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A Derivation of Response Time Distributions
for a Multi-Class Feedback Queueing System
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A single server queue with feedback and multiple customer types is analyzed. Arrival processes are independent Poisson
processes. After receiving a quantum of service, a customer may depart or rejoin the end of the queue for more service. The
number of quanta of service required by a customer of a specific type is a random variable having a general distribution with finite
support. Each quantum of service is exponentially distributed. We derived the moment generating function of customer response
time conditioned on the number of quanta of service required. An efficient algorithm for calculating the second-order statistics of
the conditional response time is given. Numerical results are shown illustrating the variance of the conditional response time for
different service requirement distributions and customer types. The performance of the FCFS and round-robin scheduling disci-
plines are compared.
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1. Introduction

A service facility using a round-robin scheduling discipline can be modeled as a feedback queue such as shown
in Fig. 1. A single-server queue is considered with infinite waiting room and Q types of customers. The arrival
process of type q customers is an independent Poisson process (g = 1, 2, ..., @). Each new arrival joins the end of
the queue. The customer at the head of the queue receives from the server a quantum of service which is an
independent exponentially distributed random variable with mean 1/u seconds. After receiving a quantum of
service, a customer may depart or rejoin the end of the queue for more service. The number of quanta of service
required by a type g customer is a random variable with probability distribution {aﬁq), r=1,2,..,RK} where R is
finite and aﬁ‘” is the probability of a type g customer requiring exactly » quanta of service.

The queue length distribution of the above model is readily available since the feedback queue described is an
open queueing network satisfying local balance [1]. The contribution of this paper is to characterize response
time distributions of the different types of customers; specifically, we solved for the moment generating function
of the conditional response time of customers requiring r quanta of service forr=1,2,...,R

1.1. Relationship to prior work

Time-sharing models were first studied by Kleinrock [2] who solved for the mean response time of a customer
conditioning on his exact service requirement. He considered two cases: (a) constant quantume size A, and (b)
the limiting case of A—>0 called processor-sharing. Customers are assumed to arrive according to a Poisson
process. In case (a), the number of service quanta required by a customer is geometrically distributed. In case (b),
the service requirements are characterized by an exponential distribution. (This is called the processor-sharing
M/M/1 queue.) Kleinrock’s conditional 'mean response time result was later shown to hold for a processor-sharing
M/G/1 queue (i.e. service requirements characterized by a general distribution) by Sakata et al. [3]. Higher order
response time statistics are much harder to get, The response time distribution for the processor-sharing M/M/1
queue was obtained by Coffman et al. [4]. The response time distribution for the constant quantum size case was
obtained by Muntz [5] assuming exponentially distributed service requirements.

Our feedback queue model is different from the time-sharing models in that a service quantum in our model is
exponentially distributed. (Our model can be used, however, to approximate processor-sharing by making 1/u
very small relative to the mean service requirement.) Aside from the quantum size assumption, our model is more
general than those of [4, 5] in two respects: (i) multiple types of customers, and (ii) the number of quanta of
service required by customers of each type can have a general probability distribution with finite support. In
terms of the exact amount of service required, service distributions that are admissible in our model are those
with moment generating functions of the form

Bis) = Ea(q)(”u) (1)

Our model is also different from the feedback queue model of Takdcs [6]. In his model, service quanta can
have a general distribution. However, he considered one type of customers only and the number of quanta of
service required by a customer is geometrically distributed; in other words, after each quantum of service, a

]
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Fig. 1. A feedback queue model.
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customer always departs with probability (1 — p) and rejoins the end of the queue with probability p (memory-
less feedback behavior).

The original motivation of this work stems from our efforts to characterize the response time in a network of
queues. For a network of FCFS queues that satisfies local balance, Wong {7] found the response time distribution
of customers traversing loop-free paths. Our results in this paper represent efforts to understand the response time
behavior along paths with loops in the simplest form of queueing networks satisfying local balance. Other
attempts to characterize the response time behavior in queueing networks were made by Chow [8] and Yu [9].

1.2. Assumptions and definitions

Consider the following example of 2 types of customers. Type 1 customers arrive according to a Poisson
process with rate a; customers per second. The number of quanta of service required by a type 1 customer has
the probability distribution

"_ulm r=1,2,..,100,
+

0 otherwise .

Type 2 customers arrive according to a Poisson process with rate «, customers per second. The number of quanta
of service required by a type 2 customer has the probability distribution

1
io r=1,2,...,10,

0 otherwise .

Using the properties of Poisson processes, the above model is equivalent to the following model with 100 types of
customers. Type r customers (r = 1, 2, ..., 100) are defined to be those requiring exactly r quanta of service and
they arrive according to a Poisson process with rate

0.010{1 + 0.10(2 r=1,2,..,10,
v, =10.010y r=11,12,...,100,
0 otherwise .

Let R be the maximum number of service quanta required by any customer. We shall, without any loss of
generality, consider the following model. There are R types of customers. The arrival process of the rth type is
Poisson at rate v, customers per second. A type # customer requires exactly » quanta of service. It should be
obvious that if we can derive response time distributions for this model, response time distributions for any
model with Q customer types and service time requirements characterized by eq. (1) can be easily obtained.

Let ¢, be the response time of attaining exactly r quanta of service;r = 1, 2, ..., R and we define 7, to be zero.
We shall solve for its moment generating function

T, =E[e™"],

where E[+] denotes the expectation of the function of random variable(s) inside the brackets.

We shall only consider steady-state results. For a single-server queue, stationarity is assured if the traffic inten-
sity p < 1 where p = &, ~,(r/u) (see Cohen [10]).

Customers in the queue are differentiated into R different classes; class k consists of all those customers in the
queue with exactly k more quanta of service to go, where k =1, 2, ..., R.

Let us follow the progress of a ‘tagged’ customer and introduce some more notation. Upon his initial arrival,
the tagged customer finds ny, class k¥ customers in the queue (k = 1, 2, ..., R). The system state thus found at an
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arrival instant is denoted by n =(n,, n,, ..., ng) and is described by the moment generating function
P*(2)=E[z1z52..28] ,

where z is the shorthand notation for (z4, z,, ..., Zg).

At the end of the tagged customer’s rth quantum of service (given that he requires at least  quanta), let the
system at that instant be denoted by m" = (m{", m§?, ..., m{) where m$) is the number of customers who
have exactly kK more quanta of service to go. Define

R
M<’)=kZ=)l mg).

In order to characterize T;(s), we shall need to first characterize the joint distribution of ¢, and m‘ ), which is
described by

) r)
U)(s,z) =E[e_”rz§”Y)z£”¥ ...zglg ].
1.3. Summary of results

We derived a recursive equation relating Up,(s, 2) to U;(s, z) (Lemma 2). An explicit solution of Uy (s, z) was
found, from which T7(s) was obtained (Theorem 1). We then proved that the stationary distribution of m") r=
1, 2, ..., R, is the same as that of n (Theorem 2). With this result, we solved for the mean value of z, (Theorem 3);
this last result is similar to the mean conditional response time result of processor-sharing models [2,3]. We also
obtained an efficient algorithm to calculate recursively the second-order statistics of z, (Theorem 4). Numerical
results are shown in Section 3 to illustrate the behavior of response time variance for different service require-
ment distributions and to compare the performance of the FCFS and round-robin scheduling disciplines.

2. The analysis

Consider the sytem state n = (1, n,, ..., ng) at arrival instants, Recall that nj is the number of class k
customers with exactly k more quanta of service to go. ' The aggregate arrival rate of customers to the kth class
is R
>\k = E Yi (2)

i=k
since any new arrival who requires at least k quanta of service must enter and leave the kth class exactly once.

Lemma 1. The moment generating function of n is
1-p
o ) P — 3
@=— G)
1= 23 PrZk
k=1

where

R
Pe=Nelu  and p=,§1 P -

1 Since the duration of a service quantum is assumed to be exponentially distributed, the remaining fraction of a quantum of the
job found in service is counted as a full quantum.
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Proof. Given Poisson arrival processes, the system state probabilities at an arrival instant are the same as system
state probabilities at a random time instant [11]. With each quantum of service being exponentially distributed
with the same mean (1/u), we have an open queueing network that satisfies local balance [1]. Eq. (3) has been
obtained by Reiser and Kobayashi [12]. (Q.E.D.)

Since each quantum of service is exponentially distributed, it has the moment generating function

B(s) =— @)

s+tu

A recursive solution of U, (5, z) is next given.

Lemma 2.

Us s, 2)=P(z) ®)
Urni(s, 2) =316, 2) UG, v (s, 2)), r=0 ©
where

y(s, Z) = (',Vl(S, z),yg(s, Z), vy yR(s5 Z)) )

R
y1(s,2) =B*(s + 21 7l — Zi)) ,
i=
and
Vi(s,2)=z5_1316,2) for2<k<R.
Proof. For 7 =0, o = 0 and m‘®) = n. This and the definition of U; (s, z) yield (5).

To show (6), consider the time period between ¢, and #,,; during which the server served M) + 1 customers,
where M) = Ef:l mﬁ,’ ) and the extra one is for the tagged customer’s (r + 1) st quantum. During the same time
period, each class k customer became a class (k — 1) customer where k = 2, 3, ..., R. Furthermore, let 4,(¢) be the
number of external new arrivals to class k during time #(=f,,; — ¢,) according to a Poisson process of rate v;

customers per second. We note that class R is an exception in that its m$ ") customers are all new arrivals. Thus,
conditioning on ¢, and m( ), we have

. @) @)
Uy Gs, z/t,,m") = Ele —S(t+tp) gmy “+A1 (1) m3 +A2(t)...Z§R(t)/tr, m®¥]

R
")
- e_sr,(k[_]z ) ) Bl tz10 74200 4RO p0]

The last quantity on the right-hand side is (y(s, z))M(r)Jrl because ¢ is the sum of M) + 1 independent identi-
cally distributed random variables with the moment generating function B*(s). The above equation can be
rewritten as

R
% ) )
Ui s 2/t m®O) = y15,2) {e_s"m(s, 0 11 [ a2
k=2
Unconditioning on ¢, and m®), (6) follows. (Q.E.D.)

Explicit solutions for U, (s, z) and T,"(s) can now be shown.
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Theorem 1. (i)
1—p

U'(s,2)= — r=0 Q)
P,®) ~ 27 Qi) 2
k=1
where P,(s) and Qx ,(s) are polynomials in s given by
I4
_ - .

(e | (l+i—+p1> o0 o0 - olln

Q1,6 Y1/ 0 1 0 0| p1

02,/ T2l 0 0 1 0 P2

: g : PN B E 8)

1 0

Or-1,,() YR-1/1 0 0 0 1] |pra
L Ors® | L Yr/M 00 0 0] |pr |
(ii)

* l —p
T, ()= )

R

P,(s) - kZ:Z Qk,r(s)

Proof. (i) Because of (3) and (5), (7) holds for r = 0 with Po(s) = 1 and Qy o(s) = pg for 1 <k < R. Assuming that
(7) holds for r, we use (6) and (4) to express Uy.4(s, z) as follows

* . 1 1— P
Ur+1(s7 Z) - R ° R1
L+ (s/u) + 20 (ral (1 = 2) 01,6~ 20 Q) 2
i P(s) - -
R
1+ (s/u) + El (il (L —z7)
R R-1 _1
=(1- p)[ {(1 2420 ﬁ) P(s) — Q1,46) } - [EP,@) + Qkﬂ,,(s)} Z— R zRPr<s>} .
Moo=l M k=t L M M
Thus, the form of (7) is maintained, and it is evident from the above that
Pos® | (1 +2 pl) 00 ollre |
Ql,r+1(s) Y1/u 0 1 Ql,r(s)
: =11 T 0il: . (10)
: : IE
\_QR,r+1(S)_ LVR//J e 0 0] Or,(]

The recursion in (10) started at r = 0 yields (8).
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(i) (9) follows from (7) and T,”(s) = U,"(5,1). (QE.D.)
Forr=1, 2 and 3, we show U," (s, z) below.

* l1—p
UI(S,Z)= R 5

1+ (s/p) — kZ:i PrZi

* 1 -
U2 (S,Z)= P

3

R
(14 (s/m)* + (s/w) o1 — k?;l (Pr + (/1) 71) 21

R-1

UG, z)=(1 _p)/{(l +%)3 +2(£—)2 py+— (p2 +2py +p3) — 2{%[(1 +i~)2 +£-p1} + |:Pi+1 +Z:_1%]} Zi

7;2 [(1 +/u) +%p1:] zR} .

From the above, we obtain T,*(s) for 7 = 1, 2 and 3 by letting z = 1 in U;(s, 2).

fym LR
O Gy o

* _____ﬂ____
B0 oy e
T36)- L

(1 + (/W) + pr (/) —p

We note that the solutions for Uy (s, z) and T';(s) become quite complex if one tries to solve for P,(s) and
Ok (s) explicitly using the matrix eq. (8) when r>4. In what follows, we turn our attention to finding the
moments of £,. To do so, we need the following result concerning the distribution of m®,

Theorem 2. Forany r 2 0, m'") and n have the same stationary distribution. That is

N0 U (0 RS (o IR
U, (0,2) =E[z] i zy2 - ZgR 1 =P(z). 1)

Proof. By (5), (11) holds true for » = 0. Assume that (11) holds true for some r so that U0, z) = P*(z). By (3),
(6) and the induction hypothesis,

Uy1(0,2) =310, 2) - = P
R R—-1

1- 2 on0.2) (a02) o1+ I prass)
k=1 k=1

= 1—0p _ 1—0p

R R-1 R
1+ Z} ilw(A —z) — py — kz>1 Prv1Zk 1 — kZEkak
= = =
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which is P*(z). The last equality is obtained using the following relationships:

R

A .

p1=i=2%’- and pk=%+pk+1 for 1<k<R-1.(QED)
=1

The moments of ¢, can be obtained from the moment generating function of ¢, and m®) as follows.

an
E[f]= (1) 25 U7 6, 2)

§=0,z=1

=(—1)”2n“U*(s 2,2, ., Z)
asn r s 25 &5 00y

§=0,z=1

Theorem 3. The conditional mean response time is

E[t] =Ii&—.

Proof. Using (6) and (12), we have

0
E[tr+1] = _5‘; {B*(S + )\1(1 - Z)) U,*(s,y(z, Zy aeey Z))}

§=0,z=1
.__1_ _é. —Styp(R* ()
L E e 1
1 1
=—— [—E[t,] — EM©] --} :
u u
By (11),
EM®"] = a—az-P*(z, Z, . 2) 3 = 1——’1—’—)

Substituting this into the above expression for £ [t;41], we have
1/u
l—p
which yields (13) by induction starting with E[#] = 0. (QED)

Efty] = +E(t,]

Theorem 4. The second-order statistics of the conditional response time can be found recursively using

1—2pr 2
Var(t = Var(t,) +———— +=E[t,M"] ,
( r+1) ( r) “2(1 _ p)z u [ rM( ]

R
Elty M) = 27 E[tysym{V]
i=1

and

Pi i +1L E[trM(r)] +E[trm(")] s 1<i<R

Et m("”)] = + .
[trearm, pl—p) w1 —p) n i1

55

(12)

(13)

(14)

(15)

(16)
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where Var(z,) is the variance of t, and E [trmgll] is zero, with the initial condition
Var(ty) =0,
Eltom{®]1=0 for 1<i<R.

The above theorem is proved by taking derivatives of (6), using the moment generating properties of trans-
forms; (11) and (13) are used to simplify the resulting expressions. (See Appendix for details of the proof.)

3. Numerical examples

The conditional mean response time result in Theorem 3 is analogous to results from analyses of a processor-
sharing queue [2,3]. The mean response time
rlu
l—p
of a type r job varies linearly as its (expected) service requirement /.
We shall next illustrate the response time variance of a round-robin system for different service distributions.

The recursive algorithm in Theorem 4 is applied to calculate the second-order statistics of ¢, for the following
customer types.

Elt] =

Type 1. The service requirements of customers have a coefficient of variation (CV) approximately equal to one.
The probability of a customer requiring r quanta of service is given by the following truncated geometric distribu-
tion

A-ppt r=12,.,9,

p°° r=100
where p = 0.95. The mean number of service quanta required is equal to

(1 — p90)/(1 — p) = 19.88 = 20,

a

Type 2. The service requirements of customers have a large CV. The probability of a customer requiring r quanta
of service is

80 =
56 r=1,
a,= %% r=100,
0 otherwise .

The mean number of service quanta required is 20.

Type 3. The service requirements of customers have a small CV. The probability of a customer requiring 7 quanta
of service is

% r=19,20,21,
a, =
0 otherwise .

The mean number of service quanta required is 20.

The mean quantum size (1/u) is assumed to be 0.05 second so that the mean service requirement is exactly
equal to 1 second for type 2 and type 3 customers and approximately equal to 1 second for type 1 customers.
We shall first consider systems with a single customer type.

-
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The standard deviation (SD) of ¢, is plotted versus p for several values of 7 in Fig. 2 for a round-robin system
serving only type 1 customers. For comparison, two additonal curves are also plotted. One is the SD of the
response times of all customers in the round-robin system. The other is the SD of response times of all customers
in a FCFS system (i.e., a queue with no feedback; a customer requiring r quanta of service gets all of them
together). Corresponding results are shown in Figs. 3 and 4 for systems serving type 2 and type 3 customers
respectively.

Note in Figs. 2, 3 and 4 that for all 3 customer types, the SD of the response times of all customers in a FCFS
system is smaller than that in a round-robin system at any value of p.

For type 1 customers (i.e., service requirements with CV = 1). Fig. 2 shows that the SD of ¢, increases as r
increases and is smaller than the SD of FCFS response times for small values of r. The exact crossover point is
dependent upon the server utilization p under consideration. (Note that as p increases, the crossover point occurs
at a small value of 7.) Thus, the round-robin discipline benefits customers with small service requirements (small
7) at the expense of customers with large service requirements (large 7) in terms of the SD, as well as the mean
value, of their response times.

Similar observations can be made in Fig. 3 for type 2 customers (i.e., service requirements with CV >1). In
fact, for p smaller than about 0.21 in Fig. 3, observe that the SD of ¢, is smaller than the SD of FCFS for all r.

On the other hand for type 3 customers (i.e., service requirements with CV << 1), note in Fig. 4 that the r =
1 and r =10 curves do not correspond to any customers that actually exit from the system after that many
quanta of service. All customers require » = 19, 20, or 21 quanta of service. Hence the SD of FCFS response times
is not only smaller than the response time SD of all customers in a round-robin system but also the SD of condi-
tional response times of any substream of customers.

The CV of response times is plotted in Figs. 5—7 for systems serving each of the 3 customer types. We make
the following observations:

(1) The CV of response times of all customers in a round-robin system is larger than that in a FCFS system in
each case for any server utilization p.

(2) In a FCFS system, the response time CV is equal to (greater than, smaller than) one when the service
requirement CV of customers is equal to (greater than, smaller than) one. In the case of ‘greater than’ (‘smaller
than’), the response time CV decreases (increases) to one as p is increased to one.

(3) In a round-robin system, the response time CV always increases as p increases. The CV of ¢, (for r > 2) is
less than 1 and increases to 1 as p 1t 1. The CV of ¢, for 7 = 1 is unity. (The system behaves like an M/M/1 queue
for those customers requiring exactly 1 service quantum.)

In conclusion, our observations indicate that the round-robin discipline provides better response time perform-
ance (both in terms of mean value and variance) than FCFS to customers with small service requirements at the
expense of customers with large service requirements. The value of r at which this crossover takes place (for the
SD of response times) is a function of the server utilization p. Also, for customers whose service requirements
have a very small CV, the FGFS discipline is to be preferred.

Finally, to illustrate the generality of our model, we consider a system that handles all 3 types of customers
together. The arrival process of each type of customers is assumed to have the same rate. The SD and CV of
response times are plotted versus p in Figs. 8 and 9 respectively. The CV of the service requirements of all
customers combined is larger than 1. In addition to the cases considered previously, the SD and CV curves of
customers belonging to each of the 3 types are also plotted.

5. Conclusions
- We analyzed a feedback queueing system with multiple customer types. The service requirements (in number

of service quanta) of each type of customers have a general probability distribution with finite support. We
assumed that service quanta are exponentially distributed. The contribution of this paper is the derivation of the
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moment generating function of the conditional response time to achieve r quanta of service.

By assuming that each quantum of service is exponentially distributed, the multi-class feedback queue con-
sidered is an open queueing network satisfying local balance. Each type of jobs corresponds to customers follow-
ing a fixed path. The key idea in our solution approach is to develop a recursive relationship between the response
time of a path and the response time of the same path extended by one more transition. We hope that this solu-
tion approach can be generalized in the future to characterize the response time behavior in a network of queues,

Appendix

Proof of theorem 4.
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The validity of (15) is obvious since M¥*V) = =&, m(’ *1) | To solve for (16) below for 1 <i<R, we shall inter-
pret mgll as zero.
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where the terms bracketted by { } can be evaluated using (11) and (13) to yield (16). (Q.E.D.)
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