reliably delivered. Hence, a transition from X . o
Deliver packet directly to process identified in

the advertising to the advertised state occurs. Second, suppose

. . . handle;
n is the hllg.hest receive sequence number acked byhen 5. return:
the advertising state in Fig. 9 was last entered. Subsequently  fallback:
when TCP data with sequence number higher thawere 6. Match packet against installed packet filters in
received forS, a TCP ack advancing’s receive window system;

must have been successfully deliveredSts peer endpoint. end ;

Moreover, the ack must have been carried in a TCP segmeéigt 10. Specification of active demultiplexing algorithm.
containing the handle advertisement in question. Hence, a

transition from the advertising to the advertised state OCCULS; advertise an indiscriminate OS handle (i.e. one that is

Similar conditions govern the transition from the revoking 9ot associated with an exclusive packet receiver) and “hoard”

the revoked_state. . . . ackets that should also be delivered to other processes in
Our experience has been that it is straightforward to incqt-

: : S ) . 1he system. Second, an OS handle can become obsolete, such

porate active demultiplexing into TCP/IP. To give a rough idea

; ) : 85 when a cached endpoint becomes flushed. Third, a faulty
of the complexity of our implementation, we report that 11 : .
. . . “process can enclose a wrong or fabricated OS handle in
lines of C code were added to TCP input processing, 22 ImBs ;

X . ending packets.
were added to TCP output processing, 51 lines were adasec!F . .
! . 0 guard against such security problems, we generate a

to the socket layer, and 15 lines were added to the link level 0 . .

. : . . .noncewhen a network endpoint is installed and associate it
device driver (see the next section for the required device . . . . . .
driver changes) with the endpoint. The nonce is used in conjunction with

' the OS handle for active demultiplexing. Nonces have the
) ) ) properties that each newly generated nonce has a fresh value,
B. Security Considerations and it is difficult to guess the value of a nonce that is not
Taking an OS handle in an incoming packet and using it #xplicitly passed. Before accepting an OS handle, receive side
deliver the packet directly to a receive process is a “powerfulfemultiplexing code performs security checks as shown in
mechanism. Without proper precautions, the mechanism cagorithm ACTIVE (Fig. 10). Notice that the check at line
raise some serious security concerns. First, a malicious procgsguards against the first security threat in the preceding
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TABLE 1 TABLE 1l
THREAD SYNCHRONIZATION OVERHEAD (IN /tS) BREAKDOWN OF MIGRATING SockeTs TCP/UDP &ND
IN SOLARIS FOR VARIOUS SPARC ARCHITECTURES PATH LATENCY (MICROSECONDS FOR ULTRA-1

Overhead Machine Code TCP send UDP send
SPARC 10 | SPARC 20 [ Ultra-1 1400 bytes | 1byte | 1400 bytes | 1 byte
mutex lock 2.0 1.4 09 Socket send 90(74) | 72(62) 16(9) | 15(9)
condition signal 0.5 0.4 0.2 TCP/UDP 144(73) | 25(4) 101(62) | 28(7)
context switch 47.0 32.5 18.0 1P 108) | 10(2) 133) 1 133)
Link layer 9(2) 92) 15(3) | 14(3)
Device driver 20 19 20 20
Total 273 135 165 90

paragraph, while the checks at lines 1 and 3 guard against

the second and third security threats. We fall back on a

conventional packet filter mechanism if an enclosed OS handle TABLE IV

s found unacceptable. S N
Finally, we note that, in practice, security can be better

enforced if an OS handle is inserted by kernel level code (i.e.,

Code TCP receive UDP receive
1400 bytes | 1 byte | 1400 bytes | 1 byte

by a I_ink level devicg driver suppor.ting aptive de_mgltiplexing). Return Trom read T1(28) | 52(29) 3524 | 30(11)
In this case, security safeguard is mainly to limit the cycle Switch to read thread 79(16) | 92(51) 56(18) | 56(16)
time of nonces, and it is sufficient to generate a new nonce TCP/UDP 90 56 89 57
. T . IP 15 14 93) | 10(3)

by incrementing it cyclically. Link layer sn | 75) 63) | 76
Switch to recv thread 34 33 38 32

Kernel interrupt 33 32 33 31

VIl. EXPERIMENTAL RESULTS Totd 590 TT 7€ >3

We have an implementation of Migrating Sockets on Solaris

2.5.1. W(_e are currently running it on Sun SF_’ARC/UItraSPARC TCP/UDP PerformanceWe measured the performance of
workstations and Pentium Il desktops interconnected b

10/100-Mb/s Ethernet networks. Major Internet protoco@ége';glgThigza“ﬁ na c():];\:_hc; lesot?kr:a(: iLr:DI\;“rPat?rertcS)((:)(::Ik:::ldfrshe
including TCP, UDP, and IP (with IP multicast) have beefCCeSs 9 9 9 y
objectives are 1) to demonstrate that real and complex inter-

ported f'rom 44 BS.D to Migrating Soc_kets. In the fOIIOWIngr‘network protocol stacks can be effectively implemented in our
subsections, we first present experimental results on t,[rge

oo . amework, and 2) to identify where major protocol processing
overheads of individual system components in our prototype. : L :

time is spent in an end-to-end communication, thereby iden-
We then present results on the overall system performar{

e. L ;
and the effectiveness of our QoS support mechanisms. ﬁylng further opportunities for performance improvement.

For UDP, we have incorporated the following optimization
techniques proposed in [19]: 1) Integrated checksumming and
copying of data from application buffers to network buffers;
Thread SynchronizationMigrating sockets makes use of a2) replacement of general purpose socket send code with
multithreaded programming model. The model has the inherentre efficient UDP specific code; and 3) deletion of pseudo-
cost that protocol threads have to synchronize with each otleennect in UDP send. Moreover, since Internet checksumming
using mutex locks and condition variables. Moreover, conteist heavily used, we replaced the 4.4 BSD checksum routine
switches are required to switch execution between threadsth a more efficient routine optimized for the SPARC Ultra-
In our first set of experiments, we measure various threddarchitecture. Apart from optimized checksumming, the TCP
synchronization overheads. The purpose is to show that #we is largely ported as is from 4.4 BSD.
use of multithreading does not result in excessive overheadTo do the measurements, we used the Solaris TNF facility
For our measurements, we performed the operation in questioninsert probe pointsat strategic places of the code. An
many times between two threads, and report the average tiexecuted probe point logs, among other things, a timestamp
taken. useful for timing analysis. We present results averaged over a
The first row in Table Il shows the times needed to acquitarge number of data points taken. However, the performance
and release a mutex lock for the different SPARC architecturesimbers are subject to the overhead of TNF probe points
The second row shows the costs of signaling a conditi@xecuted at the user level. We believe they are useful for
variable. The third row shows the context switch times fromomparing the relative costs of components in our system.
one thread to another. In our current system, usually two mutexTable 11l gives a breakdown of the various (average) compo-
locks are needed for sending a packet, while one mutex loe&nt costs (the numbers in brackets are corresponding standard
and one condition signal are needed for receiving a packeeviations) due to host software on the send path of a packet.
Context switching is mainly required on the receive side, frofBach packet carried either 1400 bytes or 1 byte of user data.
a receive thread to an application thread. Its cost can oft€he relatively high costs of socket and TCP send code for 1400
be amortized over a train of packets received. From Table biytes were mainly due to data copy and TCP checksumming.
we conclude that the cost of thread synchronization is &wor UDP, socket send code had minimal cost because it
acceptable fraction of the total cost of protocol processirmglled a UDP specific send function very early on. The UDP
(see Tables Il and IV). function performed integrated checksum and copy of data

A. Component Costs
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from application to network buffers. Performance benefits of
600

replacing “baroque” socket send code with protocol specific SPARC 10 copy buffer « -
Ultra-1 copy buffer -+---

code can also be seen by comparing the costs of socket send
for one byte of TCP and UDP data, respectively.

The row labeled “Link layer” in Table Il gives the cost
of link layer processing such as ARP address translation by
Migrating Sockets. Also notice from the last row of the table
that the kernel level overhead, i.e., processing by the network
device driver, was largely insensitive to the packet size. This
is because protocol code allocated network buffers for sending o e ‘ .
and data did not have to be copied from user to kernel space. 0 200 400 600 800 1000

We conclude that, on the send path, major processing
time is spent at the transport level (TCP or UDP). Socket
level processing can also be expensive, but can be redufidll. Copy buffer overhead (ips) of buffer management subsystem
by replacing general purpose socket code by more efficidhfia 1 and SPARC 10).
protocol specific code.

Table Il gives a breakdown of the various (average) com- 70 |
ponent costs (the numbers in brackets are the corresponding
standard deviations) due to host software on a TCP/IP or
UDP/IP packet receive path. As for the send path, a packet
carried either 1400 bytes or one byte of user data. The “Kernel
interrupt” number is the total time spent in the interrupt handler
of the receive network device driver, which includes the cost
of matching a packet to a BSD packet filter (which took
roughly 104s). A matched packet woke up a receive thread 10 /7
of Migrating Sockets and caused the thread to be scheduled. 0
The cost of context switching to the receive thread is given
by the “Switch to recv thread” number. Buffer size (bytes)

Protocol proce;smg of a recel\,{e.d packet"by Mlgratl.ng SOCEi_g. 12. Duplicate buffer overhead (jrs) of buffer management subsystem
ets starts at the link layer. The “Link layer” number includegjira.1 and SPARC 10).
costs such as inspecting the type field of the Ethernet header

and dispatching the packet to IP. TCP or UDP processing of a _ )
packet took longer for 1400 bytes than for 1 byte of user daff allocating a message block and copying buffer data from an

due to checksumming of a longer packet. After the transp&isting block to the new one. The size of the message block
layer, the receive thread appended the packet to a Soc\k@fs.var_led in the experiment. Fig. 12.shows the .ove-rhe.ad. for
receive buffer and woke up an upper-half application thre&yplicatinga message block. The duplicate operation is similar
that was blocked reading from the socket. The “Switch to re4@ the copy operation, except that buffer data are not really
thread” number gives the overhead of context switching gopied, but are reference counted for sharing. It is very useful
the application thread. Lastly, the “Return from read” numbgyhen protocol layers need to share data without modifying the
includes the cost of copying any user data from a sockdata. The cost of the duplicate operation is substantially lower
receive buffer to an application buffer. Hence, it was highéfan that of message block copy and is mostly independent of
for a |arger packet size. the buffer size (FIgS 11 and 12)

We note that, as is the case with the send path, transportn protocol processing, it is frequently necessaryliti
level processing is an important source of overhead on thg0 message blocks together, such as when a header is to be
receive path. However, the receive path is more involvddepended to an existing packet. Fig. 13 gives the overhead of
because of two needed context switches (assuming no thrékig operation. The overhead is quite small since it involves
folding)—one from kernel interrupt handling to a protocoPnly simple pointer manipulations.
receive thread, the other from the protocol receive thread toWe next report on the performance of the timer subsys-
an application thread performing a read. tem. Fig. 14 shows the time needed to insert/delete a timer

Protocol Runtime SupportMigrating Sockets implements into/from the timeout table. The times to timer expirations
a buffer management subsystem and timer subsystem differeégre randomly chosen from zero to 500 s. The total number
from those in 4.4 BSD. We report on the performance of thesé timers used in an experiment was varied. Fig. 15 shows
subsystems. The purpose is to give an idea of how they mighe time needed to execute a null timer function for different
impact perfomance when used to support protocol stacks othembers of timers used in an experiment. The times to timer
than TCP/IP and UDP/IP. expiration were randomly chosen from 0 to 250 s.

We measured the performance of the buffer managemenOptimized ChecksummingFhis set of experiments quanti-
subsystem in our current implementation. Fig. 11 shows tfies the performance benefits of using an Internet checksum
overhead forcopyinga message blockrhe operation consists routine that is optimized for a specific computer architecture,
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Fig. 13. Link buffer overhead (in:s) of buffer management subsystem

(Ultra-1 and SPARC 10). Data size (bytes)

Fig. 16. Checksum overhead (irs) versus data size (in bytes) for Ultra-1.

20 T T T T
- SPARG 10 doloi Hier mediately after the checksum loop. Fig. 17 shows the results
£ st a1 insert imer = ] when the test program had a small memory footprint (less
8 than 8 Mbytes). For the integrated approach, the performance
E 0l — 1 was very slightly better if the source address was also double-
3 word aligned than if it was word or byte-aligned. Also, the
g integrated approach showed minimal improvement over the
g 5r e e separate approach because of cache effects. Fig. 18 shows the
< o 3’ o I results when the test program had a large memory footprint (41

o . . . . Mbytes). In this case, the integrated approach was significantly

500 1000 1500 2000 2500 more efficient than the separate approach.

Number of timers

Fig. 14. Insert and delete timer overheads) of timer subsystem (Ultra-1 B. Performance Impact

and SPARC 10). Comparison with Solaris:Although high performance is
not the main concern in our work, we show that our system
60 , , : - is competitive with an in-kernel protocol stack in Solaris, a
_ mature and industry strength operating system. Competitive
w 50 | SPARC 10 execute timer —— E . . . .
° Ultra-1 execute timer — performance is achieved in part by our efficient protocol/kernel
% 40 | \ 1 interface, which imposes little additional overhead on network
§ - access from the user level. Further optimizations with Mi-
A e —— S grating Sockets are possible, chiefly by changing the sockets
5 oo | o | API to further reduce data movemehand by implementing
§ integrated layer processing.
Z 10} e —— In our experiment, we sent 8000 TCP/IP packets on a round-
o ‘ . . ‘ trip between two Pentium 11/300 machines connected by 10
0 200 400 600 800 1000 Mb/s Ethernet, using unmodified Solaris 2.5.1 and Migrating

Sockets. We measured the average time taken for one round-
trip. As in Section VII-A, we used an application payload of
Fig. 15. Execute timer overhead (ps) of timer subsystem (Ultra-1 and gne and 1400 byteS, for a small and |arge Ethernet packet'
SPARC 10). respectively. For 1 byte, Migrating Sockets and Solaris used
727 and 719s, respectively. Hence, Migrating Sockets had

namely the SPARC Ultra-1. Fig. 16 compares the performan@@ €xtra 8us overhead. For 1400 bytes, Migrating Sockets
between the original 4.4 BSD checksum routine and an op?d Solaris used 4251 and 4174s, respectively. Hence,
mized checksum routine for various data sizes. By exploitifi9rating Sockets had an extra 7i6 overhead. We conclude

knowledge of the most efficient data size and alignment for®For example, it is shown in [8] that solely by changing socket applications

memory access, the optimized routine achieves Signific%?lldirecw allocate buffers from the network memory pool, bandwidth can
. .. e roughly doubled and latency can be roughly halved. In our system, the
improvement over the original one. Migrating Sockets layer does directly allocate network buffers. However, we

We next investigate the performance benefits of integrateid not go one step further to do the same at the application level, because

checksum and copy. In the experiments the destination QHQW objective to remain backward compatible with Berkeley sockets and
) ’ existing applications.

dress of a copy was double-word a“gned' For the Sep""r_""teThese numbers include inherent latency due to interface hardware and
checksum and copy approach, the copy loop was done irestricted Ethernet bandwidth.

Number of timers
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Fig. 17. Data checksum and copy overhead(s) versus data size (in bytes) for small memory footprint (Ultra-1).

application ran with a rate of 0.02. Fig. 19(b) plots the
sequence of round-trip times obtained. Unlike Fig. 19(a), the
measured times in this case closely match those achieved
when both socket applications ran standalone. Hence, protocol
processing rates are guaranteed using Migrating Sockets.
Active Demultiplexing: To quantify the performance impact
of active demultiplexing relative to packet filters, we sent 2000
TCP/IP packets on a round-trip between a pair of Pentium
111300 machines connected by 10-Mb/s Ethernet, and measured
the average time for one round-trip. An application payload
2000 / ,,,,,,, 1 of 1400 bytes was used for each packet. Fig. 20 shows the
T s . . . average time per round-trip for active demultiplexing versus
1000 15002000 2500 3000 3500 4000 4500 jinear matching with packet filters, as we varied the number
Data size (bytes) of receive endpoints on one of the hosts. As shown, active
Fig. 18. Data checksum and copy overhead:(ims) versus data size (in demulgplexmg has superior performance when the number of
bytes) for large memory footprint (Ultra-1). endpoints becomes large.

However, by increasing the amount of control information in
Spacket, active demultiplexing represents a tradeoff between
(that are possible with user level implementation), Migratin andwidth and processor efficiencies. Our implementation uses
Sockets achieved highly competitive performance. welve bytes for an enclosed OS handle. For 10-Mb/s Ethernet

Delay Performance:To quantify the delay performance ofVith @ maximum frame size of 1514 bytes, this represents
ARC scheduled protocol threads in Migrating Sockets, we séht)-6#:S increase in link processing time per packet, and a
2000 TCP/IP packets (with 1400 byte application payloa&V% Io§s of efﬂmgncy in link bandW|d-th. Increage |nll|nk
on a round-trip between two socket applications runnirgfOC€ssing time will decrease proportionately with higher
on two Ultra-1s. The time taken for each round-trip walandwidth networks, whereas loss of bandwidth efficiency will
recorded. For competing workload, seven compute-intensid@crease with larger link packets (such as FDDI and ATM
greedy applications ran on each machine during the course’dfL data units [23]).
measurement. Multimedia: This experiment was performed between two

The experiment was repeated two times. In the first run, Wwhtra-1s connected by 10-Mb/s Ethernet. We used a video
ran both socket applications and all 14 competing applicatioféent application,mpeg2client, modified from the public
in the Solaris TS class. Fig. 19(a) plots the sequence @@Mmainmpeg2play to read video data from the network. The
round-trip times obtained. As shown in the figure, interferen@pplication, using Migrating Sockets, repeatedly reads MPEG-
from the greedy applications caused occasional, but substartistncoded pictures carried in TCP/IP packets. After reading
increases in the measured round-trip times. each whole picture, it decodes the video into a frame of 8-

In the second run, each socket application using Migratirgt pixels, and records a timestamp. In our experiment, video
Sockets ran with an ARC rate of 0.1, and each greedyas sent at 30 fps tepeg2client by another application

14000 | Separate checksum/copy ——
Integrated checksum/copy -+---
12000
10000 |

8000

6000 r

4000 |

Data checksum and copy overhead {in microseconds)

that even without using aggressive optimization techniqué
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Fig. 19. Profile of packet round-trip times with competing workload for (a) Solaris TS, and (b) ARC-scheduled Migrating Sockets.

running on a different machine. The video was a 65-s segment
T T . T T T . - of IPPPP encoded tennis instruction.
8 Linearmatching o— ] We ranmpeg2client with an ARC rate of 0.3 and period 33
Active demultiplexing —+- . . . B
ms. As competing workload, eight compute-intensive greedy
: applications ran with a rate of 0.02 each. A frame rate of 29.99
per second was reported Bpeg2client in the experiment,

Y 1 compared with a frame rate of 14 per second when all the
£ applications ran in Solaris TS. Henageg2client received
E at . sufficient CPU time for full frame rate, despite the presence
of competing workload. Moreover, Fig. 21 shows a plot of
2k {1 the times between pictures decoded tyeg2client. AS
shown, the scheduling jitters were such that these times never
1| 1 exceeded 66 ms, which is the worst case predicted by ARC
scheduling for a scheduling period of 33 ms.
00 é 110 115 210 2]5 310 315 4L0 45 Vl” CONCLUSION
Number of receive endpaints We presented Migrating Sockets as a framework for user

Fig. 20. Performance impact of active demultiplexing versus linear matc“ra-veI pl’OtOCOl |mpIementat|on,. and discussed its rellatlons
ing, as a function of the number of receive endpoints. to other system components in an end system architecture
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