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Approximate MVA algorithms for separable queueing net-
works are based upon an iterative solution of a set of modified
MVA formulas. Although each iteration has a computational
time requirement of O(MK?) or less, many iterations are
typically needed for convergence to a solution. (M denotes the
number of queues and K the number of closed chains or
customer classes.) We present some faster approximate solu-
tion algorithms that are noniterative. They are suitable for the
analysis and design of communication networks which may
require tens to hundreds, perhaps thousands, of closed chains
to model flow-controlled virtual channels. The basis of our
method is the distribution of a chain’s population proportional
to loads to get initial estimates of mean queue lengths. This is
the same basis used in the derivation of proportional upper
bounds for single-chain networks; for a multichain network,
such a proportional distribution leads to approximations rather
than upper bounds of chain throughputs. Nevertheless, these
approximate solutions provide chain throughputs, mean end-
to-end delays, and server utilizations that are sufficiently accu-
rate for the analysis and design of communication networks
and possibly other distributed systems with a large number of
customer classes. Three PAM algorithms of increasing accu-
racy are presented. Two of them have time and space require-
ments of O(MK'). The third algorithm has a time requirement
of O(MK?) and a space requirement of O(MK).
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1. Introduction

We are interested in fast solution algorithms
for separable queueing networks with a large num-
ber of closed chains (also called customer classes),
such as models of communication networks where
each closed chain represents a flow-controlled vir-
tual channel [8,9,11]. Tens to hundreds, perhaps
thousands, of such flow-controlled virtual chan-
nels between source-destination node pairs may be
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active at a time in a practical network. Exact
solution algorithms, such as the convolution and
MVA algorithms, are obviously not applicable
since their computational time and space require-
ments grow exponentially with the number of
chains [12,13]. In fact, they cannot be used for
most networks with more than six or seven chains.
The tree convolution algorithm [10] as well as the
tree MVA algorithms [5,18] are more computa-
tionally efficient for the solution of networks with
chains whose routes are sparse, by exploiting rout-
ing information. Nevertheless, the largest net-
works solved by the tree convolution algorithm
have 32-50 chains, which are not sufficient for
modeling many real networks. Furthermore, most
algorithms for network design problems (e.g., opti-
mal routing, topology optimization) involve a
heuristic search for solutions that are optimum
according to various network performance mea-
sures. A very fast algorithm is needed to evaluate
these network performance measures at each of
the numerous intermediate steps of such a heuris-
tic search.

For the same reason, the approximate solution
methods which have been shown empirically to
have good accuracy [1,2,3,11,14,15,19] are deemed
to be still too slow for communication network
design problems. All of these methods are based
upon an iterative solution of a set of modified
MVA formulas. A single iteration of the Schweitzer
algorithm has a computation time of O( MK ) while
a single iteration of Linearizer or AQL has a
computation time of O(MK?), where M denotes
the number of queues and K the number of
closed chains in the network [2,14,19]. (It was
recently shown by De Souza e Silva and Muntz
[16] that a single iteration of Linearizer can be
implemented with a computation time of O( MK ?)
instead of O(MK?) as indicated by Chandy and
Neuse [2].) Typically, many iterations are needed
for convergence to a solution, and it has been
shown that, for some networks, convergence oc-
curs extremely slowly [19]. Finally, the accuracy of
these methods has been examined only for net-
works with a small number of chains, i.e., those
that can be solved exactly by the MVA algorithm.

Various methods for computing performance
bounds are available [4,7,20]. However, for net-
works with a large number of chains, these bounds
are generally too loose to be useful for communi-
cation network design.

The above considerations led us to investigate a
class of faster approximation solution algorithms
for closed multichain queueing networks. In par-
ticular, all of our algorithms are noniterative. We
consider separable queueing networks of fixed-rate
servers (also called queue-independent servers) and
delay servers (also called infinite-server centers).
Like all of the approximate solution methods ref-
erenced, our method is also based upon the MVA
recursion formula. In our study of proportional
throughput upper bounds for single-chain queue-
ing networks, we found that they are very accurate
for networks with small to medium population
sizes [7]. These throughput upper bounds are ob-
tained by distributing the population of a chain
over the servers it visits proportional to server
loads. In a multichain network, such a propor-
tional distribution leads to approximations rather
than upper bounds of chain throughputs. We
found that these approximate solutions provide
chain throughputs, mean end-to-end delays, and
server utilizations that are sufficiently accurate for
the analysis and design of communication net-
works [6,8] and possibly some other distributed
systems that have a large number of customer
classes (see Section 3 and 5); an iterative solution
to improve accuracy is not necessary.

We shall refer to our method as the Propor-
tional Approximation Method (PAM). We present
three algorithms of increasing accuracy that are
based upon the distribution of a chain’s popula-
tion proportional to loads to get initial estimates
of mean queue lengths: PAM _BASIC, PAM _ IM-
PROVED, and PAM_TWO. The accuracy im-
provement of PAM_IMPROVED over PAM_
BASIC is obtained by a simple scaling operation
to ensure that the utilization of each server does
not exceed one. The additional accuracy of
PAM_TWO is obtained by executing the final
two steps of the MVA recursion instead of just the
last step. The computational time requirements
are O(MK) for PAM_BASIC and PAM_IM-
PROVED, and O(MK?) for PAM_TWO. Since
PAM algorithms do not iterate, these are their
total time requirements. All three PAM algorithms
have space requirements of O( MK).

The rest of this report is organized as follows.
Algorithms PAM_BASIC and PAM_IM-
PROVED are presented in Section 2. In Section 3
we study their accuracy by comparing their pre-
dictions with exact solutions given by the tree
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convolution algorithm (TCA) for a network exam-
ple and also for 100 randomly generated networks.
These networks have fixed-rate servers only and
possess characteristics of models of communica-
tion networks. We also show a correlation be-
tween the approximation errors for a chain and
the utilization of any bottleneck server visited by
the chain. (It is important to understand such a
correlation because most network optimization al-
gorithms are concerned with, in one way or
another, eliminating bottlenecks.) Algorithm
PAM _TWO is presented in Section 4. In Section
5 we study the accuracy of PAM_TWO and
PAM_IMPROVED by comparing their predict-
ions with exact solutions given by the MVA al-
gorithm for 500 networks generated randomly as
specified by Zahorjan et al. [19]. These networks
have both fixed-rate and delay servers and possess
characteristics of models of computer systems.

2. Two PAM algorithms with O(MK ) computation
time

Consider a closed queueing network with K
routing chains (also called customer classes by
other authors). Let N, be the customer population
of the kth chain. We refer to the vector V=
(N;, N,,..., N) as the population vector of the
queueing network. If N, in N is greater than or
equal to 1, then NV —1, refers to the population
vector N with a chain k customer removed. Let
7., denote the load, or traffic intensity, of chain &
customers at server m. (In models of communica-
tion networks, we also refer to 7, as the mean
service time of chain k customers at server m with
the assumption that visit ratios are the same for all
servers visited by chain k customers.)) We use
D, .(n) to denote the approximate mean delay of
chain k customers at server m, g, ,(n) to denote
the approximate mean queue length of chain &
customers at server m, and T, (n) to denote the
approximate throughput of chain k customers, in
a network whose population vector is n.

Below we present two algorithms with time and
space requirement of O( MK'). The first algorithm,
PAM _BASIC, calculates throughputs of individ-
ual chains. -The second algorithm, PAM _IM-
PROVED, calculates throughputs of chains and
the utilizations of servers. The algorithm then
checks server utilizations to see if any utilization

exceeds 1. (This is possible because the chain
throughputs are approximations.) The through-
puts of those chains that visit a server whose
utilization exceeds 1 are then scaled down.

Algorithm PAM _BASIC

Step 1. Calculate proportional approximations
of mean queue lengths from

M
Ymk = Tk Z Tik
i=1

form=1,2,...,M,and k=1,2,..., K,
Gmn(N) =7, Ny,

;. n(N) if h+#k,
G (N) =Y, if =k,

for m=1,2.... M, h=1,2,...,K, and k=
1,2,....K.

qr’nh(N_ lk) = {

Step 2. Calculate the approximate mean delay
of chain k at server m and the approximate
throughput of chain & from the following MVA
formulas:

Tmk
h=1

if m is a fixed-rate server,

o f )

Dmk(N) =
7., 1f m is a delay server,

form=1,2,...,Mand k=1, 2,..., K, and

[ M
T,(N) =Nk/l > Dmk(N)]
m=1
fork=1,2,..., K.
The total throughput of the network, if needed,
is equal to the summation of the chain through-
puts.

PAM_BASIC requires (3M + 1)K multipli-
cations and divisions. The number of additions
and subtractions is also O( MK ) if the sums M |7,
in Step 1 and the sums ZX_,4. ,(V — 1,) in Step 2
are computed prior to looping over m =
1,2,....,.M and k=1,2,..., K. The space re-
quirement is O(MK).

Algorithm PAM _IMPROVED

The first two steps of this algorithm are the
same as those of Algorithm PAM _BASIC.



122 C.-T. Hsieh, S.S. Lam / PAM—A noniterative approximate solution method

Step 3. Calculate server utilizations from the
following formula:

U, (N)= Y 1, T(N)
k=1

for m=1,2,..., M, where U, (N) is the utiliza-
tion of server m at population vector N.

Step 4. Find the largest utilization S, among
the fixed-rate servers visited by chain k,

S, =max U,(N),

where the maximum is over m in chain k such
that m is a fixed-rate server, for k=1, 2,..., K.

Step 5. (Scale down throughputs of individual
chains if necessary.) If S, > 1, then

Tk(N) =T, (N)/S,.

Step 6. Calculate the total throughput, and re-
calculate server utilizations if the throughput of
any chain has been scaled down.

K

T(V) = ¥ T(NV)

and

K
U(N)=Y 7,T(N) form=1,2,..., M.
k=1

PAM_IMPROVED requires a maximum of
(2M + 1)K multiplications and divisions in Steps
3, 5 and 6 to calculate server utilizations and scale

“down chain throughputs, in addition to the time
requirement of PAM_BASIC. Thus, PAM_IM-
PROVED requires a total of (5M + 2) K multipli-

‘cations and divisions. The number of additions
and subtractions is O(MK). The space require-
ment is O( MK).

3. Experimental results

In- this section we study the accuracy of
PAM_BASIC and PAM_IMPROVED using
queueing networks that have characteristics of
models of communication networks. Errors in the
approximate chain throughputs, end-to-end de-
lays, and server utilizations predicted by the PAM
algorithms are obtained by comparing them with
exact results calculated by TCA.

A communication network is specified by a set
of nodes interconnected by full-duplex communi-
cation links. In our queueing network model, each
link is modeled by two fixed-rate servers, one for
each direction of the link; nodes are not modeled.
Each flow-controlled virtual channel is modeled
by a closed chain; the chain population corre-
sponds to the flow-control window size [6,8,9,11}.
The route of a virtual channel is specified by the
sequence of nodes it visits, which uniquely de-
termines the sequence of fixed-rate servers visited
by the corresponding chain. An additional fixed-
rate server is inserted between the destination
node and the source node of the route to form a
closed chain. This is referred to as the source
server and its service rate represents the packet
generation rate of the user process that provides
input to the virtual channel.

We examine the accuracy of the PAM al-
gorithms by first studying a network example. We
then present statistical results from a 100-network
experiment. (The networks considered in this sec-
tion have fixed-rate servers only.) We also care-
fully examine a correlation between the approxi-
mation errors for a chain and the maximum server
utilization among those servers visited by the chain.
Understanding such a correlation is important in
applying PAM algorithms to communication net-
work design problems because most network opti-
mization algorithms are concerned with rerouting
or reconfiguring a network to alleviate congestion
at bottlenecks.

3.1. Network example

The network has 12 nodes, 15 links, and 20
chains. The set of links specified by node pairs
and their capacities are shown in Table 1. The
average packet length is 240 bits. The mean service
time at the source server of each chain is 0.3
second. The populations and routes for all chains
are shown in Table 2.

The throughputs calculated by TCA, PAM_
BASIC, and PAM_IMPROVED, and percentage
errors of the two approximation algorithms, rela-
tive to TCA’s exact results, are listed in Table 3.
Note that the throughputs calculated by
PAM_IMPROVED and PAM_BASIC are the
same for those chains that do not visit a ‘bot-
tleneck’ queue, i.e., those that do not require ex-
ecution of Step 5 in PAM _IMPROVED. For those
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Table 1 Table 2
Links and their capacities in the network example Populations and routes of chains in the network example
Link Capacity (bits /second) Chain Population Route
1,4 1200 (in node sequence)
(8,10) 9600 1 2 587
1,11) 9600 2 3 62
8,5) 4800 3 2 6310
1,5) 2400 4 3 62129114
2,6) 2400 5 4 9122
(3, 10) 1200 6 3 85111
(7,8) 4800 7 2 631081
9, 11) 2400 8 2 91118
12,2) 4800 9 2 785
178 1200 10 2 1081114
3,6) 9600 11 3 122
(4,11) 9600 12 3 1226
(7, 10) 1200 13 2 1119122
9,12) 1200 14 2 631087
15 3 85111
16 3 9111581036
17 2 810
chains that do visit bottleneck queues, PAM _IM- 18 2 2631087
PROVED has smaller approximation errors than 19 2 810
3 62129114

PAM_BASIC. The throughputs of individual 20
chains calculated by PAM_BASIC and PAM_
IMPROVED are also plotted together with exact utilization, calculated by TCA, is 0.990. The aver-

values in Figs. 1 and 2 respectively. The server age utilization over servers with nonzero utiliza-
loads are highly unbalanced. The maximum server tions is 0.398.
Table 3
Exact throughputs, approximate throughputs, and approximation errors for the network example
Chain TCA PAM _ BASIC PAM _ IMPROVED
Value Value Error(%) Value Error(%)
1 3.0946 3.021 2 3.021 2
2 3.0995 3.069 1 3.069 1
3 1.3954 1.764 26 1.437 3
4 1.8674 1.923 3 1.923 3
5 2.7153 2.784 3 2.784 3
6 3.0215 2.974 2 2974 2
7 1.0678 1.307 22 1.065 0
8 2.0149 2.07 3 2.070 3
9 3.0655 2.989 2 2.989 2
10 2.2768 2.148 6 2.148 6
11 3.2901 3.258 1 3.258 1
12 3.1181 3.058 2 3.058 2
13 1.6333 1.607 2 1.607 2
14 1.3055 1.63 25 1.327 2
15 3.0215 2.974 2 2.974 2
16 2197 2.254 3 2.254 3
17 3.3054 3.279 1 3.279 1
18 1.1794 1.431 21 1.166 1
19 3.3054 3.279 1 3.279 1
20 - 1.8674 1.923 3 1.923 3
Total

throughput 47.8417 48.744 2 47.606 0
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Fig. 1. Throughputs of chains calculated by TCA and PAM _
BASIC.

Both PAM and methods for calculating
throughput bounds [4,7] are based upon estimat-
ing mean queue lengths. To get throughput bounds,
however, it is necessary to assume the best and the
worst distributions of mean queue lengths in order
to get upper bounds and lower bounds. Fig. 3
shows that chain throughputs calculated by
PAM_IMPROVED are much closer to exact val-
ues than the upper and lower bounds presented in
[7]. Notice that the exact throughputs, calculated
by TCA, of chains 3, 7, 14, and 18 are closer to
their lower bounds than their upper bounds be-
cause bottlenecks are presented in their routes (as
was previously observed in [7]).

The approximation errors of PAM_BASIC for
chains 3, 7, 14, and 18 are significantly larger than
errors for other chains. Table 2 shows that these
four chains are the ones that visit the server
(communication channel) from node 3 to node 10.
This server has the maximum utilization, calcu-
lated by TCA to be 0.990, in the network. An
explanation of these large errors is the following:
Proportional approximation, as the basis for
throughput upper bounds in [7] and PAM al-
gorithms herein, underestimates the mean queue
lengths of a chain at servers that are highly utilized

| + TCA - PAM_IMPROVED ]

3

.5 1
36=¢ o ~
s \
2 S
Throughput L5
1

0.5
0 +—r—- + +
1 3 5 7 9 11 13 15 17 19
Index of chain
Fig. 2. Throughputs of chains calculated by TCA and PAM _
IMPROVED.

-~ Upper 0~ TCA
bound

‘- PAM IMPR - Lower
OVED bound

~ Y D E O M D
Gon
J
S
r\ %
/

1 3 5 7 9 11 13 15 17 19
Index of chain

Fig. 3. Approximate values, exact values, and upper and lower
bounds of chain throughputs.

relative to other servers visited by the chain. While
PAM_BASIC has large errors for such chains,
Table 3 and Fig. 2 show that PAM _IMPROVED
do not have large errors in its throughputs for
chains 3, 7, 14, and 18, suggesting that its
throughput scaling operation in Step 5 is quite
effective.

Despite the relatively large errors of
PAM_BASIC in predicting the throughputs of
chains visiting a bottleneck server, it is still quite
useful in network design algorithms. For example,
it is used in the optimal routing algorithm pre-
sented in [8] because it is the fastest of the PAM
algorithms. Also, in choosing the best route for a
chain among various candidates, a route that visits
a highly utilized server will not likely be chosen;
thus, the accuracy of PAM_BASIC’s throughput
prediction for such a route is irrelevant.

Most network optimization algorithms are con-
cerned, in one way or another, with the alleviation
of traffic at highly utilized servers. In such appli-
cations, the accuracy of PAM_BASIC at an inter-
mediate step of the optimization algorithm is not
very important. For example, in designing the link
capacities of a network, identifying the communi-
cation channel from node 3 to node 10 to be a
bottleneck will probably lead to an increase in its
capacity. Suppose the communication channel
capacity is increased from 1200 bits/second to
4800 bits/second and PAM _BASIC is again ap-
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‘- Bottleneck present in network -O- No bottleneck
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Fig. 4. Approximation errors of PAM _ BASIC with and without a bottleneck in the network example.

plied to calculate chain throughputs. Fig. 4 shows
the approximation errors of PAM _BASIC for the
two cases of the network example, where “No
bottleneck” denotes the network with a 4800
bits /second communication channel from node 3
to node 10. Note that, after such a capacity in-
crease, approximation errors of PAM _BASIC for
all chains fall below 5%. The largest server utili-
zation in the so-called “No bottleneck” network is
0.870, which is still quite high. The correlation
between errors of PAM_BASIC and maximum
server utilizations is illustrated again in Fig. 11 for
the 100 randomly generated networks to be pre-
sented below.

Fig. 5 shows the approximation errors of
PAM_IMPROVED for the same two cases of the
network example. There appear to be no signifi-
cant differences between the two cases.

Source servers in the network are visited by
only one chain. Fig. 6 illustrates that if the mean
service time at each source server in the network is
increased from 0.3 to 0.5 second, the errors of
PAM _BASIC become smaller. This behavior sug-
gests that the accuracy of PAM_BASIC is less
affected by a high utilization at source servers

where there is no interaction between chains. In
the context of a communication network, there is
a more intuitive explanation. lL.e., source servers
model the generation of packets for input to a
virtual channel. Increasing the mean service time
from 0.3 to 0.5 seconds models a decrease in the
packet generation rate.

Fig. 7 shows the approximation errors of
PAM_IMPROVED for the same two cases. The
accuracy of PAM_IMPROVED appears to be
insensitive to the change in the mean service time
of source servers.

3.2. Statistical results from 100 networks

We next present some statistical results from
applying PAM_IMPROVED and TCA to 100
models of communication networks generated
randomly as described in Appendix A. Statistics
of parameters of the 100 networks generated are
summarized in Table 4, where #packets is the
summation of ail chain populations in a network,
and the average queue utilization is computed
over those servers with nonzero utilizations.

@« Bottleneck present in network ‘©+ No bottleneck

oo

Error (%)

4
20\0/37 >~
0 s

,

4°=°"’> / xofO\o/

1 3 5

Index of cham

Fig. 5. Approximation errors of PAM _ IMPROVED with and without a bottleneck in the network example.
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Fig. 6. Approximation errors of PAM_ BASIC with different mean service times at source servers in the network example.
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Fig. 7. Approximation errors of PAM _ 'IMPROVED with different mean service times at source servers in the network example.

Percentage errors of total throughputs, chain
throughputs, and server utilizations of PAM_
IMPROVED, relative to TCA exact results, are
shown in Figs. 8, 9, and 10. The maximum per-
centage error in the total throughput calculated by
PAM_IMPROVED is 3.55% (see Fig. 8). Figs. 9
and 10 show that the chain throughputs and server
utilizations calculated by PAM_IMPROVED are
also very accurate with only a small number of
exceptions. The maxima, means, and variances of
the percentage errors of PAM_IMPROVED for

Number of networks = 100

Frequency

N — + |

1 2 3 4
Approximation error (%)

Fig. 8. Distribution of approximation errors of total through-
puts calculated by PAM _ IMPROVED for the 100 networks.

the three performance measures are shown in Ta-
ble 5.

Fig. 11 shows a strong correlation between the
approximation error of PAM_BASIC in predic-
ting a chain’s throughput and the maximum utili-
zation among servers visited by the chain. The
points plotted in Fig. 11 were obtained by select-
ing one chain from each of the 100 randomly
generated networks and applying PAM_BASIC
and TCA to calculate its approximate and exact
throughputs. Note that PAM_BASIC is quite ac-
curate if the maximum utilization is less than
about 0.9.

Table 4
Statistics of 100 test networks

Maximum Minimum Average

1. #Nodes 25 7 15
2. #Links 37 9 20
3. #Queues 74 18 40
4. # Chains 43 8 23
5. #Packets 107 19 57
6. Average queue utilization  0.546 0.291 0.419
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Fig. 9. Distribution of approximation errors of throughputs of individual chains calculated by PAM_IMPROVED for the 100
networks.
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A simple approach to improve the accuracy of
the PAM algorithms presented in the previous
section, without resorting to an iterative solution,
is to execute the last two steps of the MVA

Table 5

MAXIMUM UTILIZATION
Fig. 11. Correlation between percentage error of chain
throughput calculated by PAM_BASIC and the maximum
utilization of the servers visited by the chain.

Statistics of approximation errors of total throughput, chain throughputs, and server utilizations calculated by PAM_ IMPROVED

for the 100 networks

Statistics of percentage errors

# Samples Minimum Maximum Mean Variance
Total throughput 100 0.009 3.554 0.824 0.002
Throughput of chain 2255 0.000 20.503 2.667 7.167
Utilization of queue 3105 0.000 14.769 2.064 4263
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recursion instead of just the last step, again using
the proportional approximation to get initial mean
queue length estimates. Our algorithm, presented
below, will be referred to as PAM_TWO. Such an
approach to trade computation time for accuracy
is not unlike the approach of Linearizer which
improves the accuracy of Schweitzer’s algorithm
[2,14] and the approach of bound hierarchies [4,7].

Algorithm PAM _TWO

Step 1. Calculate proportional approximations
of mean queue lengths from

M
Yk = Tmk Z Tik
i=1

for m=1,2,...,Mand k=1,2,..., K,
Gt (N) =Y,/ Ny,
4 (N—1,-1,)
qr’nl(N)
Gt (N) = Yyt

ifl#kand [#h,
if(I=korl=h)
and h#k,

Gu(N)=2v,, ifl=k=h,

for m=1,2,...,M, I=12,...,K, h=
1,2,....,K,and k=1,2,..., K. Note that ¢, (N
— 1, — 1,) may have a negative value if N, < 2. In
this case, ¢, ,(N—1,—1,) is assigned the value
of zero.

Step 2. For k=1,2,..., K, repeat steps (2.1)
and (2.2):

(2.1) For h=1,2,..., K, repeat the following
calculations:

Tmh

K
1+ Z qr’n[(N_ 1, - lh))

D,,(N—-1,)= =1
o o) if m is a fixed-rate server,

Tk

if m is a delay server,

form=1,2,..., M,

M
Nh/[ 2 Dan(N- lk)]
T(N—1,)= ifhaekb,l
(Nh - 1)/[ ; Dmh(N— 1k):|
if h=k,

‘I:nh(N_ lk) =Dmh(N—_ lk) X Th(N“ lk)
form=1,2,...,. M.

(2.2) Calculate the following:

K
ka(l + Z Gomin(N — lk))
Dmk(N) = h=.1 .
if m is a fixed-rate server,

7., 1if m is a delay server,

form=1,2,..., M, and

Tk(N) =Nk/[ AV:‘. Dmk(N):|'

Step 3. Execute Steps 3—6 of PAM_IMPROV-
ED.

Step 1 of PAM_TWO requires 2 MK multipli-
cations and divisions. Step 2 of PAM_TWO re-
quires 2MK? + (M + 3) K multiplications and di-
visions. Step 3 of PAM_TWO requires QM + 1)K
multiplications and divisions. Thus, PAM_TWO
requires a total of 2MK? + (5M + 4) K multiplica-
tions and divisions. Note that the number of ad-
ditions and subtractions is O(MK?) if the sums
YK g, (N—1,—1,) needed in step (2.1) are
computed from

K K
X au(N=1,-1,)= > 4mi(N) =%~ Vs

=1 =1

where the sums XX g’ (N ) are computed prior to
looping over k=1,2,...,K and h=1,2,..., K
in Step 2.

The space requirement of PAM_TWO is
O(MK). Note that arrays of size MK are ade-
quate for the execution of Step 2; they are used to
hold values of {r,,} and to hold values of mean
queue lengths in steps (2.1) and (2.2).

5. More experimental results

The 100 networks used in Section 3 have char-
acteristics of communication networks: a large
number of chains with sparse routes and small
chain populations. In this section we examine the
accuracy of PAM_TWO and PAM_IMPROVED
using 500 networks generated randomly according
to the specification used in the study of iterative
AMVA algorithms by Zahorjan et al. [19, Table
2]. (There is one difference: We set the minimum
number of servers at 5 instead of 2.) The network
generation parameters are shown in Table 6, where
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Table 6
Network generation parameters

Scheduling discipline  Prob[Infinite Server] = 0.05
Prob[Load Independent] = 0.95
Class 1:U(1,10) Class 2:U(1,5)
Class 3:U(1,5) Class4:U(1,5)
U(0.1, 50.0)

U(5, 50)

Population size

Loadings
Number of centers

U indicates the uniform distribution. Networks
generated by these parameters possess characteris-
tics of computer systems rather than communica-
tion networks. Note that every network generated
has four chains and each chain visits every server
in the network. Compared to the 100 networks in
Section 3, these 500 networks have larger chain
populations and much larger service time varia-
tions; there are also delay servers in addition to
fixed-rate servers.

We used PAM_TWO and PAM_IMPROVED
to calculate approximate chain throughputs and
the MVA algorithm to calculate exact chain
throughputs for the 500 networks generated. The
average and maximum percentage errors in the
approximate chain throughputs, relative to exact
MVA solutions, are shown in Table 7 for
PAM_IMPROVED and PAM_TWO. Both PAM
algorithms have small average errors but fairly
large maximum errors. Table 7 also shows that

Table 7
Relative errors in chain throughputs calculated by PAM _ IM-
PROVED and PAM_TWO for 500 networks

Technique Error(%) # Networks

PAM_IMPROVED Average 23 500
Maximum 40.3

Measure

PAM_TWO Average 0.8 500

Maximum 30.8

PAM_TWO is more accurate than PAM _IM-
PROVED.

Although the maximum percentage errors are
large, Fig. 12 shows that only a very small fraction
of the chain have percentage errors larger than
10% while more than three fourths of the chains
have less than 1% error for PAM_TWO and less
than 3% error for PAM _IMPROVED.

In Section 3 we found a strong correlation
between the approximation error of a chain’s
throughput calculated by PAM_BASIC and the
maximum utilization among servers visited by the
chain. Table 8 shows that such a corrrelation also
exists for PAM_IMPROVED and PAM_TWO.
For those chains which do not visit servers with
utilizations between 0.95 and 1, both the average
and maximum approximation errors become sub-
stantially smaller for both PAM algorithms (see
the second row of Table 8).

B PAM IMPROVED B PAM TWO

1300 A
1200 A
1100 -
1000 A
900 +

800 1 Number of chains = 2000

700
600
500
400
300
200
100

Frequency

<05 0.5-1 1-1.5 1.5-2 2-3

3-4 45 5-6 6-7 7-8
Approximation error (%)

8-9 9-10 »>10

Fig. 12. Distribution of approximation errors of throughputs of individual chains calculated by PAM _ IMPROVED and PAM_TWO
for 500 networks.
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Table 8

Correlation between percentage errors in approximate chain throughputs and maximum server utilizations for PAM _ IMPROVED

and PAM_TWO

Maximum Approximation errors of chain throughputs
utilization PAM_ IMPROVED PAM_TWO
<

Maximum Average # Chains Maximum Average # Chains
1.0 40.3 23 2000 308 0.8 2000
0.95 11.4 1.6 1784 9.6 0.5 1860
0.9 9.4 1.5 1732 54 0.5 1784
0.8 8.4 1.2 1556 3.1 0.3 1612
0.7 4.8 1.0 1392 1.7 0.2 1416
0.6 3.8 0.8 1136 1.4 0.2 1164
0.5 2.1 0.6 744 1.4 0.1 788

Although we generated the 500 networks simi-
lar to what Zahorjan et al. did in their study of
three iterative AMVA algorithms, a direct com-
parison of the accuracy of PAM and the iterative
AMVA algorithms cannot be made. There are two
reasons. First, we evaluated approximation errors
in chain throughputs and server utilizations. ! The
iterative AMVA algorithms were evaluated by the
maximum approximation error in mean queue
lengths ¢,,,(N) in [19] and also mean delays
D,.,(N) and server utilizations U, (V) in [2] for
all m and k. The performance measures of AMVA
have finer granularity than ours. On the other
hand, the AMVA studies used a specially defined
measure of error called tolerance error’ instead of
the usual relative error which we use. The toler-
ance error used by Zahorjan et al. [19] is the
following;:

r'rnla;([qu(N) - 4%(N)] /Ny,

where g¢,,(/N) is the approximate value and
q.}.(N) is the exact value. Note that N, is used in
the denominator instead of g%, (V). It was argued
that the tolerance error was used in place of the
relative error because the latter measure is very
sensitive to small (absolute) errors in small values.
(That is exactly how we got most of the large
percentage errors for PAM algorithms since we
use relative error as our measure.)

The tolerance errors in mean queue lengths of
the three iterative AMVA algorithms from the last

1 We are also interested in mean end-to-end delays of virtual
channels as a performance measure but these can be ob-
tained from chain throughputs and Little’s formula.

column of Table 4 in {19] are reproduced in our
Table 9. However, it is not possible to make a
direct comparison between the relative errors in
Table 7 for PAM and the tolerance errors in Table
9 for AMVA. On the one hand, for the same
numerical values of approximate and exact solu-
tions, tolerance errors are much smaller than rela-
tive errors. On the other hand, ¢q,,,(/V) is a mea-
sure having finer granularity than chain through-
put (which is obtained from a summation of mean
delays) and is expected to have larger approxima-
tion errors.

To carry out a direct comparison of AMVA
and PAM, we will have to implement the AMVA
algorithms (which we have not done). Moreover,
the comparison can only be made for networks
with a small number of closed chains, which is the
current domain of applications of iterative AMVA
algorithms. For such networks, we conjecture that
Linearizer and AQL are more accurate than PAM
algorithms (at the expense of more computation
time for both Linearizer and AQL and more space
for Linearizer).

Table 9
Tolerance errors in mean queue lengths calculated by three
iterative AMVA algorithms from Zahorjan et al. [19]

Technique Measure Tolerance # Networks
error(%)
Schweitzer’s method Average 2.5 2000
Maximum 30.5
Linearizer Average 0.5 2000
Maximum 2.4
AQL Average 0.3 2000

Maximum 3.3




C.-T. Hsieh, S.S. Lam / PAM— A noniterative approximate solution method 131

Table 10
Summary of time and space requirements of iterative AMVA
algorithms and PAM algorithms

Algorithm Time Space
requirement requirement

Schweitzer O(MK ) [# iterations] O(MK)
Linearizer O(MK?) [# iterations] O(MK?)
AQL O(MK?) [# iterations] O(MK)
PAM _ BASIC O(MK) O(MK)
PAM_ IMPROVED O(MK) O(MK)
PAM_TWO O(MK?) O(MK)

For networks with a large number of closed
chains, however, the accuracy and convergence
behavior of iterative AMVA algorithms are still
unknown. For this class of networks, PAM is the
only approximate solution method whose accu-
racy has been studied.

A summary of the computational time and
space requirements of PAM algorithms and the
three iterative AMVA algorithms is shown in Ta-
ble 10. For Linearizer, we have indicated the time
requirement of the new implementation described
by De Souza e Silva and Muntz {16] instead of
that of Chandy and Neuse [2]. The other time and
space requirements of the iterative AMVA al-
gorithms are according to Zahorjan et al. [19].
Note that the AMVA algorithms’ time require-
ments are usually stated for a single iteration,
which must be multiplied by the number of itera-
tions that are needed for convergence to a solu-
tion.

6. Conclusions

PAM algorithms have been designed for the
approximate solution of queueing networks with a
large number of closed chains and relatively small
chain population sizes. Because they are nonitera-
tive, they are suitable for many communication
network design and optimization problems that
are typically based upon a heuristic search for an
optimum; a very fast evaluation of network per-
formance is needed at each step of such a heuristic
search. (When a network is slightly modified, the
array of approximate mean queue lengths in a
PAM implementation does not have to be com-
pletely recalculated; only those elements of the
array corresponding to the network change have

to be recomputed.) PAM algorithms provide chain
throughputs, mean end-to-end delays, and server
utilizations that have adequate accuracy for such
purposes. For example, PAM _BASIC, the fastest
of the PAM algorithms was used in [8]} for optimal
routing. In choosing a route for a new virtual
channel, routes that visit a congested communica-
tion channel are rarely chosen. Thus, the relatively
large approximation errors of PAM_BASIC for
such routes do not affect its effectiveness in the
optimal routing algorithm. We also found in one
example that ranking candidate routes by ap-
proximate chain throughputs, calculated by
PAM_BASIC, and by exact chain throughputs,
calculated by TCA, had the same results for the
top several candidates.

PAM algorithms can be applied to the analy51s
and design of other distributed systems with a
large number of closed chains if the network per-
formance measures needed to evaluate these sys-
tems are the ones that have been tested for the
PAM algorithms. The iterative AMVA algorithms
provide performance measures of finer granu-
larity, i.e., mean queue lengths, mean delays and
utilizations for server m and class k, which are
not calculated by the three PAM algorithms in
this paper.

Although we have tested the accuracy of PAM
algorithms extensively, it is not possible to con-
clude that they have been tested for all possible
combinations of network parameters and all inter-
esting regions of the parameter space. We did test
them for networks with a large number of chains,
i.e., models of communication networks that can
be solved exactly by TCA. Iterative AMVA al-
gorithms were tested on networks with just a few
chains, i.e., ones that can be solved exactly by
MVA. It is also an impossibility to conclude that
the accuracy of PAM algorithms demonstrated in
this paper will scale up to networks with hundreds
or thousands of closed chains (which are required
to model communication networks of the present
and future). Both exact solutions and discrete-
event simulations of such large networks are not
currently feasible. We conjecture that the accu-
racy, in terms of average errors, will scale up. In
fact, average errors will likely be smaller due to
averaging of estimates that are too high with ones
that are too low.

We also studied a few networks which have
many delay servers whose mean service times are
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much larger than the mean service times of fixed-
rate servers. For such networks, PAM algorithms
are extremely accurate. (Note that the distribution
of a chain’s population proportional to loads is an
exact operation in a network consisting of delay
servers only.) We also showed, in Section 3, that
PAM algorithms are accurate for networks with
fixed-rate servers only. We found, from a few
examples, that the accuracy of PAM algorithms is
slightly worse (than what is shown in here) for
networks in which the delay servers and the
fixed-rate servers visited by each chain have about
the same aggregate load. We added such a delay
server to each chain in the network example of
Table 3. The maximum error of PAM_IM-
PROVED went up to 8.5% from 6% in Table 3.

Appendix A. Network generator [6]

Of the 100 networks generated, 70 are SMALL
networks and the rest are LARGE networks. End-
to-end acknowledgment delays are not modeled.
The average packet length is 240 bits.

A.l. Nodes

The network - generator creates two types of
networks (SMALL and LARGE), distinguished by the
number of nodes and the number of chains. The
number of nodes in a SMALL network ranges from
6 to 25. The probability distribution has the shape
of a triangle with a mean of 16. The number of
nodes in a LARGE network ranges from 11 to 30
with a mean of 21. Each node is characterized by
two parameters:

(i) Location, in x- and y-coordinates, to be
used for calculating the distance between two
nodes.

(i) Minimum number of links connected to the
node, designated as L[i] for node i. This number
is randomly selected from 2, 3, and 4 with a mean
of 2.5.

A.2. Links

The number of links in the network is not
directly sampled from a random variable and is
not known until the network is created. Factors
that determine the number of links in a network
are the number of nodes and L{/], for all i. The

topology of each network is determined in a
manner similar to the method given by Steiglitz et
al. [17]. The procedure is briefly described next:

Step 1. Select a node i such that L[i]=
max ;L[ j].
If L[i] <0, then stop.

Step 2. Put a link between node i and node n
where node n is the nearest neighbor of node i
that satisfies the following conditions:

(i) node » is not connected to node i.

(ii) L[n]> 0.

Condition (ii) is ignored if none of the nodes
satisfy this condition. In this case, the node nearest
to node i satisfying (i) is selected. Let L[i}:==i—1
and L[n]}:= L[n]— 1. Go to Step 1.

The capacity of a link is selected from 1200,
2400, 4800, and 9600 bits per second with equal
probabilities.

A.3. Chains

The number of chains is selected to be 1 or 2
times the number of nodes in the network with
equal probabilities. The source node of each chain
is selected from all nodes with equal probabilities.
The length (number of servers) of the chain is
selected with the following probabilities: p; = 0.1,
p,=02, p,=03, p,=02, p;=0.1, p,=0.05,
p,=0.03, ps=001, and py=0.01, where p; is
the probability of having i servers in the chain.
The length ranges from 1 to 9 with a mean of 3.38.
To establish a route, the chain extends iteratively
from the last node (in the partial route) to one of
its adjacent nodes until the designated length is
reached or the chain cannot be further extended
without forming a loop. In each iteration, all
adjacent nodes that are not already in the route
are selected with equal probabilities. The mean
service time at the source server is selected from
0.1, 0.2, and 0.3 seconds with equal probabilities.
The population of the chain is selected from 2, 3,
and 4 with probabilities 0.6, 0.3, and 0.1 respec-
tively.

A.4. Connectivity
Each network generated is manually checked

for connectivity. Networks with disconnected
components are discarded. Others are accepted as
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they are, or accepted after a minor modification
(e.g., add a link).

Lastly, those networks that cannot be (effec-
tively) handled by the tree convolution algorithm
are also discarded.
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