An Extension of Moore’s Result for Closed Queuing Networks

Abstract: In this communication, Moore’s result for the normalization constant of a closed queuing network of exponential servers is extended to the case of nondistinct traffic intensities. We then show that this result can be applied to various more general closed and semiclosed queuing networks with a product-form solution.

Introduction
Substantial progress has been made recently in extending the scope of Jackson’s product-form solution for queuing networks [1, 5]. At the same time, a number of very efficient computational algorithms [3, 6, 7, 8, 12] have been developed for evaluating the normalization constant and marginal queue length statistics for such networks. These algorithms are all based upon some recursive scheme. For the special case of a closed network of exponential servers with distinct traffic intensities, Moore has shown an explicit solution for the normalization constant using the partial fraction method [9]. In this note, we extend Moore’s result to the case of nondistinct traffic intensities and show that it can be applied to various more general closed and semiclosed queuing networks with the product-form solution. We note, however, that the partial fraction method is less versatile than recursive techniques. It also requires the summation of terms with alternating signs, and thus may be subject to round-off errors in some cases [3].

Assumptions
We outline here the scope of queuing networks for which the results in this communication are applicable. Consider a queuing network with M_i service stations and R classes of customers. (See [2, 3].) At the completion of a service request, a customer may change its class membership and proceed to another service station (or leave the network) according to fixed transition probabilities. Four types of service stations may be considered: 1) a single server, first-come-first-served service discipline (FCFS); 2) a single server, processor-sharing service discipline (PS); 3) a single server, last-come-first-served preemptive-resume service discipline (LCFS); and 4) no queuing, arbitrarily many servers (IS). In an FCFS service station, all customers have the same negative exponential service time distribution with a fixed service rate. In PS, LCFS, or IS service stations, each class of customers may have its own general service time distribution which has a rational Laplace transform.

Let $n_i, 1 \leq i \leq M_i$, denote the number of customers at service station i. We assume that the underlying Markov chain of customer transitions is irreducible. The arrival process of customers to the network is a Poisson process with an arrival rate dependent on the instantaneous number n_i of customers in the network at time t. Moreover, if $n_i = N_i$, a departing customer is immediately replaced; if $n_i = N_i$, all arrivals are lost. Thus, n_i is constrained: $N_i \leq n_i \leq N_i$. In particular, for a closed queuing network $N_i = N_i$. Below, we first present our results for closed queuing networks and then indicate how to extend these results to the more general case of semiclosed networks ($N_i < N_i$) [7].

Results for closed queuing networks
Let there be M service stations of types FCFS, PS, and LCFS labeled by $[1, 2, \cdots, M]$, and $M_r - M$ service stations of type IS labeled by $[M + 1, \cdots, M_r]$. Suppose $p_{ir}, 1 \leq i \leq M_r$ and $1 \leq r \leq R$, are the relative traffic intensities [3] of class r customers at service station i. Define

$$p_i \triangleq \sum_{r=1}^{M_r} p_{ir}, \quad 1 \leq i \leq M_r.$$

The equilibrium joint queue length distribution is

$$P(n_1, \cdots, n_M) = C \left[\prod_{i=1}^{M} (\rho_i)^{n_i} \right] \left[\prod_{i=1}^{M} \frac{(\rho_i)^{n_i}}{n_i!} \right],$$

where C is a normalization constant chosen to make the equilibrium state probabilities sum to one. To solve for C, we first define

$$384$$
\[n_0 \triangleq \sum_{i=M}^{M} n_i \]

and

\[\rho_0 \triangleq \sum_{i=M+1}^{M} \rho_i. \]

From Eq. (1) we obtain the joint probability distribution

\[P(n_0, n_1, \ldots, n_N) = C \frac{(\rho_0)^{n_0}}{n_0!} \prod_{i=1}^{M} (\rho_i)^{n_i}, \]

Define

\[G(n) \triangleq \begin{cases}
1, & n = 0; \\
\sum_{n \in \mathcal{F}(n)} \frac{(\rho_0)^{n_0} \prod_{i=1}^{M} (\rho_i)^{n_i}}{n_0!}, & n \geq 1,
\end{cases} \]

where

\[n = (n_0, n_1, \ldots, n_M), \]

and

\[\mathcal{F}(n) \triangleq \{ n \mid \sum_{i=0}^{M} n_i = n, \quad n_i \geq 0 \text{ for all } i \}. \]

For a closed network of \(N \) customers, \(P(n), n \in \mathcal{F}(N) \) must sum to one. Thus the normalization constant is

\[C = [G(N)]^{-1}. \]

- **Solution for \(G(N) \)**

We first define

\[g(n) \triangleq \begin{cases}
1, & n = 0; \\
\sum_{n \in \mathcal{F}'(n)} \frac{\prod_{i=1}^{M} (\rho_i)^{n_i}}{n_0!}, & n \geq 1,
\end{cases} \]

where

\[n' = (n_1, n_2, \ldots, n_M), \]

and

\[\mathcal{F}'(n) \triangleq \{ n' \mid \sum_{i=1}^{M} n_i = n, \quad n_i \geq 0 \text{ for all } i \}. \]

For a queuing network with no IS service station, the normalization constant \(C \) is equal to \([g(N)]^{-1}\). Moore has shown an explicit solution for \(g(n) \) under the assumption that the traffic intensities \(\rho_i \) are distinct [9]. In the Appendix, we extend Moore’s derivation to the case of nondistinct traffic intensities. The results are as follows.

Let there be \(M' \) distinct \(\rho_i \) with multiplicity \(m(i) \) such that

\[\sum_{i=1}^{M'} m(i) = M. \]

We have then

\[g(n) = \sum_{i=1}^{M'} (\rho_i)^{n} \sum_{j=0}^{m(i)-1} \binom{m(i)-1}{j} A_{ij}, \]

where

\[A_{ij} = \prod_{\ell=1}^{i} \left\{ [1 - (\rho_\ell/\rho_i)]^{-1} \right\}, \quad i = 1, 2, \ldots, M', \]

and

\[A_{ij} = \frac{1}{j} \sum_{\ell=0}^{j-1} A_{i\ell} (-1)^{j-i} \sum_{\ell=1}^{M'} m(k) \frac{\rho_k}{\rho_i - \rho_k}, \]

\[i = 1, 2, \ldots, M'; \]

\[j = 1, 2, \ldots, m(i) - 1. \]

Note that \(M' \geq 2 \) is assumed above. If \(M' = 1 \), then we simply have

\[g(n) = \binom{n + m(i) - 1}{n} \rho_i. \]

Example 1 If all \(\rho_i \) are distinct, the above solution for \(g(n) \) reduces to Moore’s result:

\[g(n) = \sum_{i=1}^{M} \rho_i^{n_i}, \]

where

\[A_i = \prod_{\ell=1}^{i} \frac{[1 - (\rho_\ell/\rho_i)]^{-1}}{[n + 1 - \sum_{k=1}^{M} \rho_k - \rho_i - \rho_k].} \]

Example 2 In a network with \(M + 1 \) service stations, \(\rho_M = \rho_{M+1} \), and distinct \(\rho_i \) for \(1 \leq i \leq M - 1 \),

\[g(n) = \sum_{i=1}^{M-1} \frac{(\rho_i)^{n+i} \prod_{\ell=1}^{M} (\rho_i - \rho_\ell) \prod_{k=1}^{M-1} (\rho_M - \rho_k)}{n + 1 - \sum_{k=1}^{M-1} \rho_k}. \]

To obtain \(G(N) \), Eq. (2) may be rewritten as

\[G(N) = \sum_{n=0}^{N} g(n) \frac{(\rho_0)^{N-n}}{(N-n)!}. \]

By substituting Eq. (4) into the above and exchanging summations, we obtain

\[G(N) = \sum_{i=1}^{M} \rho_i \sum_{n=0}^{N} \frac{(\rho_0/\rho_i)^n}{n!} \times \sum_{j=0}^{m(i)-1} A_{ij} \binom{n + m(i) - 1 - j}{n}. \]

Example 3 All \(\rho_i \) are distinct.

\[G(N) = \sum_{i=1}^{M} \frac{\rho_i}{n!}. \]
• Marginal queue length statistics for an FCFS, PS, or LCFS service station

The marginal queue length probability distribution for an FCFS, PS, or LCFS service station is

\[P[n_i \geq k] = \rho_i \frac{G(N-k)}{G(N)}. \]
(8)

The expected queue length is

\[E[n_i] = \sum_{k=1}^{N} \rho_i^k \frac{G(N-k)}{G(N)}. \]
(9)

These last two equations correspond to identical results shown by Buzen for a closed queuing network with no IS service station [6]. By substituting Eq. (7) for \(G(N-k) \) into Eq. (9), we obtain

\[
E[n_i] = \frac{1}{G(N)} \sum_{i=1}^{M'} \left(\rho_i \right)^N \sum_{j=0}^{m_{i-1}} \left(A_y \right) \\
\times \sum_{n=0}^{n-1} \left(\frac{\rho_i}{\rho_j} \right)^{N-n} \frac{(n + m(i) - 1 - j)}{n} \sum_{y=0}^{n-1} \left(\frac{\rho_i}{\rho_j} \right)^y.
\]
(10)

Example 4 All \(\rho_i \) are distinct.

\[
E[n_i] = \frac{1}{G(N)} \sum_{i=1}^{M'} \left(A_i \rho_i \right)^N \rho_i - \rho_i \\
\times \sum_{n=0}^{n-1} \left(\frac{\rho_i}{\rho_j} \right)^{N-n} \left[1 - \left(\frac{\rho_i}{\rho_j} \right)^{N-n} \right].
\]

Example 5 The queuing network has no IS service station.

\[
E[n_i] = \frac{1}{G(N)} \sum_{i=1}^{M'} A_i \rho_i \left(\rho_i \right)^N \rho_i - \rho_i \\
= \rho_i \frac{G(N-1)}{G(N)};
\]
(11)

The marginal queue length statistics for an IS service station

\[
P[n_i = k] = \rho_i^k \frac{\bar{G}(N-k, \rho_0 - \rho_i)}{G(N)},
\]
where

\[
\bar{G}(n,x) = \sum_{l=0}^{n} g(l-n) \frac{x^l}{l!}.
\]

The first and second moments are

\[
E[n_i] = \sum_{k=1}^{N} k \ P[n_i = k] = \rho_i \ G(N-1) \ G(N),
\]
(12)

\[
E[(n_i)^2] = \sum_{k=1}^{N} k^2 \ P[n_i = k] = \left[\frac{G(N)}{G(N-1)} \right] \ [(\rho_i)^2 \ G(N-2) + \rho_i \ G(N-1)].
\]
(13)

By replacing \(\rho_i \) by the appropriate traffic intensity, Eqs. (11)–(13) can be applied to evaluate the marginal statistics for the number of customers belonging to any combination of classes in any group of IS service stations.

Extension to semiclosed networks

For a semiclosed network, define

\[
\Lambda(n) = \prod_{n=N_i}^{n-1} \lambda(m), \quad n > N_i.
\]

The normalization constant has been shown by Reiser and Kobayashi [7] to be

\[
C = \left[\sum_{n=N_i}^{N} \Lambda(n) \ G(n) \right]^{-1}.
\]

Formulas for marginal queue length statistics in Eqs. (8), (9), and (11)–(13) still apply if \(G(N-k) \) is replaced by

\[
\bar{G}'(k) = \sum_{n=max(k, N_i-k)}^{N} \Lambda(n+k) \ G(n),
\]
and \(\bar{G}(N-k, x) \) is replaced by

\[
\bar{G}''(k,x) = \sum_{n=max(k, N_i-k)}^{N} \Lambda(n+k) \ G(n,x),
\]
where \(k = 0, 1, \ldots, N_i \).

Conclusion

We have extended Moore's result for a closed network of exponential servers to the case of nondistinct traffic intensities. Solutions for the normalization constant and marginal queue length statistics of various closed and semiclosed queuing networks have been shown.

Appendix

Consider \(M' \) distinct \(\rho_i \) with multiplicity \(m(i) \) such that

\[
\sum_{i=1}^{M'} m(i) = M.
\]

Define

\[
T(t) = \prod_{i=1}^{M'} [(1 - \rho_i t)^{m(i)}]^{-1}.
\]

(A1)

By expanding \(T(t) \) into partial fractions,

\[
T(t) = \sum_{i=1}^{M'} \sum_{j=0}^{m(i)-1} \frac{A_{ij}}{(1 - \rho_i t)^{m(i)-j}},
\]

(A2)
where \(A_i \) are constants to be determined below. From Eq. (3) and following [9], \(g(n) \) is equal to the coefficient of \(t^{n} \) in \(T(t) \), and is given by

\[
g(n) = \frac{\sum_{j=0}^{n} (\rho_i)^{j+1} \left(n + m(i) - j - 1 \right) A_j}{n!}.
\]

To solve for \(A_i \), we define

\[
H(t) = \prod_{k=1}^{M'} \frac{1}{1 - (\rho_k / \rho_i)} \left(1 - (\rho_k / \rho_i)^{m(k)} \right)^{-1}.
\]

From Eqs. (A1) and (A2),

\[
A_i = H(t) \left[\sum_{j=0}^{n} \frac{(\rho_i)^{j+1}}{j!} \right] A_j,
\]

and

\[
A_i = -\frac{1}{(-\rho_i)^{j+1}} \frac{\partial^j}{\partial t^j} H(t) \bigg|_{t=0},
\]

where \(i = 1, 2, \ldots, M' \), \(1 \leq j \leq n \).

Using (A3), we have

\[
\frac{\partial}{\partial t} H(t) = \frac{\partial}{\partial t} \left(\prod_{k=1}^{M'} \frac{1}{1 - (\rho_k / \rho_i)} \left(1 - (\rho_k / \rho_i)^{m(k)} \right)^{-1} \right).
\]

By substituting Eq. (A5) into the above and rearranging,

\[
A_i = -\frac{1}{(-\rho_i)^{j+1}} \sum_{j=0}^{n} \frac{(\rho_i)^{j+1}}{j!} \sum_{k=1}^{M} \frac{m(k) \left(\frac{\rho_k}{\rho_i} \right)^{j+1-i}}{\rho_i - \rho_k},
\]

where \(1 \leq i \leq M' \), \(1 \leq j \leq m(i) - 1 \).

References

Received September 18, 1976

The author is located at the IBM Thomas J. Watson Research Center, Yorktown Heights, New York 10598.