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Abstract—The delay performance of a Time Division Mulitiple
Access (TDMA) channel for transmitting data messages is considered.

. The channel is assumed to be fixed assigned to a station with unlimited

buffer capacity and Poisson message arrivals. Each message gives rise to
one or more packets for transmission into fixed-length time slots. The
steady-state probability generating function of the queue size is derived.
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A formula for the expected message delay is given. The analysis is then
generalized to a nonpreemptive priority queue dlsc1plme, expected mes-
sage delay formulas are given for the priority classes.

INTRODUCTION

As satellite communications mature, the trend‘ is toward
digital transmission and Time Division Multiple Access (TDMA)
in preference to the use of Frequency Modulation and Fre-
quency Division Multiple Access (FDMA) which predominate
today [1]. The purpose of this paper is to analyze the delay
performance of TDMA channels for transmitting data messages.
Although this work -was originally motivated by satellite
TDMA systems, the analysis to be presented is not predlcated
upon satellite channels.

A station with a fixed assigned TDMA channel and unlimited
buffer capacity for queueing'is considered. It is assumed that
data messages arrive at the station according to an independent
Poisson . process.* From each message, one oOr more fixed-
length packets ‘are formed. (A packet -corresponds to the
amount ‘of data that can be transmitted into a TDMA time
slot.) The number of packets comprising a message is given by
a general probability distribution. We solve for the steady-
state probability generating function of the station queue size.
From this, an explicit formula for the expected message delay
(total time in queue and transmission) is obtained. ‘Next, the
analysis is generalized to a nonpreemptive priority queue
discipline. Expected message delay formulas are obtained for
the priority classes.

Consider a TDMA system in which time is slottéd and txme
slots are organized into frames of, say, M slots indexed from
I'to M as shown in Fig. 1. Time slots with the same index in
consecutive frames form a TDMA channel. (This is also refered
to as synchronous time division multiplexing.) Let the dura-

. tion of a frame be T seconds. A station using a TDMA channel

transmits oné packet of data into 4 time slot of T/M seconds
(provided ‘the queue is nonempty); it then becomes idle for
(M — 1)T/M seconds before it can transmit another packet.
For the purposes of this paper, it is immaterial to the station
how the rest of the frame is shared among other users.
Synchronous time division multiplexing was prevmusly
studied by Chu and Konhe1m [2]. Their model permits a
general distribution for the number of packet arrivals within
a time slot and they solved for the probability generating

- function of the queuessize (m=number of packets) at time

instants just prior to the beginning of a time slot. They also
obtained the expected delay experienced by a “virfual”
message arrival. By assuming Poisson message arrivals and
employing a different analytic approach, we obtamed different
results for the steady-state probability generating functlon of
the queue size (in number of messages) as seen by a random
observer as well as the expected delay actually experienced
by messages.

It later came to our attention that Hayes {3], using yet
another analytic approach, obtained the probabxhty .Zenerating
function of message delay for the’ nonprlorlty case considered
below. His expected message delay formula is identical to
ours. The nonpreemptive priority queue d1sc1p11ne was also
studied under more restrictive assumiptions within the context
of loop systems by Spragins [4]. In particular, our modpl
reduces to his if we have exactly one slot per frame and one
packet per message.
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Figure 1. TDMA channels.

THE ANALYSIS.

We shall consider a station utilizing a TDMA channel as a
single-server queue in the usual sense [5] by adopting the
following definition of service time. The service time of a
packet includes, by definition, the time during which the

packet is at the head of the queue with no transmission in

progress and its transmission time of T/M seconds. The service
time of a packet is thus exactly equal to T seconds except for
the first packet of a message which arrives to find an empty
system; the service time of such packets is a random variable
(defined to be X) distributed between T/M and T + T/M.
The service time of a message is the aggregate service time
of its constituent packets. The above definition is illustrated
in the upper part of Fig. 2 in which we show four consecutive
message arrivals and their subsequent departures. In this
figure, §; represents the service time and W; the waiting time
of the ith message. Examples of busy and idle petiods are also

‘shown. Note that the idle period I is exponentially distributed

under the assumption of Poisson arrivals. The random variable
Y, defined to be X — T/M, is a function of I. The functional

. relationship is illustrated in the bottom part of Fig. 2.

Let N, be the number of messages in the system (both
queue and service) at time ¢, We now proceed to find the
steady-state probability generating function of N, by studying
the following queuing system. Consider a single-server queue
with Poisson arrivals at A messages per second. The service
timg distribution of a message which initiates a busy period
is B(x) with first and second moments b; and b,. All sub-
sequent messages in the same busy period have service times
drawn independently from the disttibution B(x) with first
and second moments by and b,. Let

P, = lim Prob [N;=n

t—>oo X
and define the transforms
P) =) P,

n=0

B*(s) ;/w e %% 4dB(x)
~Jo

B*(s) =f eo% dB(x).
0

Theorem 1 (Welch [6]): 1f \by < 1, then

RolzB40 = 22) = B0\ ~ M)

- P = . '
O T T ha e @

where
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Figure 2. Illustration of busy and idle periods, waiting and
service times.
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Proof: The proof is similar to that for the M/G/1 queug,

[S, Vol. ). Eq. (1) can be easily obtained by considering the
imbedded Markov chain of queue size at service completion
times. Also, since it is—assumed that the arrival process is
Poisson and that messages arrive and depart individually, the
steady-state probability generating function of the queue
size at service completion times is equal to the steady-state
probability generating function of N; sampled at random. Eq.
(2) is obtained by evaluating Eq. (1)atz = 1. Q.E.D.

The above theorem is now used to obtain formulas for the
expected message delay and expected queue size of a station
using a TDMA channel. Higher moments of message delay and
queue size can be obtained in a similar manner. However, only
averages will be considered in what follows.

Let the number of packets in a message be L which is a
random variable given by the probability density {g;};-;®
with first and second moments L and L, where

& =Prob [L =1].
The message service time distributions are given by the follow-

ing transforms

- B*s) =Y gB*)]’
I=1

-~

Bro) =) Y mlpr1 L
: =1 ... P .

P i

where

B*(s) = o7

i

T
fr(s) = st / &Y aF(y)

F(y)=Prob [Y<y].

Thé‘lower part of Fig. 2 illustrates Y as é function of the idle
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period I which is exponentially distributed. (We note that this
dependence does not affect the proof of Theorem 1.) FQ)

_ is obtained to be

. T R
—M7-3)
e (=5 [ery — 1] - T
1 v +U y—T+1—l';
—e
F(y) =<
‘ ——)\(T—I%—y)
‘[1-e ] o<y<rT
' ‘1 y>T
where
1 x20
Ulx) &
0 x<0.

The first and second moments of Y are given by

—a(r_T »
= T 1 Te MT—5)
il Gy A s ®
— 2 2
2 — T_Z__l + l
: M A A
2 T e_A(T—J%)
+{T —2; T_‘?{T—j | 4

The first and second moments of X are thus given by

T+ 5
= M )
— —_ 2
X2='Y2+21?+<1> . (6)
M M

The first and second moments of message service times are

by =L,T @)

by ={L;~-DT+X 5 ‘ (8)
by =LoT? 9)
bp=X2+2X(Ly - DT+ Ly - 2Ly + DT2. (10)

The probability of an empty system is obtained from Egs. (2),
(3), (5), (7) and (8).

1 \by

Py = A
® 1~ by - by)

(1= Ay T)(1 — AT
=M. DA~ e (11

ATe—NT—T/M)

The expected number of messages in the system N is obtained
by evaluating the first derivative of Eq.(1)atz=1.
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_ Ab A2(by —
M= 1 _— (bo bzA)
1Moy —b1)  2[1-Nby — by)]
+ A2p, ,
272 1
2(1 — Aby) (12)

An application of Little’s formula [5, Vol. I, p. 17] gives the
expected message delay

_ by Aby - b
b= Ly 220
1 —Mby —b1)  2[1 = Ny — bl
\b
2 (13)
2(1 = Aby)
The expected service time of a message is
§=(1-Po)by + Pob, ‘
=by — Po(by — by)
by (
= Py 14
1 - Mby — by) )

which is just the first term in the expected message delay
formula. Hence, the expected waiting time is

ANboy - b Ab
7= (b - by) + 2

Py . (15)

Now if we substitute Eqs. (3)-(10) into Egs. (12)-(15), we
obtain the following results:

- AT AT N2L,T?
N= T—— +—  ——— 16)
MaT == M 201 =N, T)
perr-T+T 4 MoT* (17)
Y 2 M 20 -y
LlT—l (l—e;"‘T)“'*
S=—+ LY —— s
S—)\ }\Te—-)\(‘T—T/VMY ' (18)
W=Ly,T T o MaT? 1
Yo M 20w )
1 AT
~ } .(19)

B XTe;‘MT_ T/M)

The e"xpec’ted‘ message delay given in Eq. (17) is a very interest-
ing result. Suppose the burst transmission rate is C bits/s. The
data rate of a TDMA channel is thus C/M bits/s. Now consider
a FDMA channel which transmits continuously at C/M bits/s.
The expected message delay for such a channel is given by the
Pollaczek-Khinchin (P-K) formula [5, Vol. I. Eq. (5.6)] to be
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AL, T2
01 =N

Dpx =L, T+

Thus the expected message delay for a TDMA channel can be
expressed in terms of the expected message delay for a FDMA
channel at the same data rate as follows.

B=Bpg — 4+ (20)
P TS
This last is an interesting result because of its simplicity. It
is not obvious, however, because one might expect from
Welch’s model [6] that as the traffic intensity

péM]_T

approaches 1, the difference 5p K - D would vanish to zero
because the expected duration of a busy period becomes
infinite.

Finally, we note that if the duration T of a time frame is
shrunk to zero (by, for example, decreasing the packet length)
while the distribution of message lengths remains fixed, we
have

lim 5 = D—pK.

NONPREEMPTIVE PRIORITY QUEUE DISCIPLINE

We next consider the same system as in the previous section
"except that now messages belong to a number of priority
classes. The priority level of a message may depend, for ex-
amples, upon its length, source, destination(s) and/or its
type (data or control). The discipline being considered is the
nonpreemptive head-of-theline discipline of Cobham [7].
~ Let there be K message priority classes indexed from 1
to K where 1 denotes the highest priority level, X the lowest.
Messages in the kth priority class are assumed to arrive-ac-
cording to an independent Poisson process at A, messages
per second. Define .

A= i 7\,..
k=1

The number of packets in a class k¥ message is given by the
probability density {g;(*)};-, > with first and second moments
Ly® and Ly®) respectively. At the service completion of a
message, the server will serve next a message with the highest
priority level. The first-in-first-out (FIFQ) rule is assumed
for messages which belong to the same prioirity class. Define

Pr = )\kLl(k)T.
The first two moments by ®), b, (0, p,(®) ang bk of mes-

sage service times for the K priority classes are defined as in
the previous section. Let

X A
by = ):E = p 0
=1 x
A K Ak
by=3 = 5,09
A

Theorem 2: If Ef__lpi < 1, then the expected waiting time
of a class k message is

_ 14
Wy = - . k=1,2, K
i=1 i=1
(3}
where
?_: Apbg ¥ + :.E ALY e (22)

where P, is given by Eq. (2). The expected service time of a
class k message is

§k =P051(k) +(1 —Po)bl(k). (23)
The expected message delay of a class k message is

5k =§k + Wk- . 24

Proof: Eq. (21) is obtained by noting that Cobham’s

- result [7] can be applied directly here except for ¥, which is

the expected remaining service time of the message in service
found by an arbitrary arrival. From Wolff [8], we see that
V is given by
1 1) Si
= lim — s (25)
T_f“ T i+ 2 7

'
)

where n(7) is a random variable denoting the number of mes-
sage arrivals in the time interval [0, 71, and S; is the service
time of the jth message arrival, ﬁy cenmden\g\er_r,wals froin
each priority clas§ separately and noting. tmlPo is_ggual to

the fraction of (Poisson) arrivals which find the system empty, 3

Eq. (22) is obtained from Eq. (25) in the limit of 7 = oo,
Derivations of Egs. (23) and (24) are obvious. Q.E.D.

Observations: In the special case of K = 1 (no priority
classes), Eq. (24) for the expected message delay reduces to
Eq. (13) in the previous section -

As an example, we consider the shortest-message-ﬁrst
(SMF) priority discipline with FIFO between messages of
equal length. The expected waiting time of a message of /
packets is . .

.

Wy = e
(1-—)\21& )(1—)\ ig;T ) .
- k =1 i= ’

where

NPy . M1 - Pg)
V=-2—0b2 +"—=2*2-b2. (27)

Thé expected sefvice time‘of a message of / packets is
=Pol(l- DT+ X] + (1 - Po)IT

=T PyT-®). : (28)

WY oo
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Figure 3. Expected message delay versus traffic intensity.

NUMERICAL EXAMPLES

"In this section we examine the delay performance trade-
offs through some numerical examples. Let the burst trans-
mission rate be C bits/s. In Fig. 3, we consider a system with
C = 1.5 Mbits/s, M =
packet. Messages which arrive at the earth station under
consideration consist of either single-packets or eight-packets
with g1 = aand gg = 1 — a. Three cases are shown for a =

» 8/9 and 1/2 corresponding to (1) smgle-packet messages
only, (2) single-packet and eight-packet messages at equal
packet rate, and (3) single-packet and eight-packet messages at
equal message rate. Fig. 3 shows typical delay versus traffic
intensity curves with expected delay going to infinity as p
approaches unity. Fig. 3 also shows the expected message’
delay given by ‘the P-K formula of a FDMA channel at the
same data rate. Note that although the absolute difference in
delay between TDMA and the P-K formula is equal to (T/2) —
(T/M), the normalized differénce decreases as p increases or as
the average message length increases (& decreases).

In Fig. 4, we consider the effect of the frame time T on
the expected message delay. We assume that eath message is
8000 bits lohg. At C = 1.5 Mbits/s, M = 300 and T = 1.6
seconds, each message can be transmitted as a single packet.
Now" suppose the frame time T is halved by splitting each
packet into two. This process is repeated until 7' approaches 0.
(The T=0 limiting case corresponds to a FDMA channel at
the same data rate.) The expected message delay is plotted

versus T in Fig. 4. As shown by Eq (20), 'the slope of each

curve is —(‘/z — 1/M). The average messige delay increases
to Dpg in the T - 0 limit as predicted. The reader is cau-
tioned not to interpret Fig. 4 as evidence that a large packet
size is necessarily desirable for TDMA. The example in' Fig.

‘4 assumes a fixed message length. When the message length

is random, a large packet size may be 1neff1c1ent due to the
large unfilled portion in the last packet of each message.
Fig. 4 does tell us that if there is a natural minimum data
block size in the distribution of message lengths, it should not
be split up further into smaller units,

In Fig. 5, we show the delay versus traffic intensity curves
for a TDMA channel with the shortest-message-first queue

450, T = 0.3 second, and 1000 bits/ '
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Figure 5. Expected message delay versus traffic intensity for SMF
. queue discipline.
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discipline. We assume in this example that C = 1.5 Mbits/s,
M = 450, T = 0.3 second, 1000 bits per packet and the mes-
sage length “distribution, g; = 0.3 and g; = 0.1 for I = 2,
3, -+, 8.:Note in Fig. 5 that with a priority discipline, not only
do high priority messages (short messages in this case) have a
smaller delay than low priority messages (long messages in
this case), they also have a finite delay even when the traffic
intensity is equal to 1. It is interesting to note that the dif-
ference in delay between TDMA and FDMA vanishes to zero
as p increases to 1 for I < 7; for I = 8, the difference actually
increases as p increases to 1 (conserVatlon law! [5, Vol. II})
although this is not observable in Fig. 5 due to the loganthmlc

' scale

Finally in F1g 6 we show for the same example expected
message delay Versus message length for the SMF gueue disci-
pline. Note that the expected message delay 1ncreases ‘with the
message length. This is often a desirable feature since most
applications typically require a much smaller delay constraint
for short messages (interactive data traffic) than long messages
(batch data traffic).

CONCLUSION

We have analyzed the delay performance of a TDMA chan-
nel for transmitting data messages. The steady-state probablhty
generating function of the station queue size is obtained. Ex-
plicit formulas for the expected message delay and Queue size
are given. (Higher moments of message delay and queue size
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can be readily obtained from the probability generating func-
tions). The delay analysis is also generalized to obtain delay
formulas for a system using a nonpreemptive priority queue
discipline. A priority queue discipline can be used to take
advantage of data traffic consisting of different classes of
messages with disparate delay constraints. An example of
priority based upon message length is illustrated. -

This paper was motivated by satellite systems for data
traffic. We have made the assumption that the station under
consideration has sufficient data traffic to warrant efficient
use of a fixed assigned TDMA channel. This is probably a
realistic situation for current domestic satellite systems. If, in
the future, the trend is toward small earth stations characterized
by bursty data traffic, other satellite packet switching tech-
niques such as slotted ALOHA and packet reservation should
be considered [9].
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