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Store-and-Forward Buffer Requirements in a Packet
Switching Network

SIMON S. LAM, MEMBER, IEEE

Abstract—Previous analytic models for packet switching networks
have always assumed infinite storage capacity in store-and-forward
(S/F) nodes. In this paper, we relax this assumption and present a
model for a packet switching network in which each node has a finite
pool of S/F buffers. A packet arriving at a node in which all $/F buffers
are temporarily filled is discarded. The channel transmission control
mechanisms of positive acknowledgment and time-out of packets are
included in this model. Individual S/F nodes are analyzed separately
as queueing networks with different classes of packets. The single node
results are interfaced by imposing a continuity of flow constraint. A
heuristic algorithm for determining a balanced assignment of nodal
S/F buffer capacities is proposed. Numerical results for the perform-
ance of a 19 node network are illustrated.

INTRODUCTION

N THE past, analytic models for packet switching networks

have always assumed infinite storage capacity in store-and-
forward (S/F) nodes [1], [2]. This, together with the indepen-
dence assumption (due to Kleinrock {3]), reduce a very
difficult problem to an open network of queues problem [4],
[5]. The latter can then be decomposed into separate analyz-
able single-server problems which reflect the network structure
and traffic flows [1]. Such analytic models have been used in
conjuriction with simulation models, heuristic procedures, and
experimentation in the performance evaluation and design of
actual networks [6]. It was concluded that these analytic
models are valuable in providing insight into network behavior
as well as providing keys to good heuristic design procedures
and ideal performance bounds. Nevertheless, many important
network operating features and practical constraints have been
omitted in these models, such as finite nodal storage capacity,
priority classes of packets, packetizing and reassembly of mes-
sages, adaptive routing and flow control schemes, etc. The
analysis of a model which includes most of the aforemen-
tioned features and constraints is extremely difficult (if at all
possible). In this paper, we relax the assumption of infinite
nodal storage and present a model to study 1) the degradation
in network performance due to this additional constraint of
limited storage capacity, and 2) the S/F nodal buffer require-
ments in a packet switching network to achieve some small
probability of nodal blocking. The problem of nodal blocking
has been studied before in the narrower context of statistical
multiplexing by Chu [7] or using more simplified models of a
S/F node by Ziegler [8] and Closs [9]. In this paper, the S/F
node model studied by Schweitzer and Lam [10] is gener-
alized to a multinode network.
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In the next section, our network model is first presented.
The overall problem, instead of being decomposed into single-
server problems as in earlier works [1]-{3], is decomposed
into single-node problems; each such single-node problem
corresponds to a queueing network model of a S/F node. This
formulation enables us to incorporate into. the model the con-
straints of finite nodal storage capacities, as well as the channel
transmission control mechanisms of positive acknowledgment
and time-out of packets [11], [12]. The routing of packets in
the network is modeled by Markovian transition matrices. For
each S/F node, steady-state queue length . statistics are ob-
tained by applying queueing network theory {5]. These single-
node results are interfaced by imposing a continuity of flow
constraint; an efficient computational procedure is given for
iterative solution of the resulting set of nonlinear equations.
Analytic results are presented for various network perform-
ance measures including average packet delay, network
throughput rate, and nodal blocking probabilities. A heuristic
algorithm is proposed for determining a balanced assignment
of S/F buffer capacities to achieve some small probability of
nodal blocking. Finally, numerical results illustrating the per-
formance of a 19 node network are shown. We conclude that
the model and anaytic results in this paper may be used to
supplement other network design and optimization techniques
based upon the simpler analytic models which assume infinite

nodal storage [1}-[3].

THE NETWORK AND NODE MODELS

We consider a packet switching network consisting of M
nodes as shown in Fig. 1. Each node has a finite number N;
(1 < i < M) of S/F buffers. We assume thut each packet of
data can be stored in éxactly one buffer. All S/F buffers in a
node form a common pool for the storing of all packets being
forwarded by the node.

As a packet moves through the network from its source
node to its destination node, each intermediate node stores a
copy of the packet until a positive acknowledgment (ack) is
returned ‘from the succeeding node. The ack indicates that
the packet has been received without error and has been
accepted. Once a node has accepted a packet and returned an
ack, it holds onto a copy of that packet until it in turn receives
an ack from the succeeding node. However, a node may refuse
to accept a packet by not returning an ack. It may do so for
the following reasons: 1) the packet has been received with
one or more bits in error, and 2) all S/F buffers are tempo-
rarily filled. (This latter event will be referred to as nodal
blocking). In the absence of an ack within some time-out inter-
val, the transmitting node of the unsuccessful packet
retransmits it.
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Fig. 1. The network model.

For the sake of mathematical tractability, we assume that
all inputs from hosts and terminals into the S/F network con-
sist of single-packet messages only. Thus, we have ignored the
consideration of packetizing and reassembly of long messages
[11], [12]. (n this context, packet switching becomes
synonymous with message switching.) Furthermore, no
priority structure is assumed. Also, since acknowledgments can
be returned “piggy-backed” on normal network traffic in a set
of acknowledgment bits [12], the overhead for transmitting
acks is neglected in our model.

To model the routing of packets through the network, R
classes of packets are distinguished. A specific class of packets
may, for examples, consist of 1) all packets with a common
destination node, 2) all packets between a given source-desti-
nation pair of network nodes, and 3) all packets between a
- given source-destination pair of hosts and terminals. The
routing of class 7 (1 < r < R) packets is specified by a set of
Markovian transition probabilities {P,,('), 1<isSM 1)<
M + 1}; a class 7 packet, currently at node /, is next routed to,
node j with probability P;(". Note that T P, =1 for
all pairs of i and r. The channel (i, M + 1) models a local
channel from node i to its external sink.! Thus, if the des-
tination host of class r packets is attached to node i, we must
have P; p; 4+ 1" = 1. The routing of packets in this model corre-
sponds to nonadaptive routing policies and may be com-
pletely specified by a set of matrices, P = [P;(M], 1<r<
R. The special case of fixed (nonbifurcated) routing is obtained
when P;{") takes on the values of 0 and 1 only for all i, j, r
Finally, we assume that P;;(" = 0 for all 7, i.e., a node may not
route a packet back to itself.

Both adap’ive routing and flow control policies introduce
complex state dependencies into the queueing analysis and will
not be considered in this paper.

A fixed network input traffic pattern from external sources
is assumed and is given by the vectors 0(”), 1 <r <R The
actual network input traffic $ is specified by ¢ and a
scaling factor « referred to as the network input level, such
that

S = qo(r), 1<r<R

0y

The elements of S are S;(", 1 < i <M, which are the input

'In a real network, the external sink (source) of node i may consist
of a multiplicity of hosts and terminals. Without loss of generality, we
assume that there is a single duplex channel [consisting of the simplex
channels denoted by (;, M + 1) and (0,7)] connecting node i to its
external sink (source).

‘assumed to be B, 1 <i
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Fig. 2. The node model (node i in Fig. 1).

rates in packets per second of class r packets into the network
nodes from their hosts and terminals. Define

©))

Under steady-state conditions, S is equal to the network
throughput rate in packets per second.

We next describe our model of a S/F node depicted in Fig.
2. The central processor (which handles I/O channel inter-
rupts, builds packet headers for its host/terminal inputs,
checks errors, generates acks and routes packets, etc.) is
modeled as a first-come-first-served (FCFS) queue. The output
channels are also modeled as FCFS queues. The ack and time-
out boxes shown in Fig. 2 model the storing of packets in
node i before their acks return. Upon receipt of an ack, the
buffer occupied by the acknowledged packet is freed and

_returned to the free buffer pool. Thus, the amount of time a

packet spends in an ack box is a random variable equal to the
interval between the end of its previous transmission and sub-
sequent receipt of the ack for it. If a packet transmission is
unsuccessful (which occurs in channel (ij) with probability
B;;), the packet spends a certain amount of time in the time-
out box and is then put back on the output channel queue.
Note that a packet, once stored in a buffer, does not have to
be physically moved. Movement of packets depxcted in Fig. 2
may be accomplished by software pointers.

We now state the assumptions needed for the analysis of
individual S/F nodes in the next section.

1) The counting process of class r packets arriving at node
i, including initial transmissions as well as retransmissions of
previously unsuccessful packets from local hosts/terminals and
neighboring nodes, is an independent Poisson process. The
arrival rate of such class r packets to node i is ;") packets/s.

2) The central processor of node i is a FCFS server with a
negative exponential service time distribution and a service
rate of y; packets/s. The (i,j) channel is a FCFS server with a
negative exponential service time distribution and -a service
rate of y;; packets/s. (Note that this is just a modified version
of Kleinrock’s independence assumption [3].)

3) The time duration that a packet spends in the ack (time-
out) box of channel (ij) is an independent random variable
with a general probability distribution and a mean value of
v;i(t;;) seconds. (Note that each such box corresponds to a
service facility with no queueing, i.e., infinitely many servers.)

4) The steady-state nodal blocking probabilities are
< M. Let ¢;; be the probability that a
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packet transmitted in channel (ij) has one or more bits in
error. Assuming nodal blocking and channel errors to be in-
dependent events, the steady-state probability of success for a
packet transmitted over channel (if) is given by
0<i<M,

I =B =(1 —e;)1 —By), 1<j<M+1.

3

With probability (1 — B;;)(B;;)", a packet retransmits exactly
n times over channel (i) before success.

In our model, the absence of an ack for a packet within a
time-out interval is assumed to be equivalent to the event that
the packet was unsuccessful. However, it is possible that the
packet has been received correctly and accepted by, say, node
J. Yet the returning ack has been delayed or lost. Under these
circumstances, the packet is retransmitted and node j receives
a duplicate packet. In the design of an actual network, this
necessitates proper choice of the length of the time-out
interval and use of some packet sequencing scheme for
duplicate detection.

THE ANALYSIS

In this section, analytic results are first presented for
individual S/F nodes modeled as queueing networks. These
single node results are then interfaced by imposing a
continuity of flow constraint. Finally, results for the evalua-
tion of some network performance measures are shown.

Distribution of Queue Lengths in a S/F Node

Focus upon a S/F node, say node i, with class r packets
arriving at ;") packets/s. Let E; be the fraction of packets
with . detected errors which are discarded by the central
processor. (See Fig. 2.) The combined arrival rate to the out-
put channels of node i is thus v;0(1 — E;) packets/s when
node i is not blocked. The traffic intensity at a service facility
is defined to be the ratio of its arrival rate to its service rate.
We define the following traffic intensities for service facilities
within node i when it is not blocked. Forr =1, 2, -, R and
i=L2, - M+1

;0% £ traffic intensity of class 7 packets at the central
processor of node i

7i(r)
B Mi
a;" £ traffic intensity of class 7 packets at channel (i,)
_ OB —E)

(1 = Byjuy
by £ traffic intensity of class r packets at time-out
3}
box (i,/)
Y OPIBt(1 — Ey)

¢ £ traffic intensity of class 7 packets at ack box (i,)
= 7P yy(1 — Ey).
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Let

R
@23 0", O<j<M+1
r=1

R
by &), by, 1<j<M+1
=1

&
R
Y ey, 1I<j<MA+1L.

We next define the following notations:

di0 2 Number of packets in the central processor queue of
node i

qi; £ Number of packets in queue for channel (i)
m; £ Number of packets in time-out box (i.y)
L £ Number of packetsin ack box (i), 1<j<M+1

q é(‘lw»‘lu: i M+1)
m é(milvmiZ: Y mi,M+1)
T12(a 02 lier)

q; £ Number of packets in all FCFS queues of node i

M1
=2 a
j=0
m; 2 Number of packets in all time-out boxes of node i
M+1
=2 mi
=
I; 2 Number of packets in all ack boxes of node i
M1
= ll}
j=1

From queueing network theory [5], the stationary prob-
ability distribution of queue lengths in node 7 is given by the
following product form solution:2

M+1
P(qvmrl) = P(O)(aiO)q i0 H

i=1
@)™ (cy)i

*(ay)?i
¢ m,~,~! lu'

“

*Note that for the sake of clarity, the subscript / denoting node i
is suppressed wherever there is no ambiguity. Also, the expression x¥
is equal to one by definition whenx =y = 0.
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where P(0) is a normalization constant equal to the probability
of the event that node i is empty. From the above equation we
then have

M+1
P(q,k)=P(0)[ II (aij)‘“f]
i=0

(bip)mii (cy)i

M+1 mij! lij!
z (mij+lij)=k
j=1
M1 b +cy)" z)k
=P0)| II (ay)u (5)
o k!

To evaluate the normalization constant P(0) for node i, we
define the following:

1 n=0
gm 2 T @ ©)
M+1z I=I (@) n=1
Z gqy=n
j=0
1 N=0
p(Nx) 2l XN xN—n @)
r;)g(n) o N>1
K
GK)E Y p(N,b; +¢) (8)
N=0
P(N) 2y [exactly N packets in node {].
From (5)-(7), we have
P(N) = P(0)p(V,b; + ¢;). ©)

Since node i has N; buffers, P(NV), N =0, 1, -+, N; must sum to
one; the normalization constant is thus given by

N
P0) = l:}\;) p(N,b; + Ci):] =G—(N—,~) (10)

which may be obtained from evaluating (6)-(8). A recursive
algorithm [13], [14] for the computation of g(n) in (6) is
given in Appendix A.

The nodal blocking probability B; is equal to the prob-
ability of the event that all N; S/F buffers in node 7 are filled.
Thus,

B; = P(N)). (11)
The expected number of packets in node i, denoted by #;, is
given by

Ny
=Y NPW). , (12)
=1 s
e L
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Marginal Distributions and Expected Queue Lengths

The marginal probability distribution of the queue size gq;;
in node 7 is given by

Prlgg=>nl= 3 P@h)
M+1
z Qil+k<Ni
1=0
& q;>n
G(N;—n)
- (au) G(Nl) (13)
Thus,
Pr [q;; =n] = (a,)r [GWN;—n) —ay;GWN; —n—1)]. (14)
i G(Nl) 4 124 H M
The expected queue size is
@ = Z (ay)"GWV; —n). (15)

G(N, n=

These last three equations correspond to similar results derived
by Buzen for a closed-queueing network [13].

Next, the marginal probability distribution of the total
number m; of packets in the time-out boxes of node i is given
by

p.m N;—m
P =] = 20) Z pV.c:) (16)
with expected value
N; pm Nim
=P(0 : N,c;
0 S T &, P
pt NiTi—l
= P(0)b; Z }: pW,e;)
N1
— PO, Y b+ )
N=0
o)
=b{(1 —By). 17
The second moment is given by
m? =[GV T (BbAGW, — ) +bGW; — D). (18)

Replacing b; by the appropriate traffic intensity, (16)-(18)
also apply to the total number /; of packets in the ack boxes of
node 7 as well as to the number of packets in specific boxes
and belonging to specific classes.

Network Interface of Single Node Results

To properly interface the single node results, we invoke the
conservation of flows principle: for any service facility, total
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flow in must be equal to total flow out. Let A;¢") denote the
throughput rate in packets per second of class r packets at
node i for 1 <r<R, 1 <i<M We define the row vectors

A AN NG 0, O], 1<r<R
and the matrices
[ P, p,» Piy
le(r) P22(T)
P& ) : , 1<r<R
Pp1 PMM(r)J

The network input traffic is specified by S, 1 <r <R
Under equilibrium conditions, we must have for all i,r

M

A =800 + E NP0
i=1
or
A = S 4 AP 1<r<R (19)
Hence
A =S§M[[—pM]=1 | <,<R (20)

where I'is an M X M identity matrix.

Because of retransmissions, the arrival rate v;,(") of class r
packets to node i must be greater than the corresponding
throughput rate A;(. The number of retransmissions over a
channel is assumed to be geometrically distributed for each
packet. Thus, we have

S.(r
')/i(r) = ! -+
l _BOi j

)\j(r)Pji(r)
1 —B;;

Mz

=[ S0 s N‘”Pji(’)] 1
1 —€p; i=1 i —‘ej,' 1 _B,'

M=

(2]

The fraction of packets accepted by node i with no detected
errors is

Q)

1 ——Eiz)\i(r) J +
1_60,'

Substituting (21) into (11), we obtain a set of M nonlinear
simultaneous equations which can be solved for the M nodal
blocking probabilities,

u Kf”Rﬁ")] 22)

=1 1—ey

Bi:-fi(BlvBZ: Y BM,(X), I<I<M (23)
In the above equations, the network input level oz‘ has been
shown explicitly as a parameter. (Recall that the network

input traffic pattern is assumed to be fixed.)
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Nerwork Performance Measures

The buffer utilization fdctor of node i is defined to be
F= (24)

where n; is given by (12); g;, 7;, and [; denote the expected
total number of packets in the queues, time-out boxes, and
ack boxes, respectively, of node i The average buffer utiliza-
tion factor for the network is defined to be

i

<
>
Ungs

(25
N,

M=

i=1

Applying Little’s formula [15], the expected nodal delay
for node i is

(26)

where \; £ ZE | A\, is the throughput rate of node i. Note
that the time a packet spends in an ack box does not con-
tribute toward its delay. Applying Little’s formula again, the
average network delay incurred by a packet (after it has been
admitted into the network) is

M M M+1
D@ m) Y, D Nedy
D= i=1 i=1 j=1
S
M _ M M+1
Z (’7—1 —)+ 2 Aijdif
i=1 =1 j=1
= 27
S (27)
where

R
Aij :Z AP

r=1
d;; g Propagation delay in channel (i)

and § given by (2) is the network throughput rate under
equilibrium conditions.

The average network blocking probability for host/terminal
inputs is defined to be

M
D88
1

i=
By & —
H= y
’
Si
=1

(28)

where
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Si

YA S —
P =

(1 —e)(1 — By

and S; £ TR, §,( is the packet input rate into node i from

its hosts and terminals. The average internode blocking prob-

ability for node to node transmissions is defined to be

M
Z (vi —Si’)Bi
L (29)
Z (ri—Si")
=1

where v; £ TR, 4,07 is the arrival rate of all packets to
node i

COMPUTATIONAL ALGORITHMS

The analytic results presented so far depend upon solution
of the set of nonlinear equations in (23) which we rewrite as

B =f(B,a) (30)
where B and f are M-dimensional column vectors. For a given
@, (30) can be solved through an iterative process in which an
initial approximation B9 is used to generate a sequence of
successive approximations Bl, B2, -, Bk ... which converge
to a solution. The Newton-Raphson method [16], {17] is
used here such that

Bk+l = Bk — [ —VA(B*,a)] 71 [B* — f(B*,a)] (1)
wheré Vf, the gradient of f with respect to B, is defined to be
the following M X M matrix:

N
3B, 0B, 0By
o o
ot o
3B, 3By

For a stopping condition, we define the kth-iteration error
estimate to be

. o 1 (B" ) — B |
T ABRa)

where

M 1/2
Ixl2(dx2)
i=1

for x = [xyx9 - xy].
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B* is accepted to be a solution of (30) if n;, is smaller than
some prespecified convergence tolerance.

Given any reasonable network size M and nodal storage
capacities N;, 1 < i < M, a very efficient computational al-
gorithm is needed for evaluating the gradient matrix Vf. In
Appendix B, a solution for Vf is shown. Using this solution,
the above computational procedure has been implemented in

- APL and currently runs on an IBM 370/168 system. For the

19 node network example to be described below, with B® = 0
and a convergence tolerance of 0.0001, the above computa-
tional procedure usually converges within a few iterations.
(However, if o is large such that the network is near saturation,
the above iterative procedure converges only if the initial
approximation B9 is sufficiently close to the solution.)

For a given packet switching network, we would like to
determine the S/F nodal storage capacities {¥;} such that 1)
the sum T, N, is minimized, and 2) the resulting nodal
blocking probabilities are each smaller than some prespecified
value € (0 < € < 1). We propose the algorithm below which
generates a set of {NV;} by considering one S/F node at a time.
We shall refer to it as the buffer capacity requirement algo-
rithm (BCR). It can easily be shown that for a given ¢, the set
of buffer capacities {V;} determined by BCR satisfies condi-
tion 2) above. This buffer capacity assignment is also balanced
in the sense that the resulting nodal blocking probabilities are
approximately the same. Consequently, BCR is believed to be
near optimal with respect to the criterion in 1) for a fixed
value of By, By Or Bax -

Algorithm {BCR)

Stepl: LetB;=¢, I<i<M

Step 2: Fori=1,2, -, M, repeat the following steps.

Step 3: Evaluate v, from (21) and the traffic intensities
a;, bj,and ¢; for 1 <r<Rand 0<j<M+ 1.

Step4: N; < 1.

Step 5: Evaluate B; from (6)-(11).

Step 6: If B; < € then /; is the number of S/F buffers for

node i. Otherwise, V; < N; + 1 and go to Step 5.

A NETWORK EXAMPLE

In this section, numerical results for the performance of a
packet switching network example are illustrated. The net-
work to be considered consists of 19 S/F nodes3 intercon-
nected by 50, 19.2, and 9.6 kbits/s full duplex lines. (See Fig.
3). The routing algorithm is assumed to be fixed (nonbi-
furcated) and is completely specified by a 19 X 19 fixed
routing matrix* FRM = [FRM;]. Each element FRM;; de-
notes the next node to forward a packet which is currently at
node / and whose destination is node j. Since the routing of a
packet at any intermediate node is based only upon its desti-
nation node, we distinguish R = 19 classes of packets. The

*This 19 node network topology is the same as the one studied by
Kleinrock [1].

*This routing matrix was generated by hand and attempts were
made to balance the traffic within the network. The matrix is shown
in [18]. .



400

50 KBPS )
19.2 KBPS
~—— 9.6 KBPS

Fig. 3.

The 19 node network.

transition probabilities P;;(") used in our model can be deter-
mined from FRM as follows. For 1 <r <19

1, FY{A{h.::f
Py = _ 1<ij<19
0, otherwise
1, i=r )
Pigo" = ) 1<i<19.
0, otherwise

A uniform network input traffic pattern is assumed. (0;¢") =
2.139 packets/s for all distinct pairs of i and r. With infinite
storage capacity, this network saturates asa —> 1.)

We also assume that the average processing time (1/y;) of
a packet is 0.001 s for all central processors. The average
packet length is 560 bits so that u;; = C;;/560 packets/s where
Cy; represents channel speed in bits/s. Corresponding to the
channel speeds of 50, 19.2, and 9.6 kbits/s, the average ack
delays are assumed to be 0.025, 0.065 and 0.130 s, respec-
tively, and the average time-out intervals are assumed to be
0.125, 0325, and 0.650 s, respectively. Local channels
between S/F nodes and their sinks are assumed to be 100
kbits/s. The corresponding average ack and time-out delays
are assumed to be zero. The packet error probability is
assumed to be 0.001 for all channels. All channel propagation
delays are assumed to be zero.

Discussion of Results

Results illustrating the performance of the 19 node net-
work atre given in Figs. 4-8. In Fig. 4, a sample output of
the APL program is shown for the network input level a =
0.85 and a fixed number (=30) of S/F buffers at each of the
19 nodes. Note that the nodal blocking probabilities before
and after the fourth interation are equal (to three significant
digits). Note also that a significant fraction of the average
buffer utilization is due to packets (which have been success-
fully forwarded) waiting for the return of acks.

Three different buffer capacity assignment schemes have
been considered. 1) Equal assignment (each node is given the
same number of S/F buffers such as in a homogeneous net-
work). 2) Proportional assignment (each node is given a
number of S/F buffers proportional to its expected require-
ment computed under the assumption of infinite nodal
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THE ERROR ESTIMATE IS 1 APTER 1 ITERATION
THE ERROR ESTIMATE IS 0,03627 AFTER 2 ITFRATIONS
THE ERROR ESTIMATE IS 0.0005538 AFTEP 3 ITLRATICHS
THE ERROR ESTIMATE IS 8.156E°6 AFTER & ITEFATIONS
THE TOTAL NETWORK THROUGHPUT RATE = 621.7 PACKETS/SEC.
OR 3.481ES RBRITS/SEC.

AVERAGE NETWORK DELAY = 0.1929 SECOND
AVERAGE NETWORK BUFFER UTILIZATION = 0.355

(0.2069 FOR QUEUEING, 0,003513 FOR TIME-0QUT, 0.1846 FOR ACX)
AVERAGE NETWOPRK RLOCKING PROFABILITY = 0,002983
AVERAGE INTERWODE BLOCKING PROBARILITY = 0.004137
BLOCKING PROBABILITIRS AT NODES I=1 70 19:

2.345£75 0.0001627 0,01159 0.006968 0.001308 0,00148 3,074775
0.009693 0,0004889 0.002065 0,001024 0.008298 0.009236 0.002985
8.249E712 5,797£°8 8.884K 5 0,0001077 0.0008385
ARRIVAL RATES TO THE NODES:

80,06 74,62 167.5 150.3 67,41 140.3 107.4 196.6 92,85 9u,82 111.1

163.3 99,17 107.7 87.3% 112.,8 154.7 81,89 76.49
THROUGHPUT RATES AT THE KODES:
79.98 74,53 165,4 149.1 67.26 140 107.2 194,5 92,71 94,52 110.9
161.8 98,16 107.2 87,25 112.7 154.5 81,8 76.35
AVERAGE DELAYS AT THE NODES:
0,04953 0,05586 0,06227 0,05927 0.1038. 0,04975 0.03863 0.04862
0,06003 0.0792 0.05935 0.0604 0.0994 0.07501 0,01884 0.01917
0.02628 0,05709 0.07066
BUFFER UTILIZATIONS AT THE NODES:
0.2503 0,2373 0,552 0,4691 0,3825 0.,4247 0,2561 0.,5181 0,3156
0.427 0.3853 0.528 0.4948 0,4535 0.119% 0,1388 0,237 0.2818
0.2744
NODAL BLOCKING PROBABILITIES AFTER FINAL ITERATION:

2.345E75 0,0001627 0,01159 0.006968 0,001308 0,00148 3,0746E°5
0.009633 0.0004889 0.002065 0,00102L 0,008298 0.009236 0.002985
8.25£712 5,798E°8 B,8BUE § 0,0001077 0,0008385

Fig. 4. Network performance at « = .85 and N;=30(1<i<19).
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storage). 3) BCR. In Fig. 5, By, the average network blocking
probability for host/terminal inputs, is shown versus N, the
average number of S/F buffers per node. In Fig. 6, By, the
average internode blocking probability for node to node trans-
missions, versus NV is shown. In Fig. 7,

max B,
1<i<m

Bmax =

versus /V is shown. Note that for the same N and a, By is slightly
bigger than By in all cases. In general, the above blocking prob-
abilities decrease as V increases or o decreases. For the same «
and N, a network using BCR has significantly smaller nodal
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blocking probabilities than one using equal assignment or pro-
portional assignment. This is true since BCR gives rise to a
relatively balanced set of {B;}, which is evident from
Figs. 5-7 in which By = By = B, for BCR. In Fig. 5,
note that between equal assignment and proportional assign-
ment, the former is better for small & while the latter is better
for large «.
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The average network delay D is shown versus NV for dif-
ferent « in Fig. 8. (Delay values for proportional assignment
are not shown. They lie between delay values for the other
two schemes in all cases.) As N increases, D decreases to a
minimum point and then increases slightly before leveling off.
Recall that D represents the average delay incurred by a packet
after it has been admitted into the network. The average end-
to-end delay incurred by a packet must include, in addition to
D, the average admission delay due to nodal blocking.

CONCLUSIONS

In this paper, an analytic model has been developed for a
packet switching network in which each node has a finite pool
of S/F buffers. Individual S/F nodes are modeled as queueing
networks with different classes of packets. Both transmission
control mechanisms of positive acknowledgment and time-out
are included in this formulation. The single node queueing
network results are interfaced by applying.a continuity of flow
constraint; an efficient computational procedure is given for
iterative solution of the resulting set of nonlinear equations. A
heuristic algorithm (BCR) is proposed for determining a
balanced set of buffer requirements to achieve some small
probability of nodal blocking. Finally, trading relations among
network throughput, average delay, nodal blocking prob-
abilities and S/F buffer req\iirer‘nents have been illustrated
using a 19 node network example.

The model and analytic results developed in thlS paper may

be used to supplement other network design and optimization

techniques based upon the simpler models which assume in-
finite nodal storage [1]-[3]. Note, however, that we have
been concerned mainly with S/F buffer requirements in a
packet switching network. In an actual S/F node, additional
storage capacity will be needed to satisfy other requirements,
e.g., storage of the program code, storage of packets tem-
porarily delayed by flow control mechanisms, provision of
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buffers reserved for multipacket messages in-transit, etc. These
other requirements must be taken into account in any global
network design procedure. They constitute important areas for
future research in packet switching networks.

APPENDIX A

The following recursive algorithm for evaluating the
expression

M+1
gmy= 2 11 (a)%
M+1 j=0
= qj=n
=0

has been proposed independently by Buzen [13], and Reiser
and Kobayashi [14].
1) Define

Emk) & Z H (a;)%

p qj=m

=0

Z(m,0)=ap™, m=0,1,"n
g0,k)=1,

k=0,1,- M+ 1.

2) The iteration step is

gmk)=gmk — 1)+ a,8(m — 1,k) m>0 k>0.

3) Finally,

gn) =gn,M+1).

APPENDIX B

To evaluate Vf, we focus our attention upon node i and ob-
tain solutions for 8f;/8B),, 1 <k <M. As before, the subscript
i denoting node i'is suppressed wherever no ambiguity arises.
From (9)-(11),

N, N,
f _pWyx) p}g .,,x) ®1)
GV;) :
1+ Z p(N.x)
N=1
where
x&b; +c, (B2)

Taking the partial derivative of (B1), with respect to By,
we have

o,  pNyx) 1

9B, 3B, G(N,)
_ p(Nx) [”i ap(Mx)]
[GWN)IZ L& 8B, |

Applying (9)-(11) and (23), the above equation may be re-
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written as
ofi ap(WVix) i 9p(V,x)
=P(0 )[-——— —Ji . (B3)
0B}, 0By, A=t 0B,

Taking the partial derivative of (7), with respect to B, we
have

IpVx) X

Nx) &, dgln) XN
oB,, ,Z:l 0B, (N —n)!

xN—n—1 ox
[Z &(n )_—(N n—l)'] 3B,

N=1.

(B4)
From (B2) and definitions of the traffic intensities at node i,

M+1

x = Z (by; +cip)
i=1
M+1 R rp..(r)
= . 7—PZH——B—I— .(T)P..(V)v,. (] —Eﬂ)
71 12} iy i
=1 r=1 (1—=By)

where from (3)

B=1—(—e;)X1 —B)
and thus for k #i

) ob; b

RaSL : , k#i

0B, 0B, (1 =Bp)[1 —(1 —ep)(1 —By)]

(BS)

Applying (21) we have for k =i

ox x

— = , k=1 (B6)

aBk l _Bi

To evaluate the partial derivative of g{x), with respect to
By, we consider the following two cases.

Case 1—-k # i: Taking the partial derivative of (6), with
respect to By, we have

M+1

og(n
g()= Z —H (a”)qu—'k , n=1
0B, M+1 ik j=0 B,
z qg=n
j=0
where

TPy (1 — )

R !
w22 (1—ew)

— By ik
and
B, 1—B,
Thus,
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ag(n) 1 M+1
= gie I1 ()i
0B, 1 —B M+12 eI
2 gy=n
i=0
1~ n M+1
= > > I (ayp)ei | ay)
1 =By i121f m+1 j=0
)y qj=n 1 j#k
j;k
1 n
= > [e(n) —ape(n — D] ay ). (B7)
=B =

Case 2—k = i: We assumed that P;;(") = 0 for all i and r.
Then, from definitions of the traffic intensities a;;, 0 <j <
M+ 1, at node i and (6), we have

__&m
g(n)= (1 —B)

where
gn)=g(n) lp,~0-
Thus, we have

og(n) _ n (
o5, (-5 "

k=i (B8)

Finally, 0f;/0B), can be evaluated by applying (B3)-(BS).
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