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Abstract—We present the design and specification of a protocol is desirable that the group key changes after a new user has
forscalgble and reliable group rekeylngtogetherwnh performance joined (so that the new user will not be able to decrypt past
evaluation results. The protocol is based upon the use of key treesgroup communications) or an existing user has departed (so

for secure groups and periodic batch rekeying. At the beginning .
of each rekey interval, the key server sends a rekey message tothat the departed user will not be able to access future group

all users consisting of encrypted new keys (encryptions, in shorty COmmunications).
carried in a sequence of packets. We present a scheme for identi- ~ A group key management system has three functional compo-
fying keys, encryptions, and users, and a key assignmentalgorithm pents: registration, key management, and rekey transport [24].

that ensures that the encryptions needed by a user are in the same . .
packet. Our protocol provides reliable delivery of new keys to all All three components can be implemented in a key server. How-

users eventually. It also attempts to deliver new keys to all users EVer, t0 improve registration scalability, it is preferable to use
with a high probability by the end of the rekey interval. For each 0one or more trusted registrars to offload user registration from
rekey message, the protocol runs in two steps: a multicast step fol- the key server [24].

lowed by a unicast step. Proactive forward error correction (FEC) — y\yhan 5 yser wants to join a group, the user and registration
multicast is used to reduce delivery latency. Our experiments show !

that a small FEC block size can be used to reduce encoding time component mutually au.thentlcate each Other using a protocol
at the server without increasing server bandwidth overhead. Early Such as SSL. If authenticated and accepted into the group, the
transition to unicast, after at most two multicast rounds, furtherre-  new user receives a symmetric key, called the usedividual

duces the worst-case delivery latency as well as user bandwidth re- key which it shares only with the key server. Authenticated users
quirement. The key server adaptively adjusts the proactivity factor send join and leave requests to the key management component,

based upon past feedback information; our experiments show that . . .
the number of NACKSs after a multicast round can be effectively Which validates the requests by checking whether they are en-

controlled around a target number. Throughout the protocol de- Crypted by individual keys. The key management component
sign, we strive to minimize processing and bandwidth requirements also generates rekey messages, which are sent to the rekey trans-

for both the key server and users. port component for delivery to all users in the group. To build
Index Terms—Adaptive FEC, group key management, proactive a scalable group key management system, it is important to im-
FEC, reliable multicast, secure multicast. prove the efficiency of the key management and rekey transport
components.
|. INTRODUCTION We first consider the key management component, which has

licati h been the primary focus of prior work [1], [4], [7], [22], [23],
ANY EMERGING Intemet applications, such a 25]. In this paper, we follow th&ey treeapproach [22], [23],

el rf)ay-per-wew Ig|str![but|on of d'%'taltmfd'e_" ;estrlfte hich uses a hierarchy of keys to facilitate group rekeying, re-
eleconterences, mutliparty games, and virtual private networ cing the processing time complexity of each leave request

will benefit from using a secure group communications mod m O(NV) to O(log, (N)), whereN is the group size and
. 4 ,

[k9]- In t"h'z modeli( merr;]per:s_ oLa grouplshare a symmetrig ¢ key tree degree. Rekeying after every join or leave re-
63(;’ (r:1a f(‘\ group eyr\]/v Ich 1S known obny to gjrfoup USETS 3 est, however, can still incur a large server processing over-
and the €y Server. The group key can be used for encrypiigay. Thus, we propose to further reduce processing overhead

data trafflc_ between group members or restricting accesst{gusing periodic rekeying [13], [20], [25], such that the key
resources intended for group members only. The group keys rver processes the join and leave requests during a rekey in-

df:stributed Ey afgroup.key managemelrllt system, r’hi,Ch chan tval as a batch, and sends outjust one rekey message per rekey
the group key from time to time (callegroup rekeying It interval to users. Batch rekeying reduces the number of compu-

tationally expensive signing operations. It also reduces substan-
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[5], [8], [10], [12], [15]-[17], [21], rekey transport differs from TABLE |
conventional reliable multicast problems in a number of ways. NOTATION
In particular, rekey transport has the following requirements. symbol | descripiion
Ca il - . - d degree of a key tree
* Reliability rt_aquweme_nt.lt is required that every user 7 number of join requests in a rekey interval
should receive all of its (encrypted) new keys, no matter L number of leave requests in a rekey interval
H : H : N number of existing users
how large the group size. This requirement arises pecause h number of proactive PARITY packets for each block
the key server uses some keys for one rekey interval k block size; also denotes a key when it appears in {k’ } 5,
; p proactivity factor, defined as (h + k)/k
to encrypt new keyS for the next rekey Interva!' Each u* target number of NACKSs for the first multicast round
user, however, does not have to receive the entire rekey @ percentage of high loss rate receivers

message because it needs only a very small subset of all

the new keys.
« Soft real-time requirementt is required that the delivery Furthermore, early transition from multicast to unicast reduces

of new keys to all users be finished with a high probability/orst-case deIivery_ latency becal_Jse_ the server does not need
before the start of the next rekey interval. This requiremefft Wait for the maximum round-trip time (RTT) for all users
arises because a user needs to buffer encrypted data B@i@re sending in the unicast step. o
keys before the arrival of encrypting keys, and we would Toward a scalable design, we use the following ideas.
like to limit the buffer size. 1) To reduce the key server processing requirement, we par-
* Scalability requirementThe processing and bandwidth tition a rekey message into blocks to reduce the size of
requirements of the key server and each user should in- each block and therefore reduce the key server's FEC en-
crease as a function of group size at a low rate such thata coding time.
single server is able to support a large gréup. 2) To reduce each user’s processing requirement, our key
The objective of this paper is to present in detail our rekey  assignment algorithm assigns encrypted new keys such
transport protocol as well as its performance. In particular, we  thateach user needs only one packet. Thus each user has a
have the following contributions. First, a new marking algo- high probability to receive its specific packet. As a result,
rithm for batch rekeying is presented. Second, a key identifi-  the vast majority of users do not need to recover their
cation scheme, key assignment algorithm, and block ID estima-  specific packets through FEC decoding.
tion algorithm are presented and evaluated. Third, we show that3) To reduce key server bandwidth requirement, our protocol
a fairly small FEC block size can be used to reduce encoding uses multicast to send new keys to users initially.
time at the server without increasing server bandwidth overhead4) To reduce a user’s bandwidth requirement, we use uni-
Finally, an adaptive algorithm to adjust the proactivity factor cast for each user who cannot recover its new keys during
(see Table | for its definition) is proposed and evaluated. The  the multicast step. This way, a small number of users in
algorithm is found to be effective in controlling the number of high-loss environments will not cause our protocol to per-
NACKs and reducing delivery latency. (Another adaptive algo- ~ form multicast to all users.
rithm with further refinements is presented in [27] and [28].) The balance of this paper is organized as follows. In Sec-
Our server protocol for each rekey message consists of faian 11, we briefly review the ideas of key tree and periodic batch

phases: rekeying. In Section Ill, we present our server and user proto-
1) generating a sequence of packets containing encrypgsds. In Section IV, we show how to construct a rekey message.
keys (called ENC packets); The key identification scheme and key assignment algorithm are
2) generating packets containing FEC redundant informgresented. Block partitioning and block ID estimation are pre-
tion (called PARITY packets); sented and evaluated in Section V. In Section VI, we discuss
3) multicast of ENC and PARITY packets; how to adaptively adjust the proactivity factor to achieve low de-
4) transition from multicast to unicast. livery latency with a small bandwidth overhead. In Section VI,

To achieve reliability, our protocol runs in two steps: a multiwe discuss when and how to unicast. Our conclusions are given
cast step followed by a unicast step. During the multicast steép Section VIII.
which typically lasts for just one or two rounds, almost all of
the users will receive their new keys because each user only [I. BACKGROUND

needs one specific packet (guaranteed byourkeyassignmenta\l/-\/e review in this section the ideas of key tree [22], [23]

gorithm) and proactive FEC is also used. Subsequently, for e clmj periodic batch rekeying [13], [20], [25] and present a new

user who cannot recover 'FS new keys n the multicast step, ¢ rking algorithm. The algorithm is used to update the key tree
keys are sent to the user via unicast. Since each user only nee

. nerate workl for rekey transport.
a small number of new keys, and there are few users remam%g generate workload for rekey transport
in the unicast step, our protocol achieves reliability with a sme}l\l
. . Key Tree

bandwidth overhead. . _

To meet the soft real-time requirement, proactive FEC in A key tree is a rooted tree with the group key as root. A key
the multicast step is used to reduce delivery latency [11], [19]€€ contains two types of nodesnodescontaining users’ in-

dividual keys, and:-nodescontaining the group key and aux-

1To further increase system reliability as well as group size, we mightconsicig-?‘ry keys. A user is given the in.divid.ual key contained in its
the use of multiple servers, which is a topic beyond the scope of this paper. u-node as well as the keys contained in the k-nodes on the path
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k-node

. use key assignment algorithm to construct £N C packets;
. partition the sequence of E'N C' packets into blocks;
. multicast k EN C packets and h PARITY packets for each block;
when timeout do
adaptively adjust proactivity factor;
if conditions for switching to unicast hold then
unicast U.S R packets to users who did not receive their required encryptions;
else
collect amazx (] as the largest number of PARITY packets needed for
each block 7;
10. gencrate amax [i] new PARITY packets for cach block i;
11. multicast these PARITY packets to all users at the beginning of next round

k-nodes

o~

i

1 k9 | u-nodes
|

© PN YR~

Fig. 1. Example key tree.

Fig. 2. Basic protocol for key server.

from its u-node to the root. Consider a group with nine users. I1l. PROTOCOL OVERVIEW
An example key tree is shown in Fig. 1. In this group, usgis
given the three keys on its path to the raf; kg9, andk; o.
Key kg is theindividual keyof ug, key k1_g is thegroup key
that is shared by all users, akekg is an auxiliary key shared
by w7, ug, andug.

Supposeuy leaves the group. The key server will the

In this section, we give an overview of the rekey transport
protocol. An informal specification of the key server protocol is
shown in Fig. 2. Notation used in this paper is defined in Table I.

First, the key server constructs a rekey message as follows.

t the beginning of a rekey interval, after the marking algorithm
) i as generated encryptions, the key server runs the key assign-
need to change the keys thak, knows: changeks ment algorithm to assign the encryptions into ENC packets.

to ki_s, and changekrsg to krs. To distribute the new . .
keys to the remaining users using the group-orientgd'" key assignment algorithm guarantees that each user needs
nly one ENC packet.

rekeying strategy [23], the key server constructs the for- Next, the key server uses a Reed-Solomon erasure (RSE)

l(?]:m? relgzy ;nes{s]::gb% trav?;smg}the lﬁy tr(;e t;Ott:_)'I(?r_:p:coder to generate FEC redundant information, called PARITY
{k’}Ti ggnot?s lligé)k’ éﬁir%géd t;;ie&aﬁéndlégrg%rrled 1o as PACKets. In particular, the key server partitions ENC packets into
anencryption Upon receiving a rekey message, a user extra ultiple blqcks. Each block contaiisENC packets. We call
the encryptions that it needs. For example, only needs € block size. The_key server generatgdARITY packet; .for
{k1-8}k,s and{kzs}x,. In other words, a user does not need t ;:;izrb:jogrlf(.)t\évde S;Ofme the ratio G + k)/k as theproactivity
receive all of the encryptions in a rekey message. Then the key server multicasts the ENC and PARITY packets
to all users. A user can recover its required encryptions in any
B. Periodic Batch Rekeying one of the following three cases. 1) The user receives the spe-

. . cific ENC packet that contains all of the encryptions for the user.
Rekeying after every join or leave request, however, can E?The user receives at ledspackets from the block that con-

expensive. In periodic batch rekeying, the key server first cqlins its specific ENC packet, and thus the user can recover the
lects.J join and L leave requests during a rekey interval. At th%riginal ENC packets. 3) The user receives a USR packet during

end of the rekey interval, the key server runs a marking algghsequent unicast phase. The USR packet contains all of the
rithm to update the key tree and construct a rekey subtree. Tgfﬁ:ryptions needed by the user.

marking algorithm, presented in Appendix B, is different from aqq. multicasting ENC and PARITY packets to users, the

those in our previous papers [13], [25]. This new algorithm fasgyer wiaits for the duration of a round, which is typically larger
cilitates key identification (see Section IV-A). than the maximum RTT over all users, and collects NACKs from
In the marking algorithm, the key server first modifies thene ysers. Based on the NACKs, the key server adaptively ad-
key tree to satisfy the leave and join requests. The u-nodes j{@4is the proactivity factor to control the number of NACKs for
departed users are removed or replaced by u-nodes for neyy next rekey message. Each NACK specifies the number of
jqined users. Iff > L, the_key serverwill_“split” nodes after the paAR|TY packets that a user needs in order to Hapackets to
rightmostk-node at the highest level (with the root at level O, th@cover its block. In particular, the key server collects the largest
!ov_vest) to accommodate the extra joins (see Fig. 28)._Aftermo,q]mb(::r of PARITY packets needed (denotechasiz[i]) for
ifying the key tree, the key server changes the key in a k-noggch plock. At the beginning of the next round, the key server
if the k-node is on the path from a changed u-node (either "$eneratesmaz[i] new PARITY packets for each bloak and
moved or newly joined node) to the root. multicasts the new PARITY packets to the users. This process
Next, the key server constructs a rekey subtregek®y sub- repeats until the conditions for switching to unicast are satis-
treeconsists of all of the k-nodes whose keys have been updajd (see Section VII). Typically, unicast will start after one or
in the key tree, the direct children of the updated k-nodes, agh, multicast rounds. During unicast, the key server sends USR

the edges connecting updated k-nodes with their direct childrg&ckets to those users who have not recovered their required
Given a rekey subtree, the key server can then generate enCiysryptions.

tions. In particular, for each edge in the rekey subtree, the key

server uses the key in the child node to encrypt the key in thea, gnc packet is a protocol message generated in the application layer, but
parent node. we will refer to it as gpacketto conform to terminology in the literature.
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1. when timeout do

2. ifreceived its specific EN C' packet or at least k packets in the required block,
or a US R packet then

3 retrieve required encryptions;

4 else

5. a «+— number of PARITY packets needed for recovery;

6 send a by NACK to the key server;

d*m+1 d*m+d

Fig. 3. Basic protocol for a user.

Fig. 4. lllustration of key identification.

'An informal specification of the user protocol is shown ir{Ieft) illustrates the IDs of nodes in an expanded key tree with a
Fig. 3. In our protocol, a NACK-based feedback mechanism s, degree of three.
used because the vast majority of uSers can receive or reCoVe&j en the key identification strategy, we observe that the IDs
their required encryptions within a single round. In particulagy 5 noge and its parent node have the following simple relation-
during each round, a user checks whether it has received its Sfﬁﬁbi If a node has an ID ofs, its parent node will have an ID

cific ENC packet or can recover its block. If not, the user wills |(m — 1)/(d)|, whered is the key tree degree. Fig. 4 (right)
reporta, the number of PARITY packets needed to recover i{§ strates the reI’ationship.

bloqk, to Fhe key server. By the property of Reed—SoIor_non N5 uniquely identify an encryptiofik’}x, we assign the ID
coding,a is equal tok minus the number of packets received iRyt ie encrypting key: as the 1D of this encryption because the

the block containing its specific ENC packet. key in each node will be used at most once to encrypt another

In summary, our protocol uses four types of packets: 1) ENGy sincer is the parent node df, its ID can be easily derived
packets, which contain encryptions for a set of users; 2) PARIT,

: : . X %\/ven the ID of the encryption.
packets, which contain FEC redundant information produced Byrne |p of 3 user is, by definition, the ID of its corresponding

a RSE coder; 3) USR packets, which contain all of the encryp-pqge, which contains its individual key. Given the ID of an
tions for a specific user; and 4) NACK packets, which are feegy,cryntion and the 1D of a user, by the simple relationship be-
back from a user to the key server. This type of packet repof{aen 4 node and its parent node, a user can easily determine

the number of PARITY packets needed for specific blocks. \yhether the encryption is encrypted by a key that is on the path
Note that protocols given in Figs. 2 and 3 only outline the bg-, 1, the user's u-node to the tree root.

haviors of the key server and users. More detailed specification§yhen users join and leave, our marking algorithm may

of these protocols are given in Appendix A. modify the structure of a key tree, and thus the IDs of some
nodes will be changed. For a user to determine the up-to-date
V. CONSTRUCTION OFENC PACKETS ID of its u-node, a straightforward approach is for the server to

. . . inform each user its new ID by sending a packet to the user. This
After running the marking algorithm to generate the encrypy

) proach, however, is obviously not scalable. By Lemma 1 and
tions of a rekey message, the key server next runs a key ass'ﬁ?éorem 1, we show that by knowing the maximum ID of the
ment algorithm to assign the encryptions into ENC packets. '

. h bability f h L ired LBirent k-nodes, each user can derive its new ID independently.
increase the probability for each user to receive its required €Ny g2 1 I the key server uses the marking algorithm in

cryptions within one round, our key assignment algorithm U8k ppendix B for tree update, then in the updated key tree, the ID
antees that all of the encryptions for a given user are assig ny k-node is always Ies,s than the ID of any u-node ’

into a single ENC packet. For each user to identify its specific Theorem 1: For any user, letr denote the user's ID t;efore
ENC packet and extract its encryptions from the ENC pack%e key server runs the mérking algorithm, and denote its

the kgy SErver assigns a unique ID for _each key, user, and fthafter the key server finishes the marking algorithm. het

cryption; this ID information is included in ENC packets. denote the maximum k-node ID after the key server finishes
Below, we first discuss how to assign an ID for each key, US§he marking algorithm. Define functiofi(z) = dm + (1 —

and encryption, then we define the format of an ENC packe{ltp>/(1 _ d) for integerz > 0, whered is the key tree degree.

Finally, we present and evaluate our key assignment algorithfrhen there exists one and only one integer> 0 such that

o ng < f(2') < d-ni +d, andm’ is equal tof (z’).

A. Key ldentification A proof is shown in Appendix C. By Theorem 1, we know
To uniquely identify each key, the key server assigns an ithat a user can derive its current ID by knowing its old ID and

teger as the ID of each node on a key tree. In particular, tH# maximum ID of the current k-nodes.

key server first expands the key tree to make it full and bal-

anced by adding null nodes, which we refer tonasodesAs B Format of ENC Packets

a result of the expansion, the key tree contains three types ofsiven the results in the previous subsection, we can now de-

nodes: u-nodes containing individual keys, k-nodes containifige the format of an ENC packet. As shown in the Fig. 5, an

the group key and auxiliary keys, and n-nodes. Then the kENC packet has nine fields, and contains both ID information

server traverses the expanded key tree in a top-down and laftd encryptions. Each number in parentheses of Fig. 5 is the

right order, and sequentially assigns an integer as a node’s fdggested field length, in number of bits.

The ID starts from 0 and increments by 1. For example, the rootThe ID information in an ENC packet allows a user to iden-

node has an ID of 0, and its leftmost child has an ID of 1. Fig.t#fy the packet, extract its required encryptions, and update its
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average number of ENC packets

1. Type: ENC (3) 2. Flag bit (1)
3. Rekey message ID (12) 4. Block ID (8) 250
5. Sequence number within a block (8) 6. maxz K ID (16) 200
7. <frmID,tol D> (32) 8. A list of <encryption, ID> (variable)
9. Padding (variable) %0 e =
100 P ;“%W

'z, ”‘g"‘!' e
> %ﬁ%‘rl’ll
Fig. 5. Format of an ENC packet. :

4
50 0000

S

Fig. 7. Average number of ENC packets as a functiod aind L for N =
4096.

450 T T T T T T T T
-0,
400 | J=N/4 ;
-N/4,
350 | i
300 ’
250
200
150

rekey subtree

Fig. 6. lllustration of UKA algorithm.

user ID (if changed). In particular, Fields 1 to 5 uniquely iden-
tify a packet. A flag bit in Field 2 specifies whether this packet
is a duplicate; this field will be further explained in Section V. 100
Field 6 is the maximum ID of the current k-nodes. As we dis- 50 -
cussed in the previous subsection, each user can derive its cul 0 L L L t : : L
rent ID based upon this field and its old ID. Field 7 specifies that 0 2000 4000 6000 8000 10000 12000 14000 16000 180t
this ENC packet contains only the encryptions for users whose number of users N

new IDs are in the range dfrmID, toID) inclusively. Fig. 8. Average number of ENC packets as a functiofVof

Field 8 of an ENC packet contains a list of encryption and

its ID pairs. After the encryption payload, an ENC packet maé’ry tions. For two users whose encryptions are assigned into

be padded by zero to have fixed length because FEC encocmdadiﬁerent ENC packets, their shared encryptions are dupli-

re_quires fixed length pa_ckets. We observe that pqdding by Z&&8ed in these two ENC packets; therefore, we expect that UKA
will not cause any ambiguity because no encryption has an [, 4 increase the bandwidth overhead at the key server.

of zero. We evaluate the performance of UKA in this subsection using
simulations. In the simulations, we assume that at the begin-
ning of a rekey interval the key tree is full and balanced with
Given the format of an ENC packet, we next discuss the dgmodes. During the rekey interval,join and L leave requests
tails of our key assignment algorithm, which we refer to as thge processed. We further assume that the leave requests are uni-
user-oriented key assignment algorithm (UKA). UKA guararformly distributed over the u-nodes. We set the key tree defjree
tees that all of the encryptions for a user are assigned intg&4 and the length of an ENC packet as 1028 bytes. In all of our
single ENC packet. experiments in this paper, each average value is computed based
Fig. 6 illustrates a particular run of the UKA algorithm ingn at least 100 simulation runs.
which seven ENC packets are generated. UKA first puts all\ye first investigate the size of a rekey message as a function
of the user IDs into a list in increasing order. Then, a longegt .j and L for N = 4096, as shown in Fig. 7. For a fixed,
prefix of the list is extracted such that all of the encryptionge observe that the average number of ENC packets increases
needed by the users in this prefix will fill up an ENC packetinearly with .J. For a fixed.7, we observe that ab increases,
Repeatedly, UKA generates a sequence of ENC packets wh@g€number of ENC packets first increases (because more leaves
(frmID, toID) intervals do not overlap. In particular, the algoimply more keys to be changed), and then decreases (because
rithm guarantees thavID of a previous ENC paCket isless tharhow some keys can be pruned from the rekey Subtree).
the frmID of the next packet. This property is useful for block Next we investigate the size of a rekey message as a function
ID estimation to be performed by a user (see Section V-A). of N, as shown in Fig. 8. We observe that the average number
of ENC packets in a rekey message increases linearly Mith
D. Performance of UKA for three combinations of and L values.
UKA assigns all of the encryptions for a user into a single With the UKA algorithm, some encryptions are duplicated in
ENC packet, and thus significantly increases the probability f&NC packets. We definduplication overheads the ratio of
a user to receive its encryptions in a single round. Consequendlyplicated encryptions to the total number of encryptions in a
the number of NACKs sent to the key server is reduced. rekey subtree. Fig. 9 shows the average duplication overhead as
This benefit, however, is achieved at an expense of sendafunction ofJ andLL for N = 4096. First, consider the case of
duplicate encryptions. In a rekey subtree, users may share ariixed L. We observe that the duplication overhead decreases

average number of ENC packets

C. User-Oriented Key Assignment Algorithm
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average duplication overhead

partition the ENC packets into multiple blocks in order to re-
_ duce the key server’s encoding time.
= o - Consider the ENC packets of a rekey message sequenced in

T AR
2 AR AAREARERES
AR REAIREI AL

«%,4#:}:.}%& = order of generation by UKA algorithm. The packet sequence
_= 2 is partitioned into blocks of packets, with the firsk packets
forming the first block, the next packets forming the second
block, and so on. Each block formed is assigned sequentially an
integer-valued block ID. Each packet within a block is assigned
a sequence number from 0 ko 1.
To form the last block, the key server may need to dupli-
Fig.9. Average duplication overhead as a functiod aindL for N = 4096.  cate ENC packets until there atgackets to fill the last block.
(The key server may choose ENC packets from other blocks
018 : to duplicate, but all duplicates are used to fill the last block.)
0.16 | J=N/4L|: S x . We use a flag bit in each ENC packet to specify whether the
0.14 | ’ 1 packetis a duplicate, as shownin Fig. 5. A duplicate ENC packet
012 £ ] has the same contents in all fields as the original packet ex-
] cept for the(block ID, sequence number) and flag bit fields.
A new (block ID, sequence number) pair is assigned to each
duplicate ENC packet because Reed—Solomon encoding needs
to uniquely identify every packet, duplicate or not.
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A. Block ID Estimation

One issue that arises from partitioning ENC packets into
blocks is that if a user loses its specific ENC packet, the user

. ) needs to determine the block to which its ENC packet belongs.
from about 0.1 to 0.05 as we increage Next, consider the Then the user will try to recover this block through FEC

case of a fixed/. We observe that the duplication overhead ﬁr%ecoding. We present an algorithm in Appendix D for users
increases and then decreases as we inciease: to estimate the ID of the block containing its specific ENC
Last, we plot in Fig. 10 the average duplication overhead ggciet. With this algorithm, the probability that a user cannot
a function of N. We observe that fof = 0 and = N/4, determine the precise value of its block ID is no more than
orJ = L = N/4, the average duplication overhead increasgs the worst case, whereis the loss rate observed by the user
approximately linearly withog(IV) for N > 32. This is be- ynder the assumption of independent packet loss. When this
cause the rekey subtree is almost full and balanced fer 0 pappens, the user can still estimate a possible range of its block

andL = N/4,orJ = L = N/4, and thus the duplica- |p_ |t will then request PARITY packets for every block within
tion overhead is directly related to the tree heiglat;( V). We  this range when it sends a NACK.

also observe that the duplication overhead is generally less than
(log,(N) — 1)/(46), where 46 is the number of encryption
that can be carried in an ENC packet with a packet size of 1028
bytes. For/ = N/4 andL = 0, the rekey subtree is very sparse, After forming the blocks of a rekey message, the key
and thus the graph of duplication overhead fluctuates around gesver generates PARITY packets, and multicasts all ENC and

Fig. 10. Average duplication overhead as a functiotvof

Packets Sent in Interleaving Pattern

graph ofJ = L = N/4. PARITY packets to users. One remaining issue is to determine
an order in which the key server sends these packets. In our
V. BLOCK PARTITIONING protocol, the key server sends packets of different blocks in

) ) ) an interleaving pattern. By interleaving packets from different
After running the UKA assignment algorithm to generate thgiocks, two packets from the same block will be separated by

ENC packets of a rekey message, the key server next genergifgger time interval, and thus are less likely to experience the
PARITY packets for the ENC packets using an RSE coder. same burst loss on a link. With interleaving, our evaluation
Although grouping all of the ENC packets into a single RSEnows that the bandwidth overhead at the key server can be
block may reduce server bandwidth overhead, a large block sjggced.
can significantly increase encoding and decoding time [3], [15],
[18]. For example, using the RSE coder of Rizzo [18], the et&—
coding time for one PARITY packet is approximately a linear”
function of block size. Our evaluation shows that for a large Block partitioning is carried out for a given block sizeTo
group, the number of ENC packets generated in a rekey interdatermine the block size, we need to evaluate the impact of block
can be large. For example, for a group with 4096 users, whgize in terms of two performance metrics.
J = L = N/4, the key server can generate up to 128 ENC The first performance metric is the key server’s multicast
packets with a packet size of 1028 bytes. Given such a lafdgandwidth overhead, which is defined to be the ratia’ofo
number of ENC packets in a rekey interval, it is necessary 19 wherev is the number of ENC packets in a rekey message,

Choosing Block Size
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and+’ is the total number of packets that the key server multi- 4 ' ' ' ' ' '
casts to enable recovery of specific ENC packets by all users.
The second performance metric is overall FEC encodin(g
time, which is the time that the key server spends to genera'g
all of the PARITY packets for a rekey message. Although bIocL%
sizek also has a direct impact on each user's FEC decodin§
time, the impact is small because in our protocol, the vasy
majority of users receive their specific ENC packets and thu o
do not perform any decoding.
We use simulations to evaluate the impact of block size. Ttg 05 | -
support a large group size, we developed our own simulatc ®
for a model proposed and used in [16]. In this model, the ke 0 5 10 15 20 25 30 35 40 45 50
server connects to a backbone network via a source link, ar... block size k
'?'ﬁzhbiii%g?]gnsg:\?véorlf:: Z:ﬁsg]oen de trc])ett)vev ?gé:lz:ereﬁﬁgigt%eﬂ Average server bandwidth overhead as a function of block size.
link has a fixed loss rate gf,. A fraction o of the IV users 4500 . . .
. alpha=0 —+—
have a high loss rate ¢f,, and the others have a low loss rate 4000 | alpha=20% ---x--- e

T T T

alpha=0 —+—
alpha=20% ---%--- 4
alpha=40% ---*---
3la alpha=1 -8

rhead
w
o0
T

ge servi

T T T T T T gii)

of pi. For each given loss ratp, we use a two-state contin- £ gsgg | #Phesto% =X ]
uous-time Markov chain [15] to simulate burst loss as follows. é 3000 L B 4
The average duration of a burst lossli®/p ms, and the av-  § | e .
erage duration of loss-free time between consecutive loss bursts I o

is 100/(1 — p) ms# The default values in our simulations are ﬁ 2000 | =
as follows:N = 4096, d = 4, J = L = N/4,a = 20%, p;, = g 1900

20%, p; = 2%, p; = 1%, and the key server’s sending rate is g 1000

10 packets/s, and the rekey interval is 60 s, and the length of ar 500
ENC packet is 1028 bytes. The same simulation topology and 0
parameter values will also be used in experiments described ir
the following sections unless otherwise stated.
The impact of block size on the key server’s bandwidth overig. 12. Relative overall FEC encoding time as a function of block size.
head is shown in Fig. 11. Here we get 1 (that is,h = 0).5
Observe that the key server's average bandwidth overheadRITY packets for each block. The discussion, however,
not sensitive to the block sizefor k£ > 5. assumes a given proactivity facter. In this section, we
We next consider the impact of block sizeon the key investigate how to determing
server’s overall FEC encoding time. If we use Rizzo’s RSE Proactive FEC has been widely used to improve reliability
coder [18], the encoding time of all PARITY packets for and reduce delivery latency [2], [6], [11], [14], [15], [19], [26].
rekey message is approximately the product of the total numbéswever, if the proactivity factor is too large, the key server
of PARITY packets and the encoding time for one PARITYnay incur high bandwidth overhead. On the other hand, if the
packet. Also the encoding time for one PARITY packet iproactivity factor is too small, the users may have to depend
approximately a linear function ok. The relative overall on retransmissions to achieve reliability; thus, the benefit of re-
encoding time (assumingtime units to generate one PARITY duced delivery latency diminishes. Furthermore, if we depend
packet for block sizé) is shown in Fig. 12. on proactive FEC to avoid feedback implosion and the proac-
In summary, we found that fg5 = 1, a small block sizé: tivity factor is too small, many users may experience packet
can be chosen to enable fast FEC encoding at the server withogtes and the key server would be overwhelmed by NACKSs.
incurring a large server bandwidth overhead. For experiments irThe appropriate proactivity factor will depend on network
the following sections, we chooge= 10 as the default value status, in particular, factors such as network topology, loss rates

block size k

unless otherwise specified. of network links, number of users in a session, and number of
sessions using proactive FEC. Such factors are unknown to the
VI. ADAPTIVE FEC MULTICAST key server and may be changing during a session’s life time. The

. . . . objective of our next investigation, therefore, is to study how to
In the previous section, we discussed how to partition the; . : - R
ENC packets of a rekey message into blocks and genera éslptlvely adjust proactivity factor by.observm.g its wppact on

f1€ number of NACKSs from users. With adaptive adjustment,

. - . we aim to achieve low delivery latency with small bandwidth
3Note that no unicast recovery is involved while we evaluate the server band- head
width overhead. The key server will do multicast until all users receive or c&verneaa.

recover their specific ENC packets. o
4This network topology and loss model are simplistic compared to the If\- Impact of Proactivity Factor

ternet. They are however needed for simulating a large group size (up to 16 384) P . PR .
For simulation results from the usee$ and GT-ITM for a smaller group size, Before designing an algorithm to adjystit is desirable to

we refer the interested reader to our recent work [27], [28]. evaluate the impact gf on the number of NACKs, the delivery
5The result for the case of adaptivés similar. See [29] and [30] for details. latency at users, and the bandwidth overhead at the key server.
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Fig. 13. Average number of NACKs in the first round as a functiop.of Fig. 14.  Average server bandwidth overhead as a functign of

Algorithm Adjust Rho(A)

> A = {a;}: eachitem a; is the number of PARITY packets requested by a user.
Lif (size(A) > u™) then
sort A suchthat ap > a1 > aas, ...
h — h+ay*;
Lif (size(A) < u™) then
set h «— max{0, h — 1} with

. u* —2.size(A)q.
p Percentage of users who need 6 p Eog’ ﬁi‘%?‘zx{o’ vk
1 round 2 rounds | 3 rounds | > 4 rounds
1 94.414% | 5.134% | 0.389% | 0.063%
1.2 | 97.256% | 2.502% | 0.196% | 0.046%
1.6 | 99.888% | 0.090% | 0.018% | 0.004%

2 99.992% | 0.006% | 0.001% | 0.001%

TABLE I
PERCENTAGE OFUSERS ONAVERAGE WHO NEED A GIVEN NUMBER OF
ROUNDS TO RECEIVE THEIR ENCRYPTIONS

G

Fig. 15. Algorithm to adaptively adjust proactivity factor.

B. Adjustment of Proactivity Factor

We present in Fig. 15 an algorithm to adaptively adjust
The basic idea of the algorithm is to adjysbased on NACK

We first evaluate the impact @f on the number of NACKSs. information received for the current rekey message, such that
Fig. 13 plots the average number of NACKs for the first round target number of NACKs are expected to be returned for the
as a function of. Note that they axis is in log scale. We observenext rekey message. The key server runs this algorithm at the
that the average number of NACKs decreases exponentiallye®¥! of the first multicast round.
we increase. (A similar observation was made in [19].) ~ The input to algorithmAdjustRhds a list A. Each item in4

We next evaluate the impact pfon delivery latency. Table Il is the number of PARITY packets requested by a user. If a user

shows the percentage of users on average who need a gﬁfé}pests packets for a range of blocks, the key server records
number of rounds to receive their encryptions. ot 1, we into A the number of PARITY packets requested for the block

observe that on average 94.41% of the users can receive tﬂéq_l‘_thcon}amgrtlhe usekr’s Sp?CI:f'C ENFC packﬁt. )
encryptions within a single round; for= 1.6, the percentage & algorithm works as follows. For each rekey message, at

value is increased to 99.89%: for= 2.0, the percentage valuethe end of the first round, the key server compares the number
is increased to 99.99% of NACKSs it has received, which is equal ¢zeof(A), and the

We then evaluate the impact of on the average servernumber of NACKs it targets (denoted hy). The comparison

X T results in two cases.
bandwidth overhead, as shown in Fig. 14. EOCIO.SG to 1, In the first case, the key server receives more NACKs than
the key server sends a small amount of proactive PARIT.Y

. . . . For thi h I 1thl
packets during the first round, but it needs to send more reactﬁlsetarget or this case, the server se ectg e+ 1)th largest
item (denoted by, -) from A, and increasep such thata,,-

PARITY packets in subsequent rognds to allow users to reCOditional proactive PARITY packets will be generated for each
their packets. As a result, a small increase bfs little impact

. block of the next rekey message. To illustrate, suppose ten users,
on the average server bandwidth overhead. Whém@comes y g PP

large, the bandwidth overhead during the first round dominate§ ' ~ 0,...,9, have sent NACKS for the current rekey mes-

- . n LT ; PARITY kets. For illustration
the overall bandwidth overhead, and the overall bandmdﬁ?ge’ and user; requestsi; packets. For illustratio
. . : purposes, we assumeg > a; > --- > ag and the target number
overhead increases linearly with

In summary, we observe that an increase @ian have the of NACKS IS two, that isu” = 2. Then according to our a-
following threé offects gonthm,l for the next rekey message, the key server will send
' ay additional PARITY packets so that usefgs, us,. .., ug}
1) It will significantly reduce the average number of NACKdhave a higher probability to recover their ENC packets within a
for the first multicast round. single round. This is because according to the current rekey mes-
2) It will reduce the worst-case delivery latency. sage, ifuser§us, us, . . ., ug } were to receive, more PARITY
3) Itwillincrease the key server’s bandwidth overhead wherackets, they could have recovered their ENC packets within a
p is larger than needed. single round.
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In the second case, the key server receives less NACKs thar 0 5 10 15 20 25
its target. Although receiving less NACKs is better in terms of rekey message D

reducing delivery latency, the small number of NACKSs received
may mean that the current proactivity factor is too high, and thﬁ'@ 19. Traces of the number of NACKs for variou$ values with initial
may cause high bandwidth overhead. Therefore, the algorithm

reducep by one PARITY packet with probability equal to* — ~ . ' .

2 size(A)) /(u*). o o7 S
S 120 - A
C. Performance Evaluation B 100l u'=100 = |
We use simulations to evaluate algoritdjustRhoWe will = n N
first investigate whether our protocol can effectively control the § 80 r nOAER Y e
number of NACKs, and then evaluate the extra bandwidth over-= 60 - u Pr Lo S
head that it may incur. In the experiments to be presented, wey 4, | LN ""',\ ; 5 _
choose 20 to be a default valuewfunless otherwise specified. E (B L. & I A7 Y Lea
1) Controlling the Number of NACKsBefore evaluating = 2°[ - . "E'E"_;’t L I
whether algorithm AdjustRho can control the number of i P S WANENE S Wk W WS

0 5 10 15 20 25

NACKs, we first investigate the stability of the algorithm.
rekey message ID

Fig. 16 shows how is adaptively adjusted when the key
server sends a sequence of rekey messages. For jnitidl as  Fig. 20. Traces of the number of NACKs for various values with initial
shown in Fig. 16(a), we observe that it takes only two or threee= 2-
rekey messages forto settle down to stable values. For ini-
tial p = 2 as shown in Fig. 16(b), we observe theteeps de- Figs. 19 (initialp is 1) and 20 (initialp is 2), the number of
creasing until it reaches stable values. Comparing both figur®ACKs received at the key server fluctuates around eéch
we note that the stable values of these two figures match eaatget number specified. However, we do observe that the fluc-
other very well. tuations become more significant for larger valuesofThere-
Figs. 17 and 18 plot the traces of the number of NACKSs fdore, in choosing.*, we need to consider the potential impact
the first multicast round. In Fig. 17, where the initialalue is  of large fluctuations when* is large.
1, the number of NACKSs received stabilizes very quickly, and 2) Overhead of Adaptive FECFrom the previous section,
the stable values are generally less than 1.5 timeg dfig. 18 we know that algorithmAdjustRhocan effectively control the
shows the case for initigh = 2. We observe that the stablenumber of NACKs and thus reduce delivery latency. However,
values of these two figures match very well. compared with an approach that does not send any proactive
We then evaluate whether algorithydjustRhocan control PARITY packets at all during the first round and only gener-
the number of NACKs for various values af. As shown in ates reactive PARITY packets during the subsequent rounds, the
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Fig. 21. Average server bandwidth overhead for adaptive FEC and#od  Fig. 22. Average server bandwidth overhead for adaptive FEC and$od
case in various loss conditions. case when group siz¥ varies.

adaptive FEC sche_me may incu.r extra t_)and.width overhead at VII. SPEEDUPWITH UNICAST

the key server. We investigate this issue in this subsection. . . o
We first evaluate the extra server bandwidth overhead causefREXEY transport has a soft real-time requirement, that is, it is

by adaptive FEC in various loss conditions. Fig. 21 compares #lesirable for all users to receive their new keys before the start of

average server bandwidth overhead for adaptivesw&@ the the nextrekey interval. To meet this requirement, we have pro-

case that all PARITY packets are generated reactively (we calPRS€d in the previous section to adaptively adjueuring the

p = 1 case). We observe that our adaptive scheme causes [ifpwiticast phase to reduce the number of users who send NACKs.

extra server bandwidth overhead in a homogeneous low loss &R further reduce delivery latency, the key server will switch to
vironment (i.e.o = 0). Fora = 1, our scheme can even save Alnicast after one or two multicast rounds. Unicast can reduce de-

little bandwidth. This is because for= 1 case, the key server llvery latency compared to multicast because the duration of a

takes more rounds for all users to recover their encryptionsfplticast round is typically larger than the maximum RTT over

the reactive scheme than in the adaptive scheme. Therefor&/lil/Sers.

is possible that the total number of PARITY packets generatedON€ issue of early unicast is its possible high bandwidth over-
during the rounds fop = 1 case is larger than that of the adaphead at the key server. In our protocol, however, unicast will not

tive scheme. In the case af= 20%, the extra bandwidth over- C&Use large bandwidth overhead at the key server for the fol-
head generated by adaptjvés less than 0.3 fok > 10. lowing two reasons. First, the size of a USR packet sent during

We next evaluate the average server bandwidth overheadd8'@c@st is much smaller than the size of an ENC or PARITY

the two schemes for various group sizes. From Fig. 22, we difcket. In our protocol, a USR packet contains only the encryp-

serve that the extra bandwidth overhead incurred by adaptivi©ons for a specific user, and its packet size is at st 22 - 1)
ytes (see Appendix A for the format of a USR packet), where

increases withV, but the extra bandwidth overhead incurred iQ_ ) '
still less than 0.42 even fa¥ = 16 384 whenk > 10. [ is the height of the key tree. On the other hand, the size of

an ENC or PARITY packet is typically more than one kilobyte
6To measure the average server bandwidth overhead for adaptive FEC.lwag. Second, our protocol guarantees that only a few users need
set initialp = 1 and let the key server send out ten rekey messages. We tllmjgast ifu* is small enough. In fact. our evaluations show that

compute the average server bandwidth overhead based on the next 100 or O .
rekey messages. foru* = 20, N = 4096, and initialp = 1, roughly five or fewer
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users need recovery after two multicast rounds when the syst [~ ="~
. for each block do multicast & EN C packets and h PARITY packets;

1
becomes stable. § fo tk ENG pa dh DARITY
. . . . . R~ ty set; > Rist t § 3 ACKs.
Our conditions for switching to unicast are as follows. OU | 4 4 — aupy it o A containg NACK mformation,
protocol switches to unicast after one or two multicast rounc | 5 for eachblock ID i do amaz[i] — 0;
. . 6. > amax[i] record the largest number of PARITY packets requested
We suggest two multicast rounds for a large rekey interval a by users for block i until now.
. H 7. start timer;
one multlcast_ round for_ a small r_ekey interval. Ev_en for alarg | o receiving a NACK (. a list of < a, i >) do
interval, the time to switch to unicast can be earlier if the toti | 9. > m: the ID of the user who sends the NACK.
[ H - 10. > < a,i >: the user requests a PARITY packets for block 4.
ength of the USR packets is no more than that of PARIT | || £ &0t - MULTICAST) then
packets needed for the next multicast round. 1. Re— R+ {m};
Duri h . f h . liabili d 13. im < 1D of the block to which the user m belongs;
Urlng the unicast Step: to further Improve retiabi Ity anare 14. @ < number of PARITY packets that the user requests for block 2., ;
duce delivery latency, the key server sends multiple copies o | 15 append am, to A; _
16. amaz|ipy] «— max{amaz|im], am };

USR packet to a user who needs recovery. The number of COf | 17. else send US R packets to m;

i - 18.when timeout do
to send depends on the loss rate of the user, which can be ez | |- "B INOnE o exeette Update Rho(A):

estimated by the key server (see [29] and [30] for details). 20.  if conditions for switching to unicast hold then
21. status «— UNICAST;
22. unicast U .S R packets to each user in R
23.  else

VIIl. CONCLUSION 24. if R is not empty then
25. for each block ¢ do
The objective of this paper has been to present in det g‘; ?ﬁiﬁ;“:f;“f%?"[’] new PARITY packets;
our rekey transport protocol as well as its performance. O | 2. start timer; ’

server protocol for each rekey message consists of four phac C.
1) generating a sequence of ENC packets containing encryp,

keys; 2) generating PARITY packets; 3) multicast of ENC an'Eg 23. Key server protocol for one rekey message.

PARITY packets; and 4) transition from multicast to unicast.

In the first phase, after running the marking algorithm to geswitch to unicast after one or two multicast rounds. To reduce
erate encryptions for a rekey message, the key server constrdeévery latency, the key server estimates the user’s loss rate, and
ENC packets. The major problem in this phase is to allow a ussgnds multiple copies of the user's USR packet during unicast.
to identify its required encryptions after the key tree has beenln summary, we have the following contributions. First, a new
modified. To solve the problem, first we assign a unique integgrarking algorithm for batch rekeying is presented. This algo-
ID to each key, user, and encryption. Second, our key assigithm facilitates key identification. Second, a key identification
ment algorithm guarantees that each user needs only one Ed@ieme, key assignment algorithm, and block ID estimation al-
packet. By including a small amount of ID information in ENQgorithm are presented and evaluated. Third, we show that a fairly
packets, each user can easily identify its specific ENC paclanall FEC block size can be used to reduce encoding time at the
and extract the encryptions it needs. server without increasing server bandwidth overhead. Finally,

In the second phase, the key server uses a RSE coder to ggradaptive algorithm to adjust the proactivity factor is proposed
erate PARITY packets for ENC packets. The major problem gnd evaluated. The algorithm is found to be effective in control-
this phase is to determine the block size for FEC encoding. THig the number of NACKs and reducing delivery latency. An-
is because a large block size can significantly increase FEC @iher adaptive algorithm with further refinements is presented
coding and decoding time. Our performance results show tt@af27] and [28].
a small block size can be chosen to provide fast FEC encoding
without increasing bandwidth overhead. We also present an al-
gorithm for a user to estimate its block ID if it has not received
its specific ENC packet.

In the third phase, the key server multicasts both ENC andThe protocol for the key server is shown in Fig. 23, and the
PARITYpackets to all users. This proactive FEC multicast cgpvotocol for a user is shown in Fig. 24. In both protocols, we
effectively reduce delivery latency of users; however, a larg@nsider only one rekey message.
proactivity factor may increase the server bandwidth overheadFigs. 5, 25, 26, and 27 define the formats of ENC, PARITY,
Therefore, the major problem in this phase is how to achielWSR, and NACK packets, respectively. Each number in paren-
low delivery latency with small bandwidth overhead. In our praheses is the suggested field length, in number of bits. In a USR
tocol, the key server adaptively adjusts the proactivity factpecket, the encryption IDs are optional if we arrange the encryp-
based on past feedback. Our experiments show that the nunttsrs in increasing order of ID.
of NACKSs can be effectively controlled around a target number,
thus achieving low delivery latency, while the extra bandwidth
overhead incurred is small.

In the fourth phase, the key server switches to unicast to re-
duce the worst-case delivery latency. The problems in this phasén periodic batch rekeying, the key server colle¢t®in and
are: 1) to determine when to switch to unicast such that unicdsteave requests during a rekey interval. At the end of the in-
will not cause large server bandwidth overhead and 2) how to tiwval, the server runs the following marking algorithm to up-
unicast to provide small delivery latency. We let the key servdate the key tree and construct a rekey subtree. The marking

APPENDIX A
PROTOCOL SPECIFICATION

APPENDIX B
MARKING ALGORITHM
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1. for each block ID 4 do counter[i] «— 0; L. if (J = L) then N

2. start timer; 2 replace all u-nodes that have left by the u-nodes of newly joined users;
3. when receiving a packet pkt do 3. elseif (J < L)then

4. if pkt is a U S R packet then 4. choose .J u-nodes that have smallest IDs among the L departed u-nodes,
5. update user ID according to the new ID contained in pkt; and replace those J u-nodes with joins;

6. retrieve encryptions from the packet; cancel timer; return; 5. change the remaining L, — J u-nodes to n-nodes;

7. else 6. for each k-node in order of ID from high to low do

8. if pkt is an ENC packet then 7. if all the children of this k-node are n-nodes then

9. m «— new user ID computed; 8. change the k-node to n-node;

10. if (pkt. frmID < m < pkt.tol D) then 9. else > the casefor J > L. o

11. retrieve required encryptions from the packet; cancel timer; return; 10.  replace the u-nodes that have left by joins;

12. else I1.  replace those n-nodes by joins whose 1Ds are between nj, + 1 and

13. if pkt is not a duplicate then d - ny, + d (inclusive) in order of from low to high

14. exccute EstimateBlkID(m, high, low, pkt); 12 > ny is the maximum k-node ID.

15. increase counter [pkt.blkID] by 1; 13.  while there are still extra joins do

16.when timeout do 14. add children to the u-node whose ID is nj, + 1, move the u-node to
17.  if(high = low) and (counter[high] > k) then become the leftmost child (with node n, + 1 becoming a k-node)
18. decode the block and retrieve required encryptions; return; and up to d — 1 new joins are added as children;

19. else 15. update ny,;

20. for each block 1D i € [low, ..., high] do 16.for each n-node do

21. if (counter[i] > k) then 17.  if the n-node has a descendant u-node then change the n-node to k-node;
22. decode the block;

23. if required £ N C packet is in the block then

24, retrieve required encryptions; return; . . . ) .

25, else put <k — counter[i], > into NACK packet; Fig. 28. Marking algorithm step 1: Updating the key tree.

26. send N AC K packet to the key server, and start timer;

> input: a copy of updated key tree.

> output: rekey subtree.

> output: rekey subtree.

1. for each n-node do

if the n-node is created in Step 1 as a result of a u-node’s departure then
label the n-node as LEAVE;

else remove the n-node;

. for each u-node do

if the u-node has departed and then joined (as another user) then
label it as REPLACE;

else if it is a newly joined u-node then
label it as JOIN;

Fig. 25. Format of a PARITY packet. 10. ~else label it as UNCHANGED;

1 1.for each k-node in order of ID from high to low do

12.  if all the children of the k-node are labeled as LEAVE then

Fig. 24. User protocol for one rekey message.

1. Type: PARITY (3)

3. Rekey message 1D (12)

5. Sequence number within a block (8)
6. FEC parity information for Fields 6 to 9 of EN C' packets

2. Reserved (1)
4. Block ID (8)

© N LR W

13. label the k-node as LEAVE, and remove all of its children;
14. else if all of its children are UNCHANGED then
15. label the k-node as UNCHANGED, and remove all of its children;

1. Type: USR (3) 2. Reserved (1) ) " ¢
3. Rekey message ID (12) 4. New user ID (16) 16. else if all of its children are UNCHANGED or JOIN then

5. A list of <encryption, ID>> (variable) i; elsiigslgleilii: i(n-(r’liji: sai?{]gl’;LACE'

Fig. 26. Format of a USR packet. Fig. 29. Marking algorithm step 2: Constructing a rekey subtree.

APPENDIX C

1. Type: NACK (3) 2. Reserved (1)
PROOFS OFLEMMA 1 AND THEOREM 1

3. Rekey message ID (12) 4. User ID (16)
5. A list of <number of PARITY packets requested, block ID> (variable)

Proof of Lemma 1:

Fig. 27. Format of a NACK packet. 1) Initially, the key tree is empty. After collecting some join

requests, the key server will construct a key tree that sat-

algorithm is different from those in our previous papers [13],  iSfies the property stated in this lemma at the end of the
[25]. first rekey interval. N

The marking algorithm consists of two steps. In the first step, 2) The property holds when the key server processfsn
the algorithm modifies the key tree to satisfy the leave and join ~ @ndL leave requests during any rekey interval because:
requests. The operations for this step are specified in Fig. 28.
The n-node and ID information used in the algorithm are pre-
sented in Section IV.

In the second step, the marking algorithm constructs a rekey
subtree. The operations are specified in Fig. 29. The input to the

a) The property holds fo < L because joined
u-nodes replace departed u-nodes in our marking
algorithm. Note that the algorithm does not change
the IDs of the remaining u-nodes.

b) For.J > L, newly joined u-nodes first replace de-

second step of the algorithm is a copy of the updated key tree.
The algorithm will label all the nodes and then prune the tree.
We call the remaining subtraekey subtreeEach edge in the
rekey subtree corresponds to an encryption. The key server tra-
verses the rekey subtree and uses the key assignment algorithm
to assign encryptions into packets.

parted u-nodes or the n-nodes whose IDs are larger
than ny, wheren; is the maximum ID of cur-
rent k-nodes. These replacements make the prop-
erty hold. Then the marking algorithm splits the
node with IDn;, + 1. Therefore, the property holds
after splitting. O
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Proof of Theorem 1: block i—1 block i block i+1
1) There exists an integef > 0 such thai, < f(z') < S/ S o 9 0 SR
d - ni + d, because:

a) From the marking algorithm, we know that the
u-nodem needs to change its ID only whenit splitsrig. 30. Iilustration of block ID estimation.

If no splitting happens, them’ = m = f(0).
Otherwise, after splitting, the u-node becomes its : : :
leftmost descendant. Then there exists an integ| _ Al ﬁfﬁ;’&‘;ﬁﬁiﬁé@ i, ;;Té Ligh, pist)

' > 0 such thatm’ = f (II) By Lemma 1, > low is the current estimate of the lower bound of required block ID.
n, < m! sincem/’ is a u-node. > high is the current estimate of the upper bound of required block ID.

. . ) > pkt is the EN C' packet received.
b) Since the maximum ID of current k-nodesuis, the

Sl Su

VPN AW~

if pkt is a duplicate then > duplicate packets are only in the last block.
. high « pkt.blkID;
maximum ID of current u-nodes must be less tha| 3 y'it (pkt.to1D < m < pkt. frmID) then
or equal tad - ny, + d. Thereforem’ < d - ny + d. high — pkt.blkID; low(<— pkt.blkID:;
. . else if > pkt.tolI D) and (pkt. No =k — 1) then
2) Suppose besides’, there exists another leftmost descen zow(ni mzx{sz, p)kt.blkII]D f(l]};o )
dant (denoted byn’) of m that also satisfies the condi- elseif (m > pkt.tol D) and (pkt.seqNo < k — 1) then
. 1 .. low — max{low, pkt.blkID};
tionng < m' < d-ny + d. Then we get a contradiction else if (m < pkt.frmID) and (pkt.seqNo = 0) then
. 10.  high «— min{high, pkt.blkID — 1};
because: ) 11. else if (m < pkt.frmID) and (pkt.seqNo > 0) then
a) By the assumption, < m’”,m' must be au-node | 12. high — min{high, pkt.blkID};
de. Furth 7 tb d d 13. else if (m > pkt.tol D) then
or n-node. Furt ermoreyp” must be an-node and | 15 high <~ min{high, pkt.bik1 D+
be a descendant ml Slncem/ |S a u_node Ird-(pkt.mu:rKID+1)—7)kt);tnTDf(k7171)k1.scho) -‘},
b) Sincem’ is the ancestor ofn”, n; is the parent
node ofd - ny + d, and by the assumption” < Fig. 31. Estimating required block ID.
d - ny + d, we havem’ < ny. This contradicts
Lemma 1 sincen’ is a u-node.
3) From the proof above, we hawe = f(2').

the block to which its specific ENC packet belonggid? +
ph=i+tl — pk+2 — O(p?), wherej,0 < j < k — 1 is the
sequence number of its specific ENC packet anél > 1 is
the block size.
Proof: As illustrated in Fig. 30, only if all of the ENC

packets in sef; + {(i, j)} are lost, or when all of the packets in

When we partition the ENC packets into multiple blocks, angetS,, + {(i, j)} are lost, the user cannot determine the precise
if a user loses its specific ENC packet, the user will not be abtalue of its required block ID. The probability of such failure is
to know directly the block to which its ENC packet belongs. We/ ™2 + p*=7+1 — p*+2 ‘which isO(p?) since0 < j < k-1
address this issue in this Appendix. andk > 1. O

A user can estimate the block ID to which its ENC Inthe case thatthe user cannot determine the precise value of
packet belongs from the ID information containedts block ID, it can still estimate a possible range of the required
in the received ENC packets. Suppose a user's ENtbck ID. Then during feedback, the user requests PARITY
packet is thejth packet in blocki. Let (i,j) denote the packets for each block within the estimated block ID range.
(block 1D, sequence number within a block) pair. When- When the key server receives the NACK, it only considers the
ever a user receives an ENC packet, it first computes its nélock to which the user’s specific ENC packet belongs (see the
user ID, denoted by, then it refines its estimation of the blockkey server's protocol in Fig. 23).
ID i. For example, if the received packet is not a duplicaterand  In the EstimateBlkiDalgorithm shown in Fig. 31, a user sets
is larger thartolD of this packet, thet should be larger than or the initial values of the lower bourldw and upper bountdighas
equal to the block ID of the received packet because the receifkaindoo, respectively. However, thé statement of lines 11-12
packet must be generated earlier than the user’s specific EN@arantees that eventualiygh will not be infinity if the user
packet. In this way, if the user can receive any one ENC packeteives any ENC packet. The reasoning is as follows. When
inS; = {{i—1,k—1),{(i,0),...,({i,5 — 1)}, and receive any the user receives an ENC packud, the maxKID field of the
one ENC packet ¥, = {(i,5+1),...,(i,k—1),(i+1,0)}, packet specifies the maximum ID of current k-nodes. There-
then it can determine the precise valueioéven if (i, j) is fore, the maximum ID of current users cannot be larger than
lost. Fig. 30 illustrates the block ID estimation. The detailed - (pkt.maxKID + 1). In the worst case, one ENC packet
algorithm to estimate block ID is shown in Fig. 31. contains encryptions for only one user, then there are at most

A user can determine the precise value of its required blotk - (pkt.maxKID + 1) — pkt.toID) ENC packets each with
ID with high probability. The probability of such failure is asfrmID subfield larger thapkt.tolD. Therefore, the maximum
low aspit? + pk—i+1 — pk+2 as shown in Lemma 2. In the block ID cannot be larger than
worst case whel = 0 or j = k — 1, the probability is abous?.

Lemma 2: Assume packets experience independent loss. ligtt.blkID
p be the packet loss rate observed by a user. Then the probabilit{d - (pkt.maxKID+1)—pkt.toID—(k—1 —pkt.seqNo)“

APPENDIX D
ESTIMATING BLoOCK ID

that the user cannot determine the precise value of the ID 'Sf k
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