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Abstract—We present the design and specification of a protocol
for scalable and reliable group rekeying together with performance
evaluation results. The protocol is based upon the use of key trees
for secure groups and periodic batch rekeying. At the beginning
of each rekey interval, the key server sends a rekey message to
all users consisting of encrypted new keys (encryptions, in short)
carried in a sequence of packets. We present a scheme for identi-
fying keys, encryptions, and users, and a key assignment algorithm
that ensures that the encryptions needed by a user are in the same
packet. Our protocol provides reliable delivery of new keys to all
users eventually. It also attempts to deliver new keys to all users
with a high probability by the end of the rekey interval. For each
rekey message, the protocol runs in two steps: a multicast step fol-
lowed by a unicast step. Proactive forward error correction (FEC)
multicast is used to reduce delivery latency. Our experiments show
that a small FEC block size can be used to reduce encoding time
at the server without increasing server bandwidth overhead. Early
transition to unicast, after at most two multicast rounds, further re-
duces the worst-case delivery latency as well as user bandwidth re-
quirement. The key server adaptively adjusts the proactivity factor
based upon past feedback information; our experiments show that
the number of NACKs after a multicast round can be effectively
controlled around a target number. Throughout the protocol de-
sign, we strive to minimize processing and bandwidth requirements
for both the key server and users.

Index Terms—Adaptive FEC, group key management, proactive
FEC, reliable multicast, secure multicast.

I. INTRODUCTION

M ANY EMERGING Internet applications, such as
pay-per-view distribution of digital media, restricted

teleconferences, multiparty games, and virtual private networks
will benefit from using a secure group communications model
[9]. In this model, members of a group share a symmetric
key, calledgroup key, which is known only to group users
and the key server. The group key can be used for encrypting
data traffic between group members or restricting access to
resources intended for group members only. The group key is
distributed by a group key management system, which changes
the group key from time to time (calledgroup rekeying). It
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is desirable that the group key changes after a new user has
joined (so that the new user will not be able to decrypt past
group communications) or an existing user has departed (so
that the departed user will not be able to access future group
communications).

A group key management system has three functional compo-
nents: registration, key management, and rekey transport [24].
All three components can be implemented in a key server. How-
ever, to improve registration scalability, it is preferable to use
one or more trusted registrars to offload user registration from
the key server [24].

When a user wants to join a group, the user and registration
component mutually authenticate each other using a protocol
such as SSL. If authenticated and accepted into the group, the
new user receives a symmetric key, called the user’sindividual
key, which it shares only with the key server. Authenticated users
send join and leave requests to the key management component,
which validates the requests by checking whether they are en-
crypted by individual keys. The key management component
also generates rekey messages, which are sent to the rekey trans-
port component for delivery to all users in the group. To build
a scalable group key management system, it is important to im-
prove the efficiency of the key management and rekey transport
components.

We first consider the key management component, which has
been the primary focus of prior work [1], [4], [7], [22], [23],
[25]. In this paper, we follow thekey treeapproach [22], [23],
which uses a hierarchy of keys to facilitate group rekeying, re-
ducing the processing time complexity of each leave request
from to , where is the group size and
is the key tree degree. Rekeying after every join or leave re-
quest, however, can still incur a large server processing over-
head. Thus, we propose to further reduce processing overhead
by using periodic rekeying [13], [20], [25], such that the key
server processes the join and leave requests during a rekey in-
terval as a batch, and sends out just one rekey message per rekey
interval to users. Batch rekeying reduces the number of compu-
tationally expensive signing operations. It also reduces substan-
tially bandwidth requirements of the key server and users.

We next consider the rekey transport component. Reliable de-
livery of rekey messages has not had much attention in prior
work. In our prototype system, Keystone [24], we designed and
implemented a basic protocol that uses proactive forward error
correction (FEC) to improve the reliability of multicast rekey
transport. We also investigated the performance issues of rekey
transport [25] and observed that although many reliable multi-
cast protocols have been proposed and studied in recent years

1063-6692/03$17.00 © 2003 IEEE



ZHANG et al.: PROTOCOL DESIGN FOR SCALABLE AND RELIABLE GROUP REKEYING 909

[5], [8], [10], [12], [15]–[17], [21], rekey transport differs from
conventional reliable multicast problems in a number of ways.
In particular, rekey transport has the following requirements.

• Reliability requirement.It is required that every user
should receive all of its (encrypted) new keys, no matter
how large the group size. This requirement arises because
the key server uses some keys for one rekey interval
to encrypt new keys for the next rekey interval. Each
user, however, does not have to receive the entire rekey
message because it needs only a very small subset of all
the new keys.

• Soft real-time requirement.It is required that the delivery
of new keys to all users be finished with a high probability
before the start of the next rekey interval. This requirement
arises because a user needs to buffer encrypted data and
keys before the arrival of encrypting keys, and we would
like to limit the buffer size.

• Scalability requirement.The processing and bandwidth
requirements of the key server and each user should in-
crease as a function of group size at a low rate such that a
single server is able to support a large group.1

The objective of this paper is to present in detail our rekey
transport protocol as well as its performance. In particular, we
have the following contributions. First, a new marking algo-
rithm for batch rekeying is presented. Second, a key identifi-
cation scheme, key assignment algorithm, and block ID estima-
tion algorithm are presented and evaluated. Third, we show that
a fairly small FEC block size can be used to reduce encoding
time at the server without increasing server bandwidth overhead.
Finally, an adaptive algorithm to adjust the proactivity factor
(see Table I for its definition) is proposed and evaluated. The
algorithm is found to be effective in controlling the number of
NACKs and reducing delivery latency. (Another adaptive algo-
rithm with further refinements is presented in [27] and [28].)

Our server protocol for each rekey message consists of four
phases:

1) generating a sequence of packets containing encrypted
keys (called ENC packets);

2) generating packets containing FEC redundant informa-
tion (called PARITY packets);

3) multicast of ENC and PARITY packets;
4) transition from multicast to unicast.
To achieve reliability, our protocol runs in two steps: a multi-

cast step followed by a unicast step. During the multicast step,
which typically lasts for just one or two rounds, almost all of
the users will receive their new keys because each user only
needs one specific packet (guaranteed by our key assignment al-
gorithm) and proactive FEC is also used. Subsequently, for each
user who cannot recover its new keys in the multicast step, the
keys are sent to the user via unicast. Since each user only needs
a small number of new keys, and there are few users remaining
in the unicast step, our protocol achieves reliability with a small
bandwidth overhead.

To meet the soft real-time requirement, proactive FEC in
the multicast step is used to reduce delivery latency [11], [19].

1To further increase system reliability as well as group size, we might consider
the use of multiple servers, which is a topic beyond the scope of this paper.

TABLE I
NOTATION

Furthermore, early transition from multicast to unicast reduces
worst-case delivery latency because the server does not need
to wait for the maximum round-trip time (RTT) for all users
before sending in the unicast step.

Toward a scalable design, we use the following ideas.

1) To reduce the key server processing requirement, we par-
tition a rekey message into blocks to reduce the size of
each block and therefore reduce the key server’s FEC en-
coding time.

2) To reduce each user’s processing requirement, our key
assignment algorithm assigns encrypted new keys such
that each user needs only one packet. Thus each user has a
high probability to receive its specific packet. As a result,
the vast majority of users do not need to recover their
specific packets through FEC decoding.

3) To reduce key server bandwidth requirement, our protocol
uses multicast to send new keys to users initially.

4) To reduce a user’s bandwidth requirement, we use uni-
cast for each user who cannot recover its new keys during
the multicast step. This way, a small number of users in
high-loss environments will not cause our protocol to per-
form multicast to all users.

The balance of this paper is organized as follows. In Sec-
tion II, we briefly review the ideas of key tree and periodic batch
rekeying. In Section III, we present our server and user proto-
cols. In Section IV, we show how to construct a rekey message.
The key identification scheme and key assignment algorithm are
presented. Block partitioning and block ID estimation are pre-
sented and evaluated in Section V. In Section VI, we discuss
how to adaptively adjust the proactivity factor to achieve low de-
livery latency with a small bandwidth overhead. In Section VII,
we discuss when and how to unicast. Our conclusions are given
in Section VIII.

II. BACKGROUND

We review in this section the ideas of key tree [22], [23]
and periodic batch rekeying [13], [20], [25] and present a new
marking algorithm. The algorithm is used to update the key tree
and generate workload for rekey transport.

A. Key Tree

A key tree is a rooted tree with the group key as root. A key
tree contains two types of nodes:-nodescontaining users’ in-
dividual keys, and -nodescontaining the group key and aux-
iliary keys. A user is given the individual key contained in its
u-node as well as the keys contained in the k-nodes on the path
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Fig. 1. Example key tree.

from its u-node to the root. Consider a group with nine users.
An example key tree is shown in Fig. 1. In this group, useris
given the three keys on its path to the root: , and .
Key is the individual keyof , key is thegroup key
that is shared by all users, and is an auxiliary key shared
by , and .

Suppose leaves the group. The key server will then
need to change the keys that knows: change
to , and change to . To distribute the new
keys to the remaining users using the group-oriented
rekeying strategy [23], the key server constructs the fol-
lowing rekey messageby traversing the key tree bottom-up:

. Here
denotes key encrypted by key , and is referred to as

anencryption. Upon receiving a rekey message, a user extracts
the encryptions that it needs. For example, only needs

and . In other words, a user does not need to
receive all of the encryptions in a rekey message.

B. Periodic Batch Rekeying

Rekeying after every join or leave request, however, can be
expensive. In periodic batch rekeying, the key server first col-
lects join and leave requests during a rekey interval. At the
end of the rekey interval, the key server runs a marking algo-
rithm to update the key tree and construct a rekey subtree. The
marking algorithm, presented in Appendix B, is different from
those in our previous papers [13], [25]. This new algorithm fa-
cilitates key identification (see Section IV-A).

In the marking algorithm, the key server first modifies the
key tree to satisfy the leave and join requests. The u-nodes for
departed users are removed or replaced by u-nodes for newly
joined users. If , the key server will “split” nodes after the
rightmost k-node at the highest level (with the root at level 0, the
lowest) to accommodate the extra joins (see Fig. 28). After mod-
ifying the key tree, the key server changes the key in a k-node
if the k-node is on the path from a changed u-node (either re-
moved or newly joined node) to the root.

Next, the key server constructs a rekey subtree. Arekey sub-
treeconsists of all of the k-nodes whose keys have been updated
in the key tree, the direct children of the updated k-nodes, and
the edges connecting updated k-nodes with their direct children.
Given a rekey subtree, the key server can then generate encryp-
tions. In particular, for each edge in the rekey subtree, the key
server uses the key in the child node to encrypt the key in the
parent node.

Fig. 2. Basic protocol for key server.

III. PROTOCOLOVERVIEW

In this section, we give an overview of the rekey transport
protocol. An informal specification of the key server protocol is
shown in Fig. 2. Notation used in this paper is defined in Table I.

First, the key server constructs a rekey message as follows.
At the beginning of a rekey interval, after the marking algorithm
has generated encryptions, the key server runs the key assign-
ment algorithm to assign the encryptions into ENC packets.2

Our key assignment algorithm guarantees that each user needs
only one ENC packet.

Next, the key server uses a Reed–Solomon erasure (RSE)
coder to generate FEC redundant information, called PARITY
packets. In particular, the key server partitions ENC packets into
multiple blocks. Each block containsENC packets. We call
the block size. The key server generatesPARITY packets for
each block. We define the ratio of as theproactivity
factor, denoted by .

Then the key server multicasts the ENC and PARITY packets
to all users. A user can recover its required encryptions in any
one of the following three cases. 1) The user receives the spe-
cific ENC packet that contains all of the encryptions for the user.
2) The user receives at leastpackets from the block that con-
tains its specific ENC packet, and thus the user can recover the
original ENC packets. 3) The user receives a USR packet during
a subsequent unicast phase. The USR packet contains all of the
encryptions needed by the user.

After multicasting ENC and PARITY packets to users, the
server waits for the duration of a round, which is typically larger
than the maximum RTT over all users, and collects NACKs from
the users. Based on the NACKs, the key server adaptively ad-
justs the proactivity factor to control the number of NACKs for
the next rekey message. Each NACK specifies the number of
PARITY packets that a user needs in order to havepackets to
recover its block. In particular, the key server collects the largest
number of PARITY packets needed (denoted as ) for
each block . At the beginning of the next round, the key server
generates new PARITY packets for each block, and
multicasts the new PARITY packets to the users. This process
repeats until the conditions for switching to unicast are satis-
fied (see Section VII). Typically, unicast will start after one or
two multicast rounds. During unicast, the key server sends USR
packets to those users who have not recovered their required
encryptions.

2An ENC packet is a protocol message generated in the application layer, but
we will refer to it as apacketto conform to terminology in the literature.
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Fig. 3. Basic protocol for a user.

An informal specification of the user protocol is shown in
Fig. 3. In our protocol, a NACK-based feedback mechanism is
used because the vast majority of users can receive or recover
their required encryptions within a single round. In particular,
during each round, a user checks whether it has received its spe-
cific ENC packet or can recover its block. If not, the user will
report , the number of PARITY packets needed to recover its
block, to the key server. By the property of Reed–Solomon en-
coding, is equal to minus the number of packets received in
the block containing its specific ENC packet.

In summary, our protocol uses four types of packets: 1) ENC
packets, which contain encryptions for a set of users; 2) PARITY
packets, which contain FEC redundant information produced by
a RSE coder; 3) USR packets, which contain all of the encryp-
tions for a specific user; and 4) NACK packets, which are feed-
back from a user to the key server. This type of packet reports
the number of PARITY packets needed for specific blocks.

Note that protocols given in Figs. 2 and 3 only outline the be-
haviors of the key server and users. More detailed specifications
of these protocols are given in Appendix A.

IV. CONSTRUCTION OFENC PACKETS

After running the marking algorithm to generate the encryp-
tions of a rekey message, the key server next runs a key assign-
ment algorithm to assign the encryptions into ENC packets. To
increase the probability for each user to receive its required en-
cryptions within one round, our key assignment algorithm guar-
antees that all of the encryptions for a given user are assigned
into a single ENC packet. For each user to identify its specific
ENC packet and extract its encryptions from the ENC packet,
the key server assigns a unique ID for each key, user, and en-
cryption; this ID information is included in ENC packets.

Below, we first discuss how to assign an ID for each key, user,
and encryption, then we define the format of an ENC packet.
Finally, we present and evaluate our key assignment algorithm.

A. Key Identification

To uniquely identify each key, the key server assigns an in-
teger as the ID of each node on a key tree. In particular, the
key server first expands the key tree to make it full and bal-
anced by adding null nodes, which we refer to asn-nodes. As
a result of the expansion, the key tree contains three types of
nodes: u-nodes containing individual keys, k-nodes containing
the group key and auxiliary keys, and n-nodes. Then the key
server traverses the expanded key tree in a top-down and left-
right order, and sequentially assigns an integer as a node’s ID.
The ID starts from 0 and increments by 1. For example, the root
node has an ID of 0, and its leftmost child has an ID of 1. Fig. 4

Fig. 4. Illustration of key identification.

(left) illustrates the IDs of nodes in an expanded key tree with a
tree degree of three.

Given the key identification strategy, we observe that the IDs
of a node and its parent node have the following simple relation-
ship: If a node has an ID of , its parent node will have an ID
of , where is the key tree degree. Fig. 4 (right)
illustrates the relationship.

To uniquely identify an encryption , we assign the ID
of the encrypting key as the ID of this encryption because the
key in each node will be used at most once to encrypt another
key. Since is the parent node of, its ID can be easily derived
given the ID of the encryption.

The ID of a user is, by definition, the ID of its corresponding
u-node, which contains its individual key. Given the ID of an
encryption and the ID of a user, by the simple relationship be-
tween a node and its parent node, a user can easily determine
whether the encryption is encrypted by a key that is on the path
from the user’s u-node to the tree root.

When users join and leave, our marking algorithm may
modify the structure of a key tree, and thus the IDs of some
nodes will be changed. For a user to determine the up-to-date
ID of its u-node, a straightforward approach is for the server to
inform each user its new ID by sending a packet to the user. This
approach, however, is obviously not scalable. By Lemma 1 and
Theorem 1, we show that by knowing the maximum ID of the
current k-nodes, each user can derive its new ID independently.

Lemma 1: If the key server uses the marking algorithm in
Appendix B for tree update, then in the updated key tree, the ID
of any k-node is always less than the ID of any u-node.

Theorem 1: For any user, let denote the user’s ID before
the key server runs the marking algorithm, and denote its
ID after the key server finishes the marking algorithm. Let
denote the maximum k-node ID after the key server finishes
the marking algorithm. Define function

for integer , where is the key tree degree.
Then there exists one and only one integer such that

, and is equal to .
A proof is shown in Appendix C. By Theorem 1, we know

that a user can derive its current ID by knowing its old ID and
the maximum ID of the current k-nodes.

B. Format of ENC Packets

Given the results in the previous subsection, we can now de-
fine the format of an ENC packet. As shown in the Fig. 5, an
ENC packet has nine fields, and contains both ID information
and encryptions. Each number in parentheses of Fig. 5 is the
suggested field length, in number of bits.

The ID information in an ENC packet allows a user to iden-
tify the packet, extract its required encryptions, and update its
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Fig. 5. Format of an ENC packet.

Fig. 6. Illustration of UKA algorithm.

user ID (if changed). In particular, Fields 1 to 5 uniquely iden-
tify a packet. A flag bit in Field 2 specifies whether this packet
is a duplicate; this field will be further explained in Section V.
Field 6 is the maximum ID of the current k-nodes. As we dis-
cussed in the previous subsection, each user can derive its cur-
rent ID based upon this field and its old ID. Field 7 specifies that
this ENC packet contains only the encryptions for users whose
new IDs are in the range of inclusively.

Field 8 of an ENC packet contains a list of encryption and
its ID pairs. After the encryption payload, an ENC packet may
be padded by zero to have fixed length because FEC encoding
requires fixed length packets. We observe that padding by zero
will not cause any ambiguity because no encryption has an ID
of zero.

C. User-Oriented Key Assignment Algorithm

Given the format of an ENC packet, we next discuss the de-
tails of our key assignment algorithm, which we refer to as the
user-oriented key assignment algorithm (UKA). UKA guaran-
tees that all of the encryptions for a user are assigned into a
single ENC packet.

Fig. 6 illustrates a particular run of the UKA algorithm in
which seven ENC packets are generated. UKA first puts all
of the user IDs into a list in increasing order. Then, a longest
prefix of the list is extracted such that all of the encryptions
needed by the users in this prefix will fill up an ENC packet.
Repeatedly, UKA generates a sequence of ENC packets whose

intervals do not overlap. In particular, the algo-
rithm guarantees that of a previous ENC packet is less than
the of the next packet. This property is useful for block
ID estimation to be performed by a user (see Section V-A).

D. Performance of UKA

UKA assigns all of the encryptions for a user into a single
ENC packet, and thus significantly increases the probability for
a user to receive its encryptions in a single round. Consequently,
the number of NACKs sent to the key server is reduced.

This benefit, however, is achieved at an expense of sending
duplicate encryptions. In a rekey subtree, users may share en-

Fig. 7. Average number of ENC packets as a function ofJ andL for N =

4096.

Fig. 8. Average number of ENC packets as a function ofN .

cryptions. For two users whose encryptions are assigned into
two different ENC packets, their shared encryptions are dupli-
cated in these two ENC packets; therefore, we expect that UKA
would increase the bandwidth overhead at the key server.

We evaluate the performance of UKA in this subsection using
simulations. In the simulations, we assume that at the begin-
ning of a rekey interval the key tree is full and balanced with
u-nodes. During the rekey interval,join and leave requests
are processed. We further assume that the leave requests are uni-
formly distributed over the u-nodes. We set the key tree degree
as 4 and the length of an ENC packet as 1028 bytes. In all of our
experiments in this paper, each average value is computed based
on at least 100 simulation runs.

We first investigate the size of a rekey message as a function
of and for , as shown in Fig. 7. For a fixed,
we observe that the average number of ENC packets increases
linearly with . For a fixed , we observe that as increases,
the number of ENC packets first increases (because more leaves
imply more keys to be changed), and then decreases (because
now some keys can be pruned from the rekey subtree).

Next we investigate the size of a rekey message as a function
of , as shown in Fig. 8. We observe that the average number
of ENC packets in a rekey message increases linearly with
for three combinations of and values.

With the UKA algorithm, some encryptions are duplicated in
ENC packets. We defineduplication overheadas the ratio of
duplicated encryptions to the total number of encryptions in a
rekey subtree. Fig. 9 shows the average duplication overhead as
a function of and for . First, consider the case of
a fixed . We observe that the duplication overhead decreases
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Fig. 9. Average duplication overhead as a function ofJ andL forN = 4096.

Fig. 10. Average duplication overhead as a function ofN .

from about 0.1 to 0.05 as we increase. Next, consider the
case of a fixed . We observe that the duplication overhead first
increases and then decreases as we increase.

Last, we plot in Fig. 10 the average duplication overhead as
a function of . We observe that for and ,
or , the average duplication overhead increases
approximately linearly with for . This is be-
cause the rekey subtree is almost full and balanced for
and , or , and thus the duplica-
tion overhead is directly related to the tree height . We
also observe that the duplication overhead is generally less than

, where 46 is the number of encryptions
that can be carried in an ENC packet with a packet size of 1028
bytes. For and , the rekey subtree is very sparse,
and thus the graph of duplication overhead fluctuates around the
graph of .

V. BLOCK PARTITIONING

After running the UKA assignment algorithm to generate the
ENC packets of a rekey message, the key server next generates
PARITY packets for the ENC packets using an RSE coder.

Although grouping all of the ENC packets into a single RSE
block may reduce server bandwidth overhead, a large block size
can significantly increase encoding and decoding time [3], [15],
[18]. For example, using the RSE coder of Rizzo [18], the en-
coding time for one PARITY packet is approximately a linear
function of block size. Our evaluation shows that for a large
group, the number of ENC packets generated in a rekey interval
can be large. For example, for a group with 4096 users, when

, the key server can generate up to 128 ENC
packets with a packet size of 1028 bytes. Given such a large
number of ENC packets in a rekey interval, it is necessary to

partition the ENC packets into multiple blocks in order to re-
duce the key server’s encoding time.

Consider the ENC packets of a rekey message sequenced in
order of generation by UKA algorithm. The packet sequence
is partitioned into blocks of packets, with the first packets
forming the first block, the next packets forming the second
block, and so on. Each block formed is assigned sequentially an
integer-valued block ID. Each packet within a block is assigned
a sequence number from 0 to .

To form the last block, the key server may need to dupli-
cate ENC packets until there arepackets to fill the last block.
(The key server may choose ENC packets from other blocks
to duplicate, but all duplicates are used to fill the last block.)
We use a flag bit in each ENC packet to specify whether the
packet is a duplicate, as shown in Fig. 5. A duplicate ENC packet
has the same contents in all fields as the original packet ex-
cept for the and flag bit fields.
A new pair is assigned to each
duplicate ENC packet because Reed–Solomon encoding needs
to uniquely identify every packet, duplicate or not.

A. Block ID Estimation

One issue that arises from partitioning ENC packets into
blocks is that if a user loses its specific ENC packet, the user
needs to determine the block to which its ENC packet belongs.
Then the user will try to recover this block through FEC
decoding. We present an algorithm in Appendix D for users
to estimate the ID of the block containing its specific ENC
packet. With this algorithm, the probability that a user cannot
determine the precise value of its block ID is no more than
in the worst case, whereis the loss rate observed by the user
under the assumption of independent packet loss. When this
happens, the user can still estimate a possible range of its block
ID. It will then request PARITY packets for every block within
this range when it sends a NACK.

B. Packets Sent in Interleaving Pattern

After forming the blocks of a rekey message, the key
server generates PARITY packets, and multicasts all ENC and
PARITY packets to users. One remaining issue is to determine
an order in which the key server sends these packets. In our
protocol, the key server sends packets of different blocks in
an interleaving pattern. By interleaving packets from different
blocks, two packets from the same block will be separated by
a larger time interval, and thus are less likely to experience the
same burst loss on a link. With interleaving, our evaluation
shows that the bandwidth overhead at the key server can be
reduced.

C. Choosing Block Size

Block partitioning is carried out for a given block size. To
determine the block size, we need to evaluate the impact of block
size in terms of two performance metrics.

The first performance metric is the key server’s multicast
bandwidth overhead, which is defined to be the ratio ofto
, where is the number of ENC packets in a rekey message,
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and is the total number of packets that the key server multi-
casts to enable recovery of specific ENC packets by all users.3

The second performance metric is overall FEC encoding
time, which is the time that the key server spends to generate
all of the PARITY packets for a rekey message. Although block
size also has a direct impact on each user’s FEC decoding
time, the impact is small because in our protocol, the vast
majority of users receive their specific ENC packets and thus
do not perform any decoding.

We use simulations to evaluate the impact of block size. To
support a large group size, we developed our own simulator
for a model proposed and used in [16]. In this model, the key
server connects to a backbone network via a source link, and
each user connects to the backbone network via a receiver link.
The backbone network is assumed to be loss free. The source
link has a fixed loss rate of . A fraction of the users
have a high loss rate of , and the others have a low loss rate
of . For each given loss rate,, we use a two-state contin-
uous-time Markov chain [15] to simulate burst loss as follows.
The average duration of a burst loss is ms, and the av-
erage duration of loss-free time between consecutive loss bursts
is ms.4 The default values in our simulations are
as follows: %

% % %, and the key server’s sending rate is
10 packets/s, and the rekey interval is 60 s, and the length of an
ENC packet is 1028 bytes. The same simulation topology and
parameter values will also be used in experiments described in
the following sections unless otherwise stated.

The impact of block size on the key server’s bandwidth over-
head is shown in Fig. 11. Here we set (that is, ).5

Observe that the key server’s average bandwidth overhead is
not sensitive to the block sizefor .

We next consider the impact of block sizeon the key
server’s overall FEC encoding time. If we use Rizzo’s RSE
coder [18], the encoding time of all PARITY packets for a
rekey message is approximately the product of the total number
of PARITY packets and the encoding time for one PARITY
packet. Also the encoding time for one PARITY packet is
approximately a linear function of . The relative overall
encoding time (assumingtime units to generate one PARITY
packet for block size ) is shown in Fig. 12.

In summary, we found that for , a small block size
can be chosen to enable fast FEC encoding at the server without
incurring a large server bandwidth overhead. For experiments in
the following sections, we choose as the default value
unless otherwise specified.

VI. A DAPTIVE FEC MULTICAST

In the previous section, we discussed how to partition the
ENC packets of a rekey message into blocks and generate

3Note that no unicast recovery is involved while we evaluate the server band-
width overhead. The key server will do multicast until all users receive or can
recover their specific ENC packets.

4This network topology and loss model are simplistic compared to the In-
ternet. They are however needed for simulating a large group size (up to 16 384).
For simulation results from the use ofns and GT-ITM for a smaller group size,
we refer the interested reader to our recent work [27], [28].

5The result for the case of adaptive� is similar. See [29] and [30] for details.

Fig. 11. Average server bandwidth overhead as a function of block size.

Fig. 12. Relative overall FEC encoding time as a function of block size.

PARITY packets for each block. The discussion, however,
assumes a given proactivity factor. In this section, we
investigate how to determine.

Proactive FEC has been widely used to improve reliability
and reduce delivery latency [2], [6], [11], [14], [15], [19], [26].
However, if the proactivity factor is too large, the key server
may incur high bandwidth overhead. On the other hand, if the
proactivity factor is too small, the users may have to depend
on retransmissions to achieve reliability; thus, the benefit of re-
duced delivery latency diminishes. Furthermore, if we depend
on proactive FEC to avoid feedback implosion and the proac-
tivity factor is too small, many users may experience packet
losses and the key server would be overwhelmed by NACKs.

The appropriate proactivity factor will depend on network
status, in particular, factors such as network topology, loss rates
of network links, number of users in a session, and number of
sessions using proactive FEC. Such factors are unknown to the
key server and may be changing during a session’s life time. The
objective of our next investigation, therefore, is to study how to
adaptively adjust proactivity factor by observing its impact on
the number of NACKs from users. With adaptive adjustment,
we aim to achieve low delivery latency with small bandwidth
overhead.

A. Impact of Proactivity Factor

Before designing an algorithm to adjust, it is desirable to
evaluate the impact of on the number of NACKs, the delivery
latency at users, and the bandwidth overhead at the key server.
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Fig. 13. Average number of NACKs in the first round as a function of�.

TABLE II
PERCENTAGE OFUSERS ONAVERAGE WHO NEED A GIVEN NUMBER OF

ROUNDS TORECEIVE THEIR ENCRYPTIONS

We first evaluate the impact of on the number of NACKs.
Fig. 13 plots the average number of NACKs for the first round
as a function of . Note that the axis is in log scale. We observe
that the average number of NACKs decreases exponentially as
we increase . (A similar observation was made in [19].)

We next evaluate the impact ofon delivery latency. Table II
shows the percentage of users on average who need a given
number of rounds to receive their encryptions. For , we
observe that on average 94.41% of the users can receive their
encryptions within a single round; for , the percentage
value is increased to 99.89%; for , the percentage value
is increased to 99.99%.

We then evaluate the impact of on the average server
bandwidth overhead, as shown in Fig. 14. Forclose to 1,
the key server sends a small amount of proactive PARITY
packets during the first round, but it needs to send more reactive
PARITY packets in subsequent rounds to allow users to recover
their packets. As a result, a small increase ofhas little impact
on the average server bandwidth overhead. Whenbecomes
large, the bandwidth overhead during the first round dominates
the overall bandwidth overhead, and the overall bandwidth
overhead increases linearly with.

In summary, we observe that an increase ofcan have the
following three effects.

1) It will significantly reduce the average number of NACKs
for the first multicast round.

2) It will reduce the worst-case delivery latency.
3) It will increase the key server’s bandwidth overhead when

is larger than needed.

Fig. 14. Average server bandwidth overhead as a function of�.

Fig. 15. Algorithm to adaptively adjust proactivity factor.

B. Adjustment of Proactivity Factor

We present in Fig. 15 an algorithm to adaptively adjust.
The basic idea of the algorithm is to adjustbased on NACK
information received for the current rekey message, such that
a target number of NACKs are expected to be returned for the
next rekey message. The key server runs this algorithm at the
end of the first multicast round.

The input to algorithmAdjustRhois a list . Each item in
is the number of PARITY packets requested by a user. If a user
requests packets for a range of blocks, the key server records
into the number of PARITY packets requested for the block
that contains the user’s specific ENC packet.

The algorithm works as follows. For each rekey message, at
the end of the first round, the key server compares the number
of NACKs it has received, which is equal to , and the
number of NACKs it targets (denoted by). The comparison
results in two cases.

In the first case, the key server receives more NACKs than
its target. For this case, the server selects the th largest
item (denoted by ) from , and increases such that
additional proactive PARITY packets will be generated for each
block of the next rekey message. To illustrate, suppose ten users,

, have sent NACKs for the current rekey mes-
sage, and user requests PARITY packets. For illustration
purposes, we assume and the target number
of NACKs is two, that is, . Then according to our al-
gorithm, for the next rekey message, the key server will send

additional PARITY packets so that users
have a higher probability to recover their ENC packets within a
single round. This is because according to the current rekey mes-
sage, if users were to receive more PARITY
packets, they could have recovered their ENC packets within a
single round.
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(a) (b)

Fig. 16. Traces of proactivity factor with (a) initial� = 1 and (b) initial� = 2.

Fig. 17. Traces of the number of NACKs with initial� = 1.

In the second case, the key server receives less NACKs than
its target. Although receiving less NACKs is better in terms of
reducing delivery latency, the small number of NACKs received
may mean that the current proactivity factor is too high, and thus
may cause high bandwidth overhead. Therefore, the algorithm
reduces by one PARITY packet with probability equal to

.

C. Performance Evaluation

We use simulations to evaluate algorithmAdjustRho. We will
first investigate whether our protocol can effectively control the
number of NACKs, and then evaluate the extra bandwidth over-
head that it may incur. In the experiments to be presented, we
choose 20 to be a default value ofunless otherwise specified.

1) Controlling the Number of NACKs:Before evaluating
whether algorithmAdjustRho can control the number of
NACKs, we first investigate the stability of the algorithm.

Fig. 16 shows how is adaptively adjusted when the key
server sends a sequence of rekey messages. For initial as
shown in Fig. 16(a), we observe that it takes only two or three
rekey messages for to settle down to stable values. For ini-
tial as shown in Fig. 16(b), we observe thatkeeps de-
creasing until it reaches stable values. Comparing both figures,
we note that the stable values of these two figures match each
other very well.

Figs. 17 and 18 plot the traces of the number of NACKs for
the first multicast round. In Fig. 17, where the initialvalue is
1, the number of NACKs received stabilizes very quickly, and
the stable values are generally less than 1.5 times of. Fig. 18
shows the case for initial . We observe that the stable
values of these two figures match very well.

We then evaluate whether algorithmAdjustRhocan control
the number of NACKs for various values of . As shown in

Fig. 18. Traces of the number of NACKs with initial� = 2.

Fig. 19. Traces of the number of NACKs for variousu values with initial
� = 1.

Fig. 20. Traces of the number of NACKs for variousu values with initial
� = 2.

Figs. 19 (initial is 1) and 20 (initial is 2), the number of
NACKs received at the key server fluctuates around each
target number specified. However, we do observe that the fluc-
tuations become more significant for larger values of. There-
fore, in choosing , we need to consider the potential impact
of large fluctuations when is large.

2) Overhead of Adaptive FEC:From the previous section,
we know that algorithmAdjustRhocan effectively control the
number of NACKs and thus reduce delivery latency. However,
compared with an approach that does not send any proactive
PARITY packets at all during the first round and only gener-
ates reactive PARITY packets during the subsequent rounds, the
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Fig. 21. Average server bandwidth overhead for adaptive FEC and for� = 1

case in various loss conditions.

adaptive FEC scheme may incur extra bandwidth overhead at
the key server. We investigate this issue in this subsection.

We first evaluate the extra server bandwidth overhead caused
by adaptive FEC in various loss conditions. Fig. 21 compares the
average server bandwidth overhead for adaptive FEC6 with the
case that all PARITY packets are generated reactively (we call it

case). We observe that our adaptive scheme causes little
extra server bandwidth overhead in a homogeneous low loss en-
vironment (i.e., ). For , our scheme can even save a
little bandwidth. This is because for case, the key server
takes more rounds for all users to recover their encryptions in
the reactive scheme than in the adaptive scheme. Therefore, it
is possible that the total number of PARITY packets generated
during the rounds for case is larger than that of the adap-
tive scheme. In the case of %, the extra bandwidth over-
head generated by adaptiveis less than 0.3 for .

We next evaluate the average server bandwidth overheads of
the two schemes for various group sizes. From Fig. 22, we ob-
serve that the extra bandwidth overhead incurred by adaptive
increases with , but the extra bandwidth overhead incurred is
still less than 0.42 even for when .

6To measure the average server bandwidth overhead for adaptive FEC, we
set initial� = 1 and let the key server send out ten rekey messages. We then
compute the average server bandwidth overhead based on the next 100 or more
rekey messages.

Fig. 22. Average server bandwidth overhead for adaptive FEC and for� = 1

case when group sizeN varies.

VII. SPEEDUPWITH UNICAST

Rekey transport has a soft real-time requirement, that is, it is
desirable for all users to receive their new keys before the start of
the next rekey interval. To meet this requirement, we have pro-
posed in the previous section to adaptively adjustduring the
multicast phase to reduce the number of users who send NACKs.
To further reduce delivery latency, the key server will switch to
unicast after one or two multicast rounds. Unicast can reduce de-
livery latency compared to multicast because the duration of a
multicast round is typically larger than the maximum RTT over
all users.

One issue of early unicast is its possible high bandwidth over-
head at the key server. In our protocol, however, unicast will not
cause large bandwidth overhead at the key server for the fol-
lowing two reasons. First, the size of a USR packet sent during
unicast is much smaller than the size of an ENC or PARITY
packet. In our protocol, a USR packet contains only the encryp-
tions for a specific user, and its packet size is at most
bytes (see Appendix A for the format of a USR packet), where

is the height of the key tree. On the other hand, the size of
an ENC or PARITY packet is typically more than one kilobyte
long. Second, our protocol guarantees that only a few users need
unicast if is small enough. In fact, our evaluations show that
for , and initial , roughly five or fewer
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users need recovery after two multicast rounds when the system
becomes stable.

Our conditions for switching to unicast are as follows. Our
protocol switches to unicast after one or two multicast rounds.
We suggest two multicast rounds for a large rekey interval and
one multicast round for a small rekey interval. Even for a large
interval, the time to switch to unicast can be earlier if the total
length of the USR packets is no more than that of PARITY
packets needed for the next multicast round.

During the unicast step, to further improve reliability and re-
duce delivery latency, the key server sends multiple copies of a
USR packet to a user who needs recovery. The number of copies
to send depends on the loss rate of the user, which can be easily
estimated by the key server (see [29] and [30] for details).

VIII. C ONCLUSION

The objective of this paper has been to present in detail
our rekey transport protocol as well as its performance. Our
server protocol for each rekey message consists of four phases:
1) generating a sequence of ENC packets containing encrypted
keys; 2) generating PARITY packets; 3) multicast of ENC and
PARITY packets; and 4) transition from multicast to unicast.

In the first phase, after running the marking algorithm to gen-
erate encryptions for a rekey message, the key server constructs
ENC packets. The major problem in this phase is to allow a user
to identify its required encryptions after the key tree has been
modified. To solve the problem, first we assign a unique integer
ID to each key, user, and encryption. Second, our key assign-
ment algorithm guarantees that each user needs only one ENC
packet. By including a small amount of ID information in ENC
packets, each user can easily identify its specific ENC packet
and extract the encryptions it needs.

In the second phase, the key server uses a RSE coder to gen-
erate PARITY packets for ENC packets. The major problem in
this phase is to determine the block size for FEC encoding. This
is because a large block size can significantly increase FEC en-
coding and decoding time. Our performance results show that
a small block size can be chosen to provide fast FEC encoding
without increasing bandwidth overhead. We also present an al-
gorithm for a user to estimate its block ID if it has not received
its specific ENC packet.

In the third phase, the key server multicasts both ENC and
PARITYpackets to all users. This proactive FEC multicast can
effectively reduce delivery latency of users; however, a large
proactivity factor may increase the server bandwidth overhead.
Therefore, the major problem in this phase is how to achieve
low delivery latency with small bandwidth overhead. In our pro-
tocol, the key server adaptively adjusts the proactivity factor
based on past feedback. Our experiments show that the number
of NACKs can be effectively controlled around a target number,
thus achieving low delivery latency, while the extra bandwidth
overhead incurred is small.

In the fourth phase, the key server switches to unicast to re-
duce the worst-case delivery latency. The problems in this phase
are: 1) to determine when to switch to unicast such that unicast
will not cause large server bandwidth overhead and 2) how to do
unicast to provide small delivery latency. We let the key server

Fig. 23. Key server protocol for one rekey message.

switch to unicast after one or two multicast rounds. To reduce
delivery latency, the key server estimates the user’s loss rate, and
sends multiple copies of the user’s USR packet during unicast.

In summary, we have the following contributions. First, a new
marking algorithm for batch rekeying is presented. This algo-
rithm facilitates key identification. Second, a key identification
scheme, key assignment algorithm, and block ID estimation al-
gorithm are presented and evaluated. Third, we show that a fairly
small FEC block size can be used to reduce encoding time at the
server without increasing server bandwidth overhead. Finally,
an adaptive algorithm to adjust the proactivity factor is proposed
and evaluated. The algorithm is found to be effective in control-
ling the number of NACKs and reducing delivery latency. An-
other adaptive algorithm with further refinements is presented
in [27] and [28].

APPENDIX A
PROTOCOLSPECIFICATION

The protocol for the key server is shown in Fig. 23, and the
protocol for a user is shown in Fig. 24. In both protocols, we
consider only one rekey message.

Figs. 5, 25, 26, and 27 define the formats of ENC, PARITY,
USR, and NACK packets, respectively. Each number in paren-
theses is the suggested field length, in number of bits. In a USR
packet, the encryption IDs are optional if we arrange the encryp-
tions in increasing order of ID.

APPENDIX B
MARKING ALGORITHM

In periodic batch rekeying, the key server collectsjoin and
leave requests during a rekey interval. At the end of the in-

terval, the server runs the following marking algorithm to up-
date the key tree and construct a rekey subtree. The marking



ZHANG et al.: PROTOCOL DESIGN FOR SCALABLE AND RELIABLE GROUP REKEYING 919

Fig. 24. User protocol for one rekey message.

Fig. 25. Format of a PARITY packet.

Fig. 26. Format of a USR packet.

Fig. 27. Format of a NACK packet.

algorithm is different from those in our previous papers [13],
[25].

The marking algorithm consists of two steps. In the first step,
the algorithm modifies the key tree to satisfy the leave and join
requests. The operations for this step are specified in Fig. 28.
The n-node and ID information used in the algorithm are pre-
sented in Section IV.

In the second step, the marking algorithm constructs a rekey
subtree. The operations are specified in Fig. 29. The input to the
second step of the algorithm is a copy of the updated key tree.
The algorithm will label all the nodes and then prune the tree.
We call the remaining subtreerekey subtree. Each edge in the
rekey subtree corresponds to an encryption. The key server tra-
verses the rekey subtree and uses the key assignment algorithm
to assign encryptions into packets.

Fig. 28. Marking algorithm step 1: Updating the key tree.

Fig. 29. Marking algorithm step 2: Constructing a rekey subtree.

APPENDIX C
PROOFS OFLEMMA 1 AND THEOREM 1

Proof of Lemma 1:

1) Initially, the key tree is empty. After collecting some join
requests, the key server will construct a key tree that sat-
isfies the property stated in this lemma at the end of the
first rekey interval.

2) The property holds when the key server processesjoin
and leave requests during any rekey interval because:

a) The property holds for because joined
u-nodes replace departed u-nodes in our marking
algorithm. Note that the algorithm does not change
the IDs of the remaining u-nodes.

b) For , newly joined u-nodes first replace de-
parted u-nodes or the n-nodes whose IDs are larger
than , where is the maximum ID of cur-
rent k-nodes. These replacements make the prop-
erty hold. Then the marking algorithm splits the
node with ID . Therefore, the property holds
after splitting.
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Proof of Theorem 1:

1) There exists an integer such that
, because:

a) From the marking algorithm, we know that the
u-node needs to change its ID only when it splits.
If no splitting happens, then .
Otherwise, after splitting, the u-node becomes its
leftmost descendant. Then there exists an integer

such that . By Lemma 1,
since is a u-node.

b) Since the maximum ID of current k-nodes is, the
maximum ID of current u-nodes must be less than
or equal to . Therefore .

2) Suppose besides , there exists another leftmost descen-
dant (denoted by ) of that also satisfies the condi-
tion . Then we get a contradiction
because:

a) By the assumption must be a u-node
or n-node. Furthermore, must be a n-node and
be a descendant of since is a u-node.

b) Since is the ancestor of is the parent
node of , and by the assumption

, we have . This contradicts
Lemma 1 since is a u-node.

3) From the proof above, we have .

APPENDIX D
ESTIMATING BLOCK ID

When we partition the ENC packets into multiple blocks, and
if a user loses its specific ENC packet, the user will not be able
to know directly the block to which its ENC packet belongs. We
address this issue in this Appendix.

A user can estimate the block ID to which its ENC
packet belongs from the ID information contained
in the received ENC packets. Suppose a user’s ENC
packet is the th packet in block . Let denote the

pair. When-
ever a user receives an ENC packet, it first computes its new
user ID, denoted by , then it refines its estimation of the block
ID . For example, if the received packet is not a duplicate and
is larger thantoID of this packet, thenshould be larger than or
equal to the block ID of the received packet because the received
packet must be generated earlier than the user’s specific ENC
packet. In this way, if the user can receive any one ENC packet
in , and receive any
one ENC packet in ,
then it can determine the precise value ofeven if is
lost. Fig. 30 illustrates the block ID estimation. The detailed
algorithm to estimate block ID is shown in Fig. 31.

A user can determine the precise value of its required block
ID with high probability. The probability of such failure is as
low as , as shown in Lemma 2. In the
worst case when or , the probability is about .

Lemma 2: Assume packets experience independent loss. Let
be the packet loss rate observed by a user. Then the probability

that the user cannot determine the precise value of the ID of

Fig. 30. Illustration of block ID estimation.

Fig. 31. Estimating required block ID.

the block to which its specific ENC packet belongs is
, where is the

sequence number of its specific ENC packet and is
the block size.

Proof: As illustrated in Fig. 30, only if all of the ENC
packets in set are lost, or when all of the packets in
set are lost, the user cannot determine the precise
value of its required block ID. The probability of such failure is

, which is since
and .

In the case that the user cannot determine the precise value of
its block ID, it can still estimate a possible range of the required
block ID. Then during feedback, the user requests PARITY
packets for each block within the estimated block ID range.
When the key server receives the NACK, it only considers the
block to which the user’s specific ENC packet belongs (see the
key server’s protocol in Fig. 23).

In theEstimateBlkIDalgorithm shown in Fig. 31, a user sets
the initial values of the lower boundlowand upper boundhighas
0 and , respectively. However, theif statement of lines 11–12
guarantees that eventuallyhigh will not be infinity if the user
receives any ENC packet. The reasoning is as follows. When
the user receives an ENC packetpkt, themaxKID field of the
packet specifies the maximum ID of current k-nodes. There-
fore, the maximum ID of current users cannot be larger than

. In the worst case, one ENC packet
contains encryptions for only one user, then there are at most

ENC packets each with
subfield larger than . Therefore, the maximum

block ID cannot be larger than
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