
2886 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 25, NO. 5, OCTOBER 2017

Practical Network-Wide Packet Behavior
Identification by AP Classifier

Huazhe Wang, Student Member, IEEE, ACM, Chen Qian, Member, IEEE, ACM, Ye Yu, Member, IEEE,
Hongkun Yang, Student Member, IEEE, and Simon S. Lam, Fellow, IEEE, ACM

Abstract— Identifying the network-wide forwarding behaviors
of a packet is essential for many network management appli-
cations, including rule verification, policy enforcement, attack
detection, traffic engineering, and fault localization. Current tools
that can perform packet behavior identification either incur large
time and memory costs or do not support real-time updates.
In this paper, we present AP Classifier, a control plane tool
for packet behavior identification. AP Classifier is developed
based on the concept of atomic predicates, which can be used to
characterize the forwarding behaviors of packets. Experiments
using the data plane network state of two real networks show that
the processing speed of AP Classifier is faster than existing tools
by at least an order of magnitude. Furthermore, AP Classifier
uses very small memory and is able to support real-time updates.

Index Terms— Network-wide behavior, packet classification,
software-defined networking.

I. INTRODUCTION

MANAGING packet forwarding in a large network is a
complex problem. Software defined networking (SDN)

simplifies network management by decoupling the control
plane from devices that forward packets, to be referred to as
boxes.1 More specifically, control plane applications, including
routing [2], [3], traffic engineering [4], access control [5],
measurement [6], and policy enforcement [7], [8], are imple-
mented as software in a logically centralized controller. The
controller specifies forwarding actions of packets by writing
directly into flow tables in each box in the form of rules,
through a standard API such as OpenFlow [9].

Let a flow be an equivalence class of packets defined
on a subset of fields in the packet header, e.g., the 5-tuple
consisting of source address, destination address, source port,
destination port, and protocol type. All packets of a flow have
the same forwarding behaviors in a network (also referred to

Manuscript received March 30, 2016; revised November 30, 2016 and
May 2, 2017; accepted May 26, 2017; approved by IEEE/ACM TRANSAC-
TIONS ON NETWORKING Editor A. Bremler-Barr. Date of publication July 20,
2017; date of current version October 13, 2017. The work of H. Wang,
C. Qian, and Y. Yu was supported by the NSF under Grant CNS-1701681 and
Grant CNS-1717948. The work of H. Yang and S. S. Lam was supported by
the NSF under Grant CNS-1214239. A preliminary version was published in
Proceedings of ACM CoNEXT 2015 [1]. (Corresponding author: Chen Qian.)

H. Wang and C. Qian are with the Department of Computer Engineering,
University of California at Santa Cruz, Santa Cruz, CA 95064 USA (e-mail:
huazhe.wang@ucsc.edu; cqian12@ucsc.edu).

Y. Yu is with the University of Kentucky, Lexington, KY 40503 USA.
H. Yang is with Google, Mountain View, CA 94043 USA.
S. S. Lam is with The University of Texas at Austin, Austin, TX 78712

USA.
Digital Object Identifier 10.1109/TNET.2017.2720637
1We use “box” to refer to any network device that forwards packets,

including routers, switches, and functional middle boxes such as firewalls,
NATs and intrusion detection systems (IDSes).

as the flow’s behaviors) when there is no data plane update.
Network-wide packet behavior identification is a control
plane function that discovers the actual forwarding behaviors
of the packets in a flow (or a set of flows) including their
forwarding paths, where they stop or are dropped, and which
boxes they traverse, by analyzing network state in the data
plane [10]. Packet behavior identification is necessary for
SDN management in the following situations.

Verification of Flow Properties: For network flows, the
control plane may specify pre-defined flow behaviors that
satisfy application requirements or network policies, called
flow properties. We highlight several typical flow properties.

• Forwarding correctness: The control plane must ensure
that packets of the flow can be forwarded to the destina-
tion (e.g., a host or an egress router), or dropped if they
are not allowed to reach the destination.

• Policy enforcement: Network policies may require flow
packets to go through various middle boxes. For example,
HTTP traffic should be forwarded through a sequence of
middle boxes: firewall, IDS, and web proxy [7]. Other
types of traffic may be required to traverse different
sequences of middle boxes.

• Quality of service: Some applications require guaranteed
flow quality. For example, a multi-tenant cloud should
provide certain levels of bandwidth or latency for its users
based on service level agreements [11], [12].

• VLAN isolation: A cloud provider guarantees that pack-
ets in a virtual network (VLAN) cannot travel to another
VLAN.

Any data plane update could change the behaviors of a
number of flows. Prior to data plane updates, the controller
needs to verify that the data plane, with the new updates, can
forward the packets correctly and comply with the flow prop-
erties. Such verification requires packet behavior identification
for the flows that will be affected by the new rules.

Attack Detection: Data plane attacks to an SDN may change
the correct packet behaviors or send packets with abnormal
behaviors, such as data plane DDoS attacks. An efficient data
plane attack detection method should verify data plane for-
warding behaviors and be aware of the behaviors that violate
network policies. For example, a recent work SPHINX [13]
uses flow graphs to represent network operations and detect
abnormal forwarding behaviors.

Traffic Engineering: Centralized traffic engineering [2],
[14], [15] determines the forwarding paths for flows to max-
imize network throughput. When the controller is notified
about a new flow, it needs to identify its packet behaviors

1063-6692 © 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

WANG et al.: PRACTICAL NETWORK-WIDE PACKET BEHAVIOR IDENTIFICATION BY AP CLASSIFIER 2887

in the current data plane and check whether they can meet
application requirements such as bandwidth or latency. If not,
the controller needs to modify the data plane to install a desired
forward path for the flow.

Localization of Network Faults: When the control plane
finds a flow property violation at any time, it should identify
the actual flow behaviors in the network and compare them
with the expected behaviors. In this way the controller can
find the part of the data plane that contains faults, called fault
localization [16].

A practical packet behavior identification method must
satisfy three requirements. First, it provides a high throughput
in responding to packet behavior queries. According to recent
measurement results [17], [18], a large data center network
may see hundreds of thousands of new flows per second. SDNs
should support hundreds of data plane updates per second [19]
and each update may need to query multiple flows to verify
correctness. Hence a desired throughput should exceed one
million packet queries per second (1 Mqps). Second, the query
structure should fit into a small and fast memory such as
cache. Third, the query structure can be updated in real time
under data plane changes to ensure that query results reflect
the current network state.

Unfortunately none of the existing solutions can meet all of
the requirements stated above. A straightforward approach is
to maintain copies of flow tables of all boxes in the controller.
However even for a medium-scale network used in [20], tens
of GBs are required to store all rules [10]. Due to slow search
speed among flow tables and disk I/Os, the query throughput
is very low. Very recently, Inoue et al. [10] propose to use
a multi-valued decision diagram (MDD) to classify flows to
different sets of network-wide behaviors. However, an MDD
cannot be updated in real time.2

In this work, we propose a network-wide packet behavior
identification method called AP Classifier, where AP stands
for Atomic Predicates, a concept developed in [22]. Each
atomic predicate specifies a set of packets that have the same
forwarding behavior in the network. The motivation of using
atomic predicates is stated as follows. Existing solutions of
packet behavior identification that uses forwarding table sim-
ulation or BDD-like structures are slow in processing queries
and memory-inefficient because every bit of the packet header
is considered. The concept of atomic predicates [22] provides
a way to compress ACLs and forwarding rules to a small
set of equivalence classes that can be specified efficiently.
We hence develop a novel data structure, called AP Tree,
to classify packets into atomic predicate which allows us to
eliminate the primary cause of inefficiency using BDD-like
structure to analyze packet flow behavior. The packet behavior
can then be easily computed using the atomic predicate.
To further increase the performance, AP Classifier employs
optimized construction algorithms, so that the constructed AP
Tree achieves higher query throughput. To deal with network

2The paper [10] claims that if a data plane update does not change the
existing packet behaviors, MDD update can be finished in tens of milliseconds.
However from examining update traces of the Route Views Project [21],
it is unlikely that a data plane update does not change the existing packet
behaviors.

dynamics, AP Classifier utilizes a real-time update to maintain
query correctness and an AP Tree reconstruction method that
periodically rebuilds the tree to optimize its performance.

We evaluated the performance of AP Classifier using the
data plane network state, including forwarding tables and
ACLs, from two real networks, namely: Internet2 [23] and
a Stanford campus network [20]. Our results show that AP
Classifier, running on a general-purpose desktop computer,
only uses a few MBs memory and supports more than two
millions of queries per second. In addition it can be updated
in real time (< 4 ms for 95% updates in Internet2 and < 1 ms
for 95% updates in Stanford).

The balance of this paper is organized as follows. Section II
presents related work. We discuss the network model and
background knowledge in Section III. We introduce the frame-
work of AP Classifier in Section IV. The algorithms to
construct an AP Tree are presented in Section V and the
update and reconstruction methods of an AP Tree for dynamic
networks are presented in Section VI. We present experimental
results in Section VII. Finally we conclude this work in
Section VIII.

II. RELATED WORK

Network-wide packet behavior identification is equivalent to
reachability computation for a specific packet. This problem
is related to, but different from, network reachability analysis
which has been studied for over a decade. Xie et al. [24]
present a model for static reachability analysis of data plane
network state. Quarnet [25] represents ACLs as firewall deci-
sion diagrams to compute network reachability. Header Space
Analysis (HSA) [20] is custom-designed method to check
network invariants but not in real time.

For real-time applications, NetPlumber [26] makes use of
HSA to detect network invariant violations. Veriflow [27]
stores all data plane rules in a multi-dimensional prefix
tree (trie) and determines the Equivalence Classes (ECs) of
packets. An EC is defined to be a set of packets that have
identical forwarding actions in all boxes. Veriflow then checks
network invariants by analyzing reachability graphs of ECs.

Binary Decision Diagram (BDD) [28] is an efficient
structure that were used to model network properties.
ConfigChecker [29] is general verification tool based on
symbolic model checking. It uses a BDD to represent a set
of state transitions (also flowchecker [30] by the same first
author). If n header bits are used for filtering, each BDD of
ConfigChecker uses 2n state variables which is less efficient
than BDDs used in our design and [22] (In our design and AP
Verifier, each BDD represents a set of packets and requires
the use of n bit variables only). Anteater [31] uses boolean
formulas to represent policies for packets traveling over edges
in a network graph. McGeer [32] models network verification
as Boolean satisfiability problems. They both use a SAT solver
to check network properties. All of these general-purposes
tools are slow and operate on time scales of seconds to
hours [27].

All of the above methods focus on analyzing network-
wide invariants (e.g., reachability, loop-freedom) but were
not designed to identify the reachability of a specific packet.

2888 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 25, NO. 5, OCTOBER 2017

For example, they can determine whether it is possible to reach
box B from box A but cannot tell whether a given packet
can reach B. AP Verifier [22] can check whether all packets
entering a port in the network pass through a waypoint (e.g.,
a firewall) but cannot tell whether a specific packet traverses
a given waypoint.

One possible solution to packet behavior identification prob-
lem is checking the packet against the set of atomic predicates
calculated by AP Verifier linearly [22] which is impractically
slow. Another solution is to obtain all related data plane rules
of the packet by searching the trie created in Veriflow and
then compute the forwarding path based on the rules. However
storing all rules requires non-trivial memory cost (tens of
GBs for the Stanford network) which could cause disk I/Os
during query processing. As a result, using the Veriflow trie
for packet behavior identification was shown to be very slow
by Inoue et al. [10] who proposed a tool that can quickly
classify a packet to an EC. Its main drawback is that their
MDD structure cannot correctly represent the current network
state because its does not support real-time updates, especially
for SDNs where data plane updates are frequent [33]. Prefix
DAG [34] employs a data structure similar to MDDs, but it
focused on a simple classification problem with a single header
field.

Recently, Network Optimized Datalog is proposed as a
general specification language to model high-level abstraction
of network beliefs and dynamism [35]. A new approach to
derive data plane from network configurations is in [36].

III. MODEL AND BACKGROUND

We model a network as a directed graph of boxes, each
of which has a forwarding table as well as input and output
ports guarded by access control lists (ACLs). Each packet has
a fixed-size header, including all fields that are evaluated by
forwarding tables and ACLs in the network. A flow is then a
sequence of packets that have the same values in the evaluated
header fields.

Following the concepts in [22], forwarding tables and ACLs
are all packet filters. Each ACL can be specified by a predicate.
The set of packets that are allowed by the ACL are evaluated
to true by the predicate. Similarly, by analyzing a forwarding
table, each output port can be specified by a forwarding
predicate. The set of packets that can be forwarded to the
port are evaluated to true by the predicate.3 Forwarding tables
and ACLs can be converted to predicates using the algorithms
in [22]. A predicate P specifies the set of packets for which
P evaluates to true. Hence if a packet can travel through
a sequence of packet filters, it is evaluated to true by the
conjunction of predicates corresponding to the packet filters.

Given a set of predicates, we can compute a set of atomic
predicates. Due to space limitation, we do not repeat the
formal definition of atomic predicates, which can be found
in [22]. A proved property of the set of atomic predicates
is that they specify the minimum set of equivalence classes
in the set of all packets. The packets that are evaluated to

3All predicates are represented by binary decision diagrams (BDDs) [28]
in our implementation of AP Classifier.

Fig. 1. (a) Three predicates. (b) The packet header space and five atomic
predicates. (c) A sample network including the three predicates.

true by the same atomic predicate have identical behaviors at
all boxes. For a set of predicates P = {p1, p2, . . . , pk}, each
atomic predicate ai is in the form ai = q1 ∧ q2 ∧ . . . ∧ qk,
where qj ∈ {pj ,¬pj}. (Note that ai in the previous sentence
is an atomic predicate only if it is not false.) Every predicate
is equal to the disjunction of a subset of atomic predicates.
Every packet is evaluated to true by one and only one atomic
predicate.

As an illustration, Fig. 1(a) shows three predicates
p1 (triangle), p2 (square), and p3 (circle), each of which
represents a set of packets that are evaluated to true by
a predicate. Each predicate specifies a set of packets that
can pass the corresponding packet filter. Fig. 1(b) shows the
three predicates in the packet header space. All packets in
this example can be classified into five equivalence classes
specified by five atomic predicates, a1 to a5. Each predicate
is equal to the disjunction of a subset of atomic predicates.
For example, p2 = a3 ∨ a4. Also, a4 = ¬p1 ∧ p2 ∧ p3. All
packets evaluated to true by a4 have identical behaviors: they
can pass the filters of p2 and p3 but cannot pass p1.

In the network shown in Fig. 1(c), Let p1 specify the set of
packets that can be forwarded at box b1 to its output port to
host h1, p2 specify the set of packets that can be forwarded
at box b1 to its output port to box b2, and p3 specify the
set of packets that can be forwarded at box b2 to its output
port to host h2. A packet specified by a4 = ¬p1 ∧ p2 ∧ p3

is forwarded at b1 by the path b1− > b2− > h2. A packet
specified by a5 = ¬p1 ∧ ¬p2 ∧ p3 is forwarded to h2 if it is
at b2, but will be dropped if it is at b1. An atomic predicate
characterizes the behaviors of all packets it evaluates to true.

IV. DESIGN FRAMEWORK OF AP CLASSIFIER

AP Classifier is a program designed for a SDN controller.
It computes the network-wide behaviors for an input packet
(or flow). AP Classifier performs two-stage processing for a
packet. First, using the AP Tree, it classifies the packet to the
atomic predicate that evaluates to true for the packet. Second,
AP Classifier determines all forwarding paths for the packet by
using the atomic predicate, network information, and ingress
box of the packet.

WANG et al.: PRACTICAL NETWORK-WIDE PACKET BEHAVIOR IDENTIFICATION BY AP CLASSIFIER 2889

Fig. 2. AP Tree of predicates in Figure 1(b). (a) Original AP Tree. (b) Pruned AP Tree. (c) Optimized AP Tree.

A. AP Tree

Using the algorithms presented in [22], the controller first
converts each ACL to a predicate and the forwarding table
of each box to m predicates, where m is the number of
output ports of the box. Let P = {p1, p2, . . . , pk} be the
set of predicates of all boxes in the network. The controller
constructs an AP Tree which is a binary tree. The root is
labeled by p1. At level i, the 2i internal nodes are each labeled
by pi. Starting from the root, at each internal node, the input
packet is evaluated by the predicate in the label. If the result
is true, the packet continues to be evaluated in the left sub-
tree. Otherwise it goes to the right sub-tree. An AP Tree with
(k + 1) levels can be constructed from evaluating each of the
k predicates at each level of internal nodes. A leaf node is then
labeled by q1∧q2∧. . .∧qk, qi ∈ {pi,¬pi}, which specifies the
set of packets reaching the leaf. Fig. 2(a) shows the AP Tree
of the three predicates in Fig. 1(b). Shaded circles indicate
leaf labels that are false. We will show that two sub-trees in
an AP tree do not necessarily have a same predicate order in
Section 5.3.

To classify a packet to an atomic predicate, AP Classifier
simply searches the AP Tree by evaluating the packet until
the leaf labeled by the atomic predicate is found. At each
node, the packet is evaluated by checking the BDD of the
predicate. Since predicates on sibling nodes are disjoint, for
a given packet, the path from the root to the leaf is exclusive
and determinate.

In the worst case, there could be 2k atomic predicates and
finding a leaf needs to evaluate all k predicates. However,
it is found that the number of atomic predicates is surprisingly
small for real networks [22]. Hence many leaves specify empty
sets of packets. For example, in Fig. 2(a), p1 ∧ p2 ∧ p3,
p1 ∧ p2 ∧ ¬p3, and p1 ∧ ¬p2 ∧ p3 are all false according to
the relationships in Fig. 1(b). Hence no packet can reach any
of these three leaves. We use the following rule to “prune”
the AP Tree: If no packet reaches a sub-tree, i.e., all leaves
in the subtree are labeled by false predicates, the sub-tree is
removed from the AP Tree. If an internal node has only one
child, it is removed from the AP Tree as there is no need to
check the predicate. We define the depth of a leaf to be the
number of predicates evaluated to reach the leaf. After pruning,
the average depth of all leaves in the AP Tree can be reduced
and each node has either 0 or 2 children. Fig. 2(b) shows the
pruned AP Tree has average depth (1+3+3+3+3)/5 = 2.6.

An important observation is the following: If predicates are
placed at the levels in a different order, the average depth of
the AP Tree may be different. In Fig. 2(c), the predicates are
placed at three levels in the order of p2, p3, p1. The average
depth of all leaves in the pruned AP Tree is 2.4. An important
contribution of this work is an algorithm to find an order of
predicates that substantially reduces the average depth of an
AP Tree.

For examples, each of the Internet2 and Stanford networks
includes hundreds of thousands of forwarding rules, which can
be converted to 161 (Internet2) or 507 (Stanford) predicates.
Using our AP Tree construction algorithm, the average depth
of the AP Tree is only 10.6 (Internet2) or 16.8 (Stanford). In an
unpruned AP Tree, a packet needs to be evaluated by 161 or
507 predicates. AP Classifier only requires it to be evaluated
by 10.6 or 16.8 predicates, on average, thus improving the
query throughput by more than an order of magnitude. The
detailed algorithm design of AP Tree construction is presented
in Section V.

B. Computing Packet Behaviors
The second stage of AP Classifier determines the network-

wide behaviors of the queried packet from the network infor-
mation, the ingress box, and the atomic predicate determined
in the first stage.

Since the atomic predicate is in the form q1 ∧ q2 ∧ . . . ∧
qk, qi ∈ {pi,¬pi}, for any predicate pj , AP Classifier can
easily check whether the predicate evaluates to true or false
for the packet. Recall that pj represents a packet filter of
an ACL or output port. Hence AP Classifier can determine
at any box whether the packet is dropped and which port
it is forwarded to. Starting from the ingress box, i.e., the
box that sees the packet first in the network, AP Classifier
finds the output port to which the packet is forwarded and
then determines the next-hop box. If the packet is a multicast
packet, it may be forwarded to multiple ports. AP Classifier
continues to find the forwarding ports on the next-visited boxes
until the packet reaches the destination or is dropped. The
packet behaviors are thus obtained.

Fig. 3 shows an example to illustrate how to compute
network-wide forwarding paths for a given packet. Consider a
packet which arrives at the ingress box b1 and it is classified to
atomic predicate a4 by searching the AP Tree. The represen-
tation, ¬p1∧p2∧p3, of a4 shows that the packet is forwarded

2890 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 25, NO. 5, OCTOBER 2017

Fig. 3. Computing forwarding path for a packet in a4.

to b2 because p1 is false and p2 is true for the packet. Similarly
at b2, the packet is forwarded to h2 because p3 is true for the
packet.

We ran experiments to evaluate the speed of the above
approach on a general-purpose desktop computer. We found
that, for the Internet2 and Stanford datasets, the throughput is
greater than 15M and 10M packets per second, respectively.
Note that this throughput is much higher than the throughput
in the first stage. Therefore, the main effort of this work is to
optimize the construction, search, and update of the AP Tree.

V. AP TREE OPTIMIZATION

The most challenging problem in designing AP Classifier is
to construct an AP Tree with minimized average depth, which
can support dynamic updates.

A. Query Throughput Versus Average Depth

To reduce the query time and improve the query throughput,
the optimization goal of AP Tree construction is to reduce
the average depth of leaves. We conduct a set of experiments
to justify the correlation of reducing the average depth and
improving the throughput. We use the Internet2 network
containing 161 predicates and the Stanford network containing
507 predicates. In each experiment, we randomly order the
k predicates for placement at levels of the AP Tree. Then we
query the generated tree using sample packets and measure the
query throughput. In Fig. 4, we show the relationship between
query throughput and average depth for 100 random generated
AP Trees for each network. After pruning, the average depth
of the AP Tree of Internet2 varies from 15.9 to 44.2, and
the average depth of the AP Tree of Stanford varies from
39.1 to 92.5. From the two sub-figures in Fig. 4, it is obvious
that an AP Tree with smaller average depth provides higher
query throughput. The star in each figure represents the
performance of the AP Tree constructed by AP Classifier. The
query throughput of AP Classifier is 3.35 Mqps (Internet2) and
1.82 Mqps (Stanford), substantially higher than any random
construction.

B. Quick-Ordering Algorithm

The number of atomic predicates for a network is deter-
minate if there is no update. That is, for a network,
its AP Tree has a fixed number of leaves. A more balanced
binary tree results in smaller average leaf depth. Compare
the two AP Trees in Fig. 2(b) and (c) whose average depths

Fig. 4. Query throughput versus average depth of leaves. (a) Internet2.
(b) Stanford.

are 2.6 and 2.4, respectively. The one in Fig. 2(c) is more
balanced and hence has less average depth. The reason for the
imbalance in Fig. 2(b) is that p1 is placed at a higher level of
the tree. According to properties of atomic predicates, every
predicate is equal to the disjunction of a subset of atomic
predicates. The number varies from one to the number of all
atomic predicates. In this example, p1 is a predicate that is
equal to a single atomic predicate. Hence the left child of
the node labeled as p1 must be a leaf representing the atomic
predicate. However, the right sub-tree may include more levels,
causing the imbalance.

In fact, an analysis of the two real network data planes
shows that many predicates are equal to a single atomic pred-
icate. One fast yet effective ordering of predicates is to place
those predicates at lower levels. For example, in Fig. 2(c),
p1 is placed at the lowest level.

Notation: Let R(p) denote the subset of atomic predicates
whose disjunction is p. |R(p)| denotes the cardinality of R(p).

In the Quick-Ordering algorithm, |R(pi)| is counted for
each predicate pi. Then the AP Tree is constructed by placing
all predicates onto the tree in descending order of |R(pi)|.

C. Optimized AP Tree Construction

To develop a more sophisticated ordering method, one
important observation is that, for two sub-trees whose roots are
siblings, their predicate orders can be different. In the example
of Fig. 5(a), we now have four predicates p1 (triangle),
p2 (square), p3 (circle), and p4 (ellipse), which determine
six atomic predicates, a1 to a6. If the predicates are added
in the order p2, p3, p1, p4, the pruned AP Tree is shown
in Fig. 5(b). However, for the sub-tree rooted at the right child

WANG et al.: PRACTICAL NETWORK-WIDE PACKET BEHAVIOR IDENTIFICATION BY AP CLASSIFIER 2891

Fig. 5. Additional example. (a) Five predicates. (b) Pruned AP Tree. (c) Optimized AP Tree.

of the root, its subtree is more balanced if the predicate order
is p1, p3, p4, as shown in Fig. 5(c).

For a given set of predicates P = {p1, p2, . . . , pk},
the atomic predicates A = {a1, a2, . . . , an} is determined.
The number of leaves of the AP Tree is n, because each leaf
corresponds to an atomic predicate. We define F (Q, S) as the
minimal sum of leaf depths of the subtree (which is a part
of the AP Tree) whose nodes include the set of predicates Q
and leaves are the set of atomic predicates S. In the example
of Fig. 5(c), let Q = {p1, p3, p4} and S = {a1, a2, a5, a6},
F (Q, S) = 8. F (Q, S) can be calculated recursively using
the following equations. Let H(Q, S, p) be the minimal sum of
leaf depths if the root of the sub-tree is p. If S∩R(p) �= ∅ and
S ∩R(¬p) �= ∅, H(Q, S, p) is the sum of three components:
F (Q−{p}, S∩R(p)) and F (Q−{p}, S∩R(¬p)) are recursive
computing for the left and right sub-trees and extra |S| needs
to be added because the depth of every leaf increments by 1.
We have

H(Q, S, p) = F (Q − {p}, S ∩ R(p))
+ F (Q − {p}, S ∩ R(¬p)) + |S|

If S∩R(p) = ∅, the left sub-tree will be pruned. The internal
node with only one child is also removed and the leaf depths
do not increase. Hence,

H(Q, S, p) = F (Q − {p}, S ∩ R(¬p))

Similarly, if S ∩ R(¬p) = ∅, we have,

H(Q, S, p) = F (Q − {p}, S ∩ R(p))

In addition, we have the following recursive equation.

F (Q, S) =

{
0 if |S| = 1
minpi∈Q H(Q, S, pi) otherwise

(1)

When |S| = 1, it is easy to see that the sub-tree contains only
one leaf, hence F (Q, S) = 0. Otherwise, the predicate pi ∈ Q
is selected as the root of the sub-tree such that pi minimizes
H(Q, S, pi).

Using the above formula, it is possible to compute F (P, A).
By recording the selection of pi at each recursion, the
optimized AP Tree can also be constructed.

However, the time complexity of solving this recursion is
as high as O((2k) ∗ k!), where k is the cardinality of P .

Fig. 6. Relationships of two predicates. (a) Neither Pi ∧ Pj nor ¬Pi ∧ ¬Pj
is false. (b) Pi ∧ Pj is false. (c) ¬Pi ∧ Pj is false. (d) Pi ∧ ¬Pj is false.

We need to propose an efficient heuristic algorithm to sim-
plify the recursion. At a level of recursion, we need to find the
predicate pi that minimizes H(Q, S, pi). Instead of trying all
predicates, we propose an easier way to decide which predicate
to select.

We define a pair-wise relation between two predicates
that implies which one is better to select. If H(Q, S, pi) <
H(Q, S, pj), we say that pi is superior to pj and pj is inferior

to pi, denoted as pi
S→ pj . If H(Q, S, pi) = H(Q, S, pj),

we say pi and pj are in the same order, denoted as pi
S∼ pj .

We compare two predicates in four cases based on their
logical relationships, as shown in Fig. 6. Here, pi and pj refer
to predicates which are equal to union of atomic predicates in
S∩R(pi) and S∩R(pj) respectively. H(Q, S, p) is calculated
based on the first three equations of section V-C for all four
cases as follows:

1) Packets specified by pi intersect with those of pj

(Fig. 6(a)). If we place pi to the root and pj to the children
of the root, we get a full sub-tree since R(pi) ∩ R(pj),
R(pi) ∩ R(¬pj), R(¬pi) ∩ R(pj) and R(¬pi) ∩ R(¬pj) are
all non-empty. Hence, we have

H(Q, S, pi) = |S| + F (Q − {pi}, S ∩ R(pi))
+ F (Q − {pi}, S ∩ R(¬pi))

= |S| + F (Q − {pi, pj}, S ∩ R(pi) ∩ R(pj))
+ F (Q − {pi, pj}, S ∩ R(pi) ∩ R(¬pj))
+ |S ∩ R(pi)|
+ F (Q − {pi, pj}, S ∩ R(¬pi) ∩ R(pj))
+ F (Q − {pi, pj}, S ∩ R(¬pi) ∩ R(¬pj))
+ |S ∩ R(¬pi)|

2892 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 25, NO. 5, OCTOBER 2017

If we place pj to the root and pi to the children, we can
get H(Q, S, pj) similarly. Since |S ∩R(pi)|+ |S∩R(¬pi)| =
|S∩R(pj)|+ |S∩R(¬pj)| = |S|, H(Q, S, pi) = H(Q, S, pj).
We have pi

S∼ pj .
2) Packets specified by pi disjoint with those of pj

(Fig. 6(b)). pi ∧ pj is false. If we place pi to the root
and pj to the children of the root, the sub-tree representing
R(pi)∩R(pj) will be pruned. The child representing R(pi)∩
R(¬pj) will replace its parent node and leaf depths do not
increase. However, the sub-tree representing R(¬pi) ∩ R(pj)
and R(¬pi) ∩ R(¬pj) are both non-empty, so the total leaf
depths increase by |S ∩ R(¬pi)|. Hence

H(Q, S, pi) = |S| + F (Q − {pi, pj}, S ∩ R(pi) ∩ R(¬pj))

+ F (Q − {pi, pj}, S ∩ R(¬pi) ∩ R(pj))

+ F (Q − {pi, pj}, S ∩ R(¬pi) ∩ R(¬pj))

+ |S ∩ R(¬pi)|
Similarly, if we place pj to the root and pi to the children,

H(Q, S, pj) = |S| + F (Q − {pi, pj}, S ∩ R(pj) ∩ R(¬pi)))
+ F (Q − {pi, pj}, S ∩ R(¬pj) ∩ R(pi))
+ F (Q − {pi, pj}, S ∩ R(¬pj) ∩ R(¬pi))
+ |S ∩ R(¬pj)|

Despite of the same terms, if |S ∩ R(¬pi)| < |S ∩ R(¬pj)|,
pi

S→ pj . If |S ∩R(¬pi)| = |S ∩R(¬pj)|, pi
S∼ pj . Otherwise

pj
S→ pi.

3) Packets specified by pj are a subset of those of pi

(Fig. 6(c)). ¬pi ∧ pj is false. If we place pi to the root and pj

to the children of the root, the sub-tree representing R(¬pi)∩
R(pj) will be pruned. The child representing R(¬pi)∩R(¬pj)
will replace its parent node and leaf depths do not increase.
The sub-tree representing R(pi)∩R(pj) and R(pi)∩R(¬pj)
are non-empty, so the total leaf depths increase by |S∩R(pi)|.
Hence

H(Q, S, pi) = |S| + F (Q − {pi, pj}, S ∩ R(pi) ∩ R(pj))
+ F (Q − {pi, pj}, S ∩ R(pi) ∩ R(¬pj))
+ F (Q − {pi, pj}, S ∩ R(¬pi) ∩ R(¬pj))
+ |S ∩ R(pi)|

If we place pj to the root and pi to the children of the root,
the sub-tree representing R(pj) ∩ R(¬pi) will be pruned.

H(Q, S, pj) = |S| + F (Q − {pi, pj}, S ∩ R(pj) ∩ R(pi)))
+ F (Q − {pi, pj}, S ∩ R(¬pj) ∩ R(pi))
+ F (Q − {pi, pj}, S ∩ R(¬pj) ∩ R(¬pi))
+ |S ∩ R(¬pj)|

Therefore if |S ∩ R(pi)| < |S ∩ R(¬pj)|, pi
S→ pj . If |S ∩

R(pi)| = |S ∩ R(¬pj)|, pi
S∼ pj . Otherwise pj

S→ pi.
4) Packets specified by pi are a subset of those of pj

(Fig. 6(d)). Similar to the above cases, we can get if |S ∩
R(¬pi)| < |S∩R(pj)|, pi

S→ pj . If |S∩R(¬pi)| = |S∩R(pj)|,
pi

S∼ pj . Otherwise pj
S→ pi.

We then design the key criterion of predicate selection for
each level of recursion, namely: We select a predicate that is
not inferior to any other predicate. The algorithm is presented
as follows: For each level of recursion, a predicate ps is
maintained, initially being p1. A linear scan is performed from
p2 to pk. For a predicate pi, if pi

S→ ps, then ps is set to pi.
At the end, ps is selected as the root node of the subtree for
this level of recursion.

To prove the correctness of the above algorithm, we need
to show that ps is indeed not inferior to any other predicate.
A sufficient condition is that the superior/inferior relation is
acyclic, i.e., there are no three predicates pa, pb, pc such that
pa

S→ pb, pb
S→ pc, and pc

S→ pa. We have proved the acyclic
property by exhaustion. Our proof is not shown herein due to
space limitation.

Time Efficiency of AP Tree Construction: In the AP Tree
construction algorithm presented above, we avoid the time-
intensive operation of computing the conjunction of two pred-
icates represented as BDDs. Instead, our algorithm computes
the intersection of two sets of integers that are identifiers of
atomic predicates, as suggested in [22]. Intersections of integer
sets can be computed much more quickly than conjunctions
of BDDs. Each predicate is represented as a set of integers,
so the time complexity of determining relationship between
two predicates is O(n), where n is the number of atomic
predicates. For each level of recursion, a linear scan needs
O(k′n) time, where k′ is the number of predicates in the
current level. The overall complexity of building an AP Tree
depends on the number of levels as well as the balance of
the tree. Here we only provide the complexity analysis for a
balanced AP Tree. For a balanced AP Tree, there are 2l nodes
at level l. For each node, k′ ≤ (k − l). Hence at level l,
the time complexity is at most 2l (k − l)n. Since l ≤ log2 n,
2l (k− l)n < kn2. Since there are �log2 n� levels, the overall
time complexity is upper-bounded by O(kn2 log n).

D. Optimization for Packet Distribution

In the proposed algorithms, we assume that, for a packet
query, leaf nodes (atomic predicates) have equal probability
to be visited. Therefore minimizing the average depth of leaf
nodes maximizes the query throughput. However, practical
network flows may not be distributed uniformly with respect
to the set of atomic predicates. For example, if many queried
packets may eventually visit a leaf in a very deep position
and leaves close to the root are rarely visited, the throughput
decreases. To improve the query throughput for uneven packet
distribution, we assign weights to atomic predicates such that
leaf nodes that are visited frequently will be placed relatively
close to the root.

To estimate the packet distribution, AP Classifier maintains
a counter for each leaf node (atomic predicate), which records
the number of visits by queries in a past period of time. The
value of a counter is then converted to the weight of the
corresponding atomic predicate after reduction of a fraction.
When using the optimized algorithm presented in Section V-C,
every occurrence of |R(pi)| is replaced by the sum of weights
of all atomic predicates in R(pi), rather than its cardinality.

WANG et al.: PRACTICAL NETWORK-WIDE PACKET BEHAVIOR IDENTIFICATION BY AP CLASSIFIER 2893

For example, suppose AP Classifier is choosing the root
of a subtree by comparing two predicates pi and pj whose
relationship is as shown in Figure 6(c). If the atomic predicates
in set R(pj) have been queried by many packets, we prefer
to place pj before pi in order to get smaller depths for the
leaf nodes labeled by the atomic predicates in R(pj). Higher
weights help to get H(Q, S, pj) < H(Q, S, pi) and make
pj superior to pi.

E. Dealing With Packet Header Changes

Today’s networks rely on a wide range of middleboxes
(e.g., firewalls, intrusion detection and prevention systems,
and proxies) which achieve performance and security benefits.
Some middleboxes may modify packet headers of incoming
traffic. When middleboxes modify packet headers, the for-
warding behaviors of these packets on downstream boxes must
be determined by the new header fields. For example, when
a Network Address Translation (NAT) middlebox translates
an external address to an internal one, AP Classifier must be
aware of such translation and compute the remaining packet
behaviors using the internal address.

We consider three types of packet header changes by
middleboxes, namely 1) deterministic based on packet headers,
2) deterministic based on packet payload, and 3) probabilistic.

For Type 1 changes, a change is completely determined by
the header of an incoming packet. In AP Classifier, we model
these middlebox operations as a flow table. Each packet that
enters a middlebox passes through a flow table. A flow table
contains entries consisting of three components: match fields,
instructions, and a new atomic predicate. Match Fields are
used to select packets that match the predicates in the fields.
Instructions specify new packet headers if a match occurs. The
atomic predicate fields store atomic predicates calculated for
new packet headers.

For Type 1 changes, given the packet header before a
change, the atomic predicate after the change can be easily
determined based on the flow table. Therefore when AP Clas-
sifier finds that a packet passes a middlebox, at the behavior
computing stage (second stage of AP Classifier), it checks
the flow table whether the packet header has been modified
based on the middlebox policies. If the packet has a new
header, AP Classifier will read a new atomic predicate and
compute forwarding behaviors for the new header based on
the new atomic predicate. Such process may repeat multiple
times until the packet is dropped or the forwarding path ends
at the packet’s destination.

To see how this works, we use an extensional version of the
example from IV-B in Fig. 7. The topology in the figure is a
part of the whole network. Packets passing box b1 are firstly
processed by the flow table at middlebox MB1 and then by
b1’s forwarding table. The flow table of MB1 contains three
entries that modify packet headers and one default entry.
Consider a packet enters box b1 and matches the third entry
of the flow table at MB1. Its corresponding packet header
fields are changed to 172.16.146.2 and its atomic predicate
is changed to a4. The yellow line, in Fig. 7, shows that the
packet is forwarded to box b2 and then host h1 after header
modification.

Fig. 7. Computing forwarding path with header modifications.

For Type 2 changes, the packet header after a change can
be determined only after the packet payload is known. Hence
it is not possible to pre-compute a flow table that stores the
atomic predicate after packet header changes. AP Classifier
needs to search the AP Tree again using the new header to
find a new atomic predicate. This process may repeat multiple
times. Probabilistic changes (Type 3) can be treated similarly.
However, AP Classifier may output multiple possible network-
wide behaviors for a given packet.

VI. AP TREE UPDATE AND RECONSTRUCTION

An important requirement of practical packet behavior
identification is to support dynamic network changes, includ-
ing link and rule changes, both of which require addition
and deletion of predicates. We design fast AP Tree update
methods for adding a predicate and deleting a predicate while
maintaining tree correctness. However, after a large number of
updates, an AP Tree will experience performance degradation.
Hence we also design an AP Tree reconstruction method
that periodically rebuilds the tree to optimize its performance
while performing packet query processing at the same time.
In this section, we assume that each atomic predicate is equally
weighted.

A. Real-Time Update of an AP Tree

The SDN data plane of a network is frequently updated
by rule installation and deletion. When a rule is inserted
into or removed from a forwarding table or an ACL, it may
change one or more predicates. The set of atomic predicates
may change as well. We use the method presented in [37]
to convert a rule insertion or deletion to predicate change.
If there is no predicate change after a rule update, AP Classifier
does not need to update the AP Tree. Otherwise, AP Classifier
performs the methods presented below to remove the old
predicate and add the updated predicate in the AP Tree.

2894 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 25, NO. 5, OCTOBER 2017

Fig. 8. Real-time update and query processing.

These methods are also used after addition/deletion of a
network link which requires addition/deletion of predicates.

Add a Predicate: When a new predicate p is added, for each
leaf node representing an atomic predicate a in the current AP
Tree, AP Classifier computes a∧p and a∧¬p. If none of them
is false, two children are added to the leaf node, representing
a∧ p and a∧¬p respectively. If one and only one of the two
conjunctions is false, the label of the leaf node is replaced
by the other conjunction. If both conjunctions are false,
AP Classifier does nothing to this leaf node.

Delete a Predicate: To delete an existing predicate p from
the AP Tree, AP Classifier does not remove all internal
nodes labeled by p. This is because after the removal of
a node, merging the two sub-trees rooted at its children is
very difficult. Instead, we still keep p in the AP Tree, but
mark it as “deleted” in the list of all predicates. A query
packet is still processed by the AP Tree to find its leaf node
representing its atomic predicate. It is still evaluated by the
deleted predicates to determine which sub-tree to visit next.
However, in the second stage of AP Classifier, i.e., computing
packet behaviors, AP Classifier just ignores all predicates that
have been deleted.

B. Parallel Reconstruction of an AP Tree

Although, the AP Tree updates in AP Classifier are fast
and maintain correctness of packet behavior identification,
the AP Tree is no longer optimized and the query throughput
will degrade over time. Hence AP Classifier also reconstructs
the AP Tree to optimize it from time to time. To enable
query processing at the same time as tree reconstruction,
AP Classifier runs two processes in parallel, called the query
process and reconstruction process, executing on two different
cores. The start of a reconstruction is triggered by an event,
e.g., query throughput is lower than a threshold or the number
of updates on the current AP Tree is higher than a threshold.
During reconstruction, the query process still maintains the old
AP Tree by performing updates, and responds to queries. After
the reconstruction process has built a new tree, the new tree
needs to be updated for data plane changes that have occurred
during the reconstruction period, if any. The updated new tree
is then transmitted to the query process to replace the old tree.

Fig. 8 shows an example of the parallel reconstruction of
an AP Tree. The query process performs AP Tree search to
respond to queries as well as updates when data plane changes
happen. In this example, the first reconstruction starts shortly
after the change that requires update 1, which is included in

TABLE I

STATISTICS OF THE TWO REAL NETWORKS

the construction of a new tree. However, when the new tree
is finished, two changes that require updates 2 and 3 have
occurred during the reconstruction period. The new tree does
not reflect these two updates. Thus the reconstruction process
also applies these two updates to the new tree. Then the
updated new tree is sent to the query process to replace
the old AP Tree. Similarly the second reconstruction begins
after changes that require updates 4, 5, and 6. The new tree
constructed needs to be updated for changes (that require
updates 7 and 8) which occur during the reconstruction period,
before it can be sent to the query process. Note that if there is
no data plane change during a reconstruction period, the new
AP Tree is optimized.

If network dynamics change weights of atomic predicates,
current AP Tree constructed using previous configurations
should be rearranged to provide the best performance. It is hard
to adjust AP Tree in the real time update process which should
be finished very quickly. However, rearranging AP Tree needs
to compare relationships of several predicates which may cost
beyond the time scale of milliseconds. To regain the optimized
performance of AP Tree, AP Classifier reconstructs AP Tree
with the new weights of atomic predicates periodically.

VII. EXPERIMENTAL EVALUATION

We have implemented and evaluated AP Classifier on a
general purpose desktop computer with quadcore@3.2G and
16GB memory. Our implementation and evaluation include all
functional components for packet behavior identification from
scratch, including computing atomic predicates, classifying
packets using the AP Tree, and computing packet behaviors.
(In comparison, prior work on this problem only implements
and evaluates a single function, namely: classifying packets
to equivalence classes [10].) For our experimental evaluation,
we use forwarding tables and ACLs from two real networks:
Internet2 [23] and Stanford network [20]. As shown in Table I,
Internet2 includes 126,017 forwarding rules and the Stanford
network includes 757,170 forwarding rules and 1,584 ACL
rules. The predicates and atomic predicates are computed
using the method in [22]. We compare AP Classifier with
possible solutions by utilizing two state-of-art tools, namely
Header Space Analysis (HSA) [20] and AP Verifier [22].
We do not compare AP Classifier with MDD [10] because
it relies on a special method for MDD construction and the
source code is not publicly available. Furthermore, its method
does not support dynamic updates.

A. Depths of Leaf Nodes

In this set of experiments, we show the depths of leaf
nodes in an AP Tree, which can demonstrate effectiveness of

WANG et al.: PRACTICAL NETWORK-WIDE PACKET BEHAVIOR IDENTIFICATION BY AP CLASSIFIER 2895

Fig. 9. Average depth of leaves.

Fig. 10. Cumulative distribution of the depths of leaf nodes in AP Trees.
(a) Internet2. (b) Stanford.

the proposed tree construction algorithms. We evaluate and
compare three methods, Best from Random, Quick-Ordering,
and Optimized AP Tree construction (OAPT), for both
Internet2 and Stanford networks. The Best from Random
method generates a random order of predicates for placement
on levels of an AP tree and performs pruning. It constructs
100 AP trees and chooses the tree with the minimal
average depth of leaf nodes. Quick-Ordering is presented in
Section V-B and OAPT is presented in Section V-C.

Fig. 9 shows the average depth of of leaf nodes in an
AP tree. For Internet2, the average depth of Best from
Random is 16.0, worse than those of Quick-Ordering (13.0)
and OAPT (10.6). OAPT reduces the average depth by
34% compared to Best from Random and 19% compared
to Quick-Ordering. For the Stanford network, Best from
Random also has the highest average depth (39.0), followed
by Quick-Ordering (24.2) and OAPT (16.9). OAPT shows
significant improvement: It reduces the average depth by 57%
compared to Best from Random and by 30% compared to
Quick-Ordering.

Fig. 10 shows the cumulative distribution of depths of
leaf nodes in an AP Tree. For Internet2, the leaf depths of
Quick-Ordering are clearly smaller than Best from Random.
However for the Stanford network such improvement is
not very significant. OAPT has clearly smaller depths
for all percentiles compared to the other two methods. For
Internet2 80% of the leaf nodes in the OAPT tree have a depth
less than 11 and for Stanford this number is 21. The maximum
depths are 24 and 46 for Internet2 and Stanford, respectively.

B. Memory Usage

After construction, AP Classifier only stores one copy of
all predicates and atomic predicates as BDDs and also, for
each predicate, a set of integer identifiers of atomic predicates.
In the AP Tree a node only stores a pointer to the labeled

Fig. 11. Overall construction time cost of AP Classifier.

predicate or atomic predicate. Since pointers use very little
memory, the memory costs of different methods are very close.
Hence we only show the memory cost of AP Classifier using
OAPT. In our implementation, we use JDD library [38] to
construct BDDs and their logical operations. Each node in a
BDD has a fixed size. The memory consumption of a BDD
is determined by the number of nodes in the BDD. It is
interesting to observe that more rules in a network do not
always mean more BDD nodes. When there exist much more
similarities among rules of a network, a BDD of the network
is more likely to be simple with a smaller number of nodes.
The memory cost for the network is prone to be lower.

The total memory cost of AP Classifier for Internet2 is
4.79 MB and that for Stanford is 2.15 MB. Although
Internet2 has fewer predicates than Stanford, it requires more
memory because BDDs of the Internet2 predicates are more
complex than those of Stanford. Unlike the results of [10]
that only show memory cost of the search structure, our
memory costs account for all components for packet behavior
identification, including the network topology, predicates,
atomic predicates, and AP Tree. We found that AP Classifier
uses very small memory and can be stored in cache.

C. AP Tree Construction Time

Fig. 11 shows times to construct AP Trees using the three
methods for the two networks. Note that the time cost is the
overall construction time that includes the times for computing
atomic predicates as well as for AP Tree construction. The
Random method costs the least time but it is only for one
random construction. To find the best AP Tree from a large
number of random constructions takes substantially longer
time. Quick-Ordering and OAPT have similar time costs,
201.36 ms and 204.39 ms, for Internet2. For the Stanford
network, OAPT requires 342.77 ms for Stanford, a little longer
compared to Quick-Ordering (293.36 ms).

D. Query Throughput for Static Networks

In this set of experiments, we measure the throughput
of AP Classifier to process packet queries, in number of
queries per second (qps). Packet headers used for queries in
the experiments are generated randomly with respect to the
atomic predicates. The throughput results for static networks
are shown in Fig. 12. For Internet2, AP Classifier using
OAPT can achieve 3.4 Mqps, higher than Best from Random
by 102% and Quick-Ordering by 52%. For Stanford network,

2896 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 25, NO. 5, OCTOBER 2017

Fig. 12. Query throughput for static networks.

AP Classifier using OAPT can achieve 1.8 Mqps, higher than
Best from Random by 46% and Quick-Ordering by 34%. For
both networks, the throughput of AP Classifier is much higher
than 1 Mqps, which is enough to satisfy most application
requirements in SDN.

For static networks, we can use the open-source tool
Hassel-C [39] that implements HSA [20] to perform packet
behavior identification for a specific packet. By providing the
input port and a specific query packet, Hassel-C computes
the reachability tree of the query packet. (For a unicast
packet, the reachability tree is a forward path to the packet’s
destination.) The query throughputs of using Hassel-C to per-
form packet behavior identification are 6 Kqps and 4.7 Kqps
for Internet2 and Stanford, respectively, which are about
1000 times slower than the query throughputs of AP Classifier.
They are also plotted in Fig. 12 but they are very small
and barely visible. We also compare AP Classifier with
AP Verifier [22]. We first use AP Verifier to compute all
atomic predicates, and perform a linear search of all atomic
predicates for the query packet until the packet matches an
atomic predicate. Results in Fig. 12 show that AP Verifier
is also much slower, though its throughput is improved a lot
compared to Hassel-C.

In addition we use a method of Forwarding Simulation,
i.e., determining the forwarding behavior of the packet
at a box, then checking the forwarding behavior on the
next-hop box, until the packet stops. At each box, a packet is
checked using the predicates at the box linearly until a match
occurs. In our experiments using Forwarding Simulation,
the average number of predicates checked is 96.8 and 232 for
Internet2 and Stanford, respectively. The corresponding
throughput is 0.2 Mqps and 0.16 Mqps as shown in Fig. 12.
In contrast, only 10.6 and 16.8 predicates are needed to be
checked on average using AP Classifier.

E. Dynamic Networks

In this set of experiments, we first construct the AP
Tree using a number of predicates and then keep adding
new predicates. We measure the time cost to add each new
predicate and update the AP Tree. Fig. 13 (a) shows the
cumulative distribution of time cost for adding a predicate in
the Internet2 network. The initial number of predicates is set
to 40, 80, and 120 for three different experiments. From the
figure we find that about 80% of the predicate additions are
finished in 2 ms. It may take 5-6 ms in worst cases. We do
not observe obvious differences when the initial numbers of
predicates are different. Fig. 13 (b) shows the results of similar

Fig. 13. Cumulative distributions of time cost for adding a predicate.
(a) Internet2. (b) Stanford.

experiments for Stanford. The initial number of predicates is
set to 100, 250, and 400 for three different experiments. Over
90% of the predicate additions are finished in 1 ms. Deleting
a predicate does not require extra computation, hence there is
no result for deletions.

Query Throughput for Dynamic Networks: We also evaluate
the throughput of AP Classifier in practical environments
where additions and deletions of rules and predicates happen
over time. At the beginning of each experiment, a number of
predicates are chosen randomly from the set of predicates of a
network to construct the initial AP Tree. Starting from time 0,
the arrivals of change events requiring the addition or deletion
of predicates are modeled by a Poisson process. Each update
operation can be adding a new predicate or deleting an existing
predicate. In all experiments, equal numbers of additions and
deletions are inserted to the event queue. A reconstruction
is triggered every 0.4 s. During every reconstruction, AP
Classifier answers queries and performs updates as explained
in Section VI-B. We compare AP Classifier with two pos-
sible methods, APLinear and PScan, APLinear utilizes AP
Verifier [22] to compute atomic predicates and performs a
linear search for the query packet until the packet matches
an atomic predicate. Note that BDDs of atomic predicates are
more complex than those of predicates. Hence APLinear is
not efficient. PScan performs a scan on all predicates using
the query packet and decides whether the packet is filtered by
the predicate. Both methods can be used to identify packet
behaviors.

Fig. 14 shows the throughputs of AP Classifier, APLinear,
and PScan in dynamic networks. The x-axis is time and the
y-axis is throughput measured in Mqps. We conduct two
sets of experiments whose update rates are 100 updates/s and
200 updates/s. From all subfigures in Fig. 14, we find that
AP Classifier is faster than the other two methods by an order
of magnitude. Note that starting from time 0, the throughput
of AP Classifier slowly decreases as an increasing number of
updates make the AP Tree less optimized. The first
reconstruction starts at time 0.4 s and finishes at about
0.6 s in Fig. 14(a) and (c), and 0.7s in Fig. 14(b) and (d).
When a reconstruction finishes, the throughput immediately
goes back to a high value (4 Mqps in (a) and (c), and
2 Mqps in (b) and (d)). Furthermore, the throughput does not
degrade in the long-term view. Comparing results of the two
different update rates, we find that the average throughput
of AP Classifier does not drop much even after the update
rate is doubled. Hence AP Classifier is fast and robust for
practical dynamic networks.

WANG et al.: PRACTICAL NETWORK-WIDE PACKET BEHAVIOR IDENTIFICATION BY AP CLASSIFIER 2897

Fig. 14. Query throughput for dynamic networks. The number of updates per second is 100 in (a) (b) and 200 in (c) (d).

Fig. 15. Query throughput of AP Classifier for different packet distributions. (a) Internet2. (b) Stanford.

F. Impact of Packet Distribution

To evaluate the performance of AP Classifier under various
packet distributions, we generate new sets of test traces which
are unevenly distributed with respect to the atomic predicates.
The number of packets corresponding to the atomic predi-
cates are chosen by sampling from a Pareto distribution. The
probability density function for the Pareto distribution can be
expressed as:

fX(x) =

⎧⎨
⎩

αxm
α

xα+1
x ≥ xm

0 x < xm

(2)

Where xm is the minimum possible value of X , and α is
a positive parameter, which is known as the tail index. In our
experiments, we chose xm = 1, α = 1. About half of
atomic predicates have 1,000 packets, but some have more
than 20,000 packets.

We generated 10 sets of traces for each network. If we
still use the AP Trees constructed without the consideration

of packet distributions (distribution-unaware), the average
depth of all queries is 10.65 for Internet2 and 16.2 for
Stanford network. Then we construct new distribution-aware
AP Trees using the method described in Section V-D. The
average depth of all queries is reduced to 8.09 (Internet2) and
11.3 (Stanford). The corresponding values of throughput are
shown in Fig. 15. We can see that, if AP Classifier measures
the packet distribution and assigns different weights to atomic
predicates, the throughputs in all cases have notable improve-
ments compared to the distribution-unaware method. The aver-
age query throughput increases from 4.2 Mqps to 5.2 Mqps
for Internet2 and from 2.4 Mqps to 3.2 Mqps for Stanford.

G. Dealing With Packet Header Changes

In this set of experiments, we evaluate the throughput of
computing packet behaviors when there exist middleboxes
modifying packet headers. We use the topologies of
Internet2 and Stanford networks. In each experiment,

2898 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 25, NO. 5, OCTOBER 2017

TABLE II

THROUGHPUT WITH PACKET HEADER CHANGES. (a) DETERMINISTIC
RATIO = 0.9. (b) DETERMINISTIC RATIO = 0.5.

(c) DETERMINISTIC RATIO = 0

one to three of switches are chosen as boxes connecting to
middleboxes that may change packet headers. Due to lack
of available middlebox policy data, we create ten entries for
each flow tables of middleboxes. Match fields of flow tables
are produced by dividing the packet header space into ten
disjointed sets. We obtain match fields by grouping all atomic
predicates into ten predicates. So every incoming packet can
match an entry. When incoming packets match these entries,
AP Classifier computes the remaining forwarding behaviors
of packets using new atomic predicates. However for some
packets, the new packet headers cannot be determined in
advance. AP Classifier needs to search the AP Tree for
the second time to find an atomic predicate for the new
header. The process of computing packet behaviors ends until
the packet is dropped or reaches the destination.

We measure the throughput of packet behavior computation
under these circumstances. Packets used in the experiments
are generated randomly with respect to atomic predicates.

Table. II illustrates throughput of computing packet behav-
iors for Internet2 and Stanford datasets in different scenarios.
We define the deterministic ratio as the portion of middlebox
rules that can determine the atomic predicates of packets
after packet header changes. When the deterministic ratio
is 0.9, the throughput does not downgrade much as number
of middleboxes increases since most packets have new atomic
predicates stored in the flow tables, as shown in Table. II (a).
Compared with Table. II (a), the corresponding throughput
values in Table. II (b) and (c) are lower since more packets
passing through a middlebox require searching the AP Tree for
a second time. In the worst case, the throughput of computing
packet behaviors is still 3.2 M and 2.1 M packets per second
respectively, which is much higher than using other methods.

VIII. CONCLUSION

We propose AP Classifier for network-wide packet behavior
identification that can be utilized by many important network
management applications. We design algorithms to construct

the AP Tree for a network, which can be used to quickly
classify a packet to an atomic predicate. Each atomic predicate
represents the network-wide forwarding behaviors of a set
of packets. Experimental results using the datasets of two
real networks show that the proposed AP Tree construction
algorithm can optimize the average depth of leaf nodes.
AP Classifier can process millions of packet queries per sec-
ond. The speed is faster than existing tools by at least an order
of magnitude. Furthermore, it uses only a few MBs memory.
It can be updated in real time and is robust under dynamic
data plane changes.

ACKNOWLEDGEMENT

The authors thank the anonymous reviewers for their
comments.

REFERENCES

[1] H. Wang, C. Qian, Y. Yu, H. Yang, and S. S. Lam, “Practical network-
wide packet behavior identification by AP classifier,” in Proc. ACM
CoNEXT, 2015, pp. 1–10.

[2] M. Al-Fares, S. Radhakrishnan, B. Raghavan, N. Huang, and A. Vahdat,
“Hedera: Dynamic flow scheduling for data center networks,” in Proc.
USENIX NSDI, 2010, p. 19.

[3] Q. Chen, C. Qian, and S. Zhong, “Privacy-preserving cross-domain
routing optimization—A cryptographic approach,” in Proc. IEEE ICNP,
2015, pp. 356–365.

[4] S. Agarwal, M. Kodialam, and T. Lakshman, “Traffic engineering in
software defined networks,” in Proc. IEEE INFOCOM, Sep. 2013,
pp. 2211–2219.

[5] A. Nayak, A. Reimers, N. Feamster, and R. Clark, “Resonance: Dynamic
access control for enterprise networks,” in Proc. ACM WREN, 2009,
pp. 11–18.

[6] Y. Yu, C. Qian, and X. Li, “Distributed collaborative monitoring in
software defined networks,” in Proc. ACM HotSDN, 2014, pp. 85–90.

[7] Z. A. Qazi et al., “SIMPLE-fying middlebox policy enforcement using
SDN,” in Proc. ACM SIGCOMM, 2013, pp. 27–38.

[8] X. Li and C. Qian, “An NFV orchestration framework for interference-
free policy enforcement,” in Proc. IEEE ICDCS, Jun. 2016,
pp. 649–658.

[9] N. McKeown et al., “OpenFlow: Enabling innovation in campus net-
works,” ACM SIGCOMM Comput. Commun. Rev., vol. 38, no. 2,
pp. 69–74, Apr. 2008.

[10] T. Inoue, T. Mano, K. Mizutani, S. Minato, and O. Akashi, “Rethink-
ing packet classification for global network view of software-defined
networking,” in Proc. IEEE ICNP, Oct. 2014, pp. 296–307.

[11] H. Ballani, P. Costa, T. Karagiannis, and A. Rowstron, “Towards
predictable datacenter networks,” in Proc. ACM SIGCOMM, 2011,
pp. 242–253.

[12] X. Li and C. Qian, “Traffic and failure aware vm placement for multi-
tenant cloud computing,” in Proc. IEEE IWQoS, Jun. 2015, pp. 41–50.

[13] M. Dhawan, R. Poddar, K. Mahajan, and V. Mann, “Sphinx: Detecting
security attacks in software-defined networks,” in Proc. NDSS, 2015,
pp. 1–15.

[14] T. Benson, A. Anand, A. Akella, and M. Zhang, “Microte: Fine grained
traffic engineering for data centers,” in Proc. ACM CoNEXT, 2011, p. 8.

[15] H. Liu, S. Kandula, R. Mahajan, M. Zhang, and D. Gelernter, “Traffic
engineering with forward fault correction,” in Proc. ACM SIGCOMM,
2014, pp. 527–538.

[16] H. Zeng, P. Kazemiany, G. Varghese, and N. McKeown, “Automatic test
packet generation,” in Proc. ACM CoNEXT, 2012, pp. 241–252.

[17] S. Kandula, S. Sengupta, A. Greenberg, P. Patel, and R. Chaiken, “The
nature of data center traffic: Measurements & analysis,” in Proc. ACM
IMC, 2009, pp. 202–208.

[18] T. Benson, A. Akella, and D. A. Maltz, “Network traffic characteristics
of data centers in the wild,” in Proc. ACM IMC, 2010, pp. 267–280.

[19] S. Jain et al., “B4: Experience with a globally-deployed software defined
WAN,” in Proc. ACM SIGCOMM, 2013, pp. 3–14.

[20] P. Kazemian, G. Varghese, and N. McKeown, “Header space analysis:
Static checking for networks,” in Proc. USENIX NSDI, 2012, pp. 1–28.

[21] University of Oregon Route Views Project, accessed on Jun. 2015.
[Online]. Available: http://www.routeviews.org

WANG et al.: PRACTICAL NETWORK-WIDE PACKET BEHAVIOR IDENTIFICATION BY AP CLASSIFIER 2899

[22] H. Yang and S. S. Lam, “Real-time verification of network properties
using atomic predicates,” IEEE/ACM Trans. Netw., vol. 24, no. 2,
pp. 887–900, Apr. 2016.

[23] The Internet2 Observatory Data Collections, accessed on Oct. 2013.
[Online]. Available: http://www.internet2.edu/observatory/archive/data-
collections.html

[24] G. Xie et al., “On static reachability analysis of IP networks,” in Proc.
IEEE INFOCOM, 2005, pp. 2170–2183.

[25] A. R. Khakpour and A. X. Liu, “Quantifying and querying network
reachability,” in Proc. IEEE ICDCS, Sep. 2010, pp. 817–826.

[26] P. Kazemian et al., “Real time network policy checking using header
space analysis,” in Proc. USENIX NSDI, 2013, pp. 99–111.

[27] A. Khurshid, X. Zou, W. Zhou, M. Caesar, and P. B. Godfrey, “Veriflow:
Verifying network-wide invariants in real time,” in Proc. USENIX NSDI,
2013, pp. 467–472.

[28] R. E. Bryant, “Graph-based algorithms for Boolean function manipula-
tion,” IEEE Trans. Comput., vol. 100, no. 8, pp. 677–691, Aug. 1986.

[29] E. Al-Shaer, W. Marrero, A. El-Atawy, and K. Elbadawi, “Net-
work configuration in a box: Towards end-to-end verification of net-
work reachability and security,” in Proc. IEEE ICNP, Oct. 2009,
pp. 123–132.

[30] E. Al-Shaer and S. Al-Haj, “Flowchecker: Configuration analysis and
verification of federated openflow infrastructures,” in Proc. ACM Safe-
Config, 2010, pp. 37–44.

[31] H. Mai et al., “Debugging the data plane with anteater,” in Proc. ACM
SIGCOMM, 2011, pp. 290–301.

[32] R. McGeer, “Verification of switching network properties using satisfi-
ability,” in Proc. IEEE ICC, Apr. 2012, pp. 6638–6644.

[33] M. Kuzniar, P. Peresini, and D. Kostic, “What you need to know about
SDN flow tables,” in Proc. PAM, 2015, pp. 347–359.

[34] G. Rétvári, J. Tapolcai, A. Kõrösi, A. Majdán, and Z. Heszberger, “Com-
pressing ip forwarding tables: Towards entropy bounds and beyond,” in
Proc. ACM SIGCOMM, 2013, pp. 111–122.

[35] N. P. Lopes, N. Bjørner, P. Godefroid, K. Jayaraman, and G. Varghese,
“Checking beliefs in dynamic networks,” in Proc. USENIX NSDI, 2015,
pp. 499–512.

[36] A. Fogel et al., “A general approach to network configuration analysis,”
in Proc. USENIX NSDI, 2015, pp. 469–483.

[37] H. Yang and S. S. Lam, “Real-time verification of network properties
using atomic predicates,” Dept. Comput. Sci., Univ. Texas Austin,
Austin, TX, USA, Tech. Rep. TR-13–15, Aug. 2013.

[38] A. Vahidi. (2004). JDD, a Pure Java BDD and Z-BDD Library. [Online].
Available: http://javaddlib.sourceforge.net/jdd/index.html

[39] Hassel-C. [Online]. Available: http://bitbucket.org/peymank/hassel-
public/

Huazhe Wang (S’15) received the B.Sc. degree
from Bejing Jiaotong University in 2011, and the
M.Sc. degree from the Beijing University of Posts
and Telecommunications in 2014. He is currently
pursuing the Ph.D. degree with the Department of
Computer Engineering, University of California at
Santa Cruz. His research interests include software-
defined networking and network security. He is a
Student Member of the ACM.

Chen Qian (M’08) received the B.Sc. degree from
Nanjing University in 2006, the M.Phil. degree
from The Hong Kong University of Science and
Technology in 2008, and the Ph.D. degree from
The University of Texas at Austin in 2013, all
in computer science. He is currently an Assistant
Professor with the Department of Computer
Engineering, University of California at Santa Cruz.
He has published over 50 research papers in highly
competitive conferences and journals. His research
interests include computer networking, network

security, and Internet of Things. He is a member of the ACM.

Ye Yu (M’13) received the B.Sc. degree from
Beihang University. He is currently pursuing the
Ph.D. degree with the Department of Computer Sci-
ence, University of Kentucky. His research interests
include data center networks and software-defined
networking.

Hongkun Yang (S’12) received the B.S.E. degree
(Hons.) and the M.S.E. degree from Tsinghua
University in 2007 and 2010, respectively, and the
Ph.D. degree from the Department of Computer
Science, The University of Texas at Austin, in
2015. He has published research papers in a number
of conferences and journals, including the IEEE
ICNP, the IEEE INFOCOM, and the IEEE TRANS-
ACTIONS ON MOBILE COMPUTING. His research
interests include computer networks, protocol ver-
ification, network security, and formal methods. He

was a recipient of the MCD Fellowship at The University of Texas at Austin.

Simon S. Lam (F’85) received the B.S.E.E. degree
(with Distinction) from Washington State University,
Pullman, WA, USA, in 1969, and the M.S. and Ph.D.
degrees in engineering from the University of Cal-
ifornia at Los Angeles (UCLA), Los Angeles, CA,
USA, in 1970 and 1974, respectively. From 1971 to
1974, he was a Postgraduate Research Engineer with
the ARPA Network Measurement Center, UCLA,
where he was involved in satellite and radio packet
switching networks. From 1974 to 1977, he was a
Research Staff Member with the IBM T. J. Watson

Research Center, Yorktown Heights, NY, USA Since 1977, he has been on the
Faculty of The University of Texas at Austin, where he is currently a Professor
and Regents Chair in computer science, and served as the Department Chair
from 1992 to 1994.

He co-founded the ACM SIGCOMM Conference in 1983 and the IEEE
International Conference on Network Protocols in 1993. He served as the
Editor-in-Chief of the IEEE/ACM TRANSACTIONS ON NETWORKING from
1995 to 1999. He served on the editorial boards of the IEEE/ACM TRANSAC-
TIONS ON NETWORKING, the IEEE TRANSACTIONS ON SOFTWARE ENGI-
NEERING, the IEEE TRANSACTIONS ON COMMUNICATIONS, PROCEEDINGS

OF THE IEEE, Computer Networks, and Performance Evaluation.
Dr. Lam is a member of the National Academy of Engineering and a fellow

of the ACM. He received the 2004 ACM SIGCOMM Award for lifetime
contribution to the field of communication networks, the 2004 ACM Software
System Award for inventing secure sockets and prototyping the first secure
sockets layer (named secure network programming), the 2004 W. Wallace
McDowell Award from the IEEE Computer Society, the 1975 Leonard G.
Abraham Prize, and the 2001 William R. Bennett Prize from the IEEE
Communications Society.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

