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Protocol Verification via Projections

SIMON S. LAM, SENIOR MEMBER, IEEE, AND A. UDAYA SHANKAR, SENIOR MEMBER, IEEE

Abstract-The method of projections is a new approach to reduce the
complexity of analyzing nontrivial communication protocols. A proto-
col system consists of a network of protocol entities and communica-
tion channels. Protocol entities interact by exchanging messages through
channels; messages in transit may be lost, duplicated as well as reordered,
Our method is intended for protocols with several distinguishable func-
tions. We show how to construct image protocols for each function.
An image protocol is specified just like a real protocol. An image
protocol system is said to be faithful if it preserves all safety and live-
ness properties of the original protocol system concerning the projected
function. An image protocol is smaller than the original protocol and
can typically be more easily analyzed. Two protocol examples are em-
ployed herein to illustrate our method. An application of this method
to verify a version of the high-level data link control (HDLC) protocol
is described in a companion paper.

Index Terms-Communicating processes, communication protocols,
distributed systems, image protocols, message-passing networks, method
of projections, protocol analysis, verification.

I. INTRODUCTION

OST real-life communication protocols are very com-
plex because they typically have to perform several dis-
tinct functions. For example, the high-level data link control
(HDLC) protocol has at least three functions: connection man-
agement and one-way data transfers in two directions [10],
[15], [20]. To reduce the complexity of analyzing such a
multifunction protocol, an approach that appears attractive is
to decompose each protocol entity into modules for handling
the different functions of the protocol. For example,each pro-
tocol entity in HDLC may be decomposed into three functional
modules such as shown in Fig. 1. Each module communicates
with a corresponding module in the other protocol entity to
accomplish one of the three functions [1]. However, the de-
composition approach does not seem to facilitate an analysis
of the protocol. The main difficulty is that significant inter-
action exists among the modules. We identify two types of
dependencies. First, modules interact through shared variables
within an entity. Second, they also interact because data and
control messages sent by different modules in one entity to
their respective modules in the other entity are typically en-
coded in the same protocol message (shared messages).
Most communication protocols that have been rigorously
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Fig. 1. The three functions of an HDLC protocol.

analyzed and presented in the literature are concerned with
a single function: either a connection management function
[2], [11], [16] or a one-way data transfer function [6], [9],
[23]. A one-way data transfer protocol, for example, corre-
sponds to the interaction of a data send module and a data re-
ceive module in isolation (see Fig. 1). Interactions between
these modules and other modules are not accounted for, As
such, it is a single-function abstraction of a multifunction real-
life protocol. The following question arises. Are the safety and
liveness properties that are proved for a single-function ab-
straction still valid when it is implemented as part of a multi-
function protocol with the two types of dependencies men-
tioned above?

The method of projections provides an approach to trans-
forming the analysis of a multifunction protocol into analyses
of smaller single-function protocols, called image protocols. It
is different from the straightforward approach of decomposing
protocol entities into functional modules.

A. The Abstract Model

The underlying abstract model for the development of our
theory uses states to encode meaning {3], [17]. Our results
are applicable to two widely used protocol specification for-
malisms: state machines [24] and programming language de-
scriptions [1], [8], [20]. (Weillustrate below their application
to each formalism with examples.)

A protocol system consists of a network of protocol entities
and channels. At any time, the global state of the system is
specified by a joint description of the states of the entities
and channels. Let G denote the set of all global states of the
protocol system. The states of entitiesand channels (and hence
the global state) may change due to the occurrence of certain
events: entities sending messages, entities receiving messages,
timeouts, channel errors, etc. These global state transitions de-
fine a directed graph on G. Given any initial global state g,
the portion of the graph that is reachable from g, is referred
to as the reachability graph R. R contains all available infor-
mation on the logical properties of the protocol system.

Specifically, assertions of liveness properties are predicates
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Fig. 2. Anillustration of the projection idea,

on the set of paths in G. A liveness assertion is valid if it is
satisfied by paths in R. Assertions of safety properties are
predicates on G. Let R denote the set of states reachable
from go. A safety assertion is valid if it is satisfied by states
in R;.

Verification of these properties may be carried out by a
brute-force state exploration (in the case of a small finite R),
or by proof techniques for parallel programs. The method of
projections can be used in conjunction with either verification
approach.

B. The Projection Approach

Consider a protocol with several distinguishable functions.
We would like to ask questions regarding the logical behavior
of the protocol system concerning these functions. Instead of
asking such questions all at the same time, we may ask them
with respect to one function of the protocol at a time. The
projection idea can be illustrated by the picture in Fig. 2. Con-
sider a protocol system with the state description (x, y, z) and
the set R, of reachable states. Suppose that we are interested
in a safety assertion that involves only the variables x and y.
To determine whether the assertion is true, it is sufficient to
know the image of Ry on the (x, y) plane. Obviously, if R,
is known, its image on the (x,y) plane is readily available.
However, the complexity of R (and thus R,) is the basic
source of difficulty in any protocol analysis.

Our analysis approach avoids a characterization of R. Instead,
we construct from the given protocol an image protocol for
each of the functions that are of interest to us (to be referred
to as the projected functions). An image protocol is specified
just like any real protocol. The states, messages, and events of
entities in an image protocol are obtained by aggregating groups
of states, messages, and events of the corresponding entities in
the original protocol. Definitions needed for the construction
of an image protocol are presented in Section III.

Given an image protocol, suppose that a second image proto-
col is obtained by aggregating some of the entity states, mes-
sages and events of the first one. We say that the second image
protocol has a lower resolution than the first image protocol.
The original protocol can be thought of as an image protocol
of itself, and obviously it has the highest resolution available.

An image protocol, obtained by aggregations, is smaller than
the original protocol and is typically easier to analyze. How-
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ever, the reachability graph of an image protocol captures only
part of the logical behavior of the original protocol. The fol-
lowing useful properties of image protocols are proved in
Section 1V,

First, any safety property that holds for an image protocol
must also hold for the original protocol. Second, if an image
protocol is constructed with sufficient resolution so that its
events satisfy a well-formed property, then it is faithful: any
logical property, safety or liveness, that can be stated for the
image protocol holds in the image protocol if and only if it
holds in the original protocol. The well-formedness of an im-
age protocol is determined by checking protocol entities indi-
vidually. The well-formed property is the weakest sufficient
condition for faithfulness that can be stated without any
knowledge of R.

Given a protocol and an assertion 4, stating the desired logi-
cal behavior of the protocol for the function being projected,
our objective is to construct the smallest image protocol that
is of sufficient resolution to verify 4,. Towards this goal, we
construct a sequence of image protocols of increasing resolu-
tion by a stepwise refinement procedure. The initial image pro-
tocol can be determined by the resolution needed to describe
Ao. The stepwise refinement is terminated when an image
protocol with sufficient resolution to verify A, is constructed.
Two stepwise refinement methods are presented in Section V
with termination conditions based upon the two image proto-
col properties mentioned above.

Given a multifunction protocol, a faithful image protocol
can always be obtained for each function by adjusting its reso-
lution. However, the successful construction of faithful image
protocols that are much smaller than the original protocol de-
pends upon whether the protocol has a good structure. Thus,
one can think of a multifunction protocol as being well-
structured if it possesses small faithful image protocols for its
functions.

Our protocol system model is described in Section II. Sev-
eral extensions to this model can be accommodated by our
theory (e.g., broadcast channels, message priority classes). To
streamline our presentation below, we postpone these exten-
sions to Appendix I. Proofs of lemmas, theorems, and corol-
laries are given in Appendix II.

Two examples are employed throughout Sections II-V for
illustration. In the first example, the protocol entities are
specified using a finite state machine description. The second
example is a full-duplex data transfer protocol. Its entities are
specified using a programming language description.

C. Related Work

The idea of projection is similar to various notions of ab-
straction in the design and analysis of software systems and
programming languages. Within the communication protocols
literature, the term “protocol projection” has been used by
Bochmann and Merlin to describe an operation in their method
for protocol synthesis [4]. Their basic idea of “projection
onto the relevant action™ is similar to ours herein, but the
development and application of the idea in their work and
ours are different. The idea of projection as applied to various
special cases of our protocol system model has been previously
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explored in [12]-[14], [18], [19]. Extension of our results
to a more structured model of protocol entities is presented in
[21]. Efficient rules for constructing image protocols as well
as the modeling of timing relationships in protocol systems
are also addressed therein. An application of the method of
projections to verify a version of the HDLC protocol is pre-
sented in [20].

II. THE PrROTOCOL SYSTEM MODEL

Let there be I protocol entities Py, Py, - -, Py and K chan-
nels C;,C,, -+ ,Cg. Let S; be the set of states of P;, and
My, be the set of messages that P; can send into Cy. For nota-
tional convenience, we shall assume that the message sets M,
for all i and k, are mutually exclusive, (In practice, this is
achieved by encoding each entity’s unique address in its
messages.) '

Each protocol entity can send messages into a subset of
channels, called its outgoing set of channels. Each protocol
entity can receive messages from a subset of channels, called
its incoming set of channels. We do not require the outgoing
and incoming channel sets of a protocol entity to be mutually
exclusive. We consider channels that have a single destination
protocol entity, although the number of protocol entities that
can send into a channel can be more than one. (An extension
of the model to include multidestination or broadcast chan-
nels is given in Appendix 1.)

A channel can be real or logical. In any case, all buffers-and
communication media between two entities connected by a
channel are considered to be part of the channel. Hence, chan-
nels may have large storage capacities for messages in transit.
At any time, a channel contains a (possibly empty) sequence

of messages. We further distinguish channels into the follow-

ing categories.)

1) Infinite-Buffer Channels: Most communication proto-
cols have some measure of flow control. As a result, their
buffer requirements for messages in transit between two en-
tities are bounded. Hence the assumption of an infinite buf-
fering capacity is equivalent to being able to satisfy these buf-
fer requirements.

2) Finite-Buffer Blocking Channels: With a blocking chan-
nel, protocol entities are not permittted to send into the
channel whenever the channel is full.

3) Finite-Buffer Loss Channels: With a loss channel, the
sending of a message into a full channel results in the instan-
taneous bumping (deletion) of a message. The message bumped
may be the new message or a message already in the channel.

Bumping Rule: Whenever bumping is necessary, the selection
of a message to delete may be specified by any rule that de-
pends only upon the channel positions of messages.

Define the set of messages that can be in channel Cy to be

I
Mk = U Mik'
i=1
The set of all possible sequences in Cy is a subset of

M, =<LJJ M£> U {<>}

J=1
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where <> denotes the null sequence, M; ,’c is the Cartesian prod-
uct of M, with itself j times, and J is the maximum number
(possibly infinite) of messages that Cj can accommodate. If
we think of Cj as having J buffers, then any message sequence
of length j in C} occupies the first j buffers.

The global state space of the protocol system is

G=(S; X Sa X+ XS)XM; X My X +++ X Mg).

‘Each global state in G is an (I + K)-tuple

(sl’s2a”"sl;mlam2:”':mK)

where s5; €S; for each 7 and m; € M, for each k.

The dynamics of protocol entities and channels are described
by events. Each event is specified by its enabling condition
and its action. The enabling condition of an event is a predi-
cate in the components of the global state of the protocol sys-
tem. The action of an event specifies an update to the com-
ponents of the global state. An event can occur only if the
protocol system is in a state where the enabling predicate of
the event is true. Its occurrence, consisting of the execution
of its action, is treated as an indivisible transition from one
global state to another. Thus, each event corresponds to a set
of transitions in the global state space G. The union of these
sets of transitions over all events specified for the protocol
system will be denoted by r. We make the assumption that
the simultaneous occurrence of multiple events in the protocol
system can be treated as occurrences of the same events in
some arbitrary order. We will next describe the types of
events in our (abstract) protocol system model.

A. Entity Events

There are three types of entity events. The events of entity
P; are specified as follows.

1) Send Events: Let (s, r, ~m) denote the event of P; send-
ing message m into channel C; where m € M;;, and C, is in
the outgoing channel set of P;. This send event is enabled
when P; is in state s. With a finite-buffer blocking channel, it
is also required that the channel is not full. After the event
occurrence, P; is in state r and m has been appended to the
end of the message sequence in Cy. If Cy is a finite-buffer loss
channel and is already full, then a message is bumped instan-
taneously according to the bumping rule of C,. The set of such
send events that can be specified is a subset of §; X S; X M;.

2) Receive Events: Let (s, r, +m) denote the event of P; re-
ceiving message m from channel C where m € M, and C, isin
the incoming channel set of P;. This receive event is enabled
when P; is in state s and m is the first message in channel Cy.
After the event occurrence, P; is in state r and m is deleted
from the channel. The set of such receive events that can be
specified is a subset of S; X S; X My.

3) Internal Events: Let (s, r, &) denote an internal event of
P; where « is a special symbol indicating the absence of a mes-
sage. This internal event is enabled when P; is in state s. After
the event occurrence, P; is in state r. Internal events model
timeout occurrences internal to P;, as well as interactions be-
tween the entity and its local user. (The latter can be treated
as internal events if message exchanges between P; and its local
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user are not explicitly modeled.) The set of internal events that
can be specified is a subset of §; X S; X {a}.

Note that each send or receive event may alter the states of
the entity and channel involved in the event. Internal entity
events do not affect the state of any channel. We shall use 7;
to denote the set of events specified for P;, i=1,2,---, L
Note that the behavior of P; may be nondeterministic. For
example, we may specify T; to contain both (s, r, +m) and
(s, u, +m) where r # u.

B. Channel Events

Let £} denote the set of channel events specified for channel
Cy. The occurrence of a channel event in £}, depends on and
changes only the state of Cy;no other channel or protocol en-
tity is involved. We use such channel events to model various
types of channel errors.

The following three types of channel error events are con-
sidered: loss events, duplication events, and reordering events.
Each event is defined for a position or pair of positions in Cy.
Let the sequence of messages in Cy be my. A loss event for
the ith position of Cy is enabled if m; has a message in that
position; its occurrence deletes that message from m,.. A dup-
lication event for the ith position of Cy is enabled if my has a
message in that position; its occurrence inserts a duplicate of
that message immediately behind it in my. A reordering event
from the ith to the jth position of Cy, is enabled if m; has mes-
sages in both these positions; its occurrence moves the message
in the ith position to immediately behind the message in the
jth position. ‘

E) can be specified to contain any collection of events of
each type.

For consistency, we require that all duplication events are
inhibited if Cy is a finite-buffer blocking channel and it is full.
If Cy is a finite-buffer loss channel, the bumping rule applies
when a duplication event results in a message sequence whose
length exceeds the buffering capacity of the channel.

C. Paths in the Global State Space
The protocol system is completely specified by the following:

Si7Mik, Ti’Ek>gO for i=1729..'119

k=1,2,---,K )
where g, denotes the initial global state of the protocol sys-
tem. Define

I K
#=(07)u (0, =)

Given event e € £ and global states g and % (not necessarily
distinct) we say that e can take the protocol system from g
to A, if e is enabied when the protocol system is at state g and
its occurrence results in the protocol system entering state 4.

Recall that 7 denotes the set of global state transitions due to
the events in £. The pair (G, 7) defines a directed graph whose
nodes are elements of G and whose arcs are elements of 7.
We now formally define a path in (G, 1) to be a sequence of
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Fig. 3. Two communicating finite-state machines.

global states fy, f1," ", [ in G, such that there exist events
ey, e, ", e, in E and e; can take the protocol system from
fi-1 to ffori=1,2,--+,n. Since R denotes that portion of
the ‘graph (G, 7) that is reachable from the initial global state
8o, @ path in R is a path in (G, ) that starts from the initial
state go. The length of a path is defined to be the number of
elements (global states) in it. For notational convenience, we
consider any global state g € G as a path of length 1 in (G, 7).
Thus, g, is the only path of length 1 in R.

Given two sequences x =f,, f1, *, fpand y =g, 81, " *,
&m, we denote by x, y the sequence fo, /1, ", [0, 80,81," " ",
gm obtained by concatenating x and y. A path x is extend-
able by sequence y to z = x, y if z is also a path,

D. Two Protocol Examples

Finite State Machines Example: We first illustrate the speci-
fication of protocol entities with an example of two inter-
acting finite state machines. (See Fig. 3.) Let C; and C, be
two channels connecting P; to P,, and P, to Py, respectively.
Protocol entity P; has state space §; ={0,1,2,3,4,5,6} and
sends messages into channel C; from M, ={a,,a,,a3}. P, re-
ceives messages from C,. Protocol entity P, has state space
S, ={0,1,2,3,4,5,6} and sends messages into channel C,
from M, ={b,, b,, b3}. P, receives messages from C;. The
events of entity Py are shown in Fig. 3(a). An arc from node
i to node j with a label x specifies event (i, f, x), where x is «
for an internal event, x is - 4; for sending message 4;, and x is
+b; for receiving message b;. The events of entity P, are simi-
larly shown in Fig. 3(b).

Note that from state 4 in S,, the reception of a, can cause a
transition to either state 3 or 5. This nondeterministic be-
havior is allowed, and is useful for representing certain features
in real protocol systems.

We have not given meaning to the protocol entity states and
messages. The example in Fig. 3 will be used expressly to illus-
trate definitions for the construction of image protocols to be
presented in Sections III and IV.

Full-Duplex Data Transfer Example: We next illustrate the
specification of protocol entities using a programming language
model. A full-duplex data transfer protocol is considered.

Let C; and C, be infinite-buffer channels connecting P, to
P,, and P, to Py, respectively. Let variables CHANNEL1 and
CHANNEL2 denote the sequences of messages in C; and C,,
respectively.

Let DATASET denote the set of data blocks that can be sent
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TABLE 1
EVENTS OF ENTITY P; IN THE FULL—DUPLEX DATA TRANSFER PROTOCOL

Event Name Enabling Condition

1. SEND_DATA not BUSY and not D_OUT

2. SEND_DATARACK not BUSY and not D_QOUT

3. SEND_ACK not BUSY and ACK_DUE
4. START_BUSY not BUSY

5. STOP_BUSY BUSY

6. REC DATA first (CHANNEL2) = DATA
7. REC_DATAZACK first (CHANNEL2) =

8. REC_ACK 11rst (CHANNELZ) = ACK

DATAZACK

Action

SDATA := SOURCE[VS];
put (CHANNEL1, (DATA,SDATA)):
V8 = VS + 1; D_OUT := true

and ACK DUE SDATA := SOURCE([VS];
Put(CHANNEL1, (DATAZACK,SDATA));
VS := VS + 1; D OUT := true;

ACK_DUE := false

put (CHANNEL1, (ACK));
ACK DUE := false

BUSY := true

BUSY := false

get (CHANNEL2, (DATA,RDATA));
SINK[VR] := RDATA;

VR := VR + 1, ACK DUE := true

get (CHANNEL2, (DATAZACK,RDATA));
SINK[VR] := RDATA; VR := VR + |
ACK DUE := true; D_OUT := false

get (CHANNEL2, (ACK));
D_OUT := false

in this protocol. Consider protocol entity P,. P; has an in-
tinite array of data blocks, sourcg[i} fori=0,1,2, -+, des-
tined for P,, and an infinite array, SiNk{i} fori=0,1,2,---,
to store data blocks received from P,. SINK is initially empty.
(soUuRcE and sINK should be interpreted as history variables
that are not actually implemented.) Additionally, the follow-
ing variables are used in Py : vs and VR which are nonnegative
integers, and D_OUT, ACK_ DUE, and BUSY which are Boolean
variables. Vs points to the data block in SOURCE to be sent
next. VR points to the position in SINK to be next filled.
D_our is true if (and only if) a data block has been sent but
not yet acknowledged. Ack_DUE is true if (and only if) a re-
ceived data block has to be acknowledged. BUSY can be viewed
as an externally operated switch indicating that P, is given
access to send into channel C; .

The state of Py, at any time, is given by the value of the 7-
tuple <Vvs, D_OUT, SOURCE, VR, ACK_ DUE, SINK, BUSY> of
P;. Let §; denote the state space of P,. Entity P, has a simi-
lar set of variables. For convenience, we have omitted quali-
fiers (1 or 2) for these variables and we shall omit them as long
as it is clear whether we are referring to P; or P,. In both
entities, the initial state is given by vs and VR equal to O,
D_oOUT and ACK_DUE equal to false, SINK equal to empty,
and SOURCE equal to some infinite array of data blocks. (In
both entities, SOURCE does not change its value during the
protocol interaction.)

Each message in the protocol is a tuple with one or more
components. The first component is used to identify the mes-
sage types, and it can take the (character string) values DATA,
ACK, and DATA&ACK, corresponding to three different mes-
sage types. A DATA message is a 2-tuple (DATA, d) where d is
a data block from DATASET. There are as many DATA mes-
sages as data blocks in DATASET. An ACK message is the
1-tuple (Ack), signifying a positive acknowledgment for a
received data block. Unlike DATA messages, there is only one
ACK message. A DATA&ACK message is a 2-tuple (DATA&ACK,
d) where d is a data block from DATASET.

The set of messages that can be sent by P, is given by

The message set M, for P, is the same as M, ; each message has
a sender identity field which will not be explicitly indicated
whenever there is no ambiguity.

The set of entity events for P, is presented in Table I. (Note
that each event in Table I corresponds to a collection of events
as defined in Section II-A.) Events 1-3 are send events for
the three message types of M;. Events 6-8 are receive events
for the three message types of M,. Events 4 and 5 are internal
events caused by an agent locally connected to P; but which
is not explicitly modeled (e.g., a channel controller). The
enabling condition of an event defines the entity states and
channel states at which the event may take place. The action
of each event causes the system to enter a new state.

SDATA and RDATA are variables taking values from DATASET.
SDATA and RDATA can be thought of as temporary buffers
for transmission and reception (respectively) of data blocks.
In Table I, the operation put(CHANNEL1, (DATA,SDATA)) sends
a DATA message with the value of SpPATA as its data block
into CHANNEL1 (i.e., appends the DATA message to the end
of the sequence of messages in CHANNEL1). The operation
PUut(CHANNEL1, (DATA&ACK,SDATA)) sends into CHANNELI1 a
DATA&ACK message with the value of SDATA as its data block.
The operation put(CHANNEL1, (ACK)) sends an ACK message
into CHANNEL1.

The function first{CHANNEL2) indicates the type of the mes-
sage that is at the head of CHANNEL2 and has arrived at P;.
When a DATA message is at the head of CHANNEL2, the opera-
tion get(CHANNEL2, (DATA,RDATA)) removes the message
from CHANNEL2 and assigns the data block in the message
to RDATA. When a DATA&ACK message is at the head of
CHANNEL?2, the operation get(CHANNEL?2, (DATA&ACK,RDATA))
removes the message from CHANNEL2, and assigns the data
block in the message to RDATA. When an ACK message is at
the head of CHANNEL2, the operation get(CHANNEL2, (ACK))
removes the message from CHANNEL2.

We will come back to both of the above examples when we
use them to illustrate the construction of image protocols in
the following section.

M, ={(acx)} | {(pATA,d) : d € DATASET} | {(DATARACK, d) : d € DATASET }
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III. CONSTRUCTING AN IMAGE ProTOCOL SYSTEM

An image protocol system is constructed by first partitioning
each of the sets

Sy, My, T;, Ey, foralliandk

in the original protocol system specification. Protocol quanti-
ties (entity states, messages, or events) in each partition subset
are treated as equivalent and are aggregated to form a single
quantity, called their image, in the image protocol system,
Since partition subsets are mutually exclusive and collectively
exhaustive, quantities that are treated as equivalent have the
same image; quantities not treated as equivalent have different
images.

For a protocol quantity x, we use x' to denote its image.
The same notation x’ will also be used to refer to the set of
protocol quantities in the original protocol system that have
the x' image. For a set A of protocol quantities in the original
system specification, we use A’ to denote the set of image
quantities derived from 4, i.e., 4" = {x' : x € A}. Note that an
image protocol system, defined by

S;9Mt’k7TtlyEl’C’g(l) i=1,25..'71
k=1,2,-+-,K @

is specified just like any real protocol system. We cannot tell
from inspecting (2) that it is an image of another protocol
system.

Since an image protocol is obtained from the original proto-
col by aggregations, it captures only part of the logical be-
havior of the original protocol system. First, global states of
the image protocol system correspond to aggregations of global
states of the original protocol system. Second, in the global
state space of the image protocol system, the observable ef-
fect of different events in the original protocol system may be
identical (these events will become the same image event) or
nil (these will be eliminated).

Section III is devoted to the definitions needed for the con-
struction of an image protocol for a given partitioning of the
entity state spaces of the original protocol. Stepwise refine-
ment methods for obtaining an image protocol of sufficient
resolution to verify some. logical assertion are presented in
Section V. Properties of image properties are presented in
Section IV,

for

A. Aggregation of Entity States

We start with a given partitioning of the state space S; of
protocol entity P;, for all . All entity states in a partition sub-
set are aggregated to the same image. Let S; denote the set of
images of states in S;, i.e., S; = {s' : s € S;}. §; is said to be the
image state space of P;. Elements of ] are also referred to as
image entity states.

Note that if a protocol entity does not participate in the pro-
jected function, then the entire state space of that protocol
entity may be aggregated to a single degenerate image state.

Finite State Machines Example (Continued): Consider the
example in Fig. 3. Suppose that the partition { {0, 1, 2, 3, 4},
{5,6}} of §; has been chosen; see Fig. 4(a). Let image state 0’
denote the image of states 0, 1, 2, 3, and 4 in §;. Let image
state 5’ denote the image of states 5 and 6 in S,. The image
state space of P, is §; = {0', 5'}.
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Fig. 4. A partitioning of the entity state spaces.

For the same image protocol, suppose that the partition
{{0, 3,4}, {1, 5}, {2, 6}} of S, has been chosen; see Fig. 4(b).
Let image states 0, 1', and 2, respectively, denote the images
of the states in the partition subsets {0, 3, 4}, {1, 5}, and
{2, 6}. Then, the image state space of P, is S, ={0’, 1", 2'}.

Full-Duplex Data Transfer Example (Continued): This exam-
ple protocol has two functions corresponding to data transfers
in the two directions. The protocol is extremely simple but it
embodies both types of dependencies that are encountered
when one attempts to decompose protocol entities into func-
tional modules. First, the variable BUSY is shared by both func-
tions of the protocol. Second, messages of type DATA&ACK
are also shared. Such dependencies present difficulties for pro-
tocol analysis using a decomposition approach, but not when
using a projection approach.

Consider the function of one-way data transfer from P, to
P,. Two desirable properties of the protocol with respect to
this function may be stated as follows:

DP1 : SINK, [i] =sourcE;[i] for 0<i< VR,

DP2:vs; 2 VR, 2 vsy - 1

where the subscripts indicate which entity the variables belong
to. This assertion can be described using just the variables
SOURCE and vs in P; and the variables SINK and VR in P,.
However, image protocol entities specified using only these
variables do not have sufficient resolution to verify the above
assertion. The necessary resolution is obtained by a stepwise
refinement procedure (see Section V). For now, suppose that
we retain the following variables in the image protocol: vs,
D_ouT and SOURCE in P;, and VR, ACK_DUE, and SINK
in P,.

At any time, the image state of P; is given by the value of
<Vs, D_OUT, SOURCE>. Let S denote the image state space
of P,. Thus, two states s and r in S; are equivalent if they
differ only in the values of VR, ACK_DUE, SINK, and BUSY.

At any time, the image state of P, is given by the value of
<VR, ACK_DUE, SINK>>. Let S, denote the image state space
of P,. Thus, two states s and 7 in S, are equivalent if they dif-
fer only in the values of vs, D_oUT, SOURCE, and BUSY.

B. Aggregation of Messages

The partitioning and aggregation of messages in the message
set My, depend upon the partitioning of the entity state spaces.
Two messages m and n may be treated as equivalent only if
their receptions cause identical state changes in the image state
space of the receiver of C;. This equivalence relation parti-
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tions M;, and messages within the same partition subset may
be aggregated to form an image message m'. The image mes-
sage sets are given by

Mjy={m' :meMy} foralliandk.

In particular, messages in M;;, whose receptions do not cause
any state change in the image state space of the receiver are
said to have a null image. The null image message in My is de-
noted by 8. Define

I
My = M.
i=1
The null image messages from different M;;, are all denoted by
g and not distinguished in M.

Sometimes it is desirable to have a finer partitioning of a
message set. A higher resolution may be needed to describe
and/or verify the behavior of the protocol system. For example,
a stronger criterion for treating messages as equivalent is to
require also that their send events cause identical state changes
in the image state space of their sender.

We shall deal with a null image message 8 in two different
ways depending upon whether Cj, is a finite-buffer channel or
an infinite-buffer channel. With a finite-buffer channel, 8 is
included in My, as described above, If Cy is an infinite-buffer
channel, it is possible to ignore 8 because even though § occu-
pies a buffer in Cy, it can never cause Cj to be full. Specifi-
cally, 8 may be excluded from My, if Cy is an infinite-buffer
channel which is also characterized by the following uniform
error model.

1) Either E; contains no loss events, or the only loss event
in Ey, is for the first position in Cy, or E), contains a loss event
for every position in Cy.

2) Either E} contains no duplication events, or £ contains
a duplication event for every position in Cy.

3) Either E} contains no reordering events, or ), contains a
reordering event for every pair of positions in Cy.

The uniform error model is a realistic characterization of
most conventional physical and logical communication chan-
nels. Henceforth in this paper, an infinite-buffer channel Cy
will be considered to be characterized by the uniform error
model and g will be deleted from M.

If £y does not satisfy the uniform error model then Cy, is
said to be characterized by a nonuniform error model.

Finite State Machines Example (Continued): In Fig. 4(a)
and (b), if we relabel each state by its image and collapse all
identically labeled states, without deleting any events, then
we obtain Fig. 5(a) and (b). In these figures we can observe the
state changes in S; and S, caused by the messages in M; and
M,. Assume that C; and C, have adequate buffers (infinite-
buffer channels).

We will first examine the message set M,. The state transi-
tions caused by message a; are (0',0') in S7, and (1',1") in
S5. Hence, @, has a null image. Both messages a, and a3
cause the state transition (0’, 5') in Si and the state transition
(0',1") in §5. However, a, is not treated as equivalent to a3
because a, causes state transition (0’,0") in S, while a5 does
not. Thus, we partition M; to be {{a;}, {a,}, {a3}}. The
image of @, is null. Let the image messages a5 and a3 denote

331

U -bp ., tay,a +q,
+b2
(a) (b)

Fig. 5. Transitions in image state spaces.

the images of @, and aj, respectively. The image message set
M, is{a}, a3}.

We will now examine the message set M,. The state changes
caused by message b, are (5',0')in S7 and (2’,0")in S;. The
state changes caused by message b3 are (5',0') in S; and
(2',0")in S;. We will treat b, asequivalent to b3. The state
changes caused by message b, are (0',0), (5',5") in S, and
(0,0 in S,. Hence, b, has a null image. Hence, we partition
M, to be {{by, b3}, {b2}}. The image of b, is null. Let image
message b; denote the image of messages b; and b;. The im-
age message set M is {b} }.

Full-Duplex Data Transfer Example (Continued): By ex-
amining the state changes in the image spaces S| and S, due to
send and receive events, the following can be shown about
messages in M;. The message (ack) has a null image. The
messages (DATA, d) and (DATA&ACK, d) may be treated
as equivalent; let their image be denoted by (DATA',d). Thus
M; ={(pATA' d): d € DATASET}.

Similarly, the following can be shown about messages in M,.
All (DATA,d) messages have the null image. All(bAaTA&ACK,d)
messages may be treated as equivalent to the ACK message;
denote their image by (ack’). Thus M, = {(ack’)}.

C. Images of Channel States

The preceding equivalence relation defined for messages is
now extended to channel states. The image m; of channel
state my, is obtained by taking the image of each message in
my. For infinite-buffer channels, messages with a null image
are deleted from m; to form my. All channel states with the
same image are treated as equivalent. Let M denote the set
of images of channel states in M,.. Then

m, =< 0 M,;") U <>}
j=1

where My denotes the Cartesian product of My, with itself j
times, and J is the number of buffers in Cy (possibly infinite).
The image of a channel state is also referred to as an image
channel state. M, is said to be the image state space of Cy.

D. Images of Global States

The above equivalence relations defined for entity states and
channel states are now extended to global states. The image
of global state g=(s;, S5, *** , S;;my, My, -+, my) is de-
fined to be g’ = (s, 55, -, sp; my, my, -, my). All global
states with the same image are treated as equivalent. Let G’
denote the set of images of global states in G. Thus, we have
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TABLE 11
EVENTS OF P IN THE IMAGE PROTOCOL FOR ONE-WAY DATA TRANSFER

Event Name Enabling Condition

1. SEND DATA® not b_OUT

2. REC_ACK"

first (CHANNEL2) = ACK’

Action

SDATA := SOURCE[VS];
Put (CHANNEL1, (DATA', SDATA));
V8 := VS + 1; D _OUT := true

get (CHANNEL2, (ACK™));
D_QUT := false

TABLE IiI
EVENTS OF P; IN THE IMAGE PROTOCOL FOR ONE-WAY DATA TRANSFER

Event Name Enabling Condition

1. REC_DATA'

2. SEND_ACK® ACK_DUE

first(CHANNEL1) = DATA®

Action

get (CHANNEL1, (DATA', RDATA));
SINK[VR] := RDATA;
VR := VR + 1; ACK DUE := true

Put (CHANNEL1, (ACK"));
ACK_DUE := false

G'=(S| XSy X - XSp)X M, XMy XX Mp).

The image of a global state is also referred to as an image
global state. G’ is said to be the image global state space of
the protocol system.

E. Image of a Sequence of Global States

The preceding equivalence relation defined for global states
is now extended to sequences of global states in G. Given w, a
sequence of global states in G, its image w' is obtained as fol-
lows: first, take the image of each global state in w; second,
any consecutive occurrences of the same image state in the se-
quence are replaced by a single occurrence of the image state.
All sequences having the same image are treated as equivalent.
Recall that paths in (G, 7) are sequences of global states in G.
Thus, the image of a path in (G, 1) is defined as above for
sequences.

F. Aggregation of Entity Events

The above equivalence relations defined for entity states and
messages are now extended to entity events. Entity events
that have the same observable effect in the image global state
space are aggregated to the same image entity event. The
images of the three types of entity events (s, r, +m), (s, r,
-m)and (s, r, @) are (s', ¥, +m"), (s', ', -m"), and (5', ¥, @),
respectively.

An image event whose occurrence does not have any ob-
servable effect in the image global state space is said to be a
null image event. An image internal event (s', 7', @) is a null
image event if s’ =7'. Image send events involving null image
messages and infinite-buffer channels are treated as image in-
ternal events in 77; in this case the image event (s', 7', - B) is
represented as (s, 7', @), and it is a null image event if s’ =7’
Finally, image receive events involving null image messages
must have s'=r' by definition; hence such receive events are
null image events if the channel involved is an infinite-buffer
channel.

The set of image entity events for P; is defined by

T;={G",7",x"): (5,7, X) ET;, where x=+m,-m,ora,
and the image of (s, 7, x) is not a null image event}.

Finite State Machines Example (Continued): Recall that mes-
sages a; and b, have null images. From Figs. 4(a) and 5(a),

the events in P, having null images are (0, 1, +5,), (1, 2, @),
(2,0,-a;), (0,3,0), (3,4,-a;), (4,3,0), and (5,6, +b,).
Event (3, 5, - a,) has the image (0', 5', -a;). Event (4,5, -a3;)
has the image (0',5',-a3). Events (5,0, +b,), (5,4, +b;),
(6,4,+b,), and (6, 2, +b3) are treated as equivalent and have
the image (5", 0', +b;). Hence,

T;={(0,5',-a3),(0, 5", ~a3), (5", 0", +b)}.

From Figs. 4(b) and 5(b), the events in P, having null im-
ages are (0,3, a), (3,4,-b,), and (1,5, +a;). The image of
(4, 3, +a,) is (0, 0', +a3). Events (0, 1, +a,), (3, 1, +a,), and
(4, 5, +a,) are treated as equivalent and have the image (0', 1,
+a;). Event (4,5, +a3) has the image (0',1', +a3). Events
(1, 2, a) and (5, 6, @) have the image (1',2', a). Events (2,0,
-b,)and (6, 4, - b3) have the image (2',0', - b;). Therefore,

T3 ={(0,0", +a3),(0', 1, +a3), (0', 1", +a3), (1', 2, ),
(2’3 0,9 - b{ )}‘

Full-Duplex Data Transfer Example (Continued): The entity
events of the image protocol for the projected function of one-
way data transfer from P; to P, are shown in Tables II and III.
They can bé derived using the above definition as illustrated
in [14], [21]. In Table II, for example, SEND_DATA' is the
image of events SEND_DATA and SEND_DATA&ACK of P;;
REC_ACK is the image of REC_ACK and REC_DATA&ACK.
The events SEND_ACK, START_BUSY, STOP_BUSY, and REC_
DATA of P; have null images.

G. Channel Events

The image of a channel event should describe the effect of
the event that can be observed in the image channel state
space. We now show that for every channel event e in £, we
need to specify an image channel event e’ in £, which is iden-
tical to e. Hence, we do not aggregate events in £;.. We need
to consider two possible cases.

First, Cy is a finite-buffer channel (null image messages are
included in My). Let m; be a sequence of messages in Cy.
The observable effect in the image channel state space of an
error event occurring to my is identical to the effect observ-
able in the original channel state space. Hence, for a finite-
buffer channel, £} must be identical to Ey.

Second, Cy is an infinite-buffer channel (null image messages
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Fig. 6. An image protocol of the communicating finite-state machines.

are deleted from My). Now, the effect of an error event occur-
ring to my observed in the image channel state space, is either
nil or in the form of an error event of the same type occurring
to my. Suppose that the error event is not a loss of the first
" message in my. The uniform error model requires that £y, con-
tains error events of this type specified for all positions or pairs
of positions of C;. On the other hand, if the first message in
my is lost, the observable effect in the image channel state
space is either nil or that of an identically defined event. Hence,
for an infinite-buffer channel also, E; must be identical to Ej.

H. An Image Protocol System

The specification

S;:M;k)Tz,9Ellcag6 fOl' i=1a2,'."1:

k=1,2,"',K

defines an image protocol system. Here, go, the image of go,
is the initial state of the image protocol. Due to aggregations,
an image protocol system is always smaller than the original
protocol system.

Finite State Machines Example (Continued): We have al-
ready obtained the image state spaces §; ={0',5'} and §; =
{0',1',2'}, the image message sets M; ={a;,a3} and M, =
{b1}, and the image event sets T3 = {(0', 5', - a3), (0", 5', - a3),
(5,0, +b)} and T, = {(0', 0", +a3), (0", 1', +a3), (0',1', +a3),
(1,2, 0), (2',0',-b1)}. These quantities define the image
protocol system which is shown in Fig. 6(a) and (b). The
channels C; and C, in the image protocol system have the
same characterization as in the original protocol system. (We
have not yet specified the event sets £; and E, for these
channels.)

Full-Duplex Data Transfer Example {Continued): For P,
and P,, we have already obtained their image state spaces to
be defined by the state vectors <vs, D_oOUT, SOURCE > and
<VR, ACK_DUE, SINK>>, respectively, their image message
types to be (DATA',d) and (ack’), respectively, and their im-
age events shown in Tables II and III. These quantities define
the image protocol system. The channels C; and C, in the im-
age protocol system have the same characterization as in the
original protocol system,

IV. PROPERTIES OF IMAGE PrROTOCOLS

For the original protocol system with global state space G
and initial state g, , assertions of its safety properties are predi-
cates on G, while assertions of its liveness properties are predi-
. cates on the set of paths in G. The validity of such assertions
can be decided by examining the reachability graph R.

Recall that an image protocol is specified just like any real
protocol. It has the following set of events:
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E' gives rise to a set of transitions 7’ in the global state space
G'. The transition system (G', 7") governs the logical behavior
of the image protocol system. Let R’ denote the reachability
graph from gg. Let R; denote the set of global states reach-
able from go. Informally, an image protocol system is faithful
if any logical property, safety or liveness, that can be stated
for the image protocol system holds in the image protocol sys-
tem if and only if it holds in the original protocol system.

When an assertion stated for the image protocol system is
considered in the context of the original protocol system, an
image protocol quantity x’ (entity state, message, or event)
in the assertion denotes any protocol quantity in the original
system whose image is x'.

An image protocol system as defined in Section Il is in gen-
eral not faithful. However, we show in Section IV-A that im-
age protocols have the following nice property: any safety prop-
erty that holds in the image protocol system also holds in the
original protocol system. Given a safety assertion to verify for
a protocol function, this property of image protocols can be
used as a termination condition for the stepwise refinement
process to find an image protocol with adequate resolution.
In Section IV-B, we formally define faithfulness for an image
protocol system. This definition involves the reachability
graphs R and R’. In Section IV-C, we give sufficient condi-
tions for an image protocol system to be faithful. These
conditions can be checked by examining individually the
entity and channel events of a protocol system. These condi-
tions are the weakest sufficient conditions that can be stated
without any knowledge of R and R'.

A. Safety Properties of Image Protocols

The results below apply to any image protocol system ob-
tained according to the definitions in Section III. Let the
original protocol system be characterized by (G, 7), and the
image protocol system by (G, 7).

Lemma 1. Given a protocol system and channel states m and
n in My, for any k, if a channel event in E can take Cy from
m to n, then in an image protocol system, either m' =n' or a
channel event in Ej, can take Cy from m' to n'. (A proof of
Lemma 1 is given in Appendix IL.)

Lemma 2: For any two global states g and & of the original
protocol system, if g is extendable to g, i, then in an image

- protocol system, either g = &' or g’ is extendable to g', #'. (A

proof of Lemma 2 is given in Appendix I1.)

Theorem 1: The image of every path in (G, 7) is a path in
G, 7).

Corollary 1: Given any initial global state g, the image of
every path in R is a path in R',

Corollary 2: {g' : g€ R} CR.. ,

The above theorem and corollaries follow readily from
Lemma 2 (proofs are given in Appendix II).

Observation: Suppose that a safety assertion has been found
to be invariant in an image protocol system. Note that asafety
assertion is invariant if it is true on a superset of Ry in G'. By
Corollary 2, the safety assertion must also hold invariantly in
the original protocol system.
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Finite State Machines Example (Continued): Given the ini-
tial state (0', 0'; <>, <>) for this image protocol system, and
assuming channels C; and C, to be error-free (£, and E, are
empty sets), it is easy to verify that the following assertion
holds for the image protocol system.

P, is in state 5’ = exactly one of the following holds:

a) message a, or aj is in Cy, or

b) P, isinstate 1' or 2, or

c) message b} isin C,, or

d) P, is in state 0’ and channels C; and C, are empty (dead-
lock situation).

Note that P; in state 5’ means that in the original protocol P,
is in any state whose image is 5'. Similarly, message b} is in
C, means that in the original protocol any message whose im-
age is b} is in C,.

We can verify whether this assertion is valid for the original
protocol by examining the reachability graph of the original
protocol system in Fig. 3. However, by Corollary 2, we know
that the above assertion is valid for the original protocol
system.,

The assumption of error-free channels is necessary for the
above assertion to hold in both the original and image proto-
col systems. This assumption is not required in order for the
nice property of image protocols stated in Corollary 2 to hold.

Full-Duplex Data Transfer Example (Continued): Assuming
C; and C, to be error-free channels, the following safety as-
sertion has been found to hold for the one-way data transfer
image protocol constructed in Section I11-H:

1) SINK[i{] = SOURCE{/] for 0<i<vVRr.
2) VS 2 VR 2 VS-1.
3) (DATA',d) in CHANNEL1 = (D_0OUT)
and (d = SOURCE[VS-1])
and (exactly one DATA' message in CHANNEL1)
and (not ACK_pUE) and (vs = VR + 1)
and (no ACK' message in CHANNEL?2).
4) ACK_DUE = (D_OUT)
and (no DATA' message in CHANNEL1)
and (vs = VR) and (no ACK' message in CHANNEL2).
5) Ack' in CHANNEL2 = (D_OUT)
and (no DATA' message in CHANNEL1) and (Vs = VR)
and (not ACK_DUE)
and (exactly one AcK' message in CHANNEL2).
6) not D_OUT = VS = VR.

By Corollary 2, the above assertion holds in the original full-

duplex data transfer protocol.

Again, the assumption of error-free channels is needed for
the above assertion_to hold because the protocol is relatively
simple and is not designed to handle errors. Without this as-
sumption, no meaningful assertion can be stated. For larger
protocol examples involving error-prone channels, the reader
is referred to [19], [20].

B. Conditions for Faithfulness

Liveness properties of a protocol system are concerned with
the future behavior of paths in the reachability graph R. Con-
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sider an image protocol system with reachability graph R’'.
Our definition of faithfulness is formally stated as follows.

Definition (Faithful Image Protocol): For every path win R
and every path «' in R’ such that w' =u’, the following two
conditions hold.

(F1) If w can be extended to a path x in R then u' can be
extended to a path v’ in R’ such that x" = ',

(F2) If u' can be extended to a path v’ in R' then w can be
extended to a path x in R such that v’ = x'.

The above two conditions guarantee faithfulness of the im-
age protocol’s safety properties as a result of the following

implications:
(F1)=R; 2{g": gERy}
(F2)=R,S{g' :g€R}}

where R; is the set of reachable states of the image protocol
system, and {g": g €R,} is the set of images of reachable
global states of the original protocol system.

To be able to characterize the liveness properties of R given
the liveness properties of R’, we assume that the original pro-
tocol system satisfies the following fairness assumption: no
event will be indefinitely delayed if it is enabled infinitely
often. Given the fairness assumption, conditions (¥1) and
(F2) guarantee faithfulness of the image protocol’s liveness
properties.

We have proved that all image protocols as constructed in
Section III satisfy condition (#1). However, an image proto-
col system satisfies condition (#'2) only if it has adequate reso-
lution. To check if (F2) holds requires an examination of R
and R'. However, the complexity of R is to be avoided unless
it has a special structure that facilitates the checking of (F2).
We give in Section IV-C sufficient conditions for an image
protocol to satisfy (F2). These conditions can be checked by
examining individually the entity and channel events of the
original protocol system, without any knowledge of R or R’

C. Sufficient Conditions Without Knowledge of R or R’

To satisfy condition (F2) above, we require that channels
in the original protocol system satisfy a finite lifetime assump-
tion, and each event in the image protocol system is well-
formed. These requirements are now explained below.

1) Assumption About the Original Protocol System:

Finite Lifetime Assumption: The first message residing in a
channel will be deleted in finite time.

The finite lifetime assumption is satisfied by protocol sys-
tems in several ways. First, this assumption is satisfied by pro-
tocol systems which have been carefully designed to com-
pletely avoid “unspecified receptions” [24]. In any reachable
state of such a system, if 7 is the first message in channel Cy,
whose receiver P; is in state s, there exists a receive event
(s, r, +m) in T; for some .

We shall refer to such protocol systems as having a complete
set of receive events,

If we do not know whether the original protocol system has
a complete set of receive events, then unspecified receptions
can be avoided by augmenting each entity event set 7; with a
receive event set L; containing receive events of the form
(s, s, +m). Two cases are of interest,
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Case 1: Exhaustive specification
L;={(s,s,+m): s€ES;;mEM,
for all C, in the incoming set of P;}.
Cuse 2: Complementary specification
L;={(s,s,+m): sES;,mEM,
for all Cy, in the incoming set of P;,
such that (s, r, +m) is not in \T ; for some r}.

Since occurrences of events in L; do not change the state of
P;, they can be interpreted not as entity receive events but as
events that enforce a finite lifetime for messages in a channel.
Specifically, a message residing at the head of a channel will be
deleted by some “channel controller” within a finite time.
Finite lifetimes for messages are highly realistic. First, mes-
sages propagating within a physical channel have a small transit
time. Second, if a channel is logical and messages are actually
travelling within a store-and-forward communication network,
they are often subject to mechanisms that enforce bounds on
their lifetimes [22].

Whether we assume Case 1 or 2 above depends upon the
magnitude of message lifetimes compared to the magnitude of
a receiving entity’s reaction time to handle receive events. If
a receiving protocol entity can always execute an enabled re-
ceive event for a message prior to the expiration of the mes-
sage’s lifetime, then the complementary specification of L; is
realistic; otherwise, the exhaustive specification should be
assumed.

Observation: An exhaustive L, is logically equivalent to a set
of loss events specified for the first position of channel Cy, for
every channel in the incoming set of P;. The finite lifetime as-
sumption is automatically satisfied if such loss events are al-
ready specified in the channel event sets.

In summary, the original protocol system can satisfy the
finite lifetime assumption in one of three ways. First, it has
completely specified receive events; in this case, the L; sets are
null. Second, it is augmented by a complementary specifica-
tion of receive events in {L;}. Third, it is augmented by an
exhaustive specification of receive events in {L;}. It should be
clear that in an actual system, the {L;} sets do not have to be
explicitly specified and stored.

Lastly, images of events in L; are defined in the same way as
image receive events in Section III-F.

2) The Well-Formed Property:

The well-formed property of events in an image protocol sys-
tem is next defined. The image events in T; for entity P; are
first considered.

Definition: For a and b in S;, b is internally reachable from
a if ' = b’ (they have the same image) and there is a sequence
of internal events in 7; causing state changes inside @’ that will
take P; from a to b.

A send event involving P; and C, for some k, can be regarded
as an internal event for the above definition if C, is an infinite-
buffer channel and the message being sent has a null image.
Under these conditions, the send event (a, b, -m) € T; can be
treated as an internal event (2, b, @) € T;.

Definition: An image internal event of P, (s',¥, ) €T}
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where s' #r', is well-formed if for every a whose image is s,
there is some b €S; that is internally reachable from @ and
(b,c,a) ET;forsomecEr'.

Again, in the above definition, a send event (b,c,-m)€E T;
where m € M, for some k, can be used instead of (b, ¢, @) if
m has a null image and Cj, is an infinite-buffer channel.

Definition: An image send event of P, (s',r',-n')E T}, is
well-formed if for every a whose image is s', there is some
b€ S; that is internally reachable from ¢ and (b,¢,~-y)E T;
for some ¢ € r’ and some y whose image is n'.

Definition: An image receive event of P;, (s',r', +n') €T},
is well-formed if for every a whose image is s', the following
holds: for every y whose image is n’ there is some b € S; that
is internally reachable from a, and (b, ¢, +y) € T; for some
=

If in any of the above definitions of well-formed events, the
length of the internal path is O (i.e., b = a), then we say that
the image event is strongly well-formed.

Note from the construction of 7; that for every ' € Ty,
there is an event e € T; whose image is e'.

Finite State Machines Example (Continued): We will now
show that the image events in 7} are well-formed. (Refer to
Figs. 4 and 5.) First, consider event (0,5, -a3)E€T;. Be-
cause of the paths 1 2>2-5%0-%3 and 4-5 3, state 3
is internally reachable from states 1,2, 0, and 4. From state 3,
the event (3, 5, -a,) can be executed. Hence, (0', 5, -a3) is
well-formed.

Because of event (3, 4, - a, ), where @, has a null image, state
4 is internally reachable from state 3, and hence from states 0,
1 and 2 also. From 4, event (4, 5, ~a3) € T, can be executed.
Thus, event (0", 5', -a3) € T; is well-formed.

Because of the events (5,0, +5,), (5,4,+b3), (6,4,+b,),
and (6, 2, +b3) in Ty, image event(5',0', +b}) € T is strongly
well-formed.

Next, we will show that the image events in T, are well-
formed. Consider image event (0',0', +a3) € T5. Because of
events (0,3, a) and (3,4,-b,) in T,, state 4 is internally
reachable from 0 and 3. These and the event (4, 3, +a,) € T,
make image event (0', 0', +43) well-formed.

Image event (0',1',+a3)E T, is strongly well-formed be-
cause of events (0,1, +a,), (3,1, +a,),and (4, 5, +a,)in T,.

Image event (0', 1", +a3) € T, is well-formed because of
event (4, 5, +a3) in T,, and because 4 is internally reachable
from 0 and 3.

Image event (1, 2', @) € T, is strongly well-formed because
of events (1,2, a)and (5, 6, &) in T,.

Image event (2',0',-b})E T, is strongly well-formed be-
cause of events (2,0,-b,)and (6,4,-b3)in T,.

We conclude that all entity events of the image protocol
shown in Fig. 6 are well-formed.

We next consider image events in Ey, for channel C;. Note
that the occurrence of a channel event affects only the state
of the channel. Thus, channel events are analogous to internal
events of entities; the well-formed property of channel events
is defined similarly.

Definition: An image channel event e' € E}, is well-formed if
given any two distinct message sequences m’ and n' in My, such
that ' can take Cy from m’ to n', the following holds: for
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every message sequence p € M; whose image is m’, there is a
sequence of channel events in £y, that can take Cy from p, via
states each with image m’, to some message sequence g whose
image is n'.

In the above definition, if the sequence of channel events
consists of only one event, then e’ is said to be strongly well-
formed.

The channel event sets defined in Section II-B have two
properties. Firstly, we have shown that for any channel Gy,
the image event set £; remains the same as Ey. Secondly, we
have the following result,

Lemma 3: Each event in Ej, is well-formed. (A proof of
Lemma 3 is given in Appendix II.)

(A channel event set £}, that is more general than those de-
fined in Section II-B, can be specified as an arbitary subset of
M, X M. In this case, the above definition for well-formed
image channel events must be applied to check each image
event in E}, to see if it is well-formed.)

Lemma 4: Given two distinct global states g’ and A’ of an
image protocol system with well-formed events, if g’ is extend-
able to g', i', then for any global state fin G such that f' =g,
[ is extendable to a path w such that w' =g’ h’. (A proof of
Lemma 4 is given in Appendix IL.)

Consider a protocol system characterized by (G, 7) and an
image protocol system characterized by (G', 7"), the following
theorem implies that condition (F2) needed for faithfulness is
satisfied if all events of the image protocol in Tj, L}, Ey, for
all i and k are well-formed. Note that events in Ej, are well-
formed by virtue of Lemma 3. Events in L; are well-formed if
L, is given by the exhaustive specification (or is null).

- Theorem 2: Given an image protocol system with well-formed
events, for any path w in (G, 1) and «’ in (G', 7') such that
w' =u', if u' is extendable to a path v’, then w is extendable to
a path x such that x" = p’.

Corollary 3: Given any initial global state go € G and the
corresponding image global state go € G', for any path w in R
and «’ in R’ such that w' =4/, if u' is extendable to a-path v’
in R’, then w is extendable to a path x in R such that x' = v’'.

Corollary 4: Ry, S {g' : g €R,}.

Theorem 2 follows readily from Lemma 4. Proofs of the
preceding theorem and corollaries are given in Appendix II.

Theorem 3: An image protocol system with well-formed
events is faithful.

Theorem 3 is an immediate consequence of Corollaries 1-4
and the definition of faithfulness. The original protocol sys-
tem is assumed to satisfy the fairness and finite lifetime
assumptions.

Full-Duplex Data Transfer Example (Continued): The image
entity events in Tables II and III can be shown to be well-
formed (see [14], [21] for details). Let C; and C, be error-
free channels. Then, in addition to the safety assertions stated
earlier for the image protocol system, it can also be easily
shown that the variable vR in P, grows without bound. Thus,
the following liveness property is established:

For any integer n >0 the image protocol will eventually

satisfy:
SOURCE[{] = SINK][i} forO0<i<n.

From Table I, we see that the receive events of the original
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protocol system are complete. Assuming that the scheduling
of events in P, and P, satisfies the fairness assumption, the
one-way image protocol constructed is faithful and the above
liveness property holds for the original full-duplex protocol
as well,

V. STEPWISE REFINEMENT METHODS

Given an assertion A4, describing the desired logical behavior
of a given protocol system, our objective is to find the smallest
image protocol with sufficient resolution to verify whether 4,
holds in the original protocol system.

We start with an image protocol with sufficient resolution to
describe 4. A sequence of image protocols with increasing
resolution is then constructed by stepwise refinement., Each
successive protocol in the sequence is obtained by a finer parti-
tioning of the original protocol’s entity state spaces and/or
message sets. Thus, each protocol in the sequence is actually
an image protocol of all succeeding protocols constructed.
(This property facilitates the verification of safety assertions
in Section V-B.)

Two stepwise refinement algorithms with different termina-
tion conditions are presented in the next two subsections. The
choice of a termination condition depends upon whether 4, is
a liveness or a safety assertion. Assuming that 4, is a decid-
able property of the original protocol system, the following
algorithms always terminate. In the worst case, they terminate
with the original protocol as their output.

A. Termination Based Upon the Well-Formed Property

Algorithm 1: To find an image protocol for verifying a live-
ness or safety assertion Ay .

1) “Initial step”
partition the entity state spaces so that image entity states
in {S;} have enough resolution for describing 4, ;
2) “Image protocol construction”
obtain the image message sets {M;; } based upon {S;}; ob-
tain the image entity events based upon {S;} and {M};};
3) check each event for well-formedness;
4) if all events are well-formed then terminate algorithm
“We have a faithful image protocol for verifying 44"’
5) else “Refinement step”
the point(s) of failure in events that are not well-formed
indicate refinements necessary in the partitioning of
{S;}; update {S;}; go to step 2.
(End of Algorithm 1)

By using the well-formedness of image entity events as the
termination condition, Algorithm 1 does not involve any char-
acterization of the reachability graph of each intermediate
image protocol constructed.

In step 2, the image message sets {Mj; } are derived from the
entity state space partitions {S;} as defined in Section III-B.
We have assumed that the resolution of these image message
sets is adequate to describe 44. As discussed in Section III-B,
given {S;} the resolution of an image protocol can also be in-
creased by increasing the resolution of the image message sets.
This provides an extra degree of freedom which may be utilized
in steps 1, 2, and 5 of the above algorithm.
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TABLE 1V
EVENTS OFP; IN THE INITIAL IMAGE PROTOCOL

Event Name Enabling Condition

1. SEND_DATA®

Action

SDATA := SOURCE[VS];
put (CHANNEL1, (DATA®,
VS := VS + 1

SDATA)) ;

TABLE V
EVENTS OFP; IN THE INITIAL IMAGE PROTOCOL

Event Name Enabling Condition

1. REC_DATA®

first (CHANNEL1) = DATA"

Action
get,(CHANNELl, (DATA’, RDATA));
SINK[VR] := RDATA;

VR := VR + 1

Full-Duplex Data Transfer Example (Continued): We will use
this example protocol to illustrate Algorithm 1. We wanted
to verify that the original protocol satisfies:

DP, : SINK, [i] =SOURCE, [i] for0<i<vRr2

DP, : vS; 2 VRy 2 VS; - 1.

In step 1), the initial resolution of the entity state spaces is
defined by the variables SOURCE and vs in P; and SINK and
VR in P,.

Next in step 2, we construct an image protocol. The image
states of P; and P, are given by the values of <vs, SOURCE>
and <VR, SINK>>, respectively. By examining the state changes
in the image entity state spaces, we obtain the following im-
age message sets. In M, (Ack) has a null image, and (DATA,d)
and (DATA&ACK,d) have the same image (DATA'd). All the
messages in M, have the null image. Thus M| = {(DATA' d):
d € DATASET} and M, is empty. The events of this initial im-
age protocol are shown in TablesIVand V. In P, ,SEND_DATA
and SEND_DATA&ACK have the image SEND_DATA'. In P,,
REC_DATA and REC_DATA&ACK have the image REC_DATA’.
The remaining entity events have a null image.

Having obtained the above initial image protocol, we deter-
mine in step 3 whether all its events are well-formed. Consider
the event SEND_DATA'. From the events of P, in the original
protocol, we see that SEND_DATA and SEND_DATA&ACK can
occur only when BUSY =D_ourt = False, If Busy = True,
then internal event STOP_BUSY can set BUSY = False. How-
ever if b_out = True, there is no sequence of null image send
or internal events of P, that will set p_ouT to False. Hence
SEND _DATA' is not well-formed and we go to step 5.

The point of failure is the absence in the image protocol of
the variable D_ouT of P;. Hence, we update the entity state
space of P; to be defined by <vs, b_oUT, SOURCE>>, and go
back to step 2 and repeat the procedure. Note that there
has been no attempt at verification of the image protocol.

In the next iteration we would include Ack_DUE of P,. In
the iteration following that, we would obtain the well-formed
image protocol shown in Section III-H (and Tables II and III),
and terminate the algorithm.

B. Termination Based Upon Safety Properties
of Image Protocols

Given a safety assertion A, we present another algorithm to
find an image protocol with sufficient resolution to verify Aq.
Unlike Algorithm 1, A, is verified for each image protocol con-
structed. This verification of A, is aided by the fact that a

safety property that holds for an intermediate image protocol
also holds for all succeeding image protocols. The termination
condition for this algorithm is based upon Corollary 1.

In what follows, we use A, to denote the set of states in G
on which the safety assertion is true. We use B to represent
safety properties that have been found to hold for the image
protocols already constructed. B can be thought of as a super-
set of R of the current image protocol.

Algorithm 2: To find an image protocol for verifying a safety
assertion Ay .

1) “Initial step”
partition the entity state spaces so that image entity states
in {S;} have enough resolution for describing 4,; let B
be G’ “Nothing is known initially”’;

2) “Image protocol construction”
obtain the image message sets {M;; } based upon {S;}; ob-
tain the image entity events based upon {S;} and {M;};

3) verify A, given B for this image protocol;

4) if Ay holds then terminate algorithm
“A o also holds in the original protocol system”

5) else “We have found a sequence of image events e],
ey, , ey, referred to as a test sequence, that takes the
image protocol system from gy to some g’ & A,” con-
sider those event sequences e, e,," -+, e, where m > n,
whose image equals the test sequence;

5.1) if any of these event sequences can occur in the
original protocol system then terminate algorithm
“4¢ does not hold in the original protocol system”’
else “Refinement step”
by observing how the test sequence is prevented
from occurring in the original protocol system, re-
finements necessary in the partitioning of {S;} are
obtained; update {S;}; if it is observed that the im-
age protocol satisfies some safety property B’ then
update B to be BN B'; go to step 2.

(End of Algorithm 2)

5.2)

In practice, since image protocols are relatively small, many
safety properties can often be observed by inspection. Once
a safety property has been proved, it is accumulated into B
and it will hold for all succeeding image protocols. We note
that ths smaller B is, the easier it is to verify 4,. Methods to
verify 4, (given B) are described in Section V-C.

As in the case of Algorithm 1, the resolution of the {M;,}
obtained from {S;} in step 2 can be increased further if
needed to describe 4, in step 1 or in the refinement step.
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Full-Duplex Data Transfer Example {Continued): We will use
this example protocol to illustrate Algorithm 2. The initial
resolution of the entity state spaces in step 1 and the initial
image protocol in step 2 are the same as in Algorithm 1 (see
Tables IV and V).

In step 3, assuming that channels C; and C, are error-free,
we can easily verify that this initial image protocol satisfies
DP,. However, this image protocol does not satisfy DP,. For
instance, from the initial state the image protocol can execute
SEND_DATA' twice in succession. The image protocol would
then be in a state with vs=2, VR=0, and CHANNEL1=(DATA',
SOURCE[1]), (DATA',sOURCE[0]). This state clearly violates
DP,.

Next, in step 5, we have to determine whether the test se-
quence SEND_DATA', SEND_DATA' can occur in the original
protocol. From the initial state we observe that once P, exe-
cutes a SEND-DATA (either SEND_DATA or SEND_DATA&ACK),
D_ouT is set to True, and another SEND_DATA' cannot occur.
Further b_ouT is reset to False only in REC_ACK or REC_
DATA&ACK. But for either of these to occur, P, must execute
either SEND_ACK or SEND_DATA&ACK. For that to occur P,
must have AcK_DUE=True. But ACK_DUE is set to True only
when REC_DATA or REC_DATA&ACK occurs at P,. Neither
of these events has a null image. Hence we conclude that the
original protocol cannot execute an event sequence whose im-
age equals the test sequence SEND_DATA', SEND_DATA'.

This brings us to step 5.2. The test sequence is prevented
from occurring due to the variable D_ouT of P;. Hence, we
update the image ‘entity state spaces of P, and P, to be
<vs,D_OUT,SOURCE>> and <VR,SINK>>, respectively. Also,
B can now be set to DP,, which has already been established.
We now go to step 2 and repeat the iterative step.

In the next iteration we would include AcK_DUE of P,. In
the iteration following that, we would have DP, holding for
the image protocol in Tables II and IIl. Note that property
DP; needs not be verified again for any of the future image
protocols that we obtain, since it has been shown to hold for
the initial image protocol considered above.

C. Verification Methods

Whether we use Algorithm 1 or Algorithm 2, we need to
verify A, for an image protocol system. With Algorithm 1,
this verification is done for the well-formed image protocol
obtained. With Algorithm 2, we need to verify 4, (given B)
for each image protocol considered in step 3.

One way to verify 4, for an image protocol system is by
generating the reachable set Ry of states starting from go. This
can be done by brute force (assuming that Ry is a small finite
set) or by symbolic execution {5]. Either 4, holds at each
state in Ry or a test sequence is obtained.

Another way to verify Ay is to use the method of weakest
preconditions [7]. The objective here is to find an inductively
complete set that is a subset of 4o N B. We expand on this
method here. :

For a protocol system with global state space G’ and initial
state gy, A is an inductively complete set if the following con-
ditions hold:
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1) go €A, and
2) Vg'€4,Ve' EF,
thene'(g')EA

if e’ is enabled at g',

where e'(g') denotes a state that e’ can take the protocol
system to from g’. The class of inductively complete sets is
closed under intersection i.e., if A and B are inductively com-
plete sets, so is 4 N B. Tt should be obvious that Ry is the
smallest inductively complete set of the protocol system.
Algorithm 3: Verify Ao given B for a protocol system.

1) “Initial step”
C:=Ay NB;
i:=1;
2) “Find weakest preconditions”
A;j:={g'€C:Ve'€EE' ife isenabledatg’
thene'(g') € CY;
3) if gp ¢ A; then
“A, does not hold for the protocol system”
obtain a test sequence by examining A;_;, 4;5," ",
Ag; terminate algorithm ,
4) else if (g0 € A; and 4; = C) then terminate algorithm
“A; € A, is inductively complete and 4, holds”
5) else C:=A;i:=i+1; gotostep?2).
(End of Algorithm 3)

If it is observed that the protocol system satisfies some safety
property B’ then C is updated to A; N B in step 5 of the
above algorithm. Such observations will speed up the algo-
rithm’s search.

VI. CONCLUSIONS

The method of projections is intended to reduce the com-
plexity of analyzing multifunction protocols. We show how
to construct image protocols for individual protocol functions.
Image protocols are specified like any real protocol. Each
image protocol is obtained by aggregating entity states, mes-
sages and events of the original protocol system. As a result,
an image protocol is smaller (never larger) than the original
protocol, and can typically be more easily analyzed. Our
method effectively breaks up a protocol analysis problem into
smaller problems. Unlike the straightforward approach of
decomposing protocol entities into functional modules, our
method is not handicapped by dependencies that exist be-
tween functional modules due to shared variables and shared
messages.

Given an assertion 4, stating the desired logical behavior of
a protocol system with respect to a particular protocol func-
tion, we have presented two stepwise refinement algorithms
for finding an image protocol with sufficient resolution to
verify Ay. Algorithm termination assumes that 4, is a decid-
able property of the original protocol system. Termination of
these algorithms makes use of either one of the following two
important properties of image protocols.

First, any safety property that holds for an image protocol
system also holds for the original protocol system. Second,
given that the original protocol system satisfies a fairness as-
sumption in its event scheduling and its channels satisfy a finite
lifetime assumption,an image protocol system with well-formed
events is faithful in all its safety and liveness properties to the
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original protocol system. A faithful image protocol can always
be constructed by increasing the resolution of its entity state
spaces and message sets. We propose that a multifunction
protocol may be considered as well-structured if it possesses
small faithful image protocols for its individual functions.

In this paper a protocol system is specified by sets of entity
states, messages, and events. A set-theoretic notation is used
for stating the definitions and properties of image protocols.
These results are very general since sets have no internal struc-
ture. However, application of these definitions and properties
requires operations on sets. Such application is straightforward
for protocol entities specified by a finite state machines for-
malism, but rather cumbersome for protocol entities specified
by a programming language formalism. A more structured
specification of protocol entities and messages is presented in
[21]; specialization to such a model leads to some efficient
rules for image protocol construction. In addition, time vari-
ables and time events useful for modeling global timing rela-
tions in a protocol system are developed therein. An applica-
tion of the method of projections to verify a version of the
HDLC protocol is presented in [20]. This serves as a rigorous
exercise to illustrate the applicability of the method of projec-
tions to the analysis of real-life protocols.

APPENDIX [
EXTENSIONS TO THE ProTOCOL SYSTEM MODEL

Many extensions to the protocol system model are possible
without affecting the properties of image protocols presented
in Section IV. Almost all such extensions are concerned with
generalizing the model of channel behavior.

The channel model described in Section II-B is already quite
general. However, in some real systems, additional features
in the channel model are desirable. For example, control mes-
sages in the BSC protocol are not protected by error detection
[15]. If a BSC control message has bit errors, it may be re-
ceived and mistaken by the receiving entity as some other con-
trol message. Such behavior can be modeled as a new type of
error event. In general, channel events can be specified as a
subset of M;, X M. In this case, Lemma 3 no longer applies
and all image channel events must individually satisfy the well-
formed property.

The method of projections allows very general channel be-
havior because its objective is limited to defining image proto-
cols that preserve specific logical properties of a given protocol
system. We must keep in mind that if channels have many dif-
ferent types of error events, communication protocols have to
be extremely complex in order to possess desirable logical prop-
erties. Thus for protocols with limited capabilities, such as the
full-duplex data transfer example in this article, we must as-
sume that the channels are well-behaved in order for them to
possess desirable properties. The assumption of error-free
channels in our examples is due to the simplicity of our exam-
ple protocols and not required by the method of projections.

Multidestination Channels: A channel can be in the incoming
channel set of more than one protocol entity. It is a broadcast
channel if it is in the incoming set of every protocol entity.
When one of these protocol entities executes a receive event,
the message being received is not deleted from the channel
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after the event occurrence. For a multidestination channel,
we assume that the message at the head of the channel has a
finite lifetime which is enforced by some *“channel controller.”
(See [20], [21] for discussions on the modeling of real-time
and global timing relationships in a system.)

We shall refer to protocol entities that can receive messages
from channel C as its eligible receivers. The equivalence rela-
tion used in the definition of image messages is modified as
follows: two messages m and n in M;,, are treated as equivalent
only if their receptions cause identical state changes in the im-
age state spaces of all eligible receivers of C,.. Also, messages
in M;; have a null image if (and only if) their receptions do
not cause any state change in the image state space of each of
the eligible receivers of Cy.

Lastly for a multidestination channel, any image receive event
(s',7',+m") where s"=r' is a null image event since m is not
deleted from the channel by receive events.

The proofs in Appendix II are given with this extension in-
corporated into the protocol system model.

Channel Insertions/Deletions: For the sake of clarity, we
have specified that a send event appends a message to the end
of a channel’s message sequence, and only the first message in
the channel is eligible for reception. This requirement is neces-
sary only when null image messages are deleted from the image
message set of a channel (i.e., infinite-buffer channel). If null
image messages are included in the image message set of Cy, a
send event can insert anywhere into the message sequence in
Cy, and any message in Cy can be made eligible for reception.
The proofs in Appendix II can be trivially extended to ac-
commodate this generalization. Note also that relaxing the
assumption that only the first message in the channel is eligible
for reception will also allow us to relax the finite lifetime as-
sumption in Section IV-C-1.

Message Priority Classes: Messages in the message sets M;; of
C, may be specified as belonging to different priority classes.
Two types of behavior may depend upon a message’s priority
class. First, error events of a channel Cy, can be defined for
each position of Cy as well as the priority class of the message
residing in that position. Messages in some classes can be made
invulnerable to a particular type of error. For example, the
following specification can be made: a loss event for the ith
position of Cj, is enabled if m; has a message in that position
and it belongs to a class that is vulnerable to a loss.

Second, the bumping rule in Section 1I can be generalized to
the following: the selection of a message to delete may be
specified by any rule that depends upon the positions and
priority classes of the messages in the channel.

In the construction of an image protocol, messages in M;;
can be aggregated to form the same image message only if
they have the same priority class and invulnerability to errors.
Note that if M;, includes null image messages, we have to de-
fine different §’s, one for each combination of priority class
and invulnerability.

The proofs in Appendix II are given with this extension in-
corporated into the protocol system model.

Initial State of the Protocol System: For notational sim-
plicity, we have assumed that the initial state g, of the proto-
col system is uniquely specified and R is the reachability graph
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from go. Note that all lemmas and theorems in this article do
not depend upon an initial state go. Thus, instead of specify-
ing a single initial state, a set G, of possible initial states can
be specified. Redefine R to be the reachability graph from G,
and R’ to be the reachability graph from Gy ={g’: g€ G,}.
Proofs of the four corollaries can be trivially extended to ac-
commodate this generalization.

APPENDIX I
Proors

The proofs are given with some of the extensions in Appendix
I incorporated into the protocol system model.

Proof of Lemma 1: For message sequences m and n in My,
suppose that a loss event in Ej can take m to n. Then, n is
obtained by deleting a message y from m. If Cy is a finite-
buffer channel, then the corresponding image message ' is
in m', and the same loss event in Ej can delete y' and take
the channel to state n'. If Cy is an infinite-buffer channel,
then null images are not included in m'. If y has a null image,
then m' = n'; otherwise, y' is in m' and there is a loss event
in Ey, that can delete y" and take the channel to state n'.

Similar arguments can be used for duplication and reorder-
ing events.

(End of proof of Lemma 1)

Proof of Lemma 2: Since g is extendable to g, &, there is an
event e in F that takes the protocol system from g to s. The
event e can be either a channel event or an entity event. If e
is a channel event, then the statement in Lemma 2 isimplied by
Lemma 1, since a channel event changes the state of the chan-
nel only. We next consider the three types of entity events. In
the rest of this proof, let g = (51,5, **,Sp;my, my, -+ +, mg)
with the image g’ = (s}, 83, * = * , S7; my, my, = * -, my).

Case 1: e is an internal event of P;. Since e is enabled at g,
e =(s;, r;, @) for some r; €S;. h is obtained from g by replac-
ing s; with r;. Now, consider the image state £ and the image
event e’ = (s;,r/,@). If s;=r;, then g’ =h'. If 5;#r], then ¢’
is not null and belongs to T;. €' is enabled at g’ and takes the
image protocol system to a state f', where f' is obtained from
g by replacing s; with r;. It is easy to see that f” is the same as
the image of 4.

Case 2: e is a send event involving P; and Cj. Since e is en-
abled at g, e=(s;, r;, -n) for some r; €S; and some n € M.
Then, & is obtained from g by replacing s; with r; and append-
ing n to the tail of my.. (Assume no bumping for now.) Con-
sider the image state g’ and the image event e’ = (sj, 7{, - n').
If ¢’ is a null image event, we have g’ = #’. Otherwise, ¢’ belongs
to T;. €' is enabled at g’ and takes the image protocol system
to the image global state f' which is obtained from g’ by re-
placing s} with r; and appending n’ to the tail of m}. (For an
infinite-buffer channel, if n’ is a null image message, its inser-
tion has no effect on the channel state. The image channel
state of Cy, in f’ remains the same as my,.) It is easy to see that
f' is the same as /', the image of A.

Now suppose that bumping occurred. Let the message
bumped be y; y is either the message sent or a message in my.
Consider the image message y, corresponding to y. Note that
each message in my and its image in mj must have the same
priority class and occupy the same position in C. Hence y'
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can be bumped in the image protocol system. Again, it is easy
to see that f' is the same as ',

Case 3: e is a receive event involving P; and (. Since e is en-
abled at g, the following two conditions hold. First, my, is
not empty; let n € My be the first message in m;.. Second, e =
(s;, r;, tn) for some r; €S;. Then, & is obtained from g by
replacing s; with r; and removing n from m,. (Let Cj, be a
single-destination channel.) Consider the image state g’ and
the image event €' = (s;,7;,+n'). If ' is a null image event,
then g’ = h'. Otherwise, e’ belongs to T;. (If Cy is an infinite-
buffer channel, we also know that n’ is not a null image mes-
sage.) € is enabled at g’ and takes the image protocol system
to the image global state f', which is obtained from g’ by re-
placing s; with 7; and removing 7' from the head of my,. It is
easy to see that f is the same as /', the image of 4. Lastly, if
Cy is a multidestination channel, the occurrence of e does not
remove n from my and the occurrence of ¢’ does not remove
n' from my. f' is still equal to &',

(End of proof of Lemma 2)

Proof of Theorem 1: The proof is by induction on path
length. A unit-length path in (G, 7) corresponds to a global
state g in G. The image of g is g', which is a unit length path
in (G, 7).

For some positive integer n, assume that the image of every
path in (G, 7) of length n is a path in (G',7"). We will show
that the image of any path of length # + 1 is a path in (G', 1").
Let w=u, f,, be a path.of length n+1 in (G, 7), where u =
fos fio** s fu-1- Obviously, u is a path of length » in (G, 7).
From the above hypothesis, ©' is a path in (G', 7') and the last
state in u' is f,_;. If f =fn_1, then w' =u' and the image of
w is a pathin (G', 7'). If f;; #f,_,, then by Lemma 2, f,, _, is
extendable to f,,_;,f,. Hence u'is extendable to «', f,, which
is w', and the image of w is a path in (G, 7).

(End of proof of Theorem 1)

Proof of Corollary 1: The first element of any path w in R
is go. Let the image of w be w'. From Theorem 1, w' is a path
in (G', 7). The first element of w' is g. Hence, w' is a path
inR'.

(End of proof of Corollary 1)

Proof of Corollary 2: For any reachable state g€ R, there
is a path w leading from g, to g. From Corollary 1, w' is a
pathin R’. The last element of w' is g’. Hence, g’ is in Ry.

(End of proof of Corollary 2)

Proof of Lemma 3: Consider message sequences m' and n' in
M, and an error event in £}, that can take m’ ton’. Suppose
that null image messages are included in My, so that each ele-
ment ' in m' has a corresponding element y at the same posi-
tion in any p whose image is m'. Also all messages with the
same image have by definition identical priority and invulner-
ability to errors. Thus, the same error event in £, can take
any p whose image is m’ to some q¢ whose image is n’. Each
event in E}, is strongly well-formed.

Let C; be an infinite-buffer channel and E;, specified by the
uniform error model. Suppose that Ej (same as E) contains
the loss event is specified for the first position of C;.. Consider a
message sequence m’ with »' as its first element. Any message
sequence p whose image is m' must contain a corresponding
element y that is preceded by null image messages (if any).
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The same loss event in £y can delete the null image messages
one by one and then delete y in p. Hence, this loss event is
well-formed (but not strongly well-formed). Other error
events (loss, duplication or reordering) in E, when present,
are specified for all positions of Cy for each type of event.
Consider message sequences m’' and n' in My and an error
event in £ that can take m' to n’. Each element y' in m' has a
corresponding element y in any p whose image is m’. The po-
sition of y in p may be different from that of y' in m’. Since
the uniform error model specifies this type of error event for
all positions of Cy, an error event of the same type exists that
can take p to some ¢ whose image is n’. Such error events are
strongly well-formed.

With duplication events, remember that all messages with
the same image must have the same priority class when ap-
plying the bumping rule.

(End of proof of Lemma 3)

Proof of Lemma 4: Since g’ is extendable to g, &', there is
an event ¢ € £’ that takes the image protocol system from g’
toh'. Letg =(sy, sy, ' ,s;;my, my, -+ ,myg). e can be
either a channel event or an entity event. If ¢’ is a channel
event in Ey, then A’ is the same as g’ except for the state of
channel C;. Let ny be the state of channel Cy in 4. From
Lemma 3, we note that the same channel event will take any
p whose image is m}, to some g whose image is ny. Hence, it
will take any f; whose image is g’ to some f, whose image is /'.
We next consider e’ to be an image entity event of P;. Three
cases are considered for the three types of entity events. Since
the image protocol system has well-formed events, €' is well-
formed in each case. Let f; =(a;,a,,°**,a5;P1,P2," ", Px)
be any global state whose image is g

Case 1: €' is an image internal event of P;. Since ¢’ is enabled
at g', T} contains ' = (s}, 7;, a) for some r; €S;. h'is the same
as g’ except for the state of P;. Since e’ is well-formed, we
know that there exists some b € S; that is internally reachable
from a;, and event (b, c, @) exists in T; such that ' =s; and
¢ =r{. The sequence of events that makes b internally reach-
able from a; will extend f; to some global state f,,; the image
of each element in the extension is g’. In the global state f,,,
the state of P; is b and (b, ¢, @) in T; will take f,, to some f,,+,
whose image is 1.

Case 2: €' is an image send event involving P; and C. Since
¢ is enabled at g’, T} contains e’ = (s, 7;, -n") for some r; € S;
and n' € Mj;.. k' is obtained from g’ by replacing s; with r; and
appending n' to the tail of m}.. (Assume no bumping for now.)
Since €' is well-formed, we know that there exists some b € §;
that is internally reachable from g;, and event (b, ¢, - ) exists
in T; for some ¢ and some y such that ' =5, ¢’ =r/,and y' =
n'. The sequence of events that makes b internally reachable
from a; will extend f; to a global state f,,; the image of each
element in the extension is g'. In the global state f,,, the state
of P;is b and (b, c, -y) in T; will take f,, to some f,,, whose
image is /',

Now assume that bumping occurred. Let z’ be the message
bumped; z' is either the message n' that was sent or a message
in mj,. Consider the message z corresponding to z'. Since the
bumping rule depends only on positions in € and message
priority classes, both of which are preserved when aggregating
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messages, z can be bumped in the original protocol system.
Again, f;,, has the image 4'.

Case 3: €' is an image receive event involving P; and C.
Since ¢’ is enabled at g', T; contains €' = (s;, r;, +n") for some
ri €S; and ' € My. h'is obtained from g’ by replacing s; with
r; and removing n’' from the head of my. (If Cy is a multi-
destination channel, n’ is not removed from m;..) Consider the
state of channel Cy in any global state f; whose image is g'. If
null image messages are included in My, then the first element
in the channel state p; has the image n'. If null image mes-
sages are deleted from M, (i.e., Cy is an infinite-buffer chan-
nel), then the message y in p; corresponding to the image mes-
sage n' may be preceded by messages with a null image. By
the finite life-time assumption of the original protocol system,
these messages having a null image will be deleted in finite time
(each message deletion is an event that affects only the state
of the channel). Suppose now that the first element in chan-
nel C; is y with the image n'. Since €' is well-formed, we
know that there exists some b in S; that is internally reachable
from g;, and event (b, ¢, +y) exists in T; for some c¢ such that
b'=s; and ¢’ =r;. The sequence of events that makes b in-
ternally reachable (as well as those events that delete null im-
age messages in front of y in an infinite-buffer channel) will
extend f; to some global state f,; the image of each element
in the extension is g'. In the global state f,,, the state of P; is
b and (b, c, +y) in T; will take f,, to some f,,,, whose image
ish'

(End of proof of Lemma 4)

Proof of Theorem 2: Let the last element in u’ be g €G'
and the last element in w be f€ G. Since w' =u', we must
have f'=g'. To prove Theorem 2, it suffices to show the
following: if g' is extendable to a path y' in (G',7'), then f
is extendable to a path z in (G, 7) such that z' =y'. This can
be easily shown using Lemma 4 and applying induction.

(End of proof of Theorem 2)

Proof of Corollary 3: The corollary follows immediately
from Thoerem 2. )

(End of proof of Corollary 3)

Proof of Corollary 4: Any g' in R lies on a path «' from
2o to g'. Since gy is in R, from Corollary 3, go can be ex-
tended to a path w such that w' =u'. Let the last element in
wbe f. We must have fER and f' =g

(End of proof of Corollary 4)
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