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Fig. 5. f(x1, x2, X3, X4, X5) = x1X2 + X1X3 + X2%3 + X4x5 + XaXs.
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Fig. 6. Basic test scheme.
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Fig. 7. A four-variable coefficient generator.

tested using very simple test equipment. The test circuitry could be
included on board the chip since the overhead involved is compara-
tively small. Since the test procedure involves a high-speed counter
cycling at maximum speed through all input combinations, the net-
work under test is exercised at speed and a number of dynamic errors
will be detected which would otherwise have been missed by con-
ventional test-set approaches.
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A Simple Derivation of the MVA and LBANC Algonthms from the
Convolution Algorithm

SIMON S. LAM

Abstract—The convolution algorithm, the mean value analysis (MVA) al-
gorithm, and the LBANC algorithm are major algorithms for the solution of
closed product-form queueing networks. For fixed-rate service centers, the
efficiency of each algorithm is greatly improved by a recursive solution. We
show that the recursive relations in all three algorithms are closely related so
that each one can be easily derived from any of the others.

Index Terms—Convolution algorithm, local balance, mean value analysis,
queueing networks, recursive solutions.

I. INTRODUCTION

Three well-known computational algorithms for the numerical
solution of closed multichain product-form queueing networks [1]
are the convolution algorithm [2]-[5], the mean value analysis
(MVA) algorithm [6], and the LBANC algorithm [7]. The efficiency
of each algorithm is greatly improved by a recursive relation when
dealing with fixed-rate service centers. (The applicable service dis-
ciplines at a fixed-rate service center are described in [1].) In the next
section, we define our notation and introduce the recursive relations
in the three algorithms. A simple derivation of the recursive relations
in the MVA and LBANC algorithms from the convolution algo-
rithm’s recursive relation is shown in Section I1I.

II. PRELIMINARIES

Consider a network of M service centers and K closed routing
chains. Let A,,;; be the mean number of visits of chain k customers
to center m between successive visits to center m* (chosen arbi-
trarily), let 7,,; be the mean service time of chain k customers at
center m, and define the traffic intensities

Pmik = >\mk Tmk

form=1,2,---,Mand k=1,2,---, K. Let Ny be the population
size of chaink fork =1,2,---, K. N= (N, Na,- -+, Ng) is said to
be the population vector of the network.
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Consider a closed multichain network with population vector N.
The equilibrium probability of the network state (m, m, - - -, myr) is
given by the following product-form solution [1]:

pi(n)pa(na) -~ - pulnu)
G(N) k

where 0 is a K-long vector of zeros, m,, is a K-long vector of nonne-
gative integers, and G(N) is the normalization constant. Each real-
valued function p,, can be thought of as a K-dimensional array in-
dexed between 0 and N. The normalization constant G(N) is simply
an element of the following array (the element indexed by N):

812, .M} = P @Pz@"‘@PM

where (¥) denotes a convolution operation between two arrays [3], [4]
In general, if SUBNET = {m, my, - - -, my} is a set of integers chosen
from 1 to M, we define

ESUBNET = &y & Zmy ® - ® gy
For a network with population vector N, define

L,,x(N) = mean number of chain k customers at center m
T (N) = throughput of chain k customers at center m

for0<m, < Nm=12-,M

and
Dmk(N) =
The Convolution Algorithm

mean delay of chain k customers at center m.

The convolution algorithm first computes a set of normalization
constants and then computes performance measures in terms of the
normalization constants. Thus, throughputs are given by

_y GIN—- 1)

Tk (N) = X GN) (1)

where 1; is a unit vector with its kth component equal to one and all

others equal to zero, and G(N — 1) is the normalization constant

of a network with population vector N — 1;. The mean queue lengths
in a fixed-rate service center are given by [4]

G+ (N = 1i)
L = m
mk (N) Pmk G(N)
where G, (N — 1;) is the normalization constant of a network with
population vector N — 1, and M + 1 centers where the extra center
has the same set of traffic intensities that center m has. By Little’s
law [8], we have
Dyt (N) = Ly (N)/T e (N).
The sequential convolution algorithm obtains the array g2,
by the following procedure:
gy =D
g m =802 m-y®pm m=2,3, M

If center m is a fixed-rate center, then the array ggi 2. .. »} can be
computed  efficiently using the following recursive relation [2],

(4]:
g[1,2,' - m}

3)

,m}(i - lk)

for0 <i< N. 4)
(Note that throughout this paper, we adopt the convention that any

K
B =g12 - m—i)+ kgl Pmk&i12, -

quantity, such as gy 2 (i — 1) above, whose argument has one
or more negative components is equal to zero.)
The MV A Algorithm

The MVA algorithm skips the normalization constants and solves
for the performance measures directly using the following recursive
relation given that center m is a fixed-rate center [6]:

K
Dy (N) = T |1 + h; Ly (N — 1)
Ni

Z Dmk(N)Amk

m=1

(5)

T«(N) = (6)

N

@
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and
Lt (N) = A T (N) D i (N) @)

where T (N) is the throughput of chain & customers at center m*y.
Both equations (6) and (7) are based upon Little’s law. Equation (5)
is the key relation in the MVA algorithm and is related to the arrival
theorem [9], [10]. The initial condition for the MV A recursion is

L(0)=0 Mandk=1,2,---,K
The LBANC Algorithm
Define the unnormalized mean queue lengths
gmk{N) = G(N)L 1 (N) (8)

For center m being a fixed-rate center, the LBANC algorithm uses
the following recursion to obtain the unnormalized mean queue
lengths and normalization constants [7]:

form=1,2,---,

for all m and k.

4k (N) = ot [GN = 1) + 2 qua(N= 10| (9)
and
M
Z=] qu(N)
G(N) = A (10)

This last equation is a consequence of the observation that

M
Z Lmk(N) = Nk

m=1
The initial condition for the LBANC recursion is
G(0) = 1 and g,,x(0) =0

For the sake of completeness, we note that the recursive solutions
described above for the MVA and LBANC algorithms are still ap-
plicable if the network consists of both fixed-rate centers and infi-
nite-servers (IS) centers [6}, [7]. If center m is an IS center, then (5)
in the MVA algorithm is simply replaced by

D (N) = T for all k
and (9) in the LBANC algorithm is simply replaced by
Gk (N) = pri G(N — 1) for all k.

II. THE DERIVATION

for any k.

for all m and k.

We next proceed to derive (5) for the MVA recursion starting with

~ the convolution algorithm’s recursive relation in (4). We note that

Gt (N— 1) = g2 .m0
By (4), we have

Gt (N= 1) =

pom (N = 1)

X
GIN- 1)+ h; Pk Gt (N — 1 — 13).

Divide both sides by G(N), multiply by p,., and applying (2), we
get )

GIN— 1) K Gt (N = 1 = 1)]

Ly (N) = Pk I G(N) + hg Pmh G(N) _l
_ GIN- 1) L Gt (N = 1; = 1))
_ka>\mk G(N) 1 +h§1 Pmh G(N_ lk) ]

= Tk Tk (N) [1 + h§=:l L,n(N— lk)]

where (1) has been apphed Dividing both sides by T, (N) and
applying Little’s law, (5) is obtained. Conversely, it should be obvious
that starting from (5) in the MVA algorithm, the recursive relation
(4) in the convolution algorithm can be derived.

To derive (9), which is the key of the LBANC recursion, we again
consider

K
Gur(N= 1) =G(N— 1) + h‘él PhGms (N — 1 = 1)
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based upon the convolution algorithm’s recursion. Multiply both sides
of the above equation by p,«; we get

pmka+(N_ lk)
' : K .
= Pmk |GIN = 1) + ;;1 PrhGm+ (N — 1 — 1)

which becomes (9) in the LBANC recursion by observing from (2)
and (8) that

Gk (N) = PGt (N = 1)

for all k and center m being a fixed-rate center.

It is inteféSting to note that the LBANC recursion is an interme-
diate step in the sequence of steps that transform the convolution
recursion into the MV A recursion. The LBANC recursion involves
both normalization constants and mean values, while the convolution
recursion involves only normalization constants and the MVA re-
cursion involves only mean values.

IV. CoNcCLUSIONS

The convolution, MVA, and LBANC algorithms provide recursive
solutiofis for product-quéueing networks consisting of fixed-rate and
infinite-servers centers. We have shown that the recursive relations
in all three algotithms are closely related so that each one can be easily
derived from any of the others.
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Efficient Itérated Rotation of ari Object
W. RANDOLPH FRANKLIN

Abstract—This paper presetits a niote efﬂcient method for iterated rotation
in three dimensions where multiple points are being rotatéd by multiple angles
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about the same axis, as would be done in robotic simulation or computer graphic
ahimation. General axes that do not necessarily pass through the origin and
multiple composed rotations are also handled. The algorithm is numerically
well conditioned for all axis directions.

Index Terms—Animation, Cayley—Klein parameters, computer-aided design,
computer graphics, Euler angle, quaternion, robotics, rotation, transforma-
tion. :

INTRODUCTION

A frequent operation in computer-aided design (CAD), computer
graphics, and computer-assisted animation is the rotation of an object
or surface in three dimensions. The usual procedure is to rotate certain
fixed points such as vertices or knots such that the remainder of the
object follows automatically. We frequently wish to rotate the same
object repeatedly about the same axis by successively larger angles.
One important use of animation is the verification of programs to
control robot manipulator arms. Foley and Van Dam [4, pp. 254-255]
present some other efficiency considerations for real-time rotation.
If the object is following a more complicated path, each movement
can be decomposed into a rotation and a translation or alternatively
into two rotations. Optimizing the calculation of the composition of
several iterated rotatichs is important in robot manipulator languages,
but at present, calculating this in real time “is beyond the capabilities
of most computers” [9, p. 263].

After defining its assumptions and notation, this paper will survey
the various general rotation formulas. Some authors present only
special cases, such as Chasen [1] who describes how to transform a
cutve in an oblique plane into another coordinate system. The general
methods include: 1) rotation about the three coordinate axes in turn
where the axes are either fixed in space or move with the object, 2)

‘rotation using Euler angles or Cayley-Klein parameters, 3) rotation

of the coordinate system about the X and ¥ axes to make the axis of
rotation coincident with the Z axis, 4) a vector formulation, and 5)
a quaternion formulation. Finally, new formulas optimized for the
robot manipulator and animation cases will be presented.

ASSUMPTIONS AND NOTATION

We rotate a point, represented as a horizontal three-tuple or
four-tuple, relative to a fixed set of axes. If the transformation is
represented as a matrix, then it postmultiplies the vector representing
the point. :

The measures of execution time will be 7. and T, TESpEctively,
the number of additions and subtractions, and the number of multi-
plications of floating-point numbers. The time for bookkeeping, in-
teger arithmetic, and so on will be ignored in accordance with con-
ventional procedures. This isolates the essential differences and
suppresses variables that depend more on the compiler’s efficiency
than on the algorithm. We will sometimes count 7,, the number of
trignometric evaluations needed in calculating coefficients of an
equation, before it is applied to the points. Other aspects of this pre-
calculation time will generally be ignored.

; ROTATION ABOUT THE X, ¥, AND Z AXES

This formulation appears in Giloi [5], Foley and van Dam [4, Pp-
255-259], Paul [9, pp. 25-27], and Rogers and Adams [11]. They
compute a rotation matrix as the composition of the following three
matrices:

R.(a) = cos.a sina 0
—sin acos a 0
I 0 0 1
cos 30 —sin 8
01 0
R,(8) = sin 8 0 cos 8
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