
700 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 6, NO. 6, DECEMBER 1998

Migrating Sockets—End System Support for
Networking with Quality of Service Guarantees

David K. Y. Yau, Member, IEEE,and Simon S. Lam,Fellow, IEEE

Abstract—We present an end system architecture designed to
support networking with quality of service (QoS) guarantees. The
protocol processing component of the architecture, called Migrat-
ing Sockets, has been designed with minimal hidden scheduling
which enables accurate determination of the rate requirement
of a user application. The end system provides QoS guarantees
using: 1) an adaptive rate-controlled scheduler; 2) rate-based
flow control on the send side for access to reserved-rate network
connections; and 3) a constant overhead active demultiplexing
mechanism on the receive side which can be transparently en-
abled in wide-area TCP/IP internetworking (although it is not
restricted to TCP/IP). To achieve efficiency, Migrating Sockets
lets user applications manage network endpoints with minimal
system intervention, provides user level protocols read-only access
to routing information, and integrates kernel level support we
previously built for efficient data movement. Migrating sockets
is backward compatible with Unix semantics and Berkeley sock-
ets. It has been used to implement Internet protocols such as
TCP, UDP, and IP (including IP multicast), and run existing
applications such asvic. Migrating sockets has been implemented
in Solaris 2.5.1. We discuss our implementation experience, and
present performance results of our system running on Sun Sparc
and Ultra workstations, as well as Pentium-II desktops.

Index Terms—Bandwidth scheduling, CPU scheduling, packet
demultiplexing, quality of service guarantees, user level protocol.

I. INTRODUCTION

I T IS INCREASINGLY important for end systems to pro-
vide support for networking with quality of service (QoS)

guarantees. This trend is in part due to the emergence of
continuous media (such as video and audio) applications
having real-time constraints. Such work on end system support
complements recent research on integrated services networks.
QoS guarantees provided by network level packet scheduling
and admission control [2], [7], [29] can thus be extended to the
ultimate endpoints of an end-to-end communication, namely
applications running in user space of general purpose operating
systems.

End system support for networking with QoS guarantees is a
challenging problem. To meet various timing constraints, user

Manuscript received September 2, 1997; revised March 17, 1998; approved
by IEEE/ACM TRANSACTIONS ONNETWORKING Editor G. Parulkar. This work
was supported in part by the National Science Foundation under Grant NCR-
9506048, by an equipment grant from the AT&T Foundation, and by an IBM
graduate fellowship. Part of this work was done while D. Yau was with the
University of Texas at Austin. An early version of this paper was presented
at the IEEE ICNP ’97 Conference.

D. K. Y. Yau is with the Department of Computer Sciences, Purdue
University, West Lafayette, IN 47907 USA (email: yau@cs.purdue.edu).

S. S. Lam is with the Department of Computer Sciences, The University
of Texas at Austin, Austin, TX 78712 USA (e-mail: lam@cs.utexas.edu).

Publisher Item Identifier S 1063-6692(98)09515-6.

processes must be given guaranteed access to diverse system
resources, including time-shared resources such as CPU and
network interface, and space-shared resources such as memory
buffers. Moreover, the run time environment for protocol pro-
cessing, which provides such services as timer management,
buffer management and demultiplexing table lookup, should
be designed to support predictable performance.

Besides QoS guarantees, recent proliferation of heteroge-
neous networking technologies and user application require-
ments [11], [12], [18], [29] will make customized development
and flexible deployment of network protocols highly desir-
able. Protocol implementation at user level can help achieve
these goals. With fault containment in user processes and the
availability of sophisticated tools for developing user level
code, the cost of protocol development and experimentation
will go down, and the lead time to deployment of protocols
in a production environment will be reduced [24]. Moreover,
without the need to configure and load protocols into kernel
space, user applications can be given access to a wider choice
of protocol stacks and select ones that are most appropriate
to their needs.

A. Our Contributions

We discuss our experience implementing Migrating Sockets
as a framework for user level protocols that can run with
guaranteed progress. Our system integrates many ideas for
providing QoS guarantees and achieving implementation effi-
ciency. Some of these ideas are novel while others have been
discussed in prior work [16], [24], [27], [28]. We believe that
integrating all these ideas into a single working system is a
contribution in itself.

Of the many techniques implemented in our system, we
consider the following ones to be novel. First, Migrating
Sockets has been designed to minimizehidden scheduling
in protocol processing.1 This allows protocol threads to run
with well-defined rate requirements which are met in our
system by adaptive rate-controlled (ARC) scheduling. Second,
“exclusive packet receiver” information exported by Migrating
Sockets enables a constant overhead packet demultiplexing
mechanism calledactive demultiplexing. By eliminating table
search, active demultiplexing is highly efficient and has pre-
dictable performance. Third, we introducedelayed cachingand
recall-on-accessfor socket migration which reduce connection
management overhead for the widely used concurrent server

1Hidden scheduling occurs when protocol processing is done in the context
of interrupt handling or background threads of control that do not belong to
a user process.

1063–6692/98$10.00 1998 IEEE

YAU AND LAM: MIGRATING SOCKETS—END SYSTEM SUPPORT FOR NETWORKING 701

model in client/server programming. Fourth, we introduce
the use of a well-known shared memory region to enable
efficient sharing of routing information between network and
higher layer protocols in a user level implementation model.
Fifth, we have implemented athread folding mechanism,
whereby receive side protocol processing can be performed
by an application thread reading directly from the network.
This saves one context switch and simplifies determination of
application’s rate requirement.

B. Related Work

User level protocol implementation was first proposed and
investigated by Thekkathet al. [24] who demonstrated that it
can be as efficient as a kernel-resident implementation. The
idea of using a server process for connection management and
allowing client processes to cache socket states for efficient
network access was proposed by Maeda and Bershad [16],
who also investigated issues in maintaining backward compat-
ibility with Unix semantics. In designing Migrating Sockets,
we learned from their experience. Many other systems also
implemented protocols at the user level [3], [5], [25]. However,
unlike our end system architecture, the issue of system support
for quality of service guarantees was not a concern in any of
these papers.

We next review several systems whose design objectives
are similar to ours, namely, QoS support and efficient imple-
mentation. These systems (including ours) were designed for
OS platforms with different capabilities. As a result, different
design decisions were made leading to a variety of solutions
for satisfying the objectives.

User level protocols are used in [14], [15] to provide QoS
support for multimedia applications. Theprocessor capacity
reserveabstraction in real-time Mach is used for resource
reservation and scheduling. Real-time Mach provides sched-
uling algorithms such as rate-monotonic and earliest-deadline-
first. To protect well-behaving applications from mis-behaving
ones, processor capacity reserves are periodically replenished
and threads that have overrun their reserves are given a
depressedpriority, and henceforth receive different scheduling.
We took a different approach in our design by employ-
ing rate-based schedulers with a provable firewall property
for protection between threads. (Neither rate-monotonic nor
earliest-deadline-first has the firewall property.) Furthermore,
bandwidth scheduling and packet demultiplexing are major
concerns in our end system architecture. These issues are not
addressed in [14], [15].

A real-time upcall (RTU) mechanism is used in [8] to
implement user level protocols with QoS guarantees. The
system is built on top of NetBSD, whose kernel is not
multithreaded. Designing a system without use of threads led
to an event-driven approach, in which RTU’s are handlers for
protocol events. Their resource reservation model is based on
the number of packets processed per time interval. RTU’s can
respond to protocol events in a timely manner. By delaying
preemption until packet boundaries, concurrency in protocol
processing is achieved without using locks, which contributes
to performance gains. Our system is very different in at least

two respects. First, our resource reservation model is a CPU
rate without any reference to packet processing. Second, we
tackled the thread scheduling problem; in particular, priority
inheritance is implemented to solve priority inversion that can
arise from lock contention.

Aqua [13] proposes integrated CPU and network IO sched-
uling in Solaris. It uses in-kernel Solaris protocol stacks for
protocol processing and an “extended rate-montonic” algo-
rithm for CPU scheduling (both design choices are different
from those in Migrating Sockets). For network IO in Aqua,
packets are divided into a real-time class and a best-effort
class. When real-time packets are received from the network,
they are eagerly processed in interrupt context, as usual. When
best-effort packets are received, however, interrupt processing
is curtailed, and any unfinished work is later handled by a
background streams service routine at a lower priority. In this
way, a two-level differential service is provided. Rather than
a differential service, our system uniformly minimizes hidden
scheduling (due to interrupt processing as well as background
facilities such as streams service routines) in order to provide
guaranteed performance at the level of thread scheduling.

An idea similar to active demultiplexing can be found in
the buffer queue index (BQI) approach of Autonet-2 [4],
a high performance switching system built at DEC SRC.
Unlike Autonet-2, active demultiplexing is strictly a soft-
ware approach and does not require special support from
network switches or interfaces. Also, we show that active
demultiplexing can be efficiently implemented in wide area
internetworking, such as using TCP/IP.

C. Organization of this Paper

In Section II, we give an overview of our end system
architecture for networking with QoS guarantees. We show
how Migrating Sockets works together with other system
components to provide QoS guarantees in an end-to-end path
of network communication. Section III introduces Migrating
Sockets as a user level protocol implementation framework.
The framework is flexible, efficient and backward compat-
ible with Unix semantics and Berkeley sockets. Section IV
describes several novel aspects of Migrating Sockets. ARC
scheduling of protocol threads is presented in Section V.
Active demultiplexing is described in Section VI. We present
micro and macro-benchmark results of our current system in
Section VII and conclude in Section VIII.

II. A RCHITECTURAL OVERVIEW

Our end system architecture for networking with QoS
guarantees has the following major components: 1) ARC
scheduling for time-shared resources in an end system, such as
CPU and network interface; 2) a Migrating Sockets framework
for user level protocols that minimizes hidden scheduling in
protocol processing; and 3) a constant overhead packet demul-
tiplexing mechanism suitable for wide area internetworking.
Fig. 1 illustrates the architecture. A packet path from the
sender system on the left to the receiver system on the right
is shown.

702 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 6, NO. 6, DECEMBER 1998

Fig. 1. End system architecture for networking with QoS guarantees.

Migrating sockets (see Section III) takes its name because
the state and management right of a network endpoint can
move between a network server and client processes. With
Migrating Sockets, performance critical protocol services such
as send and receive are accessed as a user level library linked
with applications. Send side protocol code is accessed in usual
application threads of control. In addition, user processes have
protocol threads for network receive and timer processing.
From a QoS perspective, Migrating Sockets has the advantage
of minimizing hidden scheduling. For example, the role of
network interrupt handlers in our system is only to deliver
packets to a set of destination processes. The bulk of receive
side processing is done in the context of a user thread of
control.

With hidden scheduling minimized, user applications can
more easily determine and negotiate an appropriaterate of
progresswith an end system, such that their real-time con-
straints can be met. In our architecture, progress requirements
are specified with two parameters: a reservedrate (between 0
and 1) and a time interval known asperiod (in s). Based
on the progress requirements of all threads in the system,
an ARC CPU scheduler can perform admission control and
provideconditionalprogress guarantees to threads. One form
of progress guarantees provided by the ARC scheduler [28],
[26] is as follows: a “punctual” thread with rateand period

is guaranteed at least CPU time over time interval ,
for .

On the send side, ARC scheduling enables applications to
respond to media events and generate network packets “in

time.” These packets then enter a network connection, which
may have a reserved rate negotiated with an integrated services
network. If the network connection is shared by multiple
processes, it is possible for a sudden burst of packets by
one process to block out access to the network connection
for an extended period of time [27], thereby jeopardizing the
bandwidth requirements of other processes. This problem is
especially pronounced if the connection has a moderate or
low reserved rate. To solve the problem, an end system should
provide rate-based flow control to reserved-rate network con-
nections. In our proposal [27], flow control is enforced by a
lightweight kernel thread. The approach is quite flexible in that
different flow control policies can be provided by different
loadable kernel modules.

On the receive side, packet arrivals to a network interface
are processed by the interrupt handler of the interface. Kernel
level code must then demultiplex the packets to their destina-
tion processes. Traditionally, such demultiplexing is performed
by packet filters [6], [17] (also known as packetclassifiersin
[1]). Our system makes use of packet filters, but, in addition,
can exploit “exclusive packet receiver” information exported
by Migrating Sockets to performactivepacket demultiplexing.
A network endpoint that is an exclusive packet receiver has the
property that packets destined for it should not be delivered
to any other endpoint in the system.

In active demultiplexing, an exclusive packet receiverad-
vertisesto a peer sender an OS handle for packet delivery. On
learning the advertisement, the senderenclosesthis OS handle
in packets it sends to the receiver. The kernel demultiplexing

YAU AND LAM: MIGRATING SOCKETS—END SYSTEM SUPPORT FOR NETWORKING 703

code in the receive system can then make use of the handle to
deliver packets directly to the receiver, without table searching.
For safety reasons, the receive kernel checks that a handle
is indeed associated with an exclusive packet receiver and
ensures the “freshness” of the handle by using anonce
included with the handle. From a QoS perspective, active
demultiplexing is desirable since it is a constant overhead
mechanism, contributing to predictable performance.

In the receive end system, demultiplexed network packets
may cause their receiver processes to be scheduled. An ARC
CPU scheduler in the receive system enables such processes
to respond to the packet arrivals “in time.”

III. M IGRATING SOCKETS

In choosing an application programming interface (API) for
our system, one of our goals is that the API should allow us
to run existing and future Unix multimedia applications (such
as the mbone suite of teleconferencing tools) with minimal
modifications. We, therefore, decided to maintain backward
compatibility with the widely used Berkeley socket interface.
In concept, our Migrating Sockets framework draws upon
previous experience in user level protocol implementation
[16], [24]. In what follows, we give an overview of Migrating
Sockets. Several novel ideas implemented in the framework
are presented in Section IV.

A. Berkeley Sockets

Sockets are used by applications to access local endpoints of
network connections. Function calls in the socket API can be
classified into three major categories: 1) those for connection
management, such as
and ; 2) those for sending and receiving data,
such as

; and 3) those for managing endpoint characteris-
tics, such as and

We elaborate somewhat on connection management, since it
is needed to understand caching and flushing of network end-
points in Migrating Sockets. An application opens a socket by
using the call, which returns asocket descriptor. For
datagram (i.e. connectionless) communication, the application
then uses to associate a local address with the socket,
which can then be used for sending and receiving data. For
connection oriented communication, further operations after

are needed to establish network connections before
communication can occur. This can be done by either apassive
open or anactiveopen. In a passive open, a server application
uses the call to declare its intention of receiving
incoming connection requests. When a connection request
arrives from a remote endpoint for the socket in listen state,
a network connection will be established and a new socket
will be created to access the newly established connection.
The server application can then use the call to get a
socket descriptor for the new socket. In an active open, a client
application uses the call to request connection
with a remote endpoint. When returns, a network
connection will have been established, accessible through the
socket used in .

Fig. 2. The protocol implementation model of Migrating Sockets.

Besides giving access to communication functions, socket
descriptors are more generally file descriptors in Unix. Hence,
sockets should support Unix semantics for file descriptors.
First, it should be possible to have shared access to sockets
by multiple processes, such as after the system call,
or after socket descriptors have been passed from one process
to another. Second, the system call, which waits for
input from any of a set of file descriptors, should work for
socket descriptors as well.

B. Endpoint Management

Fig. 2 gives an overview of the protocol implementation
model of Migrating Sockets. The model uses a network
server process for “boundary” protocol operations like opening
and closing network connections. User applications are client
processes in the model. They register themselves with the
network server. When a client process opens a socket, it
creates a local data structure for the socket and contacts the
network server with an RPC call. The network server likewise
creates a data structure for the socket, and performs most
of the “real” work for socket creation. Apart from using the

call, client processes canimplicitly gain access to
socket descriptors, such as after a fork. In the case of a fork,
the network server copies socket descriptors from the parent
process to the child process and uses callback RPC to ask the
child process to create data structures for the sockets inherited.
In summary, a client process knows about all the sockets for
which it holds a socket descriptor, whereas the network server
knows about all the sockets in an end system.

Since the network server has global knowledge of all the
network endpoints in a system, it is suitable for the tasks
of connection management. For example, it will be able
to enforce uniqueness of network connections requested by
different client processes. However, it is expensive to go
through the network server for every socket operation. This
is especially true of operations on the “performance critical”
path, namely sending and receiving network data. In Migrating
Sockets, after a network connection has been established, the

704 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 6, NO. 6, DECEMBER 1998

state and management right of a socket can becachedto the
client process holding an exclusive socket descriptor for the
socket. Caching involves transferring the current state of the
socket (including any data buffered for send and receive, and
any protocol state associated with the socket) from the network
server to the client process. A client process can then send to
and receive from the cached socket without going through the
network server.

For connectionless protocols, such as UDP, a socket can
be cached after the system call, which fills in a
local address and port number for the socket. For connection
oriented protocols, such as TCP, a socket can be cached after
the system call, which fills in both local and remote
addresses and port numbers for the socket.

A socket continues to be cached until a condition unfavor-
able to caching occurs, at which time the socket isflushed
to the network server. This involves transferring the state and
management right of the socket from the client process back to
the network server. As an example, flushing is required before
a fork, since cached access is incompatible with the semantics
of sharing network endpoints. It is also required before a
close. After flushing, the network endpoint may continue to
exist within the network server. Therefore, flushing before a
close takes care of the requirement of certain protocols (such
as TCP) that the lifetime of a network endpoint may exceed
the lifetime of the process having access to the endpoint. All
operations on a flushed socket go through the network server,
using an RPC interface.

Whereas shared access to a socket can prevent the socket
from being cached, caching may be reenabled by the
operation. The situation occurs if, after a close by some
process, another process becomes the only one holding a
socket descriptor to the socket in question. When that happens,
our system caches the socket to the latter process.

Besides the cache and flush operations, our system supports
a third operation for socket migration known asrecall. The
operation is a callback RPC for the network server to ask a
client process to transfer the state and management right of
a cached socket back to the network server. It is needed, for
example, in the optimization described in Section IV-B.

C. Implementation Considerations

Our implementation of Migrating Sockets leverages pro-
tocol code from 4.4 BSD. However, parts of the runtime
support system have been rewritten. First, we replaced BSD
mbuf buffer management bymessage blockssimilar to those
used in SVR4 streams. This is because mbuf has been found
to treat small and large messages nonuniformly and, hence,
exhibit undesirable performance idiosyncrasies [9]. Moreover,
message blocks can very naturally handle both normal data
buffers andnetwork buffers(see Section IV-D) supported in
our system (using the library call).

Second, we implemented a timer management interface for
timer activities. Unlike 4.4 BSD, timer processing is driven
by a timer thread of control.

Third, it is not feasible to protect critical code sections by
raising interrupt level in a user level implementation. Instead,

Fig. 3. Multithreaded process structure for applications accessing cached
sockets.

we make use of mutex locks and condition variables for mutual
exclusion and condition synchronization. The current locking
granularity is quite coarse. To illustrate, it is often convenient
to think of protocol processing as consisting of an “upper” and
a “bottom” half. The upper half is driven by protocol send
activities, while the bottom half is driven by packets received
from the network. Fig. 3 shows the multithreaded structure
of a typical client process accessing cached sockets. A timer
thread and application threads with send side protocol code run
in the upper half. Protocol receive threads run in the bottom
half. Notice that we use a thread of control for receiving from
each cached endpoint.

In our locking model, a mutex lock protects
system data structures that are not modified by bottom-half
threads. The purpose of the lock is then to synchronize access
by multiple upper-half threads. For example, an upper-half
thread opening a socket and another one doing a close may
both be trying to modify a set of file descriptors associated with
a process. Locking is required to serialize the two operations.
Another mutex lock protects system data structures
that may be modified by bottom-half threads. Its purpose
is to synchronize access by bottom-half threads, as well as
between the upper and bottom halves. For example, a bottom-
half thread may be trying to append data to a receive socket
buffer, while an upper-half thread may be trying to remove
data from it.

Upper-half protocol threads normally acquire be-
fore Consistent use of this locking order avoids
deadlocks between threads in acquiring the two locks. There
are situations, however, in which the normal locking order is
not followed. For these situations, the code fragment shown
in Fig. 4 is used to avoid deadlocks. Specifically, an upper-
half thread is trying to read from a socket. The thread first
acquires and then before it checks the
receive socket buffer. If it finds no data available for reading,
the thread blocks on a condition protected by

YAU AND LAM: MIGRATING SOCKETS—END SYSTEM SUPPORT FOR NETWORKING 705

Fig. 4. Locking algorithm for deadlock avoidance.

will be automatically released when
blocking occurs inside . Before the thread calls

, however, it explicitly releases to allow
other upper-half threads access to data structures protected by

When the thread wakes up because data have arrived, it
will have acquired while also needing to reacquire

In the figure, the call
tries to acquire but returns a failure condition of 0 if
the lock cannot be acquired. Notice that if
succeeded, the thread will have acquired both and

If failed, however, the thread
first releases and then tries again to acquire both
locks in the normal order of before , thus
avoiding the possibility of deadlock with another thread.

IV. NOVEL ASPECTS OFMIGRATING SOCKETS

Our Migrating Sockets framework exports information on
exclusive packet receivers, which has the following meaning:
If a network endpoint is an exclusive packet receiver, then
packets destined for it should not be delivered to any other
endpoint in the system. Notice that in Migrating Sockets, net-
work connections are established through the network server,
which knows about all the existing network endpoints in the
system. Hence, when the network server allows a socket to
be cached, it knows whether the socket being cached is an
exclusive packet receiver or not.

Information on exclusive packet receivers can be used to
reduce the search time for matching packets with packet filters,
since a match with the filter of such a receiver means that
further matching would be unnecessary. Moreover, as we
will show in Section VI, the information enables a constant
overhead packet demultiplexing mechanism known asactive
demultiplexing.

In the following subsections, we elaborate upon several
other novel aspects of our system, namely: 1) minimizing
hidden scheduling in protocol processing; 2) caching opti-
mization for the concurrent server programming model; 3)
sharing of routing information between network and higher
level protocols using a well-known shared memory region; and
4) a thread folding mechanism on the receive side for reducing

context switch overhead and simplifying application progress
rate determination. We also describe our kernel/user interface
which provides user level protocol code with access to efficient
kernel level support [27] through Unix file descriptors.

A. Minimizing Hidden Scheduling

Our experience [28] has been that it is difficult to provide
QoS guarantees in certain protocol implementation frame-
works. In streams [21], for example, network send and receive
can take place inservice routinesrun by “background” system
threads of control. In BSD Unix, a single system timeout
invocation has to handle outstanding timer activities of all
the network endpoints in the system. The main problem of
these background system services is that there is no easy way
to determine suitable reserved rates of progress for the system
services, such that the real time constraints of user applications
can be met.

Aside from the use of background system services, tra-
ditional kernel level protocols perform entire receive side
protocol processing in the context of interrupt handling. From
a QoS perspective, it is similarly difficult to control the rate
of progress of interrupt handling code (some researchers, such
as [20], have considered disabling device interrupt for more
predictable performance).

Migrating Sockets reduces the use of such hidden schedul-
ing for cached sockets to a minimum. First, each user process
has a dedicated timer thread that handles timer events only for
network endpoints local to the process. Second, the role of the
network receive interrupt handler in our system is minimal,
i.e., only to demultiplex packets to their destination processes.
Receive side protocol processing is done in the context of the
receive thread associated with a cached endpoint.

B. Optimization for Concurrent Server Model

In client/server programming, there are two principal pro-
gramming models. They are the iterative server model and the
concurrent server model (see, for example, [22]). In the latter
model, the server’s role is only to listen for service requests
from remote hosts. Once a request has been received, the
server forks a child process to handle it, and itself goes back
to listening for more requests. Because it allows new service
requests to be accepted while previous ones are still being
served, many programs, including the Internet Superserver

, use the concurrent server model.
A typical program template for concurrent servers using

sockets is shown in Fig. 5. The program uses a socketto
listen for incoming service requests. When a request arrives
from a remote endpoint, it is accepted and a network connec-
tion is established. The local endpoint of the new connection
is accessible through . The server then forks a child
process to serve the request and itself closes

In the caching mechanism described so far, will
be cached to the server on being returned by
Immediately afterwards, however, the server does a
to serve the request in a child process, forcing to be
flushed in Migrating Sockets, because it is now shared between
the server and the child. In fact, though, the server no longer

706 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 6, NO. 6, DECEMBER 1998

Fig. 5. Concurrent server using sockets.

needs access to When it closes the socket
becomes cached to the child process.

Notice that although the final objective is to cache the
accepted socket in the child process, two cache and one flush
operations are involved, of which one cache and one flush
would be unnecessary. To solve the problem, a new socket
option called SO_CONCURRENT_SERVER is supported by
Migrating Sockets. When the option is set for a socket, say
in the listen state, it serves as a hint that sockets accepted
through should ultimately be cached to a child process
forked by the process, say, doing the listen. Hence, when a
socket is accepted through, it is merely markedcacheable
instead of being cached to. If later, does access for
send/receive, will be cached (this is known asdelayed
caching). If, however, does a fork before it accesses
will be cached to the forked process, say, as part of copying
file descriptors from to . Moreover, is marked “recall-
on-access” in the network server, meaning that if later
accesses , the network server will recall from , in effect
causing to be flushed. However, it is more likely that
will soon close , and the recall-on-access status ofcan be
cleared.

C. Routing Information Management

The Internet protocol suite owes much of its flexibility and
robustness in a heterogeneous and dynamic networking envi-
ronment to protocols at (or below) the network layer. These
protocols include, among others, IP, ICMP, IGMP, EGP, and
ARP. Together, they allow network routes to be dynamically
discovered and reconfigured, and network connectivity is not
lost even as network interfaces and routers come up or go
down. In our system, we refer to the data structures that keep
track of various kinds of routing information collectively as
the routing table.

Dynamic routing interacts with caching of network end-
points. The reason is that even after a network connection
has been established between a sender and receiver, the next
“hop” (represented by an IP address) to which the sender must

send its packets in order to reach the receiver may still change
over time. This can happen, for example, by way of an ICMP
redirect message, and the routing table must be updated to
reflect the change. Moreover, the network interface to which
some IP address has been assigned may be replaced by another
interface, and ARP must update its translation of the IP address
(in the routing table) to the link level address of the new
interface.

In our design, we consider routing table management a
global system function. As such, the network server is the
only process responsible for its management. This has two
advantages. First, routing table management functions do not
have to be duplicated in the address space of every application
process. Second, application processes do not need to be
interrupted by (and process) routing messages that do not affect
them. However, since application processes need read access
to the routing table even for common case send and receive,
such access must be as inexpensive as if the routing table
were local to each process.

To satisfy the efficiency requirement, the network server
creates a shared memory region, and allocates routing table
entries exclusively from that region. Moreover, data pointers in
the routing table must retain their intended meaning (without
translation) irrespective of the process accessing them. This
requires the network server and each application process to
map2 the shared memory region at a “well-known” virtual
address. This virtual address can be returned by the network
server to a client process at client registration time.

Our shared memory solution allows application processes to
freely read the system routing table. We believe, however, that
this does not represent a security problem in most cases. For
example, users on a Unix system are often permitted to use the
netstat(1) command to return the same kind of information.

D. Thread Folding

Beyond the basic multithreaded architecture described in
Section III-C and illustrated in Fig. 3, Migrating Sockets sup-
ports a mechanism calledthread folding. The mechanism
works as follows. Before the system schedules a receive
protocol thread to read from a socket endpoint, it checks
if there is already an upper-half application thread reading
from the same endpoint. If so, the receive protocol thread will
not be scheduled. Instead, when packets arrive, they will be
directly delivered to the application thread, in whose context
receive side protocol processing will be performed. If not, then
the receive protocol thread will be scheduled as in the basic
architecture; this is needed to handle reliable protocols such
as TCP, where receive side ACK or exception processing is
needed even in the absence of application reads.

Thread folding has two major benefits. First, when an
application thread is already reading from the socket endpoint,
we save a context switch from a receive protocol thread to
the application thread. Second, when an application thread is
actively processing network data (e.g., it is receiving contin-
uous media), it is sufficient to determine a progress rate for

2This region is mapped read-only by application processes.

YAU AND LAM: MIGRATING SOCKETS—END SYSTEM SUPPORT FOR NETWORKING 707

Fig. 6. OS architecture for multimedia networking.

the application thread alone, without having to do so for a
protocol receive thread.

E. Protocol/Kernel Interface

For efficiency, Migrating Sockets runs on top of an OS
architecture (Fig. 6) we have previously prototyped for sup-
porting continuous media (CM) applications [27].

Send/receive buffers shown in Fig. 6 are allocated using
the method in Table I. The method
creates anetwork bufferregion for direct send/receive to/from
the network (i.e. no intermediate data copies are required). If
the network interface for send/receive uses DMA, the allocated
network buffers will be automatically backed by required
DMA resources. Moreover, buffers can be pinned in physical
memory for predictable performance. A memory allocator
associated with a buffer region supports flexible memory
allocation/deallocation similar to and
in the standard C library.

To send a packet, a user process appends control information
in the form of asend requestto a send control queue, managed
through the object in Table I. The send
request is then handled by the kernel through either a system
call or a kernel thread introduced below. Notice that for some
systems, even after kernel code processing of a send request
has completed, the packet to send may only have been queued
to a network interface, instead of really sent. Therefore, the
buffer for sending cannot be reused or freed until the network
interface has completed its part of the send and updated the
status of the send request. That is why a method such as

in Table I is necessary.

On the receive side, driver code for a network interface
informs user processes of data to read by appending receive
notifications to a receive control queue, managed through
the object. For efficient control transfer,
send/receive control queues are shared between user processes
and the kernel.

A lightweight kernel thread provides shared access to a
reserved-rate network connection in future integrated ser-
vices networks. The kernel thread is periodically scheduled
and implements a rate-based packet scheduling algorithm
such that multiple user processes can send packets to the
network connection with guaranteed data rates. For this pur-
pose, a process creates a object using the

method shown
in Table I. The method causes amultiplex group, a data struc-
ture used by the kernel thread for rate-based packet scheduling,
to be created within the kernel. The parameter specifies the
packet scheduling algorithm to use for the multiplex group.
Currently, the algorithm in [27] is supported. Parame-
ters of the scheduling algorithm can be passed with the
pointer. For example, the algorithm takes the scheduling
period (in s) of the kernel thread as a parameter. Once a
multiplex group (identified by a key which is unique within
an end system) has been created by a process, other processes
can gain access to the group using the
method. Processes having access to a multiplex group can
use the method to add traffic flows to the group with
specified parameters. A rate parameter (in kb/s), for example,
is needed for a flow using the algorithm. Flows can be
deleted from a multiplex group using the method.

Lastly, notice that, although the interface presented in
Table I is designed to be general and device independent, some
of the operations accessed through the interface are device
dependent. For example, the
method calls a device specific send function within the kernel.
The method creates device depen-
dent DMA resources backing allocated network buffers.

V. ARC SCHEDULING OF PROTOCOL THREADS

Application and protocol threads in Migrating Sockets can
specify their CPU requirements using the rate-based reserva-
tion model of ARC scheduling [28]. The rate-based model has
two parameters: 1) rate and (2) period in

s. Informally, the rate specifies a guaranteed fraction of CPU
time that a thread with the reservation will be allocated over
time intervals determined by.

Progress guarantees of rate-based reservations are provided
by instances of afamily of ARC schedulers with the following
properties: 1) reserved rate can be negotiated; 2) QoS guar-
antees are conditional upon thread behavior; and 3) firewall
protection between threads is provided. The first property
is provided by amonitoring moduleand a rate-adaptation
interfaceas discussed in [28]. The second and third properties
are provided by using an on-line CPU scheduling algorithm
with the firewall property, such as the RC scheduler in [28].
Subject to the admission control condition that the aggregate
reserved rate does not exceed one, RC provides the following

708 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 6, NO. 6, DECEMBER 1998

TABLE I
KERNEL INTERFACE FOR PROCTOCOL CODE IN MIGRATING SOCKETS

progress guarantee: a “punctual” thread with rateand period
is guaranteed at least CPU time over time interval

for . Because ARC schedulers offer firewall
protection between “well-behaved” and “greedy” threads, they
are appropriate for integrated scheduling of continuous media
and other applications found in a general purpose workstation.
Besides RC, scheduling algorithms with improved fairness
have also been deployed in ARC, such as thefair rate-
controlled algorithm in [26].

ARC implements priority inheritance for threads that can
contend for synchronization resources such as semaphores,
mutex locks, and readers/writers locks. This reduces the extent
of priority inversion, wherein a lower priority thread blocks a
higher priority thread by holding a lock required by the latter.
(When coupled with a dynamic priority ceiling protocol such
as [10], the extent of priority inversion can be bounded.)

Recently, we have extended ARC to ARC-H (where H
stands for heterogeneous services) to explicitly handle diverse
classes of application requirements, including both guaranteed
and best-effort services. An overview of ARC-H is given
below (see [26] for a detailed treatment).

An ARC-H system administrator can partition the total CPU
capacity into rates for service classes, i.e., service class

is allocated rate such that and
For an overbooking parameter,

is also specified.
Thread can request from service class a reservation

specified by two parameters:nominal rate and period
The request is granted if

where denotes the subset of threads already admitted into
service class .

After thread has been admitted, it receives aneffective
rate given by

where is the subset of threads admitted into service class
which by now includes thread These effective rates,

is the total number of threads) in ARC-
H have the same interpretation as the reserved rates in ARC
scheduling [28].

YAU AND LAM: MIGRATING SOCKETS—END SYSTEM SUPPORT FOR NETWORKING 709

The overbooking parameters are used for specifying dif-
ferent levels of service. For , threads in service class

are provided with a hard guarantee of their reserved rates.
For , service class can be used for flexible rate
allocation with excellent scalability (but threads in this class
receive no guarantee besides nonzero progress). Other values
of lead to service classes with a statistical guarantee of
different strengths.

Note that ARC-H provides firewall protection between
service classes such that service classreceives a hard
guarantee of reserved rate , for all .

VI. A CTIVE DEMULTIPLEXING

An important task of protocol processing is to demultiplex
incoming packets to their network endpoints. Traditionally,
the receive side of a kernel level transport protocol looks for
matches by searching a list of protocol control blocks known
to the system.

Recent user level protocol implementations have relied on
packet filters installed with the driver of a network interface to
accept or reject packets. While highly flexible, these methods
involve searching. Although techniques such as hashing and
one behind cache can significantly reduce the search time on
the average, the actual search time may still be highly variable
when the number of network endpoints in a system is large.

Since predictable performance is an important goal of our
architecture, our system supports a constant overhead packet
demultiplexing mechanism known asactive demultiplexing.
The basic idea is that, under certain conditions, an OS handle
identifying a receive process can be included in packets
destined for that process. An end system can then make use
of the OS handle to deliver packets directly to the receive
process, without any searching.

Currently, active demultiplexing exploits the notion of ex-
clusive packet receivers introduced in Section III. In situations
where active demultiplexing cannot be applied (such as mul-
ticast) or is not preferred, our system provides packet filters.

A. Mechanism

We have implemented active demultiplexing in the context
of TCP/IP. The mechanism can be transparently enabled when
both sender and receiver hosts in a TCP connection support
it. Fig. 7 illustrates the mechanism, triggered when a socket,
say that is an exclusive packet receiver becomes cached to
a user process. An OS handle for the user process to receive
from becomes known as part of the process of caching.
The newly cached socket advertisesthe OS handle when
it next sends a packet to the remote endpoint, say, of the
network connection. This happens when eitherhas data to
send to , or when acknowledges packets received from

. The advertisement is carried in a new TCP option called
TCPOPT_DEMUX_ADVERTISE.

On processing TCPOPT_DEMUX_ADVERTISE, learns
about ’s OS handle. then caches the handle and can
later enclose it in subsequent packets it sends to by
way of a new IP option IPOPT_DEMUX_ENCLOSED. The
enclosed OS handle enables active demultiplexing by’s end

Fig. 7. Mechanism of active demultiplexing for TCP/IP.

(a)

(b)

(c)

Fig. 8. Formats of active demultiplexing options.

system. To allow a link level device driver to easily locate
IPOPT_DEMUX_ENCLOSED, the option is always inserted
as a first IP option. In addition, we use a currently unused bit
in the service field of IP header to indicate to the device driver
whether an OS handle has been enclosed.

An OS handle should be revoked when a cached socket
becomes no longer exclusive, or when an exclusive socket
becomes flushed. Handle revocation is achieved using a new
TCP option TCPOPT_DEMUX_REVOKE. On receiving a
handle revocation from its peer, a network endpoint stops
including IPOPT_DEMUX_ENCLOSED in packets sent to
the peer. Fig. 8 shows the formats of the various options
used for active demultiplexing. Notice that a sequence number
is included in handle advertisements and revocations. We
prescribe that the two operations be applied only in increasing
sequence number order, thereby preventing an earlier operation
from overwriting a more recent one.

The complete state transition diagram for handle adver-
tisement and revocation using TCP/IP is shown in Fig. 9. If
(and only if) an endpoint is in the “advertising” state, the
advertisement option will be used for TCP segments sent by

710 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 6, NO. 6, DECEMBER 1998

Fig. 9. State transition diagram for handle advertisement and revocation in TCP/IP.

the endpoint. Similarly, if (and only if) an endpoint is in the
“revoking” state, the revocation option will be used for TCP
segments sent by the endpoint.

Notice from Fig. 9 that handle advertisement for some
network endpoint, say should persist until one of two
conditions occurs. First, when new (i.e., non-retransmitted)
TCP data have been sent and acked for, in which case
a data packet carrying the handle advertisement in question
will have been reliably delivered. Hence, a transition from
the advertising to the advertised state occurs. Second, suppose

is the highest receive sequence number acked bywhen
the advertising state in Fig. 9 was last entered. Subsequently
when TCP data with sequence number higher thanwere
received for a TCP ack advancing ’s receive window
must have been successfully delivered to’s peer endpoint.
Moreover, the ack must have been carried in a TCP segment
containing the handle advertisement in question. Hence, a
transition from the advertising to the advertised state occurs.
Similar conditions govern the transition from the revoking to
the revoked state.

Our experience has been that it is straightforward to incor-
porate active demultiplexing into TCP/IP. To give a rough idea
of the complexity of our implementation, we report that 110
lines of C code were added to TCP input processing, 22 lines
were added to TCP output processing, 51 lines were added
to the socket layer, and 15 lines were added to the link level
device driver (see the next section for the required device
driver changes).

B. Security Considerations

Taking an OS handle in an incoming packet and using it to
deliver the packet directly to a receive process is a “powerful”
mechanism. Without proper precautions, the mechanism can
raise some serious security concerns. First, a malicious process

Fig. 10. Specification of active demultiplexing algorithm.

can advertise an indiscriminate OS handle (i.e. one that is
not associated with an exclusive packet receiver) and “hoard”
packets that should also be delivered to other processes in
the system. Second, an OS handle can become obsolete, such
as when a cached endpoint becomes flushed. Third, a faulty
process can enclose a wrong or fabricated OS handle in
sending packets.

To guard against such security problems, we generate a
noncewhen a network endpoint is installed and associate it
with the endpoint. The nonce is used in conjunction with
the OS handle for active demultiplexing. Nonces have the
properties that each newly generated nonce has a fresh value,
and it is difficult to guess the value of a nonce that is not
explicitly passed. Before accepting an OS handle, receive side
demultiplexing code performs security checks as shown in
algorithm (Fig. 10). Notice that the check at line
2 guards against the first security threat in the preceding

YAU AND LAM: MIGRATING SOCKETS—END SYSTEM SUPPORT FOR NETWORKING 711

TABLE II
THREAD SYNCHRONIZATION OVERHEAD (IN �s)

IN SOLARIS FOR VARIOUS SPARC ARCHITECTURES

paragraph, while the checks at lines 1 and 3 guard against
the second and third security threats. We fall back on a
conventional packet filter mechanism if an enclosed OS handle
is found unacceptable.

Finally, we note that, in practice, security can be better
enforced if an OS handle is inserted by kernel level code (i.e.,
by a link level device driver supporting active demultiplexing).
In this case, security safeguard is mainly to limit the cycle
time of nonces, and it is sufficient to generate a new nonce
by incrementing it cyclically.

VII. EXPERIMENTAL RESULTS

We have an implementation of Migrating Sockets on Solaris
2.5.1. We are currently running it on Sun SPARC/UltraSPARC
workstations and Pentium II desktops interconnected by
10/100-Mb/s Ethernet networks. Major Internet protocols
including TCP, UDP, and IP (with IP multicast) have been
ported from 4.4 BSD to Migrating Sockets. In the following
subsections, we first present experimental results on the
overheads of individual system components in our prototype.
We then present results on the overall system performance
and the effectiveness of our QoS support mechanisms.

A. Component Costs

Thread Synchronization:Migrating sockets makes use of a
multithreaded programming model. The model has the inherent
cost that protocol threads have to synchronize with each other
using mutex locks and condition variables. Moreover, context
switches are required to switch execution between threads.
In our first set of experiments, we measure various thread
synchronization overheads. The purpose is to show that the
use of multithreading does not result in excessive overhead.
For our measurements, we performed the operation in question
many times between two threads, and report the average time
taken.

The first row in Table II shows the times needed to acquire
and release a mutex lock for the different SPARC architectures.
The second row shows the costs of signaling a condition
variable. The third row shows the context switch times from
one thread to another. In our current system, usually two mutex
locks are needed for sending a packet, while one mutex lock
and one condition signal are needed for receiving a packet.
Context switching is mainly required on the receive side, from
a receive thread to an application thread. Its cost can often
be amortized over a train of packets received. From Table II,
we conclude that the cost of thread synchronization is an
acceptable fraction of the total cost of protocol processing
(see Tables III and IV).

TABLE III
BREAKDOWN OF MIGRATING SOCKETS TCP/UDP SEND

PATH LATENCY (MICROSECONDS) FOR ULTRA-1

TABLE IV
BREAKDOWN OF MIGRATING SOCKETS TCP/UDP RECEIVE

PATH LATENCY (MICROSECONDS) FOR ULTRA-1

TCP/UDP Performance:We measured the performance of
our implementation of TCP/IP and UDP/IP protocol stacks
accessed through a cached socket in Migrating Sockets. The
objectives are 1) to demonstrate that real and complex inter-
network protocol stacks can be effectively implemented in our
framework, and 2) to identify where major protocol processing
time is spent in an end-to-end communication, thereby iden-
tifying further opportunities for performance improvement.
For UDP, we have incorporated the following optimization
techniques proposed in [19]: 1) Integrated checksumming and
copying of data from application buffers to network buffers;
2) replacement of general purpose socket send code with
more efficient UDP specific code; and 3) deletion of pseudo-
connect in UDP send. Moreover, since Internet checksumming
is heavily used, we replaced the 4.4 BSD checksum routine
with a more efficient routine optimized for the SPARC Ultra-
1 architecture. Apart from optimized checksumming, the TCP
code is largely ported as is from 4.4 BSD.

To do the measurements, we used the Solaris TNF facility
to insert probe pointsat strategic places of the code. An
executed probe point logs, among other things, a timestamp
useful for timing analysis. We present results averaged over a
large number of data points taken. However, the performance
numbers are subject to the overhead of TNF probe points
executed at the user level. We believe they are useful for
comparing the relative costs of components in our system.

Table III gives a breakdown of the various (average) compo-
nent costs (the numbers in brackets are corresponding standard
deviations) due to host software on the send path of a packet.
Each packet carried either 1400 bytes or 1 byte of user data.
The relatively high costs of socket and TCP send code for 1400
bytes were mainly due to data copy and TCP checksumming.
For UDP, socket send code had minimal cost because it
called a UDP specific send function very early on. The UDP
function performed integrated checksum and copy of data

712 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 6, NO. 6, DECEMBER 1998

from application to network buffers. Performance benefits of
replacing “baroque” socket send code with protocol specific
code can also be seen by comparing the costs of socket send
for one byte of TCP and UDP data, respectively.

The row labeled “Link layer” in Table III gives the cost
of link layer processing such as ARP address translation by
Migrating Sockets. Also notice from the last row of the table
that the kernel level overhead, i.e., processing by the network
device driver, was largely insensitive to the packet size. This
is because protocol code allocated network buffers for sending
and data did not have to be copied from user to kernel space.

We conclude that, on the send path, major processing
time is spent at the transport level (TCP or UDP). Socket
level processing can also be expensive, but can be reduced
by replacing general purpose socket code by more efficient
protocol specific code.

Table III gives a breakdown of the various (average) com-
ponent costs (the numbers in brackets are the corresponding
standard deviations) due to host software on a TCP/IP or
UDP/IP packet receive path. As for the send path, a packet
carried either 1400 bytes or one byte of user data. The “Kernel
interrupt” number is the total time spent in the interrupt handler
of the receive network device driver, which includes the cost
of matching a packet to a BSD packet filter (which took
roughly 10 s). A matched packet woke up a receive thread
of Migrating Sockets and caused the thread to be scheduled.
The cost of context switching to the receive thread is given
by the “Switch to recv thread” number.

Protocol processing of a received packet by Migrating Sock-
ets starts at the link layer. The “Link layer” number includes
costs such as inspecting the type field of the Ethernet header
and dispatching the packet to IP. TCP or UDP processing of a
packet took longer for 1400 bytes than for 1 byte of user data,
due to checksumming of a longer packet. After the transport
layer, the receive thread appended the packet to a socket
receive buffer and woke up an upper-half application thread
that was blocked reading from the socket. The “Switch to read
thread” number gives the overhead of context switching to
the application thread. Lastly, the “Return from read” number
includes the cost of copying any user data from a socket
receive buffer to an application buffer. Hence, it was higher
for a larger packet size.

We note that, as is the case with the send path, transport
level processing is an important source of overhead on the
receive path. However, the receive path is more involved
because of two needed context switches (assuming no thread
folding)—one from kernel interrupt handling to a protocol
receive thread, the other from the protocol receive thread to
an application thread performing a read.

Protocol Runtime Support:Migrating Sockets implements
a buffer management subsystem and timer subsystem different
from those in 4.4 BSD. We report on the performance of these
subsystems. The purpose is to give an idea of how they might
impact perfomance when used to support protocol stacks other
than TCP/IP and UDP/IP.

We measured the performance of the buffer management
subsystem in our current implementation. Fig. 11 shows the
overhead forcopyinga message block. The operation consists

Fig. 11. Copy buffer overhead (in�s) of buffer management subsystem
(Ultra-1 and SPARC 10).

Fig. 12. Duplicate buffer overhead (in�s) of buffer management subsystem
(Ultra-1 and SPARC 10).

of allocating a message block and copying buffer data from an
existing block to the new one. The size of the message block
was varied in the experiment. Fig. 12 shows the overhead for
duplicatinga message block. The duplicate operation is similar
to the copy operation, except that buffer data are not really
copied, but are reference counted for sharing. It is very useful
when protocol layers need to share data without modifying the
data. The cost of the duplicate operation is substantially lower
than that of message block copy and is mostly independent of
the buffer size (Figs. 11 and 12).

In protocol processing, it is frequently necessary tolink
two message blocks together, such as when a header is to be
prepended to an existing packet. Fig. 13 gives the overhead of
this operation. The overhead is quite small since it involves
only simple pointer manipulations.

We next report on the performance of the timer subsys-
tem. Fig. 14 shows the time needed to insert/delete a timer
into/from the timeout table. The times to timer expirations
were randomly chosen from zero to 500 s. The total number
of timers used in an experiment was varied. Fig. 15 shows
the time needed to execute a null timer function for different
numbers of timers used in an experiment. The times to timer
expiration were randomly chosen from 0 to 250 s.

Optimized Checksumming:This set of experiments quanti-
fies the performance benefits of using an Internet checksum
routine that is optimized for a specific computer architecture,

YAU AND LAM: MIGRATING SOCKETS—END SYSTEM SUPPORT FOR NETWORKING 713

Fig. 13. Link buffer overhead (in�s) of buffer management subsystem
(Ultra-1 and SPARC 10).

Fig. 14. Insert and delete timer overhead (in�s) of timer subsystem (Ultra-1
and SPARC 10).

Fig. 15. Execute timer overhead (in�s) of timer subsystem (Ultra-1 and
SPARC 10).

namely the SPARC Ultra-1. Fig. 16 compares the performance
between the original 4.4 BSD checksum routine and an opti-
mized checksum routine for various data sizes. By exploiting
knowledge of the most efficient data size and alignment for
memory access, the optimized routine achieves significant
improvement over the original one.

We next investigate the performance benefits of integrated
checksum and copy. In the experiments, the destination ad-
dress of a copy was double-word aligned. For the separate
checksum and copy approach, the copy loop was done im-

Fig. 16. Checksum overhead (in�s) versus data size (in bytes) for Ultra-1.

mediately after the checksum loop. Fig. 17 shows the results
when the test program had a small memory footprint (less
than 8 Mbytes). For the integrated approach, the performance
was very slightly better if the source address was also double-
word aligned than if it was word or byte-aligned. Also, the
integrated approach showed minimal improvement over the
separate approach because of cache effects. Fig. 18 shows the
results when the test program had a large memory footprint (41
Mbytes). In this case, the integrated approach was significantly
more efficient than the separate approach.

B. Performance Impact

Comparison with Solaris:Although high performance is
not the main concern in our work, we show that our system
is competitive with an in-kernel protocol stack in Solaris, a
mature and industry strength operating system. Competitive
performance is achieved in part by our efficient protocol/kernel
interface, which imposes little additional overhead on network
access from the user level. Further optimizations with Mi-
grating Sockets are possible, chiefly by changing the sockets
API to further reduce data movement,3 and by implementing
integrated layer processing.

In our experiment, we sent 8000 TCP/IP packets on a round-
trip between two Pentium II/300 machines connected by 10
Mb/s Ethernet, using unmodified Solaris 2.5.1 and Migrating
Sockets. We measured the average time taken for one round-
trip. As in Section VII-A, we used an application payload of
one and 1400 bytes, for a small and large Ethernet packet,
respectively. For 1 byte, Migrating Sockets and Solaris used
727 and 719 s, respectively.4 Hence, Migrating Sockets had
an extra 8 s overhead. For 1400 bytes, Migrating Sockets
and Solaris used 4251 and 4174,s, respectively. Hence,
Migrating Sockets had an extra 77s overhead. We conclude

3For example, it is shown in [8] that solely by changing socket applications
to directly allocate buffers from the network memory pool, bandwidth can
be roughly doubled and latency can be roughly halved. In our system, the
Migrating Sockets layer does directly allocate network buffers. However, we
did not go one step further to do the same at the application level, because
of our objective to remain backward compatible with Berkeley sockets and
existing applications.

4These numbers include inherent latency due to interface hardware and
restricted Ethernet bandwidth.

714 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 6, NO. 6, DECEMBER 1998

Fig. 17. Data checksum and copy overhead (in�s) versus data size (in bytes) for small memory footprint (Ultra-1).

Fig. 18. Data checksum and copy overhead (inmus) versus data size (in
bytes) for large memory footprint (Ultra-1).

that even without using aggressive optimization techniques
(that are possible with user level implementation), Migrating
Sockets achieved highly competitive performance.

Delay Performance:To quantify the delay performance of
ARC scheduled protocol threads in Migrating Sockets, we sent
2000 TCP/IP packets (with 1400 byte application payload)
on a round-trip between two socket applications running
on two Ultra-1s. The time taken for each round-trip was
recorded. For competing workload, seven compute-intensive
greedy applications ran on each machine during the course of
measurement.

The experiment was repeated two times. In the first run, we
ran both socket applications and all 14 competing applications
in the Solaris TS class. Fig. 19(a) plots the sequence of
round-trip times obtained. As shown in the figure, interference
from the greedy applications caused occasional, but substantial
increases in the measured round-trip times.

In the second run, each socket application using Migrating
Sockets ran with an ARC rate of 0.1, and each greedy

application ran with a rate of 0.02. Fig. 19(b) plots the
sequence of round-trip times obtained. Unlike Fig. 19(a), the
measured times in this case closely match those achieved
when both socket applications ran standalone. Hence, protocol
processing rates are guaranteed using Migrating Sockets.

Active Demultiplexing:To quantify the performance impact
of active demultiplexing relative to packet filters, we sent 2000
TCP/IP packets on a round-trip between a pair of Pentium
II/300 machines connected by 10-Mb/s Ethernet, and measured
the average time for one round-trip. An application payload
of 1400 bytes was used for each packet. Fig. 20 shows the
average time per round-trip for active demultiplexing versus
linear matching with packet filters, as we varied the number
of receive endpoints on one of the hosts. As shown, active
demultiplexing has superior performance when the number of
endpoints becomes large.

However, by increasing the amount of control information in
a packet, active demultiplexing represents a tradeoff between
bandwidth and processor efficiencies. Our implementation uses
twelve bytes for an enclosed OS handle. For 10-Mb/s Ethernet
with a maximum frame size of 1514 bytes, this represents
a 9.6- s increase in link processing time per packet, and a
0.7% loss of efficiency in link bandwidth. Increase in link
processing time will decrease proportionately with higher
bandwidth networks, whereas loss of bandwidth efficiency will
decrease with larger link packets (such as FDDI and ATM
AAL data units [23]).

Multimedia: This experiment was performed between two
Ultra-1s connected by 10-Mb/s Ethernet. We used a video
client application, , modified from the public
domain to read video data from the network. The
application, using Migrating Sockets, repeatedly reads MPEG-
2 encoded pictures carried in TCP/IP packets. After reading
each whole picture, it decodes the video into a frame of 8-
bit pixels, and records a timestamp. In our experiment, video
was sent at 30 fps to by another application

YAU AND LAM: MIGRATING SOCKETS—END SYSTEM SUPPORT FOR NETWORKING 715

(a)

(b)

Fig. 19. Profile of packet round-trip times with competing workload for (a) Solaris TS, and (b) ARC-scheduled Migrating Sockets.

Fig. 20. Performance impact of active demultiplexing versus linear match-
ing, as a function of the number of receive endpoints.

running on a different machine. The video was a 65-s segment
of IPPPP encoded tennis instruction.

We ran with an ARC rate of 0.3 and period 33
ms. As competing workload, eight compute-intensive greedy
applications ran with a rate of 0.02 each. A frame rate of 29.99
per second was reported by in the experiment,
compared with a frame rate of 14 per second when all the
applications ran in Solaris TS. Hence, received
sufficient CPU time for full frame rate, despite the presence
of competing workload. Moreover, Fig. 21 shows a plot of
the times between pictures decoded by As
shown, the scheduling jitters were such that these times never
exceeded 66 ms, which is the worst case predicted by ARC
scheduling for a scheduling period of 33 ms.

VIII. C ONCLUSION

We presented Migrating Sockets as a framework for user
level protocol implementation, and discussed its relations
to other system components in an end system architecture

716 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 6, NO. 6, DECEMBER 1998

Fig. 21. Times between pictures decoded by at 30 f/s.

designed to support networking with QoS guarantees. We dis-
cussed implementation experience and presented experimental
results to show the performance and QoS properties of our
current system.

ACKNOWLEDGMENT

The authors wish to thank L. Ma for helping with per-
formance measurements of the system, and the anonymous
referees for detailed suggestions to improve the quality of this
paper.

REFERENCES

[1] M. L. Bailey, B. Gopal, M. A. Pagels, L. L. Peterson, and P. Sarkar,
“PATHFINDER: A pattern-based packet classifier,” inProc. First Symp.
Operating Systems Design and Implementation, Monterey, CA, Nov.
1994, pp. 115–123.

[2] S. Bradner and A. Mankin, The recommendation for the IP next
generation protocol, Internet RFC 1752, Jan. 1995.

[3] T. Braun and C. Diot, “Protocol implementation using integrated layer
processing,” inProc. ACM SIGCOMM ’95, Boston, MA, Aug. 1995.

[4] DEC Systems Research Center, [Online]. Autonet-ii homepage. Avail-
able www: http://www.research.digital.com/SRC/home.html

[5] C. Dalton, G. Watson, D. Banks, C. Calamvokis, A. Edwards, and J.
Lumley, “Afterburner,” IEEE Network Mag., vol. 7, no. 4, pp. 36–43,
July 1993.

[6] D. R. Engler and M. F. Kaashoek, “DPF: fast, flexible message demulti-
plexing using dynamic code generation,” inProc. ACM SIGCOMM ’96,
Stanford, CA, Aug. 1996.

[7] ATM Forum, ATM traffic management specification, version 4.0, 1995.
[8] R. Gopalakrishnan and G. M. Parulkar, “Efficient user space pro-

tocol implementations with QoS guarantees using real-time upcalls,”
IEEE/ACM Trans. Networking, vol. 6, pp. 374–388, Aug. 1998.

[9] N. C. Hutchinson, S. Mishra, L. L. Peterson, and V. T. Thomas,
“Tools for implementing network protocols,”Software—Practice and
Experience, 1989.

[10] M. Chen and K. Lin, “Dynamic priority ceilings: A concurrency control
protocol for real-time systems,”Real-Time Systems, vol. 2, pp. 325–346,
1990.

[11] V. Jacobson, LBL whiteboard, Lawrence Berkeley Lab [On-line]. Soft-
ware available: ftp://ftp.ee.lbl.gov/conferencing/wb.

[12] , Visual audio tool, Lawrence Berkeley Lab [On-line]. Software
available: ftp://ftp.ee.lbl.gov/conferencing/vat.

[13] K. Lakshman, R. Yavatkar, and R. Finkel, “Integrated CPU and network
IO QoS management in an endsystem,” inProc. 7th Int. Workshop on
Quality of Service (IWQoS 97), 1997.

[14] C. Lee, R. Rajkumar, and C. Mercer, “Experiences with processor
reservation and dynamic QoS in real-time Mach,” inProc. Multimedia
Jpn., Apr. 1996.

[15] C. Lee, K. Yoshida, C. Mercer, and R. Rajkumar, “Predictable communi-
cation protocol in real-time Mach,” inProc. IEEE Real-Time Technology
and Applications Symp., June 1996.

[16] C. Maeda and B. N. Bershad, “Protocol service decomposition for
high-performance networking,” inProc. 14th SOSP, Dec. 1993, pp.
244–255.

[17] S. McCanne and V. Jacobson, “The BSD packet filter: A new architec-
ture for user-level packet capture,” inUSENIX Tech. Conf. Proc., San
Diego, CA, Winter 1993, pp. 259–269.

[18] , “vic: A flexible framework for packet video,” inProc. ACM
Multimedia ’95, 1995.

[19] C. Partridge and S. Pink, “A faster UDP,”IEEE/ACM Trans. Network-
ing, vol. 1, no. 4, pp. 429–440, Aug. 1993.

[20] K. K. Ramakrishnan, L. Vaitzblit, C. Gray, U. Vahalia, D. Ting, P.
Tzelnic, S. Glaser, and W. Duso, “Operating system support for a
video-on-demand service,Multimedia Syst., vol. 1995, no. 3, pp. 53–65,
1995.

[21] D. M. Ritchie, “A stream input-output system,”AT&T Bell Labs. Tech.
J., vol. 63, no. 8, pp. 1897–1910, Oct. 1984.

[22] R. Stevens,UNIX Network Programming. Englewood Cliffs, NJ:
Prentice-Hall, 1990.

[23] T. Suzuki, “ATM adaptation layer protocol,”IEEE Commun. Mag., pp.
80–83, Apr. 1994.

[24] C. A. Thekkath, T. D. Nguyen, E. Moy, and E. D. Lazowska, “Imple-
menting network protocols at user level,”IEEE/ACM Trans. Networking,
vol. 1, pp. 554–565, Oct. 1993.

[25] T. von Eicken, A. Basu, V. Buch, and W. Vogels, “U-Net: A user-level
network interface for parallel and distributed computing,” inProc. 15th
SOSP, Nov. 1995.

[26] D. K. Y. Yau, “ARC-H: Uniform CPU scheduling for heterogeneous
services,” Technical Report TR-98-024, Purdue Univ., West Lafayette,
IN, July 1998, revised.

[27] D. K. Y. Yau and S. S. Lam, “An architecture toward efficient OS
support for distributed multimedia,” inProc. IS&T/SPIE Multimedia
Computing and Networking, San Jose, CA, Jan. 1996, pp. 424–435.

[28] , “Adaptive rate-controlled scheduling for multimedia applica-
tions,” IEEE/ACM Trans. Networking, vol. 5, pp. 475–488, Aug. 1997.

[29] L. Zhang, S. Deering, D. Estrin, S. Shenker, and D. Zappala, “RSVP:
A new resource ReSerVation protocol,”IEEE Network, Sept. 1993, pp.
8–18.

David K. Y. Yau (M’97) received the B.Sc. (first
class honors) degree from the Chinese University of
Hong Kong, and the M.S. and Ph.D. degrees from
the University of Texas at Austin, all in computer
sciences.

From 1989 to 1990, he was with the Systems
and Technology group of Citibank, NA. He was
the recipient of an IBM graduate fellowship, and
is currently an Assistant Professor of Computer
Sciences at Purdue University. His research interests
are in end-to-end system architectures with quality

of service support for general purpose network computing.

Simon S. Lam(S’69–M’74–SM’80–F’85), for photograph and biography, see
p. 41 of the February 1998 issue of this TRANSACTIONS.

