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" Two classes of performance bounds for separable queueing
networks are presented, one for single-chain networks and one
for multichain networks. Unlike most bounds for single-chain
networks, our bounds are not based upon the consideration of
balanced networks. Instead, they are obtained by assuming
mean queue lengths to be proportional to server loads; hence,
they are called proportional bounds. Proportional bounds are
tighter than balanced bounds because individual server loads
are retained as parameters in a bound’s formula. For the same
reason, they require more computational effort than balanced
bounds. We also show how proportional bounds are related to
balanced bounds. Next we present generalized bounds that are
calculated iteratively over sequences of population sizes; our
method extends that of Eager and Sevcik (1983). These gener-
alized bounds are shown to have a nested property. Further-
more, we present optimal population sequences, over all se-
quences of the same length, for getting the tightest upper and
lower bounds. The other emphasis of this paper is on perfor-
mance bounds for networks with many closed chains and
many service centers. Bounding techniques are especially im-
portant for multichain networks since the computation time
and space requirements are often so large that an exact solu-
tion is not feasible. Models of communication networks typi-
cally have many routing chains which- are characterized by a
. sparseness property. In the computation of our performance
bounds for multichain networks, we improve their accuracy by
making use of routing information and exploiting the sparse-
ness property.
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1. Introduction

Separable queueing networks have been widely
used as models for predicting the performance of
multiprogramming systems as well as packet com-
munication networks. The solution of separable
networks requires substantially less computation
time than does the solution of nonseparable net-
works. Yet the computation time required by the
best algorithms available is nevertheless propor-
tional to the number of customers for single-chain
networks and exponential in the number of rout-
ing chains for multichain networks. Such compu-
tational requirements are very high for many mod-
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els of realistic networks and systems. (This is
especially true for communication networks with
many routing chains.) Since the separable queue-
ing networks are themselves approximate models
of real systems and networks, an exact solution of
their performance measures is not always war-
ranted. This is often true in the early stages of
-system design.

1.1. Previous work on bounding techniques

Let us first consider networks with a single
routing chain. Techniques for deriving upper and
lower bounds of the mean delays and throughputs
of separable queueing networks have been pre-
sented by several authors. The asymptotic bounds
of Muntz and Wong [17] are actually applicable to
a larger class of queucing networks than the class
of separable networks. They also have the ad-
vantages of being simple and easy to compute.
However, asymptotic bounds are in general very
loose and do not provide adequate information to
achieve most system design objectives. The work
of Zahorjan et al. [25] was probably the first
development of bounds that are restricted to the
class of separable queueing networks. Their bal-
anced job bounds (BJBs) were derived by consid-
ering related networks whose servers have identi-
cal loads and whose performance measures bound
those of the original network. Separable networks
with fixed-rate service centers but without delay
service centers were considered. (Delay service
centers are sometimes referred to in the literature
as infinite-server service centers.)

Extensions of BJBs for separable networks with
both fixed-rate and delay service centers were
developed by Eager and Sevcik [5] and by Kriz
[10]. In addition, Eager and Sevcik presented
hierarchies of upper and lower bounds. Each
hierarchy is a sequence of successively more accu-
rate upper (or lower) bounds with the BJB bound
as the first element in the sequence and the exact
solution as its limit. Kriz also presented hierarchies
of upper and lower bounds, called balanced
bounds, with his extensions of BJBs at the first
levels of the hierarchies. Methods for obtaining
hierarchies of bounds were also developed by Suri
[23] and by Stephens and Dowdy [22]. Like the
method of Eager and Sevcik and the method of
Kriz, Suri’s method is based upon the MVA recur-
sion equations. On the other hand, the method of

Stephens and Dowdy is based upon the convolu-
tion algorithm recursion. In each method, a se-
quence (or hierarchy) of bounds is generated by
an iterative procedure which allows one to trade
computation time for accuracy. It is interesting to
note that BJBs or extensions of BJBs were used as
the first-level bounds in all of the methods for
generating increasingly more accurate bounds.
Only Kriz presented bounds in [10] that are not
based upon the consideration of balanced net-
works.

For multichain networks, BJBs were proposed
by Zahorjan et al. [25] for networks of fixed-rate
service centers, which were later extended by Kriz
to networks including delay service centers as well
[10]. Very recently, improved throughput bounds
for multichain networks were presented by Eager
and Sevcik [6] and by Kerola [9].

1.2. Overview of our work

We have developed two classes of performance
bounds, one for single-chain networks and one for
multichain networks. Like BJBs, our bounds are
derived from the MVA recursion. But unlike BJBs,
our bounds are not based upon the consideration
of balanced networks. Instead, they are obtained
by assuming that mean queue lengths are propor-
tional to the loads of the corresponding servers.
Hence, these bounds are called proportional
bounds. Individual server loads are included as
parameters in the mathematical formulas of pro-
portional bounds, whereas only the minimum,
maximum or mean value is included in a balanced
bound. For this reason, proportional bounds are
proved to be more accurate than corresponding
balanced bounds; for the same reason, they re-
quire more computational effort. Proportional
bounds are presented in Section 2 below. We also
show that the ‘noniterative’ bounds (proportional
or balanced, upper or lower) can all be specified
as special cases of a unified bounding formula.

In Section 3, we present algorithms for comput-
ing bounds iteratively over sequences of popula-
tion sizes; these will be referred to as generalized
bounds. Since we do not require population sizes
in a sequence to be consecutive integers, our
method extends and subsumes the Eager—Sevcik
approach for trading computation time for accu-
racy. We prove that generalized bounds have a
nested property. Furthermore, we present popula-
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tion sequences for getting the tightest upper and
lower bounds, and prove their optimality over all
allowable sequences of the same length. Our al-
gorithms are initialized at level 0 with propor-
tional bounds. Our results (nested property and
optimal sequences) and their proofs, however, do
not depend on the use of proportional bounds at
level O; they are still valid if generalized bounds
are computed using balanced bounds to initialize
the algorithms.

Another emphasis of this paper is a class of
performance bounds for networks with many
chains and many service centers. Bounding tech-
niques are especially important for multichain net-
works for which the computation time and space
requirements of an exact solution may be too large
to be feasible.

In recent years, several authors, including us,
have argued for the use of closed multichain
queueing networks to predict the performance of
store-and-forward communication networks and
to solve network design problems such as the
optimal selection of routes and channel capacities
[12]. A recent experimental study of ours [14]
further illustrated the inadequacy of the open
queueing network model and the desirability of
the closed network model. The obstacle that cur-
rently prevents the closed network model from
being widely used by network designers and
analysts is the large computational time and space
required to calculate performance measures. Mod-
els of realistic communication networks should
have tens of closed chains or more, each modeling
a flow-controlled virtual channel. Such models
cannot be solved by the conventional convolution
and MVA algorithms [3,4,18,19]. Lam and Lien
observed in [13] that models of communication
networks have routes that are often characterized
by sparseness and locality properties. They devel-
oped the tree convolution algorithm that exploits
routing information and can solve networks with
tens of closed chains. Tree MVA algorithms were
subsequently developed independently by Tucci
and Sauer [24] and by Hoyie et al. [7].

Tree algorithms are too expensive to be used in
network design algorithms which need to evaluate

.very efficiently a network’s performance given
some design perturbations or parameter changes.
Reasonably tight performance bounds are very
useful for speeding up heuristic search procedures
based upon the branch-and-bound technique.

Another place where we have found a useful ap-
plication of performance bounds of closed multi-
chain networks is in the implementation of dy-
namic scaling in convolution algorithms [11] to
prevent the occurrences of floating point under-
flows and overflows. (We employ the tree con-
volution algorithm and its associated tree of arrays
whenever an exact solution is called for in our
network design techniques [14].) In this role, the
bounds can be very loose but must be efficient to
compute.

We have developed two algorithms for comput-
ing performance bounds for closed multichain net-
works. They are presented in Section 4 below.
Like the tree convolution algorithm, routing infor-
mation is exploited in the computation of these
performance bounds. The first algorithm is based
upon the BJB idea. The second algorithm further
exploits routing information to improve the
bounds obtained by the first algorithm. The accu-
racy of these bounds is much better than BJBs for
networks with many sparse routing chains. Our
algorithms are similar to those of Eager and Sevcik
[6] but were derived and investigated indepen-
dently [8].

Throughout this paper the networks considered
are BCMP networks with fixed-rate (F') servers
and delay (D) service centers [2]. M denotes the
total number of service centers.

2, Proportional bounds

Let us consider formulas in the MVA recursion.
The mean delay D, (n) of center m in a queueing
network with n customers is

1, (1+4g,(n—1))
Dm(") = if m denotes a fixed-rate server

7,, if m denotes a delay server,

m

ey

where 7,, is the mean service time at center m and
q,,(n—1) is the mean queue length at service
center m in a network with n — 1 customers [19,21].

From Little’s formula [15], the throughput T(#)
and mean queue length ¢, (n) are

T(n)=n] ¥ D,(n) @
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and

4n(n)=T(n)D,(n). (3)

Equations (1), (2) and (3) form the main recur-
sion of the MVA method [19]. Without loss of
generality, assume that the fixed-rate service
centers are labeled 1, 2,..., Mg, and the remain-
ing My, centers are delay centers, where M, > 0,
Mg >0, and M+ Mp=M. We further assume

that 7, <7, < -+ <7y, . Define
M
Lg= ZTm’ Ly= E Tw» L=Lg+Lp,
= m=Mgp+1
and

0p(n) = éq,,,(n).

2.1. Upper bounds

We are interested in keeping the set of mean
service times 7,, in our bounds instead of consider-
ing balanced networks. To do so, we shall first
examine some relationships between mean queue
lengths and mean service times. For proportional
upper bounds, these relationships are stated in
Lemmas 2.1-2.4. The bounds are then presented
in two theorems and two corollaries. (Throughout
this paper, proofs are postponed to Appendix A.)

Lemma 2.1. The mean queue lengths of any two
fixed-rate service centers satisfy the following in-
equality:

an) & . .
qj(n) ?j fori<j. (4)
Lemma 2.2. If

T.
4;(n) < =Qx(n), J<Mp,
F

then

qi(n)<£—iQF(n) for all i such that 1 <i<j.
F

(5)

" Lemma 2.3. If

T; .
q,(n) > ‘E;QF(")’ i< Mg,

then

T.
qj(n)>L—jQF(n) for allj such that i <j < Mg.
F

(6)

Lemma 2.4. The mean queue lengths of the first and
the last fixed-rate service centers satisfy the follow-
ing inequalities:

a1(n) < ;—;QF(n) (7
and
du, (1) > %QF(M. (®)

Theorem 2.5. The network delay D(n) and network
throughput T(n) satisfy the following inequalities:

D(n) > L+2 '”[n—l Ly X T(n-1)]
)

and

T(n) Mg 2 -

L+Z

[n—1 Ly X T(n—1)]
(10)

Corollary 2.6. For a network with no delay servers,
the network throughput T(n) is bounded above by

/{L+ ¥ 2,

which is smaller than (or equal to) the following
balanced job bound in [25]:
n

L+ (LF/MF)[n —-1] .

For networks with one or more delay servers,
the right-hand sides of equations (9) and (10) in
Theorem 2.5 are functions of T(n — 1). Sequences
of bounds for D(n) and T(n) can be obtained as
follows [10].

Define

T(n, 0) =min{n/L,1/7y,}

and

" D(n,0)=max{L, nr,_}
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for all n. These are the asymptotic bounds. Next,
define

D(n, i)

£

F 2
Tm

=max{nrMF, L+ -
L
1 —F

x[n—1-LpxT(n—-1, i—1)]}
(11)

and

T(n, i)=n/D(n, i) (12)
forlgign. '

Theorem 2.7

D(n)=D(n, i+1)>D(n,i) (13)
and

T(n)<T(n, i+1)<T(n, i) (14)

Corollary 2.8. For each i, the proportional through-
put upper bound in equation (12) is smaller than. (or
equal to) the corresponding balanced bound in [10).
2.2. Lower bounds

The counterparts of Lemmas 2.1-2.4 for a pro-

portional throughput lower bound are given below
and the bound itself is presented in Theorem 2.13.

Lemma 2.9. The mean queue lengths of any two
fixed-rate service centers i and j with i < j satisfy the

following inequality:
i1!'£Q>(3) foralln>1. (15)
q; ( n ) J

We next define

Mg
n o n
LF_ Z T *
m=1

Lemma 2.10. If

T
g;(n) > ﬁQF(n), 1<j< Mg,

then

n
T

q,(n)> 1 Qr(n) forallisuchthatl<i<j.
F

(16)

Lemma 2.11. If
T
qi(n)sl:_nQF(n)’ I<MF,
F
then

T.n
qj(n)szjn—QF(n) for all j such that i <j < My.
F
(17)
Lemma 2.12. The mean queue lengths of the first

and last fixed-rate service centers satisfy the follow-
ing inequalities:

a1(n) > 7 0p(n) (18)
F
and
Gaa, (1) < 2 Qi (m). (19)
F

Theorem 2.13. The network delay D(n) and net-
work throughput T(n) satisfy the following inequali-
ties:

Lk
D(n)<L+ 7 E[n-1-LpyxT(n-1)],

k-1
F
wherek=n,n+1,..., (20)
and
T(n) > -

k b

L
L+ka1[n—1—LDxT(n—1)]
F

wherek=n,n—1, .... (21)

Corollary 2.14. For a network with no delay servers,

the network throughput T(n) is bounded below by
< n

L+ (Ly/LyY)[n-1]"

which is larger than (or equal to) the following
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balanced job bound in [25]:
—nn
L+, [n—1]

For networks with dealy servers, the right-hand
sides of equations (20) and (21) in Theorem 2.13
are functions of T(n—1). Sequences of bounds
for D(n) and T(n) can be obtained as follows
[10].

Define T(n, 0) = 0 for all n. Let

n

— L
D(n, i)=L+—=

Lt
X[n—1-LpxT(n—1,i-1)]
(22)
and
T(n, i)=n/D(n, i) (23)
forl<i<gn.
Theorem 2.15

D(n)<D(n,i+1)<D(n,i), 1<i<n—1,
and

T(n)=T(n,i+1)>T(n,i), 0<isn-—1.

Corollary 2.16. For each i, the proportional
throughput lower bound in equation (23) is larger
than (or equal to) the corresponding balanced bound
in [10].

Observation. When n — oo, the left-hand side of
equation (21) converges to the right-hand side.
The proportional bounds given in Theorem 2.15
(as well as the corresponding balanced bounds)
are asymptotically exact.

2.3. Numerical examples

The following examples are taken from [10] to
illustrate the accuracy of proportional bounds and
of balanced bounds.

Example 2.17. The network has only fixed-rate
service centers and is almost balanced, 7, = 0.08,
7,=0.09 and = =17,=0.1. The balanced job
bounds and the proportional bounds are given in
Table 1.

Table 12
Throughput bounds for an almost-balanced network with no
delay server

Population = Throughput bounds
size X T Exact T X
2 4255 4317 4317 4.317 4324
5 6.494 6660 6715 6.729 0.757
10 7.874  8.022  8.206 8.27 8.316
20 8.811 8.867 9.168 9.338 9.401
30 9174 9194 9499 9.759 9.828
40 9368 9376 9.654 9984 10
60 9569 9570 9792 10 10
80 9.674 9674 9853 10 10

2 Where X is the balanced job lower bound, X is the balanced
job upper bound, T is the proportional lower bound, and T
is the proportional upper bound.

Notice that although the network is almost
balanced, the proportional bounds are better than
the balanced bounds. Also notice that the propor-
tional bounds give the exact throughput when the
population size is 2.

Example 2.18. The network of Example 2.17 is
extended by a delay server with mean service time
7=1. The first- and second-level balanced bounds
of Kriz and proportional bounds are shown in
Table 2.

Example 2.19. The network is unbalanced with no
delay server. The mean service times at the four
service centers are 7, = 0.04, 7, =0.05, and 7, =1,
= 0.1 (see Table 3).

Example 2.20. The network of Example 2.19 is
extended by a delay server with mean service time
7=1(see Table 4).

2.4. Observations and discussions

Consider the following formula,

n
Tk(n)= 1 »

L
L+ kal [n—1-LyxT(n-1)]
F
k=1,2, ....
This is' a unified formula for the following
throughput bounds:
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Table 2 2
Throughput bonds for an almost-balanced network with one delay server
Population Throughput bounds
size Y, Y, T 5 Exact T, T Y Y,
2 1.361 1.432 1.367 1.434 1.434 1.434 1.434 1.434 1.434
5 2.825 3.267 2.856 3.284 3.364 3.367 3.400 3.369 3.402
10 4.405 5.390 4.451 5.427 5.872 5.970 6.263 5.980 6.270
20 6.116 7.489 6.143 7.517 8.375 8.679 9.053 8.716 9.081
30 7.027 8.393 7.037 8.405 9.186 9.413 9.549 9.468 9.592
40 - 7.590 8.858 7.595 8.863 9.502 9.773 9.818 9.836 9.870
60 8.253 9.306 8.254 9.307 9.740 10 10 10 10
80 8.630 9.514 8.630 9.514 9.828 10 10 10 10

# Where T denotes proportional bounds and Y denotes Kriz’s bounds.

Table 3
Throughput bounds for an unbalanced network with no delay
server

Population  Throughput bounds

s1ze X T Exact T X
2 5128 5360 5.360 5.360 5.517
5 7.246 7.341  7.803 8.033 8.621

10 8.403 8407 8930 9.635 10

15 8876 8876 9302 10 10

20 9132 9132 9.483 10 10

30 9404 9404 9659 10 10

40 9.547 9.547 9746 10 10

60 9.693  9.693  9.831 10 10

80 9.768 9768 9.874 10 10

+ T,(n) is the balanced upper bound.

+ T,(n) is the proportional upper bound.

+ T,(n) is the proportional lower bound.

+ T,_(n) is the balanced lower bound.
And we have proved the following relations:

T,(n) > T(n) > T(n) > T,(n) > T (n).

The computational costs of proportional bounds
are as follows. The proportional upper bound
T,(n) requires Mg+ 4 multiplications. The pro-
portional lower bound 7,(n) requires My expo-
nentiations and 2 My + 4 multiplications (L} and
L% ! can be calculated at the same time), or
(log,n + 2)M + 4 multiplications if exponenti-
ation is not used. For comparison, each corre-
sponding balanced bound requires only 4 multipli-
cations. What do we buy with the additional com-
putational cost? If we consider the throughput
bounds as functions of network population size n,
the additional parameters in proportional bounds
give rise to much greater accuracy around the
‘knee’ of the throughput curves, as illustrated in
the previous examples (Tables 1-4). On the other
hand, the examples also show that for a large n,
the upper bound is actually given by the asymp-
totic bound in each case. And since the lower
bounds, both proportional and balanced, are
asymptotically exact, they become close to each

Table 4
Throughput bounds for an unbalanced network with one delay server
Population Throughput bounds v
e ¥, Y, T, 5 Exact T, n 12 r
2 1.439 1.524 1.457 1.528 1.528 1.528 1.528 1.531 1.531
5 2.959 3.476 2.974 3484 3.628 3.635 3.664 13.667 3.690
10 4.556 5.684 4.567 5.685 6.422 6.586 6.858 6.743 6.960
15 5.576 6.978 5.576 6.979 8.133 8.836 9.245 9.139 9.494
20 6.270 7.676 6.270 7767 8.945 9.703 9.814 10 10
30 7.160 8.618 7.160 8.618 9.483 10 10 10 10
40 7.707 9.042 7.707 9.042 9.659 10 10 10 10
60 8.345 9.437 8.345 9.437 9.797 10 10 10 10
80 8.705 9.614 8.705 9.614 9.856 10 10 10 10




10 C.-T. Hsieh, S.S. Lam / Performance bounds for closed queueing networks

other as n increases. Despite the above observa-
tion, proportional bounds are useful for some
other reasons. First, for network design and opti-
mization, it is very helpful to have closed-form
mathematical expressions for network perfor-
mance measures that include all the mean service
times as parameters. (This is a significant ad-
vantage of the open queueing network model, as
presented by Kleinrock, over the closed queueing
network model for the design of communication
networks [14].) Even though the MVA algorithm
provides exact numerical solutions, it is not a
closed-form mathematical formula. Second, if
bounds are to be computed for several population
sizes, the cost of computing L% can easily be
shared over all the bounds.

3. Generalized bounds

We next present algorithms which permit us to
trade computation time for improved accuracy.
Consider a single-chain network with M fixed-rate
service centers, population size N, and a popula-
tion sequence of S integers, n;, n,,..., ng, where
ng=N. Each algorithm begins by computing a
bound for the network population size n;. The

algorithm then iterates over the population se-
quence using the bound computed for n; to com-
pute a bound for n,, , until a bound is computed
for ng= N. By not requiring the population se-
quence to consist of consecutive integers, this ap-
proach extends and subsumes the pioneering work
of Eager and Sevcik [5]. We shall use proportional
bounds for the initial population size n, in each of
the algorithms presented below. However, bal-
anced bounds can be used in place of the propor-
tional bounds. We shall refer to bounds computed
by these algorithms as generalized bounds. We
show that generalized bounds have a nested prop-
erty (to be defined below). We shall also present
population sequences for computing the tightest
upper and lower bounds that are optimal over all
sequences of the same length. These properties of
generalized bounds remain valid if balanced
bounds replace proportional bounds in the al-

. gorithms,

3.1. Upper bounds

The following algorithm computes generalized
throughput upper bounds. The population se-
quence is assumed to satisfy the following:

l<n <n,< --- <ng whereng=N.

Algorithm 3.1-—generalized _upper_bound;

begin
max _throughput =1 /load[ M];
total _load = 0;

for m:=1 to M do total _load = total load + load[m];
for m:=1 to M do ratio[m] := load[m]/total _load;

for i:=1 to S do
begin
total _delay := 0;
for m=1to M do
begin

delay[m]:=load[m] * (1 + ratio[m] * (n[i] — 1));
total _delay = total _delay + delay[{m];

end;

throughput _upper := n[i]/total _delay;
if throughput_upper > max _throughput
then throughput_upper := max _throughput;
for m:=1 to M do ratio[m] := delay[m]/total _delay;

end;
end;
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Before presenting several theorems stating some
properties of the algorithm, we give three lemmas
(Lemmas A.1-A.3) that form the basis of our
algorithm. The lemmas, their proofs as well as
proofs of the theorems can be found in the ap-
pendix. We shall use r;(n,) to denote the value of
ratio[ j] when the population size is n; during the
execution of Algorithm 3.1.

For notational simplicity, these lemmas and
theorems are stated and proved for networks with
fixed-rate service centers only. Extension of our
results to networks including delay service centers
is straightforward. As in Section 2, the mean
service times for the service centers have the fol-
lowing relation: 7, <7, < - €Ty

Theorem 3.2. Foralli,1<i<§,

z_: Tm[l + qm(ni - 1)]
= Z_:le[1+rm(ni—1)x(ni—1)]’ (24)

whereny=1andr,(1)=1,/Lform=1,2,..., M.

Equation (24) in Theorem 3.2 assures that Al-
gorithm 3.1 computes lower bounds on delay and
upper bounds on throughput.

Corollary 3.3. If the population sequence is 2,..., N
then the algorithm computes the exact network
throughput.

In the next two theorems we present properties
of the generalized throughput upper bounds. Given
a population sequence ny, n,,...,ng of S ele-
ments, a subsequence is said to be valid if it
includes the population size ng (=N).

Applying Algorithm 3.1 to différent population
sequences yields different throughput upper
bounds. These throughput upper bounds are said
to be nested if the throughput upper bound com-
puted from a population sequence is smaller than
or equal to the throughput upper bound computed
from any of the valid subsequences.

Theorem 34. The generalized throughput upper
bounds are nested.

Theorem 3.5 (Optimal population sequence). Given
an integer S <N —1, the population sequence of

10. 20— T T T T T T T T T T

T
|

10. 00

©
3
=}
T
4
3
3
3
»
.

Exact value

©

[

=
T
1

THROUGHPUT
s
1i%%7
U
a

+ Population sequence 1
X A valid subsequence of sequence 1
9.40 @ Population sequence 2

A A valid subsequence of sequence 2

1 | 1] { 1 1 i 1 | Il H
30 31 32 33 34 35 38 37 38 39 40

POPULATION SIZE

Fig. 1. Nested property of generalized throughput upper
bounds.

length S that yields the smallest throughput upper
bound is the sequence N—S+1, N—S+2,
.., N.

We calculated generalized throughput upper
bounds for the network considered earlier in Ex-

10. 00— T T T T
Optimal sequence
9. 80 of length 7 _
o E]
Exact Value
. 9.60} -
>
o
I
©
=
<)
[+ 4
T
F9.40f -
9.20 - Another population sequence of length 7 -
L I l 1

A
20 25 30 35 40
POPULATION SIZE

Fig. 2. Optimal population sequence of length 7 for generalized
throughput upper bounds.
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ample 2.17. The results are plotted in Figs. 1 and
2. Fig. 1 illustrates the nested property. The popu-
lation sequence 35, 40 is a valid subsequence of
30, 35, 40. The population sequence 30, 32,...,40
is a valid subsequence of 30, 31,...,39, 40. Fig. 2
illustrates throughput upper bounds of two se-

quences of length 7. The optimal sequence of
length 7 is 34, 35,...,40.

A slightly modified algorithm which can handle
delay servers is presented in Algorithm 3.6 below.
Service centers 1 to MF are fixed-rate servers and
service centers MF + 1 to M are delay servers. For

. convenience, n[0] is set to 1.

Algorithm 3.6— Generalized _upper_bound _delay_server;

begin
max _throughput := 1 /load[ M ];

throughput _upper := max _throughput;

load _fixed := 0;

for m:==1 to MF do load _fixed := load _fixed + load[m];
for m:=1 to MF do ratio[m] = load[m]/load _fixed;

for i:=1to S do
begin
total _delay := 0;
queue F:=n[i]—1;
for m=MF+1 to M do
begin

total _delay = total _delay + load{m];
queue_F = queue_F — load[m] * throughput _upper * (n[i] — 1)/n[i —1];

end;
for m=:1to M do
begin

delay[m] = load[m] * (1 + ratio[m] * queue_F);
total _delay == total _delay + delay[m];

end;

throughput _upper := n[i]/total _delay;
if throughput_upper > max _throughput
then throughput_upper := max _throughput;
for m:=1 to M do ratio[m] := delay[m] /total _delay;

end;
end;

3.2. Lower bounds

The following algorithm computes generalized
throughput lower bounds. The population se-
quence is assumed to satisfy the following:

nyzn,z -+ >ng=N where N > 3.

In what follows, r,(n;) denotes the value of
ratio[m] when the population size is n; during the
execution of Algorithm 3.7 (see on top of page 13).

Theorem 3.8. For all i,1<i< S,

% 71+ 4 (n,~ 1)
< Enltn)xm-D. ()

where no=n, —1 and r,(ny) = 7,°/L.

Theorem 3.8 assures that Algorithm 3.7 com-
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Algorithm 3.7— Generalized _lower_bound;

begin
sum := Q;
for m:=1 to M do
begin

ratio[m] = load[m] * * (n[1] — 1);

sum = sum + ratio[m];
end;

for m:=1 to M do ratio[m] = ratio[m]/sum,;

for i:=1 to S do
begin
total _delay := 0;
for m:==1to M do
begin

delay[m] = load[m] * (1 + ratio[m] * (n[i] — 1));
total _delay = total _delay + delay[m];

end;

throughput _lower = n[i]/total _delay;
for m:=1 to M do ratio[m] = delay[m]/total _delay;

end;
end;

putes upper bounds on delay and lower bounds on
throughput. These bounds also have properties
similar to those shown earlier for generalized
throughput upper bounds.

Consider a population sequence ny, n,,..., ig
= N. For the purpose of computing generalized
throughput lower bounds, a subsequence is said to
be valid if it contains both n, and ng. Generalized
throughput lower bounds are said to be nested if
the throughput lower bound computed from a
population sequence is larger than or equal to the
throughput lower bound computed from any of
the valid population subsequences.

Theorem 3.9. The generalized throughput Ilower
bounds are nested.

Theorem 3.10 (Optimal population sequence).
Given an integer S, the population sequence that
yields the largest throughout lower bound among all
population sequences of length S is N, N,..., N.

We calculated generalized throughput lower
bounds for the network considered earlier in Ex-
ample 2.17. Fig. 3 illustrates the nested property.

The population sequence 50, 40 is a valid subse-
quence of 50, 45, 40. The sequence 50, 48, ..., 42,
40 is a valid subsequence of 50, 49,...,41, 40. Fig.
4 illustrates throughput lower bounds computed

10. 00 T T T T T T T T

M Exact value

©

.60

-

=)

a

T

o

2

(=]

o

T

9. 401 -
® Population sequence 1
A A valid subsequence of sequence 1

9.20~ + Population sequence 2 ‘

X A valid subsequence of sequence 2

I Il 1 1 1 1 i 1 1 ] 1
40 41 42 43 44 45 46 47 48 49 50

POPULATION SIZE

Fig. 3. Nested property of generalized throughput lower bounds.
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10.00 T 1 T T T T T
9.80 -
0 Exact value
L 9.60F -
2
o
T
@
2
S
o
x
F9. 40 ) 4
Optimal sequence
of length 7
9.20 -
-+ Another population sequence of length 7
i 1 1 1 1 1

i |
40 45 50 55 60 65 70 75
POPULATION SIZE

Fig. 4. Optimal population sequence of length 7 for generalized
throughput lower bounds.

for two sequences of length 7, including the opti-
mal one.

A slightly modified algorithm which can handle
delay servers is presented in Algorithm 3.11 be-
low. For convenience, n[0] is set to 1.

3.3. Observations and discussions

We emphasize that balanced bounds can be
used instead of proportional bounds in the initial
steps of Algorithms 3.1, 3.6, 3.7 and 3.11. The use
of proportional bounds. gives rise to more accurate
generalized bounds but incurs more computa-
tional cost for the initial step of each algorithm
than using balanced bounds. The computational
costs for the initial proportional bounds are M
multiplications and M exponentiations for Al-
gorithms 3.1 and 3.7 respectively. The computa-
tional cost of each iteration is 3M + 1 multiplica-
tions for each algorithm.

Algorithm 3.11— Generalized _lower_bound _delay_server;

begin
sum := 0;
throughput _lower = 0;
for m:=1 to MF do
begin

ratio[m] = load[m] * * (n[1] — 1);

sum := sum + ratio[m];
end;

for m:=1 to MF do ratio[m] = ratio[m]/sum;

for i:=1to S do
begin
total _delay := 0;
for m:=MF+1 to M do
begin

total _delay := total _delay + load[m];
queue_F := queue_F — load[m] * throughput lower * (n[i] — 1)/n[i —1];

end;
for m:=1 to MF do
begin

delay[m] = load[m] * (1 + ratio[m] * queue_F);
total _delay := total _delay + delayfm];

end;

throughput _lower := n[i]/total _delay;
for m:=1 to M do ratio[m] := delay{m]/total _delay;

end;

end;
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Generalized bound algorithms are especially
useful if bounds for many different population
sizes are needed. In particular, the additional com-
putational cost of using proportional bounds in
the initial step is a fixed cost.

The generalized lower bound algorithm for an
optimal population sequence is similar to the
Schweitzer approximate solution technique [20].
Our results show that for single-chain networks,
the Schweitzer heuristic provides a lower bound (if
initialized with a lower bound) rather than merely
an approximate solution.

4. Bounds for closed multichain networks

We next present performance bounds for closed
multichain networks. Algorithms for computing
such bounds are given in Section 4.1. In the devel-
opment of these algorithms, we were motivated by
models of communication networks that typically
have numerous routing chains. In the computation
of performance bounds for multichain networks,
we improve their accuracy by making use of rout-
ing information and exploiting the sparseness of
routes.

For multichain networks, we shall use the same
notation as for single-chain networks except that
an additional subscript, 4 or k, is used to denote a
specific chain.

Theorem 4.1. The mean delay D (n) of chain k
customers satisfies the following inequalities

D,(n) <D, (n) < D,(n),

where
Mg
D(n)=L,+ Y 1,
m=1
minchaink
K
X Y tuL(n—-1,)
h=1

chainhvisits m
i [ = 1= Lp 1 T (n — 1)

_LF,ka(” - lk)] (26)

and
Dy(n)=L,+ X T
m=1
minchaink
K
X E Ty (n = 1)
chainhh=vi15‘its m
K
+ Z Tmax,h,k
h=1
chainh
intersects chaink
X [”h - LhIh(" - lk)] ~ Tmax,k k> (27)
where

* Toax,hx IS the maximum mean service time among
the fixed-rate service centers traversed by both
chain h and chain k customers,

* Tminx IS the minimum mean service time among
the fixed-rate service centers traversed by chain k
customers,

* T,(n—1,) is a lower bound of T,(n—1,), and

+ T,(n—1,) is an upper bound of T,(n—1,).
Chain h is said to intersect chain k if it visits a

fixed-rate service center that is also visited by chain

k.

Corollary 4.2. The throughput T,(n) of chain k
satisfies the following inequalities:

T (n) < Ti(n) < Ti(n), (28)
where

Ik(")=”k/l_)k(”) (29)
and

T,(n) =n,/Dy(n). (30)

4.1. Algorithms

The procedure to compute throughput bounds
involves the following steps:

(i) Find fast lower bounds of T,(n—1,) for
all A, h=1,2,..., K and fast upper bounds of
T.(n—1,)forall k=1,2,..., K.

(i1) Plug the fast upper bounds of T, (n—1,)
into equation (26) and the fast lower bounds of
T,(n—1,) and T,(n — 1,) into equations (26) and
(27) to calculate bounds of mean delay. Apply
equations (29) and (30) to obtain throughput
bounds.
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Some of the variables used in the algorithms
are defined in the following. The meaning of other
variables is self-explanatory.

- load _total[k] is the sum of mean service times
of chain k at fixed-rate and delay service centers,

+ load _max[%, k] is the largest mean service time
for chain k among all fixed-rate service centers
visited by both chain A and chain &,

« visit_common _queue[k, i] is true if chain A
and chain i visit at least one common fixed-rate
service center,

+ load[k, m] is the mean service time of chain k
at service center m,

- load _D[k] is the sum of mean service times at
delay centers for chain k,

- load_F[k] is the sum of mean service times at
fixed-rate centers for chain k.

- load _min[k] is the smallest mean service time
for chain k£ among fixed-rate service centers
visited by chain k, and

« visit[h, m] is true if service center m is visited
by chain A.

Algorithm 4.3, given below, finds a fast lower
bound of T, (n— 1,). It utilizes some routing in-
formation.

Algorithm 4.3—Fast_throughput_lower_bounds;

begin
for k:=1 to num_chains do
begin
population[ k] := population[k] — 1;
for =1 to num_chains do
if population[#] >0
then
begin

delay = (population[#] — 1) * load _max[4, A];

for i:=1 to num_chains do

if visit_common _queue[ 4, i] and (/& # i)
then delay := delay + population[i] * load _max{#, i];

delay := delay + load _total[ 4];

throughput _lower[h, k]:= population[/]/delay;

end

else throughput _lower[ 4, k]:=0;

population[ k] = population[ k] + 1;
end;
end;

The above procedure is actually a special case
of Algorithm 4.4 below. Its throughput bound of
T,(n—1,) is obtained by replacing all throughput
lower bounds in equation (27) with zero.

Algorithm 4.3 calculates throughput lower
bounds only. There are two methods to obtain fast
throughput upper bounds of T, (n — 1,). First, we
can use BJB upper bounds for a multichain net-
work [25]. Second, we can consider a network in
which all chains, except chain k, are removed and

use the proportional upper bound for such a
single-chain network. Note that fast throughput
upper bounds are needed only if the network has
delay service centers.

The second procedure, to be given next, uses
the fast bounds described above to calculate im-
proved bounds for mean delays. It then applies
Little’s formula to obtain bounds for T, (n), for all
k=1, 2,..., K. The computation sequence follows
equations (26) and (27) exactly.
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Algorithm 4.4— Multichain _throughput _bounds;

begin
for k:=1 to num _chains do
begin
population[ k] -== population[k] — 1;
/ * remove one chain k customer * /
min _delay = load _total[k];
delay_others = 0;
for m:=1 to num_queues do
if visit[ &k, m]
then
begin
queue == 0;
for h:=1 to num_chains do if visit[ 2, m]
then queue = queue + load[ 4, m] * throughput _lower| A, k];
min _delay := min _delay + load[k, m] * queue;
end;
for 7 =1 to num_chains do
if visit_common _queue[h, k]
then
begin
queue_others := population[ 4] — load _total[ 2] » throughput _lower[ 4, k];
delay others := delay_others + load _max[#, k] * queue_others;
end;
population[ k] := population[ k] + 1;
queue_others := population[k] — load _D{k] * throughput_upper{k]
— load _F[k} * throughput _lower{k, k];

delay_lower := min _delay + load _min[ k] * queue_others;
delay_upper = min_delay + delay_others;

final _throughput_upper| k] := population[ k] /delay_lower;
bottleneck = min(1 /load _max[k, k], population[k]/load _total[k]);
if final _throughput_upper[k] > bottleneck

then final _throughput_upper[ k] := bottleneck;

final _throughput _lower[ k] := population[ k] /delay_upper;

end;
end;

4.2. Numerical examples

The first network used is a 26-node network
with 32 full-duplex communication links and 32
virtual channels. The window size (chain popula-
tion size) is 2 for each virtual channel. Because we
assume full-duplex virtual channels with symmet-
ric traffic, the network reduces to a queueing
network model with 32 fixed-rate service centers
and 16 closed chains. Additionally, we employ 16

fixed-rate servers, one for each closed chain, to
model the external sources of virtual channels.
The mean service time for each service center is
0.1s and is the same for all virtual channels. The
mean service time at the source servers is 1.0s.
Table 5 below shows the routes for the 16 virtual
channels. The calculated throughput bounds and
actual throughput of each of the 16 chains are
shown in Fig. 5. The maximum, minimum, and
average utilizations of the 31 fixed-rate service
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Table 5
Routes of virtual channels

vC Route (in node sequence)
1 1617181945
2 123171819
3 62522232426
4 2410111213
5 131234
6 173456
7 123456789
8 11312
9 91024
10 212025
11 1516 17
12 2324
13 212225678
14 23222120
15 211514131211109
16 1131415212225

centers actually used in the network are 0.272,
0.0895, and 0.193 respectively. (One service center
has zero utilization and was excluded.) In. this
case, the network is lightly loaded.

In Fig. 6, for the same network, the mean
service time at each source server is set to 0.1 s.
The maximum, minimum, and average utilizations
of the 31 communication channels are 0.753, 0.212,
and 0.519, respectively. This represents a fairly
heavily loaded network.

+ Upper bound
{1 Exact Value

A Lower bound

THROUGHPUT

0.50H —

L1 1 et
12 3 4 5 6 7 8 9 10 11 12 13 14 15 16

CHAIN

Fig. 5. Throughputs and throughput bounds of individual
chains in the first network example (low utilization).

-+ Upper bound

[0 Exact Value

A Lower bound

THROUGHPUT
i

~

Ooollllllllllllllll
: 1 2 3 4 5 6 7 B8 9 10 11 12 13 14 15 16

CHAIN

Fig. 6. Throughputs and throughput bounds of individual
chains in the first network example (high utilization).

The second network used in our numerical
study is a randomly generated network with 12
nodes, 30 virtual channels and 34 communication
channels. The communication channels and their
mean service times are shown in Table 6. The
notation (i, j) in Table 6 denotes a communica-
tion channel from node i to node j. The route,
window size, and mean service time of the source
server for each virtual channel are given in Table
7. The maximum, minimum, and average utili-
zations of the 32 communication channels with
nonzero utilizations are 0.998, 0.101, and 0.517
respectively. Because of symmetric traffic, only
the results of 15 virtual channels are shown in
Fig. 7.

From Fig. 7 and the table on routes, we observe
that if a virtual channel does not interact much
with other virtual channels, then its throughput
bounds are tight and the exact value is close to the
upper bound. On the other hand, if a virtual
channel interacts significantly with many other
virtual channels then its throughput bounds are
not so tight and the exact throughput is closer to
the lower bound than the upper bound. Notice
that virtual channel 3 does not intersect any other
virtual channel; both its upper bound and its
lower bound obtained are equal to the exact
throughput. Thus the tightness of the throughput
bounds presented in this section is affected by the
degree of sparseness of routes in a network.
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Table 6
Mean service times of communication channels in the second
network example

Table 7
Routes, window sizes and mean service time of source servers
for virtual channels in the second network example

Communication Mean service Virtual Route (innode Window Mean service time
channel time (sec) channel sequence) size of source server (sec)
o, 4 0.200 1 115 2 0.10
V) 0.200 2 274 2 0.20
(3,11) 0.200 3 86 2 0.10
(5,12) 0.050 4 1131294 3 0.30
(6, 10) 0.025 5 10612 2 0.30
o, 7 0.200 6 6108 3 0.20
a, 2 0.050 7 9274 2 0.30
3, 1) 0.050 8 810794 2 0.10
5,11 0.200 9 479213 2 0.10
®6, 8 0.200 10 512312794 2 0.20
9, 2) 0.100 11 29 2 0.30
(10, 8) 0.100 12 3115 2 0.30
12, 3) 0.050 13 3125 2 0.30
@, N 0.025 14 72 2 0.10
G, 9 0.200 15 1079 2 0.10
(6,12) 0.200 16 511 2 0.10
10, 7 0.100 17 472 2 0.20
@, 9 0.200 18 68 2 0.10
7, 2) 0.200 19 4921311 3 0.30
11, 3 0.200 20 12610 2 0.30
12, 5) 0.050 21 8106 3 0.20
(10, 6) 0.025 2 4729 2 0.30
7, 9) 0.200 23 497108 2 0.10
2 0.050 24 312974 2 0.10
a, 3 0.050 25 497213125 2 0.20
11, 5) 0.200 26 92 2 0.30
@B, 6) 0.200 27 5113 2 0.30
@, 9 0.100 28 5123 2 0.30
(8,10) 0.100 29 27 2 0.10
(3,12 0.050 30 9710 2 0.10
(7, 4 0.025
©, 5 0.200
(12, 6) 0200 T T T T T 1 T T T T 1 T T T T
(7, 10) 0.100
+ Upper bound
8.00F -
[ Exact Value
A Lower bound
4.3. Discussions
, 6.00F s
o
The maximum number of operations required 5
by Algorithm 4.3 is K2(K + 1) multiplications. g
Algorithm 4.4 requires a maximum of K(M +2K R
+ 6) multiplications to calculate the upper and
lower bounds for each chain. The actual computa-
tional cost of Algorithm 4.3 or Algorithm 4.4 2.
depends upon specific routes, and is smaller than
the maximum number for a sparse network. Our
algorithms are similar to the level 2 bounds of ool L L1141 1| !

Eager and Sevcik published recently [6]. Our al-
gorithms, however, were developed and investi-
gated independently [8]. Also, our study of perfor-

L L
12 3 4 5 6 7 8 9 10 11 12 13 14 15
CHAIN

Fig. 7. Throughputs and throughput bounds of individual
chains in the second network example.
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mance bounds for networks with large numbers of
sparse routine chains appears to be unique.

The composite bound method of Kerola [9]
calculates upper bounds only assuming that the
lower bounds are known. His bounds are derived
for saturated networks and can be viewed as ex-
tensions of asymptotic bounds [17]. An asymptotic
expansion algorithm for computing performance
bounds was presented by McKenna and Mitra
[16]. This algorithm gives bounds that are better
than other bounds for networks where the loads at

delay service centers are much higher than loads
at fixed-rate service centers. But it is required that
each chain visits a delay service center and there
are also restrictions on population sizes and loads.
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Appendix A. Proofs of lemmas, theorems, and corollaries

Proof of Lemma 2.1. By induction.

(1) Base case: q,(1)/q;(1) = 7,/7,. Therefore it is true for n=1.

(2) Induction step: Assume it is true for n =k, i.e,

qi(k)/qj(k) <7/7;.
From the MVA formula,

g(k+1) D(k+1)T(k+1) D(k+1) 7(+q(k)) =
g;(k+1)  D(k+D)T(k+1) Di(k+1) r(1+q;(k)) 7

(because g;(k) < q,(k)).
Therefore, it is also true for n=k+1. O

Proof of Lemma 2.2. If q,(n) < (7,/Lg)Qr(n), then from Lemma 2.1, for any i <j

qi(”‘) <

I
T

- T; o
4 (m) < T 70u(n) = [-Qe(n). O
J

Proof of Lemma 2.3. Similar to the proof of Lemma 2.2. O

Proof of Lemma 2.4. From Lemma 2.3,

q,(n)> :_—’:'ql(n) form=1,2,..., Mg.

We then have
My

0c(m)> ¥ Zg\(n)= Earln).

m=1

Hence, we have
T
g1(n) < 7= 0e(n).
F
Similarly,

qMF(n>>TLi;QF<n). o
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Proof of Theorem 2.5. From equation (1), we have

D(n) = T D)= _5 5t T 5+, r-1)
= ‘f fr+27+ Z 7.4, (n—1)

M
Y.+ (7141(n_1)+72112(n_1) + o +TMFqMF("“1))

m=1

2 2
T T Tym
=L+|{-2++2+- +ZE
[(LF Ly Ly

where
A =Tl[ql(n— ) -7 (n=1-LpXT(n- 1))}
F

+72[q2(n—1)— LT—ZF(n—l — Ly X T(n—l))]

TMF

N 4dm,(n—1) — I. (n—l—LDXT(n—l))].

+ e Ty,

From Lemmas 2.2, 2.3, and 2.4, there exists an m, 1 < m < Mg such that
ql.(n—-l)s—l?—(n—l—LDXT(,n—l)) foralll<i<m
F
and
q,.(n—l);z’ri—(n—l—LDXT(n—l)) for all m <i < Mg.
F

Therefore, we have A =A; — A, where

A= Z -1 g, n—l)——(n LDXT(n—l))}

i=m+1
and
7
4,= ZTi[L—(”_l_LDX T(”_l))_qi("—l)]-
i=1
Replacing (n — 1 — L X T(n— 1)) with & Fl g;(n—1), we have

Mg

4, = )y 'ri[qi(n_l)_ LLIF ; ‘Ij("_l)]

i=m+1

[ L g(n-1- % Li;iq,(n—l)]

i=m+1 i=m+1

and

m
4,= Z 7
i=1

= iq,-(n—n—qi(n—l)]

x(n—l—LDxT(n—l))]+A

21

(A1)

Dl IR WIC S

The expressions inside the brackets of the right-hand sides of equations (A.l) and (A.2) are equal
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because

m

Sa(n-1)+ Y gn-1)

i=1 i=m+1

Z Zq,(n—1)+ Z Zq,(n~1)~2q,(n—1)
i= m+1
Hence, 4, > 4,. Therefore,
Mg
D(n)>L+ Y 72[n—-1-LyXT(n-1)]/Ly. O

m=1

Proof of Theorem 2.7. When n =1 it is clearly true. Therefore we only have to prove the theorem for
n > 1. The proof can be divided into two parts.
(1) D(n) = D(n, i) and T(n) < T(n, i) for 0 <i<n—1. This can be proved by induction on i and by
using Theorem 2.5.
2) D(n,i+1)and T(n, i+1)< T(n, i) for 0 <i<n—1. This is proved by induction as follows:
(i) When i=1, D(n, 1) > D(n, 0) and T(n, 1) < T(n, 0) from equations (11) and (12).
(i) Assume that it is true for i = k; then from Theorem 2.5 it is also true for i=k+1. O

Proof of Corollaries 2.6 and 2.8. Compare the balanced delay bound of Kriz (which generalizes the
balanced job bound)

L+———[n—1 Ly XT(n—1,i-1)]
with the correspondmg proportional bound
L+ Z Tn [n—l——LDXT(n—l i—1)}.

For the proportlonal bound to the tighter, it is sufficient to show

My \‘
Y. 72/Lg<Lgp/Myg, ¥

m=1

which is true by virtue of the Chebyshev inequality [1], and then apply induction on i. O

Proof of Lemma 2.9. By induction.
(1) Base case: 4,(1)/4,(1) = 7,/7,. Therefore it is true for n=1.
(2) Induction step: Assume it is true for n =k, i.e.,
k
‘L‘(k)/q]'(k) > (TI/TI) .
From the MVA formula,
q,(k+1) D(k+1)T(k+1) D/(k+1) 7(1+gq,(k))
q;(k+1) D(k+1)(k+1) D/(k+1) 154(1 + qj(k))

T ‘Ii(k)
2:1(;]—]—(75) (because qi(k)<qj(k))

k+1

=

—~~

7/7)
Therefore it is also true for n=k+1. O
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Proofs of Lemmas 2.10-2.12 and Theorems 2.13 and 2.15 are similar to those of Lemmas 2.2-2.4 and
Theorems 2.5 and 2.7 and are therefore omitted.

Proof of Corollaries 2.14 and 2.16. Compare the balanced delay upper bound of Kriz (which generalizes
the balanced job bound)

L=m, [n=1-LyxT(n—-1,i-1)]

with the corresponding proportional bound

Ln
L+ —[n=-1-LpxT(n-1,i-1)].
Ly

For the proportional bound to be tighter, it is sufficient to show that
Ly/Ly ' < Ty,

which is true by the fact that 7. <7, forall j< Mg O
The following lemma is from [5].

Lemma A.l. Foranyi,1<i<S, andallj,1<j< M, if

rj(ni—l) Zrm(”i—1)>qj'(”i_1) X_:}qm(n,-—l),

then

3 4u(n-1)3 (1= 1) T 1)

[ Z_.qum(ni— 1)]/[ Z_'qm(ni_ l)J > [ Z—'Tmrm(ni—l):|/[ f—.rm(ni—l)]’
and

’}'(ni) Z.rm(ni)>qj(ni) Z_‘,'qm(ni).

m=j

The proof of this lemma is similar to the proof of the corresponding lemmas in [5] and is omitted.

Lemma A.2. For two arrays whose elements are ratios of mean queue lengths r,(i}), r,(iy), m=1,2,..., M
and iy, i,>0, if

i M M
’}'(i1) Zrm(i1)<rj'(iz) Z.’};(iz) forl<j<M,

m=j m=j

then

{7;.[1 +r,(iy) X ll] }/{ f"rm[l +r,(i;) X 11]}

m=j*

<(olrerteel) | £l et <l

m=j
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for all nonnegative integers I, and I, such that I, > 1, and 1 <j < M.
The proof is similar to part of the proof of Lemma A.l.

Lemma A3

B | T )2 50n) | E )

m=j

foralliandj such that 1<j<Mand 1<i<S—1.

Proof. By induction on i.

(i) When i =1,
M M
) X (D) =r(n) | X r.(n)
m=j m=j
M M
=T Z 'rm——'rj(L+'rj><n0) Z Tm(L+'ran0)
m=j m=j
M M
T, Y 'rm(L+1'm><nO)—Tj(L+7}Xno) >or,
m=j m=j

M M
Z T Z Tm(L+Tm><nO)

m=j m=j

~.

M M M M
=ngX sz"r,ﬁ—'rj Z"rm'rj Z'TmZ‘Tm(L'FTanO) = 0.

m=j m=j

This establishes the induction base.
(ii) Assume that it is true for i = k. From Lemma A.2, it is also true for i=k+1. O

Notice that Lemmas A.1, A.2, and A.3 are also true for exact mean queue lengths g,.(-), m=1,2,..., M,
since they correspond to the special case in which the population sequence is 2, 3,..., N.

Proof of Theorem 3.2. We only have to prove that

rj(ni—l) E'rm("i—1)>qj'(ni_1) Z_'qm(ni_l) (A.3)

m=j m=j

foralli,1<igSandall j,1gj<M.
The proof is by induction on i.
(i) When i=1, r,(1) = g;(1) for 1 <j < M. Equation (A.3) is clearly true.
(ii) Assume that 1t is true for i = k. From Lemma A.1 it follows that

M M
'}(”k) > rm(nk)qu(nk) Y gn(n). (A4)
m=j m=j
From Lemma A.3, we have

qj(nk+1 -1) Z}qm(nk+1 -1) <q,-(”k) Z_‘qm("k)- (A5)

m=j m=j
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From equations (A.4) and (A.5), it is also true for i = k + 1. From Lemma A.1, we know that equation (24)
is true. O

Proof of Corollary 3.3. We only have to prove that

rj(ni—l) Z r.(n,_y)= fI, n;,—1) Z q,,(n;—

=J =J

for all i, 1 <i< S and all j, 1 <j< M. The proof is similar to that of Theorem 3.2. O

Proof of Theorem 3.4. We only have to prove that the upper bound obtained from population sequence
l1<n,<n,< -+ <ng=N is smaller than that obtained from population sequence m, m,,..., mg_,
where m,=n, for i=1,2,...,1—1,and m;=n, | for i=1,1+1,...,5—1, where / is an integer such
that 1 </< S —1. It is equivalent to showing that

M
ri(n) | X r(n)<r/(m,_,) Zr(m, ) forl<j<sM andl<i<S-1,
m=j m=j

where r/(m,) denotes the value of ratio[ j] in Algorithm 3.1 when the sequence m,, m,,..., ms_, is used.
The proof is by induction on i.
(i) When i =1, from Lemma A.3

M M M
r(n) | X ra(n)<n(ng) | X r,(ne)=r/(mo) | X r;,(mg) foralll<j<M,

m=j m=j m=j

where r,(n,) and r/(m,) denote the initial values of ratio[ j] in Algorithm 3.1 when the corresponding
sequences R, H,,..., Bg and my, m,,..., mg_, are used. This establishes the base of the induction.
(i) Suppose that it is true for i =k, i.e.,

M M
rj(nk) > rm(nk)gr}',(mk—l) 2 ri(my ) foralll<j<M.
m=j m=j

From Lemma A.2 and the fact that n, > m,_; itis also true for i=k+1. O

Proof of Theorem 3.5. With Lemmas A.1 and A.2, the proof is similar to the proof of Theorem 3.4 and is
omitted.

The following lemma, which is similar to Lemma A.1, is used in the proofs of Theorems 3.8-3.10. Its
proof is similar to that of Lemma A.1 and is omitted.

Lemma Ad4. Forany i, 1 <i< S, andallj,1<j<Mif
M M
rj(ni—l) > 1(n,_1) qu'(”i_ 1) Z gn(n,—1)
m=j m=j
then

gm(n,— D<(n,-1) Z rm(ni—l)’

J m=j

5 70,0~ ]/[zqm(n—n} [f(—nmf()]

Mz

I

m
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and

rj(nt) Z rm("i)<‘1,‘(”,~) {‘,.qm(n,.).

m=j

Proof of Theorem 3.8. We only have to prove that

"j("i—1) Z‘rm(ni—l)gqj(ni_l) E_.qm(”i_l) (A.6)

m=j m=j

foralli,1gig<Sandall j,1gj<M.
The proof is by induction on i.
(i) When =1, from Lemma 2.9,
"j(no)/"m(”o) < qj(”o)/‘lm("o) foralll<j<m<M.

Therefore equation (A.6) is true.
(ii) Assume that it is true for i = k. From Lemma A.4 it follows that

M M
’}'(”k) )> "m("k)<qj(”k) 2 gn(ny). (A7)
m=j m=j
Because n, ,, <n,, from Lemma A.3, we have
M M
qj(nk+1_1) P qm(nk+1"1)>‘1j(”k) 2 gn(ny)- (A.8)
m=j m=j

From equations (A.7) and (A.8), it is also true for i = k + 1. From Lemma A .4, we know that equation (25)
is true. O

In Lemma A.5, to be given in the following, r,(n,;) denotes the value of ratio[ j] when the population
size is n; during the execution of Algorithm 3.7. This lemma is used in the proof of Theorem 3.9.

Lemma A.5

510) | X ) <) | £ )

m=j

for all j such that 1 <j< M.

Proof. It is sufficient to prove
’}("0)/’}(”0) < ’}'(”1)/",'(”1) forlgj<i<M.
For the sake of clarity, we shall replace »n,, with »n for the balance of this proof. We then have r,(n,)=1"
and r,(n)=7(Q+nX1"'/L")for1<i< M.
Thus
ri(ny) _ r(n) _ 'rj(l +n ><frj"/L") 7

r(n)  r(n) c(Q+nxz'/L") T . (A.9)

Multiply equation (A.9) by L"r"*}(1 + n X 1" /L") /7. We obtain
L' Y1+ nx1'/L") = LY (1 + n X 7" /L")

13

=L"(Ti"_1—1'j"’1) —nr"_lfj"_l('ri—q'j). (A.10)

"
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We shall prove that equation (A.10) is greater than or equal to zero by induction on M.

(i) Case of M =2 (i.e., there are only two fixed-rate service centers): we shall prove this base case by
induction on n.

(a) When n=2 (i.e.,, n, = 3), we have

Lz('r—'r) nT’T(’T ’T) (n— 'T)[’T +7; —277]=(Ti_"'j)x("'i_"")2>0

J

where L2 =12+ 1- . This establishes the induction base for n.
(b) Assume that equation (A.10) is true for n=k. After factorizing equation (A.10) and eliminating
(7, — ), the induction hypothesis becomes

Lk( k=2 4 pk= 37 + - +'ri'rjk_3+7jk_2)—k'r,-k_l'rjk_l>O. (A.11)
Multiply equation (A.11) by 7;7;, we get
'rLk( k=14 'rk 27' + - +1'i2'1'j-k_3 + Ti'rjk'z) — k'r,.kfrjk

—'rLk( K~ 1+'rk 2 Tt +7',-7}.k_2+1'jk_1)—(k+1)7',-k7'jk—(ykLk—'rikq'jk)>0. (A.12)

When #n = k + 1, the left-hand side of equation (A.11) becomes

Lk+1(1__k—1 +le—2,rj+ +Ti1_jk—27}k-—1) _ (k+ l)Tiijk

> 'rLk( k=1 y gk 2j+ e +’T~’T<k—2’T»k_1) —(k+ I)T.k'r-k = 0. (A.13)
Equation (A.13) is true because (7L* — 7*7%) in equation (A.12) is nonnegative and 7, is smaller than .

We have thus proved the base case for M.
(ii) Assume that equation (A.10) is true for M =/, i.e.,

[/
n n—-1_ .n—1Y} __ n—1_n-1 _
Y (s 771 —nr T (= 1) > 0

It is clear that

[ 1+1
Z ’T,: (Tin—l _ ’Tj"_l) . n'Tin—l’Tjn_l(Ti _ Tj) > 0

Therefore,
r ( ”0) ( 1)

"'(”0) "(”1)

forlg<j<ig< M. O

Proof of Theorem 3.9. We only have to prove that the lower bound obtained from population sequence
ny,n,,..., ig=N is larger than that obtained from populat1on sequence my, m,,..., mg_,, where m; =n;

fori=1,2,...,1—1,and m;=n, yfori=1,1+1,...,8— 1wherel1san1ntegersuchthat1<l<S—1.
It is equivalent to showing that

M M
ri(n)] Yr(n)=ri(m_)] Y r.(m_;) forl<j<Mandl<i<S-—1,
J . J i—1

m=j m=j

where r/(m,) denotes the value of ratio| j] in Algorithm 3.7 when the sequence m;, m,,..., mg_; is used.
The proof is by induction on i.
(i) When i =1, from Lemma A.5,

M M M
’}(”1) Zrm("1)>"j(no) Z’m(”0)=’j'(mo) E’};(mo) foralll<j< M,

m=j m=j m=j

where 7,(n,) and r/(m,) denote the initial values of ratio[ j] in Algorithm 3.7 when the corresponding
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sequences n,, M,,..., ng and my, m,,..., mg_, are used. This establishes the base of the induction.
(ii) Suppose that it is true for i =k, i.e,

M M
"j("k) > rm(nk)>’}‘,(mk—l) Y r(my_y) foralll<j<M.
m=j m=j

From Lemma A.2 and the fact that n, <m,_, itis alsotrue for i=k+1. O

Proof of Theorem 3.10. We shall prove a stronger result. Le., the lower bound obtained from population
sequence n;>n,> --- >ng=N is larger than or equal to that obtained from population sequence
m,>m,> -+ >mg=N, where m;>n,;> N for i=1,2,...,5— 1. It is equivalent to showing that

M M
ri(n,_y) | X ra(n_y)>r(m_y) | X r(m,_,) forl<j<Mandl<i<s$,
m=j m=j

where r/(m,) denotes the value of ratiof j] in Algorithm 3.7 when the sequence m,, m,,..., mg_, is used.
Let ng=n;—1and my=m; — 1.

The proof is by induction on i.

(i) When i =1, we have ny < m, and

1(10) /1 (n0) = 175/530 > 5o /30 = 1l (mo) /(o) for all 1<) <m < M.
Therefore,
M M
ri(no) [ X ra(ng)=r/(mg) | X 1 (my) foralll<j<M.
m=j m=j
This establishes the base of the induction.
(i) Suppose that it is true for i =k, i.e,
M M
r(n) | X r(n)zr/(my) | 3 r(my) foralll<j<M.
m=j m=j

From Lemma A.2 and the fact that n, <m, it is also true for i=k+1. O

Proof of Theorem 4.1. From MVA, we have

Dk(”) = ngmk[i + Z th(” - lk)]

h=1

K
(if m is a delay service center, then Y. ¢,.,(n—1,)=0

h=1
M Mg K Mg K
= Z T Z Tk Z th(”_ lk) =L+ Z Tmk Z th(”_ lk)
m=1 m=1  h=1 m=1 h=1
m in chain k chain k visits m
Mg K
=L+ Z Tk Z ”mhIh("_ lk) +a,
m=1 h=1
minchain k chain k visits m
where
Mg K
a= E Tk Z [th(”_lk)_TmhIh("_lk)]-
m=1 h=1

m inchain & chain 4 visits m
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We then have

K Mg
o< E Tmax, b,k Z [th(” - lk) - TmhIh(n - lk)]
c}};:jnlh m iné;lr:iés h,k

intersects chain k

K Mg
< > Tmac ik | P~ Lo Tu(n—1,) — > TnLn(n— 1;)
h=1 m=1
chain k& m inchain h
intersects chain k& m notinchain k&
Mg
- Z TmhIh(" - lk) - Tma.x,k,k
m=1

minchains i,k

K Mg
= E Tmax,h,k | Pn — LD,hIh(” —1,)— Zl TrLn(n—1,) | = Tmax, k,k
h=1 m—
intersceli:atjstt:l%‘lain k m in chain
K
= h):l ”'max,h,k["h—LD,hIh("_ 1,) _LF,hIh(n— lk)] ™ Tmax,k,k
inter:g;isncﬁain k
K
= )y Tmax,h,k[nh_LhIh(n— lk)]  Tmax, k,k*
cI};a=inlh

intersects chain k&

On the other hand, we have

My
az ) Tmn,k[qu("_ lk)"kaIk(”_lk)]
1

m inchain k

Mg Mg
= Tmin,k Z qu(" - lk) - E ”'mka(" - lk)
m=1 m=1
m inchain k m inchain k

>”'m,k[”k_1_LD,ka(”"lk)_LF,ka("_lk)]- o

Proof of Corollary 4.2. Immediate from Theorem 4.1. O
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