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Summary. We define interface, module and the meaning
of M offers I, where M denotes a module and I an inter-
face. For a module M and disjoint interfaces U and L,
the meaning of M using L offers U is also defined. For
a linear hierarchy of modules and interfaces, M, I,
M,,1,, ..., M,, I,, we present the following composition
theorem: If M, offers I, and, for i=2, ..., n, M; using
I;_, offers I;, then the hierarchy of modules offers .

Our theory is applied to solve a problem posed by
Leslie Lamport at the 1987 Lake Arrowhead Workshop.
We first present a formal specification of a serializable
database interface. We then provide specifications of two
modules, one based upon two-phase locking and the
other multi-version timestamps; the two-phase locking
module uses an interface offered by a physical database.
We prove that each module offers the serializable inter-
face.

Key words: Interface — Module — Specification — Verifica-
tion — Composition

1 Introduction

Consider a module that provides services to a user. Inter-
actions between the module and user take place at an
interface. In our theory, an interface is specified by a
set of allowed sequences of interface events; each such
sequence defines an allowed sequence of interactions be-
tween the module and user. For a module M and an
interface I, we define the meaning of M offers I (see
Sect. 2). Our definition is similar to—but not quite the
same as—various definitions of M satisfies S in the litera-
ture, where S is a specification of M [1, 4-7, 9, 12, 14,
15]. Most definitions of M satisfies S have this informal
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meaning: M satisfies S if every possible observation of
M is described by S. Specific definitions, however, differ
in whether interface events or states are observable, in
whether observations are finite or infinite sequences, as
well as in the particular formalism for representing these
sequences. :

Differences also arise because the method of interac-
tion at an interface is different in different models. Let
us consider models in which module observations are
interface event sequences [5, 14, 15]. We identify three
requirements that characterize interactions at an inter-
face. First, the occurrence of an interface event requires
simultaneous participation by a module and its environ-
ment; moreover, such occurrence is observable by both
the module and its environment. This requirement ap-
pears to be fundamental and is included in all models
that we are familiar with.

The second requirement, which we call unilateral con-
trol, specifies that each interface event is under the con-
trol of either the module or its environment. Specifically,
the. set of interface events is partitioned into a set of
input events controlled by the environment and a set
of output events controlled by the module. The side (mod-
ule or environment) with control of an interface event
is the only one that can initiate the event’s occurrence.
This notion of unilateral control is used in the I/O au-
tomata model of Lynch and Tuttle [15], and also de-
scribed by Lamport [14].

Since the occurrence of an interface event requires
simultaneous participation by both sides of the interface,
it is possible that an interface event initiated by one
side cannot occur because the other side refuses to parti-
cipate. In the model of I/O automata [ 15, 16], such possi-
bility is eliminated by a third requirement: each I/O au-
tomaton is input-enabled, i.c., every input event is enabled
in every state of the automaton. With this requirement,
the class of interface specifications becomes somewhat
restricted; for example, a module with a finite input
buffer such that inputs causing overflow are blocked can-
not be specified.

In our theory, interface interactions are characterized
by both the requirements of simultaneous participation
and unilateral control. However, a module is required
to be input-enabled only when the occurrence of an input
event would be safe (this notion will be formally defined).
For an input event whose occurrence would be unsafe,
the module has a choice: it may let the event occur or
it may block (disable) the event’s occurrence. For exam-
ple, blocking is useful for the specification of many com-
munication protocols that enforce input control, flow
control or congestion control.

Two modules interacting across an interface can be
composed to become a single module by hiding the inter-
face between them. In this respect, the composition of
two modules in our theory is defined in a manner not
unlike the approaches of CSP [5] and I/O automata
[15]. However, in developing our theory, our vision of
how it should be applied is different from those in [5,
15]; specifically, we are more interested in decomposing
the specification of a complex system than in composi-
tion per se. An elaboration on this point follows.

Suppose an interface I has been specified through
which a system provides services. Instead of designing
and implementing a monolithic module M that offers
I, we would like to implement the system as a collection
of smaller modules {M;} such that the composition of
{M;} offers 1. To achieve this objective, the following
three-step approach may be used:

Step 1. Derive a set of interfaces {S;} from I, one for
each module in the collection (decomposition

step).

Step 2. Design modules individually and, for all i, prove
that M; offers S; assuming that the environment
of M, satisfies S; in some manner.

Step 3. Apply an inference rule (composition theorem) to
infer from the proofs in Step 2 that the composi-
tion of {M} offers I.

The above approach has the following highly-desir-
able feature: given interfaces {S;}, each module can be
designed and implemented individually. However, the
decomposition step—i.e., deriving the interfaces {S;}
from I —is not easy to do. (We will say more about this
below.) Furthermore, to develop the approach into a
valid method, the following problem has to be solved,
namely: In general, the inference rule required in Step
3 uses circular reasoning, and may not be valid. To see
this, consider modules M and N that interact across
interface I. Each module guarantees some properties of
I only if its environment satisfies certain properties of
I. However, module M is part of the environment of
module N, and module N is part of the environment
of module M.

The above problem was considered by Misra and
Chandy [18] for processes that communicate by CSP
primitives. They gave a proof rule for assumptions and
guarantees that are restricted to safety properties. Using
different models, Pnueli [22] presented a proof rule and
Abadi and Lamport [2] presented a composition princi-
ple that are more general than the rule of Misra and
Chandy in that assertions of assumptions and guarantees
can be progress properties (albeit the class of assertions
is still restricted)..

In thinking about an interface, we depart from the
usual notion that it is the “external view” of a particular
module, with a separate one specified for each module.
Instead, we think of an interface as being two-sided,
namely: there is a service provider on one side of the
interface, and a user on the other, with both the user’s
behaviors and the service provider’s behaviors con-
strained by the same set of interface event sequences;
in this respect, an interface is symmetric. However, in
our definitions of M offers I and M using L offers U
(see Sect. 2), the user and the service provider of each
interface have asymmetric obligations. By organizing
modules hierarchically and having asymmetric obliga-
tions for each interface, circular reasoning is avoided.

For example, consider module M in Fig. 1. It pro-
vides services to a user through interface U while it uses
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Fig. 1. Module M and its environment

services offered by another module through interface L.
We refer to U as the upper interface and L as the lower
interface of module M. Note that module M is the user
of interface L and the service provider of interface U.
Its environment consists of both the user of U and the
module that offers L.

Many practical systems have a hierarchical structure.
In fact, almost all computer networks have layered pro-
tocol architectures. Each protocol layer—e.g., transport,
data link—corresponds to a module in our composition
theorem. (Note that each protocol layer is composed
of a set of entities [19, 23, 24]. We place no restriction
on how these entities are composed.)

In [10], our theory and composition theorem have
been extended to a general model of layered systems
in which each layer is a set of modules; each module
may offer multiple disjoint upper interfaces and use mul-
tiple disjoint lower interfaces. More precisely, a layered
system in [10] is a directed acyclic graph where each
node is a module, and each arc, say an arc from node
M to node N, represents an interface whose service pro-
vider is N and whose user is M. (Note that the upper
interface of any module can be made into a set of disjoint
interfaces, one for a different user, by simply tagging
interface events with user names.)

Organizing modules hierarchically has an additional
benefit bacause interfaces are also organized hierarchi-
cally. Suppose interface [ is the topmost interface offered
to users of the hierarchy of modules. Other interfaces
in the hierarchy can be derived from I by a topdown
approach as follows. Consider some interface U in the
hierarchy. To design a module M that offers U, we may
assume that certain services are offered by other modules
through a set of disjoint interfaces {L;, jeJ}. In this
manner, interfaces offered by other modules at lower
levels of the hierarchy are derived and specified.

The balance this paper is organized as follows. In
Sect. 2, we first present our theory in a general semantic
framework, and then a specification formalism suitable
for practical application. In Sections 3-6, we present our
solution to a problem posed by Lamport [13]. Specifi-
cally, in Sect. 3, we present a specification of a serializ-
able database interface, to be called upper interface U.
In Sect. 4, we specify an interface for accessing a physical
database, to be called lower interface L. In Sect. 5, a
module based upon two-phase locking is specified, and
a proof that it satisfies M using L offers U is given.
In Sect. 6, a different module, based upon multi-version
timestamps, is specified; a proof that it satisfies M offers
U is given. In Sect. 7, we discuss how events in our nota-
tion can be further refined to satisfy atomicity require-
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ments of a practical programming language. Some con-
cluding remarks are given in Sect. 8.

2 Theory and notation

In Sects. 2.1 and 2.2, we define interface, state transition
system, module, M offers I, and M using L offers U, where
I, U and L are interfaces and M is a module. Our key
result is a composition theorem for a linear hierarchy
of modules and interfaces. In Sects. 2.3 and 2.4, our defi-
nitions and results are recast in the relational notation
[9], which is used to specify database interfaces and
modules in Sects. 3-6. In Sect. 2.5, we elaborate on how
to use the relational notation.

2.1 Interface, state transition system and module

We first define some notation for sequences. A sequence
over E, where E is a set, means a (finite or infinite) se-
quence (eq, €1, -..), where ¢, E for all i. A sequence over
alternating E and F, where E and F are sets, means a
sequence (g, fo, €1, f1,-..), Where e;eE and fieF for
all i.

Definition. An interface I is defined by:
« Events(I), a set of events that is the union of two
disjoint sets,
Inputs(I), a set of input events, and
Outputs(I), a set of output events.
« AllowedEventSeqs(I), a set of sequences over Events(l),
each of which is referred to as an allowed event se-
quence of I.

For a given interface I, define

SafeEventSeqs(I)={w:w is a finite prefix of an allowed
event sequence of I}

which includes the empty sequence.

Definition. A state transition system A is defined by:

« States(A), a set of states.

o Initial(A), a subset of States(A), referred to as initial
states.

o Ewvents(A), a set of events.

» Transitions,(e), a subset of States(A) x States(A), for
every ec Events(A). Each element of Transitions 4(e) is
an ordered pair of states referred to as a transition
of e.

A behavior of A is a sequence o=(Sg, €9, Si, €1, --.)

_ over alternating States(A) and Events(4) such that

so€lInitial(4) and (s;, ;1) is a transition of e; for all
i. A finite sequence o over alternating States(4) and
Events(A) may end in a state or an event. A finite behav-
ior, on the other hand, ends in a state by definition.
The set of behaviors of A is denoted by Behaviors(A).
The set of finite behaviors of A is denoted by Finite
Behaviors(A).

For ecEvents(A), let enabled (e) be the set {s:for
some state t, (s, t)e Transitions 4(e)}. An event e is said
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to be enabled in a state s of A iff seenabled, (e). An
event e is said to be disabled in a state s of A iff
s¢enabled ,(e).

Notation. For any sequence o over alternating States(A)
and Events(A), and for any set E < Events(A), image(c, E)
denotes the sequence of events over E obtained from
o by deleting states and deleting events that are not
in E.

Definition. A module M is defined by:

» Events(M), a set of events that is the union of three
disjoint sets:
Inputs(M), a set of input events,
Outputs(M), a set of output events, and
Internals(M), a set of internal events.

» sts(M), a state transition system with Events(sts(M))
= Events(M).

« Fairness requirements of M, a finite collection of sub-
sets of Outputs(M)u Internals(M). Each subset is re-
ferred to as a fairness requirement of M.

Convention. For readability, the notation sts(M) is abbre-
viated to M wherever such abbreviation causes no ambi-
guity, e.g., States(sts(M)) is abbreviated to States(M),
enabledg .y (e) is abbreviated to enabled,,(e), etc.

Let F be a fairness requirement of module M. F is
said to be enabled in a state s of M iff, for some eeF,
e is enabled in s. In a behavior o =(so, eg, 51, €y, ..., 5},
e;, ...), we say that F occurs in state s; iff ;e F. An infinite
behavior ¢ of M satisfies F iff F occurs infinitely often
or is disabled infinitely often in states of o.

For module M, a behavior o is an allowed behavior
iff for every fairness requirement F of M: ¢ is finite and
F is not enabled in its last state, or ¢ is infinite and
satisfies F. Let AllowedBehaviors(M) denote the set of
allowed behaviors of M.

We are now in a position to formalize the notion
of a module offers an interface. Consider module M and
interface I. Let ¢ be a sequence over alternating states
and events of module M.

Definition. ¢ is allowed wrt [ iff image (o, Events(I))e
AllowedEventSeqs(I).

Definition. ¢ is safe wrt I iff one of the following holds:
» o is finite and image(o, Events(I))e SafeEventSeqs(I).
« ¢ is infinite and every finite prefix of ¢ is safe wrt I.

In what follows, we use last(o) to denote the last state
in finite behavior o, and @ to denote concatenation.

Definition. Given a module M and an interface I, M
offers I iff the following conditions hold:
o Naming constraints:
Inputs(M)= Inputs(I) and Outputs(M)= OQutputs(I).
« Safety constraints:
For all g e FiniteBehaviors(M), if ¢ is safe wrt I, then
VeeOQutputs(M):
last(o)€enabled,;(e)=>0c @ e is safe wrt I, and

Veelnputs(M):
o @e is safe wrt I=last (o)cenabled,(e).

» Progress constraints:
For all g€ AllowedBehaviors(M),
if o is safe wrt I, then o 1s allowed wrt I.

Note that module M is required to satisly interface
I only if its environment satisfies the safety requirements
of I. Specifically, for any finite behavior that is not safe
wrt I, the two Safety constraints are satisfied trivially;
for any allowed behavior of M that is not safe wrt I,
the Progress constraint is satisfied trivially. That is, as
soon as the environment of M violates some safety re-
quirement of I, module M can behave arbitrarily and
still satisfy the definition of M offers I.

The two Safety constraints can be stated informally
as follows: First, whenever an output event of M is en-
abled to occur, the event’s occurrence would be safe,
ie., if the event occurs next, the resulting sequence of
interface event, occurrences is a prefix of an allowed
event sequence of I. Second, whenever an input event
of M (controlled by its environment) can safely, M does
not block the event’s occurrence.

For an input event of M whose occurrence would
be unsafe, module M has a choice: it may block the
event’s occurrence or let it occur. (In this respect, our
model is more general than the I/O automata model
[15, 16], which requires an I/O automation to be always
input-enabled.)

2.2 Module composition

A module M with upper interface U and lower interface
L is illustrated in Fig. 1. The environment of M consists
of the user of U and the module that offers L. In what
follows, we use “o is safe wrt U and L’ to mean “o
is safe wrt U and o is safe wrt L”, and ¢ to denote the

empty set.

Definition. Given module M and interfaces U and L,
M using L offers U iff the following conditions hold:

« Naming constraints:

Events(U)n Events(L) =0,
Inputs(M) = Inputs(U) L Outputs(L), and

Outputs(M)= Outputs(U) L Inputs(L).

« Safety constraints:
For all o € Finite Behaviors(M),
if o 1s safe wrt U and L, then
VeecOutputs(M):
last (6)eenabled (e)
=g @eissafe wrt U and L, and

Veelnputs(M):
o@eissafe wrt U and L
=>last(c)eenabled ().

» Progress constraints:

For all o€ Allowed Behaviors(M),
if o 1s safe wrt U and L, then

o is allowed wrt L=>¢ is allowed wrt U.

The definition of M using L offers U is similar to the
definition of M offers I in most respects. The main differ-



ence between the two definitions is in the Progress con-
straints. For module M using interface L, it is required
to satisfy the progress requirements of interface U only
if the module that offers L satisfies the progress require-
ments of L.

We next define how modules are composed. Our defi-
nition is like the one by Lynch and Tuttle [15], with
the exception that we hide output events that match
input events.

Definition. A finite set of modules {M;:jeJ} are compat-
ible iff Vj, ke J, j+k:

Internals(M ;) n Events(M,)=0, and
Outputs(M ;) n Outputs(M,)=0.

Notation. For a set of modules {M;:jeJ}, each state
of their composition is a tuple s=(t;: jeJ), where
t;€States(M ;). We use image(s, M) to denote t;.

Definition. Given a compatible set of modules {M;: jeJ},
their composition is a module M defined as follows:

» Events(M) defined by:
Internals(M)=[{ ) Internals(M)]

U [(|) Outputs(M )) ~ (| ) Inputs(M )]
Outputs(M) =[| ) Outputs(M )]—[| ) Inputs(M )]
Inputs(M)  =[{) Inputs(M)]—[{ ) Outputs(M )]

o sts(M) defined by:
States(M)=] | States(M )
jeJ
Initial(M) = | Initial(M )
jed
Transitionsy(e), for all eeEvents(M), defined by:
(s, tYe Transitions,(e) iff, V jeJ,
if ecEvents(M;) then (image(s, M), image(t, M)e
Transitionsy, (e), and
if e¢ Events(M ) then image (s, M ;) =image(t, M ).
« Fairness requirements of M

= [U Fairness requirements of M;].
jeJ

Theorem 1 Let modules, M and N, and interfaces, U
and L, satisfy the following:
o Internals(M)n Internals(N)=0
o M using L offers U
e N offers L
Then, M and N are compatible and their composition
offers U.

A proof of Theorem 1 can be found in [10]. It is
quite long, requiring the proof of several lemmas.

Theorem 2 Let M,, 1,, M,, I,,...,M,, I, be a finite
sequence over alternating modules and interfaces, such that
the following hold.:
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e For dll j, k, if j%k then Events(l;)n Events(I,)=9 and
Internals(M ) n Events(M,)=0.

e M, offers 1.

o Forj=2,...,n, M;using I;_, offers ;.

Then, modules M+, ..., M, are compatible and their com-

position offers I,,.

Proof. The compatibility of {M, ..., M,} is obvious. To
show that the composition offers I, it suffices to estab-
lish the following inductive step, for j=2, ..., n:

If the composition of {M,, ..., M;_,} offers I;_,, and
M; using I;_, offers I, then the composition of
{My, ..., M;_,, M} offers I;.

But this is implied by Theorem 1, with the composition
of {M,,...,M;_,} being N, M; being M, I; ; being
L,and I; being U. []

2.3 Relational notation

In this section, we introduce the relational notation for
specifying state transition systems, modules and inter-
faces. The notation has two basic constructs: state for-
mulas that represent sets of states, and event formulas
that represent sets of state transitions [9]. The definitions
and results of Sects. 2.1 and 2.2 are recast in this nota-
tion.

The state space of a state transition system is specified
by a set of variables, called state variables. For a state
transition system A, the set of variables is denoted by
Variables(A). For each variable v, there is a set domain(v)
of allowed values. By definition, States(A)
= 11 domain(v). Each state seStates(A) is repre-

veVariables(A)
sented by a tuple of values, (d,: ve Variables(A4)), where
d,edomain(v).

We use state formulas to represent subsets of
States(A). A state formula is a formula in Variables(A)
that evaluates to true or false when Variables(A) is as-
signed s, for every state seStates(A). A state formula
represents the set of states for which it evaluates to true.
For state s and state formula P, s satisfies P iff P evalu-
ates to true for s.!

We use event formulas to specify the transitions of
events. An event formula is a formula in Variables(A)u
Variables(A), where Variables(A) = {v': ve Variables(A)}
and domain(v')=domain(v). The ordered pair (s, t)e
States (A) x States(A) is a transition specified by an event
formula iff (s, t) satisfies the event formula, that is, the
event formula evaluates to true when Variables(A) is as-
signed s and Variables(A) is assigned t.

Definition. A state transition system A is specified in
the relational notation by:

o Events(A), a set of events.

« Variables(A), a sct of state variables, and their domains.

! We use formula to mean a well-formed formula in the language
of predicate logic
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« Initial 4, a state formula specifying the initial states.

 For every event ecFEvents(4), an event formula
formula 4(e) specifying the transitions of e.
Note that for each event e, we have

enabled 4 (e)=[IVariables(AY : formula 4(e)]

which is a state formula representing the set of states
where e is enabled.

Definition. A module M is specified in the relational no-
tation by:

» Disjoint sets of events, Inputs(M), Outputs(M), and
Internals(M), with Events(M) being their union.

o sts(M), a state transition system with Events(sts(M))
= Events(M), specified in the relational notation.

« Fairness requirements of M, a finite collection of sub-
sets of Outputs(M) v Internals(M).

To specify an interface in the relational notation, we
use a state transition system together with invariant and
progress assertions. In what follows, we first introduce
the assertions and then explain how the allowed event
sequences of an interface are specified.

Invariant assertions are of the form: invariant P,
where P is a state formula. A finite sequence over alter-
nating states and events satisfies invariant P iff every
state in the sequence satisfies P. An infinite sequence
over alternating states and events satisfies invariant P
iff every finite prefix of the sequence satisfies invariant P.

We use leads-to assertions of the form: P leads-to
0, where P and Q are state formulas.? A sequence (s,
€0, S1, €1,...) over alternating states and events satisfies
P leads-to Q iff for all i: if s; satisfies P then there exists
Jj»Jj2Zi, such that s; satisfies Q.

Invariant and leads-to assertions are collectively re-
ferred to as atomic assertions. In what follows, an asser-
tion is either an atomic assertion or one constructed from
atomic assertions using logical connectives and quanti-
fiers.

Let o denote a sequence over alternating states and
events. An atomic assertion is true for o iff o satisfies
the assertion. The truth value of a nonatomic assertion,
say Assert, is determinated by first evaluating for ¢ the
truth value of every atomic assertion within Assert. For
example, o satisfies the assertion X A Y=-Z, where X,
Y and Z arec atomic assertions, iff (¢ satisfies X)A (o
satisfies Y)=>(o satisfies Z).

A safety assertion is an assertion constructed from
invariant assertions only. A state transition system sat-
isfies a safety assertion iff every finite behavior of the
state transition system satisfies the safety assertion. A
progress assertion is an assertion constructed from atom-
ic assertions that include at least one leads-to assertion.
A module satisfies a progress assertion iff every allowed
behavior of the module satisfies the progress assertion.

For brevity, we often write assertions and rules con-
taining free occurrences of parameters. We follow the

2 Leads-to is the only temporal connective we use

convention that such assertions and rules are universally
quantified over all values of the free parameters. For
example, the assertion, x=k leads-to x=k+1, has x as
a state variable and k as a parameter. This assertion
is equivalent to [Vk: x =k leads-to x=k+1].

To use a state transition system, say A4, for specifying
an interface, we need to exercise care in defining the
events of A. To see why, an interface, called I, defined
as follows:

e Inputs(I )= Inputs(A), Outputs(l ;) = Outputs(A) and
o AllowedEventSeqs(I ,)
= {image (o, Inputs(A)w Outputs(A)): o € Behaviors(A)}.

Think of A as a module with no fairness requirement.
In general A does not offer 1. It is easy to see that
A offers I, if every transition of A is identified by a
distinct event. Such a condition, however, is a very strong
requirement. We provide a weaker condition that is suffi-
cient for A offers 1 4.

Definition. A state transition system A has deterministic

events iff

e Internals(4)=0,

« Initial(A) is a single state, and

o for all ecEvents(A), Transitions,(e) is a partial func-
tion, i.e., for all seStates(A), there is at most one state
s’ such that (s, s')e Transitions 4 (e).

This condition is easy to satisfy because events in
our theory can be regarded as names or labels. (More-
over, event names can be parameterized in the relational
notation [9].) Each event sequence represents at most
one behavior of A because event occurrences have deter-
ministic effects. Behaviors of A, however, are nondeter-
ministic because more than one event can be enabled
in a state. (In part II of [10], the above condition is
relaxed to allow the use of internal events.)

Note that the restriction of a single initial state can
be circumvented as follows (if needed): Let s, denote
a state not in States(A), and Init(A) the desired initial
states of A. Definite Initial(4) to be {so} and, for all
selnit(A), specify a distinct event for each transition

(S0, 9)-

Notation. For any state formula R, we use R’ to denote
the formula obtained from R by replacing every state
variable v in it with v'.

Definition. An interface I is specified in the relational

notation by:

 Disjoint sets of events, Inputs(I) and Outputs(I), with
Events(I) being their union.

« sts(I), a state transition system with deterministic
events specified in the relational notation such that
Events(sts(I)) = Events(I).3

3 For readability, the notation sts(I) is abbreviated to I wherever
such abbreviation causes no ambiguity, e.g., Variables(sts(I)) is ab-
breviated to Variables(l), formulayy(e) is abbreviated to
formula,(e), etc.



o InvAssum;, a conjunction of state formulas referred
to as invariant assumptions of I, such that

Initial;=> InvAssum;, and
Y eeOutputs(I): InvAssum; A formula; (e)=> InvAssum;

» InvGuary, a conjunction of state formulas referred to
as invariant guarantees of I, such that

Initial,= InvGuar,, and
VeelInputs(l): InoGuar; A formula;(e)=InvGuary

e ProgReqgs;, a conjunction of progress assertions, re-
ferred to as progress requirements of 1.

The invariant assumptions and guarantees of inter-
face I are collectively referred to as invariant requirements
of interface I. Define*

InvRegs; = InvAssum; A InvGuary.

Given an interface I specified in the relational nota-
tion, an allowed event sequence of I is the sequence of
events in a behavior of sts(I) that satisfies all invariant
and progress requirements; more precisely, define

AllowedBehaviors(I)
={0: 0 € Behaviors(I) and o satisfies
invariant InvReqs; and ProgReqs;}, and

AllowedEventSeqs(I)
= {image(o, Events(I)): o € Allowed Behaviors(I)}.

Lastly, for event ee Events(I), define

possible(e)=InvReqs;
A [Variables(I) : formula;(e) A InvRegsy]

which is a state formula representing the set of states
in which event e can occur without violating any safety
requirement of /.

Note that we have provided two ways to specify the
safety requirements of an interface: namely, a state tran-
sition system, and a set of invariant requirements. It is
our experience that some safety requirements are more
easily expressed by invariant requirements, while some
are more easily expressed by allowed state transitions
encoded in a state transition system. Our approach is
a flexible one, including the following as special cases:
(1) Safety requirements of I are specified using a state
transition system only, namely sts(I), without any invar-
iant requirement. Satisfaction of the safety requirements
of I by a module M is proved by showing that sts(M)
is a refinement of sts(I); definition of refinement is given
below. (2) The state transition system sts(I) has a single
state variable, namely, a “trace” variable that records
the sequence of all event occurrences. Each event of sts(I)
is always enabled and each event’s action is to update
the trace variable. In this case, safety requirements are
specified exclusively by invariant requirements that are
predicates on event traces.

4 In the latest version of our method, presented in part II of [10],
it is no longer required that the invariant requirements of an inter-
face be partitioned into assumptions and guarantees. Furthermore,
the B and C conditions in Sections 2.4 have been modified and
relaxed
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2.4 Module composition in relational notation

For modules and interfaces specified in the relational
notation, we provide sufficient conditions for M offers
I and M using L offers U. We first introduce a refinement
relation between two state transition systems A and B
such that Variables(A)2 Variables(B). In this case, there
is a projection mapping from States(A4) to States(B) de-
fined as follows: state seStates(A4) is mapped to state
teStates(B) where ¢ is defined by the values of Variab-
les(B) in s [7, 9, 23]. State formulas in Variables(B) can
be interpreted directly over States(A) using the projec-
tion mapping. Also, event formulas in Variables(B)u
Variables(B) can be interpreted directly over States
(A) x States(A) using the projection mapping.

Definition. Given state transition systems 4 and B and
state formula Inv, in Variables(A4), A is a refinement of
B assuming Inv 4 iff

Variables(A) 2 Variables(B) and Events(4)= Events(B)
Initial ;= Initialg
VeeEvents(B): Inv 4 A formula 4(e)= formulag(e)

(event refinement condition)

s VeeEvents(A)— Events(B):
Inv, A formula,(e) =-[VveVariables(B):v=1"]
(null image condition)

If A is a refinement of B assuming Inv 4 and, moreover,
A satisfies invariant Inv,, then A is a refinement of B
as defined in [9]. In this case, for any state formula
P in Variables(B), if B satisfies invariant P, then A satisfies
invariant P.

Given a module M, an interface I, and some state
formula Inv,, in Variables(M), the following conditions
are sufficient for M offers I:

B1 Inputs(M)=Inputs(I) and Outputs(M)= Outputs(I)
B2 sts(M)is arefinement of sts(I) assuming Inv,,
B3 Veelnputs(l): Invy A possible;(e)=>enabledy,(e)
B4 VeeOQutputs(l): Invy A formulay(e)=InvGuar;
B5 sts(M) satisfies

(invariant Inv Assum;=>invariant Inv,,)
B6 M satisfies (invariant InvAssum;=> ProgReqs;)

Condition B1 is the same as the Naming constraints
in M offers 1. B1, B2, B4 and BS imply the following,

Y o€ Behaviors(M): ¢ satisfies invariant InvAssumy iff
o is safe wrt I.

B2, B4 and B5 ensure that M satisfies the safety require-
ments of I assuming invariant InvAssum; (first Safety
constraint in M offers I). B3 and BS cnsure that M
does not block the occurrence of any input event when-
ever the event can occur safely (second Safety constraint
in M offers I). Progress constraints in M offers I hold
because B6 ensures that if an allowed behavior of M
satisfies invariant InvAssum,, it satisfies ProgReqs;.
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Theorem 3 For a module M, an interface I, and some
state formula Invy, in Variables(M), if conditions B1-B6
hold, then M offers 1.

Given an interface I, to obtain a module M that offers
I, we make use of BI-B6 in three stages. First, the events
of sts(M) are named such that Bl is satisfied. Second,
events of sts(M) are specified such that sts(M) is a refine-
ment of sts(I) (B2 is satisfied), each input event is enabled
in states where the event’s occurrence would be safe (B3
is satisfied), and M satisfies its invariant guarantees (B4
is satisfied). Initially, Inv,, is set equal to InvAssum;. But
to prove B2-B4, we may have to assume that sts(M)
has additional invariant properties, which are used to
strengthen Inv,, and must be proved (so that B5 is sat-
isfied). Lastly, we try to prove B5 and B6. (Some useful
inference rules are given in Sect. 2.5.)

For a module M, interfaces U and L, and some state
formula Inv, in Variables(M), the following conditions
are sufficient for M using L offers U:

C1 Events(U)n Events(L)=90
Inputs(M) = Inputs(U)u Outputs(L)
Outputs(M) = Outputs(U)u Inputs(L)
Variables(U)  Variables(L)=0
C2 sts(M)is arefinement of sts(U) assuming Inv,,
C3 sts(M)is a refinement of sts(L) assuming Inv,,
C4 Veelnputs(U): Invy A possibley(e)=>enabled,,(e)
C5 VeeOutputs(L): Invy, A possible; (e)=>enabled,,(e)
C6 Veelnputs(L): Invy A formulay ()= InvAssum)
C7 VeeOutputs(U): Invy A formulay(e)= InvGuary
C8 sts(M)satisfies (invariant (Inv Assumy A InvGuary)
=>invariant Invy,)
C9 M satisfies
(invariant (InvAssumy A InvGuarp) A ProgRegs;,
= ProgReqsy)

Theorem 4. For a module M, interfaces U and L, and
some state formula Inv,, in Variables(M), if conditions
C1-C9 hold, then M using L offers U.

C8 indicates that we can set Invy, equal to
InvAssumy A InvGuar;, initially. However, to prove C2-
C7 for a module M, we may have to assume that sts(M)
has additional invariant properties, which are used to
strengthen Inv,, and must be proved (so that C8 is sat-
isfied).

Conditions C2, C3 and C8 specify that module M
must block every input event occurrence that would vio-
late any safety requirement encoded in sts(U) or sts(L).
(While such blocking is allowed by the semantic defini-
tion of M using L offers U, it is not required.) As a
result, C1-C3 and C6—C8 imply the following,

Y o€ Behaviors(M):
o satisfies invariant(InvAssumy A InvGuary) iff ¢ is safe
wrt U and L.

In this respect, conditions C1-C9 are stronger than the
semantic definition of M using L offers U ; similarly, con-
ditions B1-B6 are stronger than the semantic definition

of M offers I. The B and C conditions are applicable
to the database examples in this paper. However, for
applications in general, it is desirable to relax them as
much as possible (see part II of [10] for relaxed condi-
tions).

2.5 Conventions, auxiliary variables and inference rules

We review in this section some features of the relational
notation to be used in the database examples of Sects. 3
6. (See [9] for a more thorough treatment.)

Conventions for event formulas

An event formula defines a set of state transitions. Some
examples of event definitions are shown below:

e =v,>2A05e{1,2,5}
eH=U,>U, AV +1U5=5

In each definition, the event name is given on the left-
hand side of “=” and the event formula is given on
the right-hand side.

Consider a state transition system 4 with two state
variables v; and v,. Let e, above be an event of the
system. Note that v} does not occur free in formula(e,).
By the following convention, it is assumed that v, is
not updated by the occurrence of e,.

Convention. Given an event formula, formula(e), for every
state variable v in Variables(A), if v is not a free variable
of formula(e), the conjunct v =v is implicit in formula(e).

If a parameter occurs free in an event’s formula, then
there is an event defined for every allowed value of the
parameter. For example, consider

es(M=v,>v, A0 +0,=m

where m is a parameter with a specified domain of al-
lowed values. A parameterized event is a convenient way
to specify a set of related events.

Lastly, in deriving a state transition system A from
a state transition system B, for A to be a refinement
of B as defined in Sect. 2.4, we further require that every
parameter of B be a parameter of A with the same name
and same domain of allowed values.

Auxiliary variables

For a module M, some of its state variables in Varia-
bles(M) may be auxiliary variables-i.e., state variables
that are needed for specification or verification only, and
do not have to be included in an implementation of the
module.’ Informally, a subset of variables in Variables(M)
is auxiliary if they do not affect the enabling condition
of any event nor do they affect the update of any state

> What we call auxiliary variables here are also known as history
variables. Abadi and Lamport showed that another kind of auxilia-
ry variables, called prophecy variables, is needed for a refinement
method, such as ours, to be complete [1]



variable that is not auxiliary [20]. To state the above
condition precisely, let Auxvars(M) be a proper subset of
Variables(M), and Auxvars(M) = {v': ve Auxvars(M)}.
The state variables in Auxvars(M) are auxiliary if, for
every event e of sts(M), the following holds:

formulay (e) =
[VAuxvars(M)AAuxvars(MY : formulay,(e)]

If the above condition is satisfied, Auxvars(M) do not
have to be implemented. More precisely, let N be a mod-
ule that is an implementation of M, defined as follows:
o Variables(N)= Variables(M)— Auxvars(M),

with the same domain for each variable as in M

o Initialy =[JAuxvars(M): Initial,]
o Events(N)= Events(M), with the same partition into
input, output and internal events

 Fairness requirements of N
= Fairness requirements of M

« for every event e€ Events(N):

formulay(e)
=[V Auxvars(M)IAuxvars(M) : formulay(e)]

It is shown in [9] that N is a well-formed image of
M such that the following hold:*®

{image(o, N): o € Behaviors(M)} = Behaviors(N)
{image(o, N): o€ Allowed Behaviors(M)}
= AllowedBehaviors(N)

where image(o, N) denotes the observation of a behavior
o of M when auxiliary variables are invisible. That is,
image(o, N) denotes a sequence over alternating
States(N) and Events(N) obtained from o as follows:
each state s in o is replaced by its image s using the
projection mapping from States(M) to States(N). Thus,
modules M and N cannot be distinguished by observa-
tions when auxiliary variables in M are invisible. In par-
ticular, the following result is presented in [10]: For
any two interfaces L and U, M using L offers U if and
only if N using L offers U.

State functions

In the database examples below, we will also use state
functions-namely, functions of the system state. For ex-
ample, we can define a boolean state function even such
that even(v) is true iff the value of the state variable
v is an even integer. Note that state functions can always
be transformed into state variables.

Inference rules

To facilitate proofs of invariant and leads-to assertions
in the database examples below, we present some infer-
ence rules.

Invariance rule: State transition system A satisfies invar-
iant P if

6 The key result is Lemma 12 in [9]
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« Initial j/= P, and
« forevery event e of A, P A formula 4(e)=P’

Note that if A satisfies invariant I then I Al can be
used to strengthen the antecedent of the logical implica-
tion above, i, replace P by I AI' A P. Also if A4 satisfies
invariant P and P=>(Q, for state formula Q, then A4 sat-
isfies invariant Q.

Definition. For module M that includes F as a fairness
requirement, P leads-to Q via F iff

(i) for every event e in F, P A formulay (e)=(Q/,

(ii) for every event f of M, P A formulay(f)=FP v Q,
and
(iil) invariant[3ecF: P=-enabled(e)].

Some inference rules for leads-to assertions are given
below.”

Leads-to rules: P leads-to Q if one of the following holds:

invariant P = Q [implication]
for some fairness requirement F, P leads-to Q via F
[event]
for some state formula R, P leads-to R and R leads-to Q
[transitivity]
e P=P v P, P leads-to Q and P, leads-to Q
[disjunction]

« invariant I and P A I leads-to Q [substitution]

3 Serializable database interface U

The problem posed by Lamport [13] is to specify a seria-
lizable database interface, and also specify an implemen-
tation of a database system that satisfies the interface
specification. There is a set of client programs that use
the database system. It is assumed that client programs
execute concurrently; each issues a sequence of transac-
tions to be processed by the database system.

In this paper, the serializable database interface is
called interface U, which is specified in this section. Spec-
ification of a lower interface L for accessing a physical
database is given in Sect. 4. An implementation of a da-
tabase system is specified as a module. We present two
modules below. Module Mp;, based upon the method
of two-phase locking, is specified in Sect. 5; we prove
that M1p; using L offers U. Module M yyr, based upon
the method of multi-version timestamps, is specified in
Sect. 6; we prove that Myt offers U.

Lamport’s informal specification of an interface con-
sists of a set of procedures that can be executed concur-
rently by transactions of different client programs [13].
We model such an interface procedure P by two events:
Call(P) and Return(P). Since several invocations of P

7 For a comprehensive treatment of proof rules, the reader is re-
ferred to [4, 17, 217. For distributed systems with unreliable com-
munication channels, see [9] for the P leads-to Q via Msg rule,
where Msg denotes a set of messages
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can be concurrently active, we tag each call of P with
a unique identifier, which is also used in the correspond-
ing return of P. Therefore each interface procedure P
is modeled by the two events: Call(i, P) and Return(i, P),
where the identifier i is unique over all invocations of
P. A call event is an input event of the interface. A return
event is an output event of the interface.

In specifying modules, each procedure is also modeled
two events Call(i, P) and Return(i, P), which are obtained
by refining the matching interface events — that is, inter-
face events of the same names. Because the action of
each event in our formalism is atomic, the atomic actions
of modules may be too large in the following sense: Con-
sider a module implemented using a practical program-
ming language, such as Pascal or C. A procedure execu-
tion consists of a call event occurrence, followed by oc-
currences of events that constitute the procedure body,
and concluded by a return event occurrence. State vari-
ables of the module are updated by events in the proce-
dure body. The call and return events are used to transfer
control and parameter values only. Thus for implemen-
tation in a practical programming language, each mod-
ule presented in this paper will have to be refined further;
specifically, state variables that are updated in the ac-
tions of Return(i, P) events will have to be made into
auxiliary variables. In Sect. 7, we indicate how such re-
finements can be carried out.

Interface U is specified in Sects. 3.1-3.5 below. Before
doing so, we define several constants. Let OBJECTS de-
note the set of objects in a database, VALUES the set
of values each object can have, KEYS a finite set of
keys, and IDS a set of transaction identifiers. The entries
of IDS are needed to specify correct usage of keys. They
are also adequate as identifiers in interface procedure
calls, given that each transaction has at most one proce-
dure call outstanding.® We will use key, obj, val, id as
variables that range over the corresponding sets. For
each obj, let its initial value be given by INITVA-
LUE(obj). We use NULL to denote a special value that
is not in any of the sets, KEYS, VALUES, OBJECTS,
and IDS.

We say that a transaction has a procedure invocation
outstanding in a particular behavior if it has called the
procedure and the procedure has not yet returned. We
say that a transaction is active if its Begin call has re-
turned with a key, and the transaction has not yet ended.

3.1 State variables of interface U

H: sequence of {(id, Begin, key),
(id, Read, key, obj, val), (id, Write, key, obj, val, OK),
(id, End, key, OK), (id, Abort, key)}.
Initially, H is the null sequence.
History of the returns of procedure invocations. The
(id, Abort, key) entry is used to record every return
that aborts a transaction. The other entries indicate

8 If a transaction can have multiple procedure calls outstanding,
a tuple (id, n) would be needed —instead of id alone—to identify
an interface procedure call

successful returns. An unsuccessful Begin return is
not recorded in H. H is adequate for stating seriali-
zability.

status(id): {NOTBEGUN, READY, COMMITTED,
ABORTED}
v {(Begin), (Read, key, obj),
(Write, key, obj, val),
(End, key), (Abort, key)}.

Initially, status(id)=NOTBEGUN.
Indicating the status of transaction id. NOT-
BEGUN means that the transaction has not
yet issued a Begin call, or such a call has re-
turned with FAILED. READY means that
the transaction is active and has no procedure
invocation outstanding. A tuple, such as
(Read, key, obj), means-that the transaction is
active and has a procedure invocation out-
standing as specified by the tuple. COMMIT-
TED means that the transaction has ended
successfully. ABORTED means that the trans-
action has ended by aborting.

allocated(key): boolean. Initially false.
True iff key is allocated to a transaction.

Notation. When we refer to a tuple in the domain of
status(id), such as (Read, key, obj), where a component
in the tuple can be any of its allowed values, we shall
omit that component in our reference. For example, sta-
tus(id)=(Read, obj) means status(id)=(Read, key, obj)
for some value of key. More than one component in
a tuple may be omitted. For example, (obj) refers to
(Read, key, obj) for some key or (Write, key, obj, val)
for some key and some val. The same notational abbre-
viation is used in referring to elements of H. For example,
(id, obj)e H means that H has a (id, Read, obj, key, val)
or a (id, Write, obj, key, val, OK) entry for some key
and some val.

We next introduce notation that is used in our defini-
tion of serializability below. For any sequence h, we use
h; to denote the ith element of A, h ., to denote the prefix
of h up to but excluding ;, and h; to denote the prefix
of h up to and including h;. For any id, H(id) denotes
the subsequence of H obtained from it by inctuding only
the (id) entries.

For any obj and any sequence h of transaction returns,
define

lastvalue(obj, h): VALUES

=INITVALUE(obj), if (obj)¢h.
=wval, if (obj)eh and (0bj, val) is the last such entry.

3.2 State functions of interface U

We first define two state functions that are used to specify
when H is serializable.
comids: powerset of IDS

The set of committed transactions.
Formally, comids = {id : (id, End)e H}.



H _serializable: boolean

True iff there is a permutation id,, id,, ..., id|comias)
of the elements in comids such that

S=H(id,) @H (id,) @ ... @ H (id|comiss)) satisfies
S;=(Read, obj, val) = val=lastvalue(obj, S < ;).

A comment on the above definition of serializability
is in order. We find three definitions of serializability
in [3]: conflict serializability, view serializability, and
multi-version view serializability. The first two are appli-
cable to single-version database systems. The two-phase
locking module satisfies conflict serializability, the stron-
gest condition of the three. However, the multi-version
timestamp module satisfies only multi-version view seria-
lizability, the weakest condition of the three. The above
definition, a form of multi-version view serializability,
can be used for both modules to be specified in this
paper.

We next define state functions that are used to specify
when transactions are in conflict and when keys are used
incorrectly.

active(id): boolean
True iff (id, Begin)e H, and neither (id, End) nor
(id, Abort) is in H.

accessed(id): powerset of OBJECTS

The set of objects that have been accessed by trans-
action id.

= {obj : status(id)=(obj) v (id, obj)e H}.

concurrentaccess(id): boolean

True iff there is an ieIDS—{id} such that transac-
tions id and i have accessed a common object and
were simultancously active at some time in the past.
Formally, it is true iff

accessed (i) " accessed(id) is not empty, and for some
prefix h of H, (id, Begin), (i, Begin)eh
and (id, End), (i, End), (id, Abort), (i, Aborty¢h.
keyof (id): KEYSuU{NULL}
=NULL, if —active(id).
=key, if active(id) and (id, Begin, key) is the first
(id, Begin) entry in H.
correctkeyuse: boolean.

True iff every transaction has used the correct key
in all its procedure calls. Formally,

correctkeyuse =true iff
((id, keyye H v status(id) = (key)) = key =keyof (id).

3.3 Euvents of interface U

For readability, we model each procedure return by one
of two possible return events, one for success and one
for abort.

Call(id, Begin)

=status(id)=NOTBEGUN
A status(id) = (Begin)

Return(id, Begin, key)
= status(id)=(Begin)
A Tallocated (key)
A status(idy =READY
A allocated (key)y
A H' = H @ (id, Begin, key)
Return(id, Begin, FAILED)
= status(id) =(Begin)
A status(id) = NOTBEGUN
Call(id, Read, key, obj)
=status(id)=READY A allocated(key)
A status(id) =(Read, key, obj)
Return(id, Read, key, obj, val)
= status(id)=(Read, key, obj)
Astatus(id) =READY
A H' =H @(id, Read, key, obj, val)
Return(id, Read, key, obj, ABORT)
=status(id)=(Read, key, obj)
A concurrentaccess(id)
A status(id) = ABORTED
A Tallocated (key)
A H'=H @ (id, Abort, key)
Call(id, Write, key, obj, val)
= status(id)=READY a allocated (key)
A status(id) = (Write, key, obj, val)

Return(id, Write, key, obj, val, OK)
= status(id) = (Write, key, obj, val)
Astatus(idy = READY
A H' =H @ (id, Write, key, obj, val, OK)

Return(id, Write, key, obj, val, ABORT)
= status(id )= (Write, key, obj, val)
A concurrentaccess(id)
A status(id) = ABORTED
A Tallocated(key)
AH' =H @(id, Abort, key)

Call(id, End, key)
=status(id)=READY A allocated(key)
A status(id) = (End, key)

Return(id, End, key, OK)
=status(id)=(End, key)
A status(id) = COMMITTED
A —iallocated(key)
AH'=H@/(id, End, key, OK)
Return(id, End, key, ABORT)
=status(id)=(End, key)
A concurrentaccess(id)
A status(id) = ABORTED
A Tallocated(key)
AH' =H @(id, Abort, key)
Call(id, Abort, key)

=status(id)=READY a allocated(key)
A status(id) =(Abort, key)

49



50

Return(id, Abort, key)
=status(id) = (Abort, key)
A status(idy = ABORTED

A T1allocated (key)
A H'=H @(id, Abort, key)

3.4 Safety requirements of interface U

Many safety requirements stated informally by Lamport
[13] are specified implicitly in sts(U). Consider the event
formulas in Sect. 3.3. First, the informal requirement that
each client program must wait for the return from a
procedure call before issuing another call is specified by
including the conjunct status(id)=READY in the ena-
bling condition of a call event, and updating status(id)
to a value not equal to READY in the action of the
call event. Only the action of a return event can change
the value of status(id) back to READY. Furthermore,
one status(id) has been updated to the value ABORTED
or COMMITED, no more calls can be issued by the
transaction with identifier id.

An invocation of Begin is always enabled to return
FAILED. This is weaker than Lamport’s requirement
that an invocation of Begin should return FAILED only
when there are insufficient resources to start another
transaction [13], e.g., when there is no unallocated key.
However, Lamport’s requirement cannot be modeled be-
cause he does not provide any information on what re-
sources are needed to start a transaction (other than
keys). If such information is known, then a state formula
defining the condition of “insufficient resources” can be
included in the enabling condition of the return event.

The informal requirement that invocations of Read,
Write, End and Abort can be made only with a key of
an active transaction is specified by the conjunct alloca-
ted(key) in the enabling condition of each such call event.
The reuse of keys is specified by the conjunct —1allocated-
(key) in an Abort or End return event.

Lastly, an invocation of Read, Write, or End by trans-
action id aborts only if it has accessed an object that
has been accessed by another transaction, one that was
concurrently active at some time in the past. This re-
quirement has been specified by including concurrentac-
cess(id) in the enabling conditions of the corresponding
return events. (For a single-version module, this condi-
tion can be strengthened by requiring both id and i to
be currently active.)

There are two safety requirements of interface U that
are specified as invariant requirements, one is an assump-
tion and the other a guarantee:

InvAssumy = correctkeyuse
InvGuary = H_serializable

By definition, we have

InvReqsy = correctkeyuse n H_serializable.

3.5 Progress requirements of interface U

A progress assertion specifying that every procedure call
eventually returns is this:

R, =status(id)e {(Begin), (Read), (Write), (End), (Abort)}
leads-to status(id)e {READY, ABORTED,
COMMITTED, NOTBEGUN}

Lamport’s assumption that if a transaction is not
aborted, then the transaction is eventually terminated
(by its client program) with an invocation of End, can
be stated as follows: If every Read and Write call made
by the transaction returns successfully, then the transac-
tion eventually issues an End call. Formally:

R, =(status(id)e {(Read), (Write)}
leads-to status(id)= READY)
= (status(id)=READY leads-to status(id) = (End))

The following progress requirement is specified for inter-
face U:

ProgReqsy=[Vid:R,] = R,.

4 Physical database interface L

The two-phase locking module M p;, to be specified in
Sect. 5, uses a lower interface L for accessing a physical
database. Interface L is specified below. Note that out-
standing procedure calls at the lower interface are
uniquely identified by the entries of KEYS.

4.1 State variables of interface L

statusy (key): {READY, (AcqLock, obj), (RelLock, obj),
(Read, , obj), (Write,, obj, val)}.
Initially READY.

Indicating the status of any procedure invocation
identified by key. READY means that key has no
procedure invocation outstanding at the lower inter-
face. Otherwise, the outstanding procedure invoca-
tion is indicated by a tuple.

owned(key, obj): boolean. Initially false.
True iff key has locked obj.

storedvalue(obj): VALUES. Initially, INITVALUE (obj).
The value of obj in the physical database.

4.2 State functions of interface L

waiting (key, obj): boolean.
True iff status; (key)=(AcqLock, obj).
Defined for notational convenience.

waitfor graph:
Directed graph defined by nodes KEYS W OBJECTS
and edges
{(x, k): owned (k, x)} U {(k, x): waiting (k, x)}.

cycle(ky, k,, ..., k;): boolean.
True iff keys kq,k,, ..., k; form a cycle in waitfor
graph, that is, there exist objects x;, x,, ...; X; such
that waiting(k;, x;) A owned(k;.,,x;) for 1 <j<i, and
waiting (k;, x;) A owned(k, x;).



deadlock(key, obj): boolean.

True iff there is a cycle including the edge (key, obj)
in waitfor graph.

4.3 Events of interface L

The interface events are the calls and returns of the inter-
face procedures AcqLock, RelLock, Read; , and Write .

Call(key, AcqLock, obj)
= statusy (key)=READY
A statusy (key) =(AcqLock, obj)
Return(key, AcqLock, obj, GRANTED)
= status; (key)=(AcqLock, obj)
A [Vk: T1owned(k, obj)]
A statusy (keyy =READY
A owned (key, obj)
Return(key, AcqlLock, obj, REJECTED)
=status (key) =(AcqLock, obj) A deadlock(key, obj)
A status; (keyy =READY
Call{key, RelLock, obj)

= status, (key)= READY
A statusy (key) =(RelLock, obj)

Return(key, RelLock, obj)
= statusy (key) = (RelLock, obj) A owned(key, obj)
A statusy (keyy =READY
A T1owned (key, obj)
Call(key, Read, , obj)

= statusy (key)=READY
A statusy (key) =(Read, , obj)

Return(key, Read, , obj, val)
=statusy (key)=(Ready, obj)
A statusy (key) =READY
A val = storedvalue (obj)

Call(key, Write,, obj, val)
= status; (key)= READY
A status; (key) =(Write,, obj, val)

Return(key, Write, , obj, val)
= status; (key)=(Write, , obj, val)
A statusy (key) =READY
A storedvalue (obj) =val

4.4 Safety requirements of interface L

Safety requirements of the lower interface are all implicit-
ly specified by the state transition system. The enabling
condition of Return(key, AcqLock, obj, GRANTED) en-
sures that obj is not owned by any other key. Its action
updates owned(key, obj) to true. The enabling condition
of Return(key, RelLock, obj) ensures that obj is owned
by key. Its action updates owned(key, obj) to false. No
other event updates owned (key, obj).

The enabling condition of Return(key, AcqLock, obj,
REJECTED) ensures that (key, obj) is involved in a dead-
lock. Interface L has no invariant requirement.

InvReqs; =true
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4.5 Progress requirements of interface L

The physical database that offers the lower interface
guarantees progress properties Q, through Qs:

Q, =statusy (key)=(Read;)
leads-to status; (key)=READY
Q, =status; (key)=(Write;)
leads-to status; (key)=READY
Q, = status; (key)=(RelLock, obj) n owned (key, obj)
leads-to status; (key)
=READY A —1owned (key, obj)
0.,=R,= G,
where
R,=[Vk,: waiting(k,, obj) A owned(k,, obj) leads-to
waiting (ky, obj) A —1owned(k, , 0bj)]
G, =waiting(ky, obj) leads-to owned(k,, obj)

Q. specifies the property that every call to AcqLock
eventually returns successfully provided that every
granted lock is eventually returned and the caller con-
tinues to wait for the lock (i.c., is not aborted). In other
words, if Return(key, AcqLock, obj, GRANTED) is en-
abled infinitely often, it eventually occurs. This is how
we interpret Lamport’s statement that the interface does
not starve an individual process [13].

Qs=cycle(ky, k,, ..., k,) leads-to [3i, L Si<n:
status; (k) =READY]

0, specifies that if there is a cycle of deadlocked pro-
cesses, it is eventually broken.

ProgReqs;=Q AQrAQ3A Q04 A Q5.

5 Two-phase locking module M p,

The two-phase locking module M,p; makes use of inter-
face L to offer interface U. The state transition system
of Mqp, is obtained from interfaces U and L by adding
new state variables, and refining the events of U and
L. Note that we choose to have a module that does
not block any incorrect use of allocated keys.

5.1 State variables of Mqpy,

In addition to the state variables H, status, and allocated
of interface U, and the state variables status;, owned,
and storedvalue of interface L, we add the following:
locked(key, obj): boolean. Initially false.

True iff key has locked obj.
localvalue(obj, key): VALUES U {NULL}.

Initially NULL.

Current value of obj as seen by transaction using

key.
aborting(key): boolean. Initially false.

True iff the transaction using key has been rejected
in acquiring a lock and it has not yet aborted.
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S: sequence of {(id, Begin, key), (id, Read, key, obj, val),
(id, Write, key, obj, val, OK), (id, End, key, OK)}.
Initially, S is the null sequence.

An auxiliary variable. A serial history obtained by
concatenating the histories of committed transac-
tions in the order of commitment.

The state variable H of interface U becomes an auxil-
iary variable. This also makes auxiliary all state func-
tions defined in terms of H, such as concurrentaccess,
etc. Recall that the values of auxiliary variables and func-
tions cannot affect the enabling conditions of events nor
can they affect the update of a nonauxiliary variable.

5.2 State functions of Mpy,

holdinglocks(key): boolean.
True iff locked (key, obj) is true for some obj.

5.3 Events and refinement requirements of Mp;

Module events that match the events of interface U are
listed first. (These module events have null images at
the lower interface because they do not update any state
variable of the lower interface.) The formulas of these
module events are obtained by refining formulas of the
matching events of interface U. For most events, the
formula of a module event e is obtained by adding con-
juncts to the formula of interface event e. Below, we
use (interface formula) to denote the formula of the
matching interface event given in Sect. 3.3. When the
refinement is not of this simple form, we add a condition
which must be implied by Inv,,.

Call(id, Begin)= {interface formula)
Return(id, Begin, key)= (interface formula)
A —Tholdinglocks(key)

Return(id, Begin, FAILED)= {interface formula)
Call(id, Read, key, obj)= (interface formula)
Return(id, Read, key, obj, val)=

{interface formula)

A localvalue(obj, key)+=NULL

Aval=localvalue(obj, key)

Return(id, Read, key, obj, ABORT)
= status(id)=(Read, key, obj) A aborting (key)
A status(id) = ABORTED
A H' =H @ (id, Abort, key)
A Tallocated(key)

A “1aborting (key)
A [Vx:localvalue(x, key) = NULL]

For the above event and the matching interface event
to satisfy the event refinement condition assuming Inv,,,
it is sufficient that Inv,, implies the following:

status(id )= (obj) A aborting(key) = concurrentaccess(id)

The above requirement is satisfied by assuming the fol-
lowing condition and correctkeyuse (to be conjuncts of
Invy,):

A =keyof (id)=key A status(id) = (obj) A aborting (key)
=> concurrentaccess(id)
Call(id, Write, key, obj, val)= {interface formula>
Return(id, Write, key, obj, val, OK)
= (interface formula) A locked (key, obj)
A localvalue(obj, key) =val
Return(id, Write, key, obj, val, ABORT)
= status(id)=(Write, key, obj, val)
A aborting (key)
A status(id) = ABORTED
A H' =H @ (id, Abort, key)
Aallocated(key)

A Taborting(key)
A [V x:localvalue(x, key) =NULL]

Assuming A, A correctkeyuse, the above event and the
matching interface event satisfy the event refinement con-
dition.

Call(id, End, key)= <interface formula)
Return(id, End, key, OK)
= (interface formula)
AV x: localvalue(x, key) =NULL]
AS'=S@H((id)

Return(id, End, key, ABORT) is never enabled, and is
absent in the module.

Call(id, Abort, key)= {(interface formula>
Return(id, Abort, key)

= (interface formula)
A [V x:localvalue(x, key) =NULL]

We next define module events that match events of
the lower interface L. For all of these module events,
the formula of each is obtained by adding conjuncts to
the formula of the matching lower interface event.

For every lower interface event, say f, defined in
Sect. 4.3, the event is renamed to be the same as the
matching module event. For convenience, we use f to
denote the formula of the interface event in defining its
matching module event. Below, each module event is
defined by a formula of the form formula(e)=fAp,
where f denotes the formula of the matching lower inter-
face event and p is some event formula in state variables
of the module that are not state variables of the upper
or lower interfaces. This special form ensures that mod-
ule event e is a refinement of the matching lower interface
event, and it has a null image at the upper interface.

RequestLock(id, key, obj)
= status(id)e {(Read, key, obj), (Write, key, obj)}
A Tlocked(key, obj)
A Call(key, AcqLock, obj)

LockAcquired(key, obj)

= Return(key, AcqLock, obj, GRANTED)
A locked(key, objy

LockRejected(key, obj)
= Return(key, AcqLock, obj, REJECTED)
A aborting(key)



RequestRead (id, key, obj)
= status(id) = (Read, key, obj) A locked (key, obj)
A localvalue(obj, key)=NULL
A Call(key, Read; , obj)

ReadCompleted(key, obj, val)

= Return(key, Read; , obj, val)
A localvalue(obj, key) =val

RequestWrite(id, key, obj)
= status(id)=(End, key)
A localvalue(obj, key)+=NULL
A Call(key, Write;, obj, localvalue(obj, key))

WriteCompleted (key, obj)

= Return(key, Writey,, obj, val)
A localvalue (obj, key)y =NULL

ReqRelLock(key, obj)
=—1allocated(key) A locked(key, obj)
A Call(key, RelLock, obj)

LockReleased (key, obj)

= Return(key, RelLock, obj)
A —1locked(key, obj)

Note that a module event is classified as an input
(output) event iff it matches a call (return) event of the
upper interface or a return (call) event of the lower inter-
face. This completes our specification of the events of
module M p; . Note also that the module has no internal
events.

5.4 Fairness requirements of Mrpp

We specify the following fairness requirements for mod-
ule Mqp. (events RequestLock, RequestRead, Request-
Write, and ReqRelLock are called request events):

F1: For each return event e of the module, there is
a fairness requirement consisting of e.

F2: For each request event e of the module, there is
a fairness requirement consisting of e.

This completes our specification of module Mypy .

5.5 Informal description of two-phase locking

We provide below an informal description of the two-
phase locking module, by indicating the sequence of
event occurrences for each transaction call. Those who
are familiar with the two-phase locking protocol might
want to skip ahead to Sect. 5.6. For brevity, we will omit
parameters in event names whenever the omission results
in no ambiguity.

Suppose a client program begins a new transaction
by issuing a Call(Begin). Eventually the module executes
either Return(FAILED) or Return(key). In the former
case, the transaction’s execution is over. In the latter
case, read or write calls can be issued for the transaction,
and the transaction enters its growing stage.
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Suppose a Call(Write, key, obj, val) is issued, where
obj has been previously accessed by the transaction.
Then obj is locked by key. The module assigns val to
localvalue(obj, key) and executes Return(Write, OK)

Suppose a Call(Write, key, obj, val) is issued, where
obj has not yet been accessed by the transaction. Then
obj is not locked by key. The module executes Request-
Lock(key, obj). Eventually the lower interface returns,
causing either LockAcquired(key, obj) or LockRejected-
(key, obj) to occur. In the first case, the module sets local-
value(obj, id) to val and executes Return(Write, OK). The
second case will be considered below.

Suppose a Call(Read, key, obj) is issued, where obj
has been previously accessed by the transaction. The
module executes Return(Read, val) where val equals
localvalue(obj, key).

Suppose a Call(Read, key, obj) is issued, where obj
has not been previously accessed by the transaction. As
in the case of the write above, the module executes Re-
questLock(key, obj), which is eventually followed by ei-
ther LockAcquired(key, obj) or LockRejected(key, obj).
In the first case, the module executes RequestRead(key,
obj). Eventually a return from the lower interface causes
ReadCompleted(obj, val) to occur. At this point, val,
which equals storedvalue(obj), is assigned to localva-
lue(obj, id). After this, the module executes Return(Read,
obj, val).

Suppose a Call(End, key) is issued by the client pro-
gram. The transaction goes through two stages of activi-
ty. In the first stage referred to as committing, the local
value of each object accessed by the transaction is written
into the physical store. Specifically, for each obj with
localvalue(obj, key)+=NULL, there is an occurrence of
RequestWrite(key, obj) which is followed by an occur-
rence of WriteCompleted(key, obj). When all the local
values have been written to the physical database, the
module executes a Return(End, OK), ending the transac-
tion’s execution. The second stage, referred to as lock-
releasing, then follows. In this stage, the module returns
all of the locks acquired by the transaction. For cach
obj such that locked(key, obj) is true, the module executes
a ReqRelLock(key, obj), which is followed by the occur-
rence of LockReleased(key, obj). The second stage ends
when all the locks are returned. The key can now be
reallocated to a new transaction.

Two cases have not yet been considered: a Call
(Abort) issued for the transaction, and the occurrence
of LockRejected(key, obj) following a RequestLock(key,
obj). In each case, the module returns the locks acquired
by the transaction, exactly as in the lock-releasing stage
following a Call(End, key).

5.6 Proof that two-phase locking module using L offers U
We apply Theorem 4 to prove that M, using L offers

U. It is sufficient to establish that conditions C1-C9
in Sect. 2.4 are satisfied.
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Satisfaction of conditions C1-C6

Suppose the lower interface events have been renamed
to be the same as their matching module events. From
the fact that the upper and lower interfaces have no
state variable in common, condition C1 is satisfied.

The state variable set of the module includes all state
variables of the upper interface, with the same initial
conditions. Each module event that matches an upper
interface event has been constructed so that it is a
refinement of the interface event-assuming A, A correct-
keyuse, in two cases — and has a null image on the lower
interface. Thus, condition C2 is satisfied assuming
Aj A correctkeyuse. (Note that Inv,, in condition C8
must imply 4, A correctkeyuse.)

The state variable set of the module includes all state
variables of the lower interface, with the same initial
conditions. Each module event that matches a lower in-
terface event has been constructed so that it is a refine-
ment of the interface event, and has a null image on
the upper interface. Thus, condition C3 is satisfied.

Condition C4 is satisfied because, for every call event
of interface U, the formula of the matching module event
is identical to the formula of the call event.

Condition CS5 is satisfied because, for every return
event of the lower interface, the formula of the matching
module event has the form f A p, where f is the formula
of the interface return event and p is such that enabled(p)
is true.

Condition C6 is satisfied vacuously because the lower
interface has no invariant requirements, i.e., InvAssum;
=true.

Satisfaction of conditions C7-C8

For satisfaction of condition C7, we need to show that
every output event of My preserves InvGuary, which
is H_serializable. Recall that S denotes a serial history
obtained by concatenating histories of committed trans-
actions in the order of commitment, that is, S
= H(ldl) @ H(ldl) @ v @ H(idlcomids|)> where ldl >
id,, ..., id\omas denote identifiers of the committed
transactions in the order of commitment. From the defi-
nition of H_serializable in Sect. 3.2, it suffices to show
that every output event of Mp; preserves the following:

A, =8,;=(Read, obj, valy = val =lastvalue(obj, S .)).

The Return(id, End, OK) event is the only event that
can affect 4,. It concatenates H(id) to the end of S.
Thus A, is preserved by every output event of Myp
if the following condition holds just before each occur-
rence of the Return(id, End, OK) event.

As=active(id) n H(id);=(Read, obj, val)
= (a) ((obj)¢H (id); = val=lastvalue (obj, S))
A (b) ((objyeH (id)<;
=> pal =lastvalue(obj, H (id) -.)))

Thus, C7 is satisfied if Inv, implies 45. In addition,
to ensure that events of module Mp; are refinements
of events of interface U (from condition C2), Inv,, must

imply correctkeyuse A Ay. Thus, if condition C8 is
proved for Inv, =correctkeyuse A A; A A5, both condi-
tions C2 and C7 are satisfied.

To show that C8 is satisfied, we present a proof that
Mypy satisfies  (invariant  correctkeyuse=>invariant
Ay A Az). We present here an informal justification of
the invariance of A; and A4;. A more formal proof is
given in Appendix A.

We first consider A4, , which is

A, =keyof (id)=key A status(id) = (obj) A aborting (key)
= concurrentaccess(id).

Assume keyof (id)=key A status(id)=(obj). When trans-
action id becomes active, aborting(key) is false. It is set
to true only in the LockRejected event, when the lower
interface executes Return(key, AcqLock, obj, RE-
JECTED). The latter occurs only if deadlock(key, obj)
is true. From the definition of deadlock, we have a cycle
in the waitfor graph involving the edge (key, obj). Thus,
owned (k, obj) is true for some key k & key that is allocated
to a transaction i. Since transaction i is also waiting
for a key, it is active. Additionally, obj belongs to ac-
cessed(id). From status(id) = (obj), we know that transac-
tion id is active and obj belongs to accessed(id). Thus,
concurrentaccess(id) holds just before aborting(key) be-
comes true. Once concurrentaccess(id) holds, it is obvious
from its definition that it never becomes false.

We next consider A;. To establish its invariance, we
need to relate several values associated with each object:
1e., its stored value, its last value in S, and, whenever
it is locked by a transaction, its local value and last
value in H. These values are related during the growing
and committing stages of a transaction by the following
conditions, which we assert to be invariant:

As=Vkey: 1locked(key, obj))
= storedvalue(obj) = lastvalue (obj, S)
As=keyof (id)=key A —1locked(key, obj)
= (id, obj)¢ H A localvalue(obj, key)=NULL
Ag =keyof (id)=key A locked (key, obj)
A statusu(id )+ (End)
= storedvalue(obj) = lastvalue(obj, S)
A [(@) ((id, obj)¢H A localvalue(obj, key)=NULL)
v (b) ((id, obj)¢ H
A localvalue(obj, key)=lastvalue{obj, S))
v (c) ((id, obj)eH
Alocalvalue(obj, key) = lastvalue(obj, H (id)))]

A, =keyof (id)=key A locked(key, obj)
A status(id) = (End)
= (id, obj)e H
A (@) [(localvalue(obj, key)=lastvalue (obj, H (id))
A storedvalue(obj) = lastvalue (obj, S))
(b) v (localvalue(obj, key)=NULL
A storedvalue (obj) = lastvalue(obj, H (id)))]

An informal justification of the above invariant asser-
tions follows (formal proof in Appendix A). 4, states
that when an object is not locked by any transaction,
its stored value is its last value in S. This is true initially,
when both are equal to the initial value of the object.
This is preserved whenever the stored value is changed,



because a change happens only when a transaction has
locked the object and is in the committing stage. When
the transaction commits, S is updated and the conse-
quent of A, is established. And A, is preserved when
the lock is released subsequently.

As is invariant because a transaction reads or writes
an object only after it has locked the object.

Ag is about an object locked by a transaction that
is in its growing stage. The first conjunct in the conse-
quent states that its stored value equals its last value
in S. This holds when the transaction first acquires the
lock on the object (by A,). It holds subsequently because
this transaction is not in its committing stage, and be-
cause no other transaction can change its stored value
while this transaction has a lock on it. The second con-
junct in the consequent relates the local value of the
object to its last value in H. Disjunct (a) holds just after
the transaction has locked the object, when its local value
is NULL. If the transaction’s first access to the object
is a Read, disjunct (b) holds after the stored value has
been retrieved into the local value but before Return-
(Read) occurs. Disjunct (c) holds after the successful re-
turn of a read or write call.

A, is about an object locked by a transaction that
is in the committing stage. In the consequent, the first
conjunct states that the object has been accessed by the
transaction. The second conjunct relates its local value,
its last value in H(id), its stored value, and its last value
in S. Disjunct (a) holds just after the transaction has
invoked Call(End) because of A, ; note that at this point
S does not yet include H(id). Disjunct (b) holds after
the local value has been written into the stored value.
Also, when Return(End, OK) occurs, A, is established
for this object because of disjunct (b).

In what follows, we use the notation A;_ ; to denote
AiNAir A NA;L

Lemma 1. M 1, satisfies
(invariant correctkeyuse = invariant A; A A, _ ).

Proof in Appendix A.

It remains for us to prove that A, is invariant. By
Lemma 1, we can make use of the result that 45 and
Ag are invariant in our proof. From As, observe that
an object is accessed by transaction id only if the transac-
tion has locked it. Thus, the consequent of A4, holds
Just prior to the occurrence of Return (id, Read, obj, val).
There are two cases. If (obj)¢ H(id) holds prior to the
occurrence, then we have val=lastvalue(obj, S), by Ag
(b). If (obj)e H(id) holds prior to the occurrence, then
we have val=lastvalue(obj, H(id)), by A¢ (c). In each
case, the consequent of A, holds after the occurrence.

Satisfaction of condition C9

Recall that module Myp, has fairness requirements F1
and F2 (defined in Sect. 5.4). Also, we can assume that
the module satisfies progress requirements Q,, Q,, Qs,
04, Qs of the lower interface. We proceed to prove that
the module satisfies the progress requirement of interface
U. Throughout invariant correckeyuse is assumed to be
satisfied.
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Lemma 2. Module My, satisfies the following progress
assertions:

W, = status(id) = (Begin)
leads-to status(id)e {(READY, NOTBEGUN}
W, = status(id) =(End, key)
leads-to status(id)=COMMITTED
Ws = status(id) = (Abort) leads-to status(id)= ABORTED
W, = Status(id)=(key, obj) A locked (key, obj)
leads-to status(id)= READY
Ws = status(id) = (key, obj) A T1locked (key, obj)
leads-to waiting(key, obj)
We = status(id ) = (key, obj) A aborting (key)
leads-to status(id)= ABORTED

Proof. W, holds as follows. The state formula status(id)
=(Begin) can only be falsified by Return(id, Begin,
FAILED) and by Return(id, Begin, key) for some key.
The occurrence of the latter establishes status(id)
=READY. The former is continuously enabled, and its
occurrence establishes status(id)=NOTBEGUN.

W, holds as follows. From Q,, RequestWrite, and
WriteCompleted, we have:

status(id)=(End, key) A localvalue(obj, key)+=NULL

leads-to status(id)=(End, key)
A localvalue (obj, key)=NULL

No event can falsify localvalue(obj, key)=NULL while
status(id)=(End, key). Therefore, from the above we
have:
status(id)=(End, key)

leads-to status(id)=(End, key)

A (Vobj: localvalue(obj, key)=NULL)

From Return(End, key), we have:
status(id)=(End, key)
A (Yobj: localvalue (obj, key)=NULL)
leads-to status(id)=COMMITTED
Combining the above two, we have W,.
Wj holds from Return(Abort).

W, holds as follows. From Q;, RequestRead and
ReadCompleted, we have:

status(id) = (Read, key, obj) A locked (key, obj)
leads-to status(id)=(Read, key, obj)
A localvalue(obj, key)+=NULL
From above and Return(Read, val), we have:
status(id) = (Read, key, obj) A locked (key, obj)
leads-to status(id)=READY
From Return(Write, OK), we have:
status(id)=(Write, key, obj) A locked(key, obj)
leads-to status(id)=READY
Combining the above two, we have W,.
W5 holds from RequestLock.

W holds from Return(Read, key, obj, ABORT) and
Return(Write, key, obj, ABORT). [

The events that falsify waiting(key, obj) establish ei-
ther locked(key, obj) or aborting(key). Therefore, from
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W, W,, Wy, W,, Wy, W, all that is left to establish
the desired progress property is:

W, =waiting (k, obj) leads-towaiting (k, , obj)

where we have used k; in place of key for notational
convenience.

We prove W, using a lexicographically ordered metric
on the waitfor graph. Recall that the waitfor graph is
a directed graph defined by nodes KEYS W OBJECTS
and edges {(x, k): owned(k, x)} U {(k, x): waiting(k, x)}.
Note that there is no edge from a key to a key, or from
an object to an object. Every node can have at most
one outgoing edge. Because k, is waiting, it has an outgo-
ing edge.

Consider the succession of nodes on the path start-
ing from k. Let k{, xq, k,, x5, ..., k; be the sequence
of distinct nodes such that waiting(k;, x;) and
owned(k;, 1, x;) for 1<i<J, and k;, satisfies one of the
following three mutually exclusive conditions:

unblocked(k;) =k;is not waiting for any object.

blocked(k;) =k, is waiting for an object that
is not locked by any key.

deadlocked(k;) =k, 1s waiting for an object
locked by k; for some i, 1 i< J.

While k, is waiting, this path can grow and shrink.
We need to prove that eventually this path shrinks to
only k,. Observe that J is a state function indicating
the number of keys in the path, and k; indicate the last
key on the path. At any time, 1 £J Z|KEYS|. Every k;,
1<i<J, is waiting and hence allocated to some transac-
tion. The last key k; can be cither allocated or not allo-
cated. It is not allocated if k; is in the stage of releasing
locks acquired when it was last allocated and has not
yet released the lock on x;_ ;.

Define the following functions®, where 1 <i<|KEYS|.
We use M to denote a symbol that is greater than any
integer; that is, for any integer n, n <M holds.

o;: integer
=number of objects locked by k;, if i<J, or i=J and
allocated (k;).
=M, if i=J and —1allocated(k;).
=0,ifi>J.

B;: integer
=number of times x; has been unlocked since k; last
started to wait,
ifi<J, ori=J and k; is waiting.

=0,ifi>J, orif i=J and k, is not waiting.

Define the function 4=(8,, oy, B, %3, ..., Xkrys)>
Bikeys))- The values of 4 are totally-ordered lexicographi-
cally. We shall prove the following:

Wy =waiting(k, x| )And=a
leads-to—1waiting(ky, x;) v A>a

° For reasoning using proof rules, these functions can be replaced
by appropiately-defined auxiliary variables

We first show that W, follows from W,. W states
that A increases without bound unless k; stops waiting.
For A to increase without bound, either 8, or «; must
increase without bound for some i. The former is not
allowed by Q,, which says that the lock manager in
the physical database is fair. (Note that f; increasing
without bound implies that R,, the antecedant of Q,,
is true.) The latter is not allowed by R,, the assumption
that every transaction accesses at most a finite number
of objects. Thus, it suffices to prove Ws.

Lemma 3. Module My satisfies the following progress
assertion:

Wy =unblocked(k;) A A=a leads-to
Wou v Woy v Wy, where

Wy ,=unblocked(k)) A A>a
Wy =blocked(k;)n A=a
Wo.=deadlocked(kj)n A=a

Proof. Assume J=j and allocated (k;), that is, k; is releas-
ing its locks. J=j and A=a hold until k; releases its
lock on x;_,. At this point, Wy, holds with J=j—1
and 4>a. «; decreases from M to 0, and f;_, increases
by 1. No other «; or f; is affected. 4 increases because
B;- 1 is lexicographically more significant than o;.

Assume J=j and allocated(k,). Eventually the trans-
action using k; requests an abort, a commit, or an access
to an object not previously accessed by it (by R, and
W,). If the transaction requests an abort or a commit,
k; eventually becomes deallocated (by W, and W;). When
this happens, o; becomes M and J remains j. Thus, A
increases and we have .

Suppose J=j and k; requests access to an object not
previously accessed by it. If the object is not locked,
then W,, holds with J =j and 4 =a. If the object is locked
by some key already on the path, (that is, by k; for some
i, 1LZi<j), then Wy, results with J=j and A=a. If the
object is locked by some key not already on the path,
then the path gets extended, resulting in 4> a; specifi-
cally, J becomes [>j, and «; increases from O for j<i<L
Wy, holds if unblocked(k)). Wy, holds if blocked (k). Wy,
holds iff prior to the request by k;, k; was a predecessor
to a key on the path. []

Lemma 4. Module My, satisfies the following progress
assertion:

Wio=blocked(k;) n A=aleads-to unblocked(k,)v 4>a

Proof. Assume J=j, and let k; be waiting for x;. The
LockAcquired(k;, x;) event is continuously enabled while
blocked(k;), and it eventually occurs unless some other
key locks x;. Assume the former case: that is, k; locks
x;. If j=1, we get unblocked(k,). If j>1, we get 4>a
because «; increases by 1. In either case, the value of
J remains to be j. Next assume that x; is locked by
a key other than k;. We get A>a because J becomes
j+1and «;,, increases from 0. []



Lemma 5. Module My, satisfies the following progress
assertion:

W, =deadlocked(k;)n A=a
leads-to unblocked (k) v A>a

Proof. Assume J=j. Then we have a cycle consisting
of k; and other (perhaps all) keys in the path
LockRejected(k;, x;) is enabled for every k; in the cycle,
and eventually the lock manager in the physical database
exccutes one of them (by Qs). Suppose LockRejected (k;,
x;) occurs, for some 1 <I<j. If =1, we get unblocked (k,).
If [> 1, then J becomes [, &; and f3; become 0 for [<i<
and o, increases to M. 4>a holds because o, is lexico-
graphically more significant than «; or p;, for
I<i<j. O

From the implication rule, we have

blocked(k;) n A>aleads-to 4> a.

Using the disjunction rule on the above and W,, we
get

W, , =blocked(k;) A A= a leads-to unblocked(k)v A>a
Similarly, from W;,, we can infer

W,y =deadlocked(k)yn Aza
leads-to unblocked (k) v A>a

W,, has the form Wy, leads-to Z, and Wi, has the
form W,, leads-to Z, where Z =unblocked(k,) v 4>a. W,
has the form X leads-to Wy,v Wo, v Wy, where X
=unblocked(k;) A A=a. Applying the transitivity and
disjunction rules to Wy, W;,, and W5 (with W, at Wop»
and W, at W), we get X leads-to Wo,vVZV Z, which
can be simplified to

unblocked(k;) A A =a leads-to unblocked(k,) v 4> a.

Applying the disjunction rule to this, Wy, and Wiy,
we get Wy, noting that unblocked (k)= waiting (ky, x1)
and unblocked(k;) v blocked(k;) v deadlocked (k) =true.
Recall that W is sufficient for W,, and W,—W, are suffi-
cient for module Myp, to satisfy the progress require-
ment of interface U.

6 Multi-version timestamp module Myyy

A module, Myyr, that implements the multi-version
timestamp protocol is specified in this section. It offers
the serializable database interface U (specified in Sect. 3).
Unlike the two-phase locking module, module Myvr
does not use a lower interface. But like the two-phase
locking module, we choose to specify Myyr such that
it does not block any incorrect use of allocated keys.
Before specifying Myyr, we provide an informal over-
view of the multi-version timestamp protocol below.
Module Myt uses “timestamps” that are nonnega-

tive integers. For notational consistency with the specifi-
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cation of interface U, timestamps will be referred to as
keys. For each object, the module maintains multiple
versions, one for each transaction that has written into
the object and has not yet aborted. Each version ov is
a record with three components: ov.wkey, the key of the
transaction that wrote the version; ov.value, the value
that was written; and ov.rkey, the largest key among
keys of transactions that have read the version. The ver-
sions are ordered by wkey; that is, ov;<ov, iff
ov, .wkey < ov,.wkey. When a transaction reads the ob-
ject, it gets the value of the highest version that is less
than or equal to the transaction’s key.

The keys in [ov.wkey ... ov.rkey] constitute the interval
of ov, where [i...j] denotes the set {i, i+1, ..., j}. While
a version ov of an object exists, no transaction whose
key is in [ov.wkey...ov.rkey—1] can write into the ob-
ject. This ensures that for any transaction that has read
this version (such as the transaction using ov.rkey), ov
continues to be the highest version less than or equal
to the transaction’s key. By not allowing such writes,
the intervals of any two distinct versions ov; and ov,
of an object have the following property:
[ov, .wkey ...ov, .rkey—1][ov,.wkey ...0v,.rkey—1]
={ ). Observe that ov, .rkey=ov,.wkey bolds iff a trans-
action with that key first read from ov, and then wrote
into the object. Also observe that if a transaction writes
a version of an object and a different transaction subse-
quently reads that version, then the first transaction can-
not write into the object again.

6.1 State variables of Myvyr

In addition to the state variables H, status, and allocated
of interface U, we add the following:

aborted: powerset of KEYS. Initially empty.
Set of keys of aborted transactions.

done: powerset of KEYS. Initially empty.
Set of keys of transactions that have committed or
aborted.

laststarted: KEYS. Initially 0.
Largest key allocated to a transaction.

versions(obj): powerset of VALUES x KEYS x KEYS.
Initially {ov: ov.value=INITVALUE (obj),
ov.wkey =ov.rkey=0}.
Versions of obj currently maintained.

dependsupon(key): powerset of KEYS. Initially empty.
Set of keys that the transaction using key has read
from; if kedependsupon(key) then k+key and key has
read a version ov written by k.

S: sequence of {(id, Begin, key), (id, Read, key, obj, val),
(id, Write, key, obj, val, OK), (id, End, key, OK)}.
Initially, S is the null sequence.

An auxiliary variable. A serial history obtained by
concatenating histories of the committed transac-
tions in increasing order of their keys (timestamps).



58

The state variable H of interface U becomes an auxil-
iary variable. We use H (key) to denote the subsequence
of H consisting of all entries using key. We use S(<key)
to denote the prefix of S consisting of all entries using
keys less than key. Similarly, S(> key) denotes the suffix
of S consisting of all entries with keys higher than key.
We continue to use our subscript notation to specify
entries of a sequence. Thus, S(>key); is the ith entry
of S(>key), and S(> key).; is the prefix of S(> key) con-
sisting of all entries up to but excluding S(> key).

6.2 Events and refinement requirements of Myt

The following definition is used in the module events
below:

Abort(key)= aborted’ = aborted L {key}
Adone' =done L {key}
A [V obj: versions(obj)
= {oveversions(obj): ov.wkey +key}]
A status(id) = ABORTED
A allocated(key)
AH' =H @(id, Abort, key)

The module events are listed below. Each module
event matches an event of interface U. Formulas of the
module events are obtained by refining the formulas of
matching interface U events. Below, we use (interface
formula to denote the formula of the matching interface
event given in Sect. 3.3.

Call(id, Begin) = {interface formula)

Return(id, Begin, key) = <interface formula)
A key=laststarted’ = laststarted + 1
A dependsupon(key) =1 }

Return(id, Begin, FAILED)= {interface formula)
Call(id, Read, key, obj)= <interface formula)

Return(id, Read, key, obj, val)= {interface formula)

A dependsupon(key) naborted={ }
A [Jov: ov=max{ov, eversions(obj): ov, .wkey < key}

Aval=ov.value

Aov.rkey' =max(key, ov.rkey)

A dependsupon(key) = dependsupon(key)
U {k:k=ov.wkey Ak+key}]

For ovewversions(obj), the notation ov.rkey’' =k means
that versions(obj) is the same as versions{obj) except that
ov is updated as specified.

Return(id, Read, key, obj, ABORT)
= status(id) =(Read, key, obj)
A dependsupon(key) naborted =+ { } A Abort(key)
For the above event and the matching interface U event

to satisfy the event refinement condition assuming Inv,,,
it is sufficient that Inv,, implies the following:

status(id) = (obj) A dependsupon(key) N aborted +{ }
= concurrentaccess(id)

The above requirement is satisfied by assuming the fol-
lowing condition and correctkeyuse (to be conjuncts of
Invy,):

B, =keyof (id)=key A dependsupon(key) n aborted + { }
= concurrentaccess(id)
Call(id, Write, key, obj, val)= (interface formula)
Return(id, Write, key, obj, val, OK)
= (interface formula)
A dependsupon(key) naborted={ }
A 1[Joveversions(obj):
keyel[ov.wkey...ovrkey—1]]
A versions(obj) = {ov, eversions(obj):
ov, .wkey =+ key}
v {ov, : ov, .value=wval
A 0V, . wkey = ov, rkey =key}

Return(id, Write, key, obj, val, ABORT)
= status(id) = (Write, key, obj, val)
A [dependsupon(key) naborted +{ }
v [doveversions(obj):
keyelov.wkey...ov.rkey—1]1]]
A Abort(key)

The above event and the matching interface U event
satisfy the event refinement condition assuming
B, A B, A correctkeyuse, where

B, =keyof (id)=key A status(id)=(obj)
A oveversions(obj)
Akeye[ov.wkey...ovrkey—1]

= concurrentaccess(id)

Call(id, End, key)=(interface formula}

Return(id, End, key, OK)= (interface formula)
A dependsupon(key) = done — aborted

Adone' =done L {key}
A S =S8(<key) @H(key) @S (> key)

Return(id, End, key, ABORT)
= status(id)=(End, key)
A dependsupon(key) n aborted +{ }
A Abort(key)

The above event and the matching interface U event
satisfy the event refinement condition assuming
B, A correctkeyuse.

Call(id, Abort, key)= (interface formula)

Return(id, Abort, key)= (interface formula)
A Abort(key)

Note that a module event is an input (output) event
iff it matches a call (return) event of the interface. This
completes our specification of the module events. Note
that module Myt has no internal events.



6.3 Fairness requirements of My

We assume the following fairness requirements for mod-
ule Myvr:

F1: For each return event e of the module, there is
a fairness requirement consisting of e.

This completes our specification of module Myyt.

6.4 Proof that multi-version timestamp module offers U

We apply Theorem 3 to prove that Myyy offers U. It
is sufficient is to establish that conditions B1-B5 are
satisfied.

Satisfaction of conditions B1-B3

It is obvious that condition B1 is satisfied.

The state variable set of module My includes all
state variables of interface U with the same initial condi-
tions. Each module event has been constructed so that
it is a refinement of the matching interface event—assum-
ing correctkeyuse in conjunction with B, and B, in some
cases. Thus, condition B2 is satisfied for some Inv,, that
implies B; A B, A correctkeyuse.

Condition B3 is satisfied because, for every call event
of interface U, the formula of the matching module event
is identical to the formula of the call event.

Satisfaction of conditions B4-B5

For satisfaction of condition B4, we need to show that
every output event of Myyr preserves InvGuary, which
is H_serializable. Recall that S
= H(ldl) @ H(le) @ e @ H(idlcomids|)5 where ldl 9
idy, ..., id|comias) denote the identifiers of committed
transactions in the order of their timestamps. From the
definition of H_serializable in Sect. 3.2, it suffices to show
that every output event of Myyy preserves the following:

B;=S8;=(Read, obj, val) = val = lastvalue(obj, S - ;).

Note that the Return(End, key, OK) event is the only
event that can affect Bj. Specifically, it inserts H(key)
between S(<key) and S(>key). Thus B is preserved
by every output event of Myyy if the following condi-
tions hold just before each occurrence of the Return(End,
key, OK).

B, =key¢done A dependsupon(key) = done— aborted
A H(key);=(Read, obj, val) A (obj)¢ H (key) <;
= val = lastvalue(obj, S(< key))
Bs=key¢done A dependsupon(key) < done —aborted
A H(key);=(Read, obj, val) A (obj)e H (key) <;
= pal = lasvalue(obj, H (key) <;)
By =key¢done A dependsupon(key) = done— aborted
A S(> key);=(Read, obj, val) A (obj) €S (> key) ;
= (Write, obj)¢ H(key)
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Thus, B4 is satisfied if Inv,, implies B, _¢. In addition,
to ensure that events of module Myyy are refinements
of events of interface U (condition B2 above), Inv, must
imply correctkeyuse A B;_,. Thus, if condition BS is
proved for Invy=correctkeyuse AB;_, A B, ¢, both
conditions B2 and B4 are satisfied.

To show that B5 is satisfied, we sketch a proof that
Myyr satisfies (invariant  correctkeyuse=-invariant
B,_, AB,_g). We first provide an informal justification
of the invariance of B, and B,, repeated here. (Addition-
al invariant requirements needed for a formal proof are
indicated below).

B, =keyof (id) = key A dependsupon(key) naborted +{ }
= concurrentaccess(id)
B, =keyof (id)=key A status(id )= (obj)
A oveversions(obj)
Akeye[ov.wkey...ovrkey—1]
= concurrent-access(id)

Assume that the antecedent of B, holds currently.
Let k, edependsupon(key)naborted, and let id; be the
transaction that was allocated k.. The key k; entered
dependsupon(key) due to an occurrence of Return(id,
Read, key, x), which read from a version ov of some
object x with ov.wkey=k,. Clearly, transaction id was
active and accessing object x when this event occurred.
Transaction id, had accessed object x and was either
active or committed when the event occurred, because
version ov existed. It could not be committed because
k, is in aborted. Consequently, both id and id, were ac-
tive when the Read returned and both had accessed ob-
ject x. Hence concurrentaccess(id) was true, and con-
tinues to be true (by its definition).

Assume that the antecedent of B, holds currently.
Let ov.rkey=k, and let id, be the transaction that was
allocated k,. The value of ov.rkey was set to k; due
to an occurrence of Return(id,, Read, k), which read
from ov. Clearly, transaction id, was active and accessing
obj when this event occurred. Transaction id is currently
active and accessing obj, because status(id)=(obj). It suf-
fices to show that transaction id was also active when
the Read returned. This is true because from key <k,
transaction id was active before transaction id, became
active. Consequently, both id and id, were active when
the Read returned, and both have accessed obj. Hence
concurrentaccess(id) was true, and continues to be true
(by its definition).

Let us now examine B, Bs and Bg. B, specifies that
if the transaction using key can commit successfully and
its first access to an object is a Read, then the value
read is the last value in S(<key). B specifies that if
a transaction can commit successfully and has read an
object that was previously accessed by it, then the value
read is the same as what was read or written in its pre-
vious access. Bg specifies that if the transaction using
key can commit successfully, and there are committed
keys k, and k, such that k, <key<k, and k, has read
a version written by k,, then the transaction has not
written the object. Therefore, the value read by k, will
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still be equal to the last value in S(<k,) after H(key)
is inserted into S.

To establish that B,, B; and B, are invariant, we
need to relate the versions of an object with its last values
in S(<key) and H (key). These various values are related
during execution of the transaction using key by the fol-
lowing conditions, which we assert to be invariant:

B;=keyé¢done A dependsupon(key) naborted={ }
A H(key);=(Read, obj, val) A (obj)¢ H (key) < ;
=-[Joveversions(obj): keye[ov.wkey+1...ov.rkey]
A ov.value =val A ov.wkeyedependsupon(key)]

By =key¢done A dependsupon(key) N aborted={ }
A (obj)e H (key)
=>[Joveversions(obj): keye[ov.wkey ...ov.rkey]
A ov.value = lastvalue (obj, H (key))]

By =S;=(Read, k, obj, val) A (k, 0bj)¢S -,
=-[Joveversions(obj): ke[ov.wkey+1...ov.rkey]
A ov.wkeyedone — aborted ]

B,o=o0v,, ov,eversions(obj) A ov, * ov,
=[ov, .wkey...ov, rkey—1]
N [ov,.wkey...ov, . rkey—1]=1{}

B, =[Joveversions(obj): ov.value =val A ov.wkey =key]
< [3(Write, key, obj, val)e H: key¢aborted]

B, =[3oveversions(obj): ov.value =val
A ov.wkey =keyedone —aborted ]
<-[3(Write, key, obj, val)eS]

B, states that if the transaction using key is active
and not about to be aborted, and its first access to an
object was a read, then the version ov from which it
read still exists and ov.wkey belongs to dependsupon(key).
By states that if the transaction using key is active and
not about to be aborted, and has accessed an object,
then there is a version ov whose interval includes key
and whose values equals to the last value of the object
in H(key). B, states that if a committed transaction’s
first access to an object was a Read, then the version
ov from which it read still exists and the transaction
that wrote the version has committed. B,, through B,,
state obvious properties.

We prove that B, is invariant given that B,, Bi,,
B;, and B, are invariant. Assume the antecedent of
B,. The antecedent of B, is satisfied. Hence, there
exists oveversions(obj) such that ov.walue=val, keye
[ov.wkey+1...0v.rkey], and ov.wkeyedependsupon(key).
This last condition and the antecedent of B, together
imply that the transaction allocated ov.wkey has commit-
ted. Thus, S contains the entry (Write, ov.wkey, obj, val),
by B,,. The existence of ov also implies that H, and
hence S, does not contain an entry (Write, k, obj) with
kelov.wkey...ovrkey—1], by By, and B,;. Therefore,
val = lastvalue(obj, S(< key)), which is the consequent of
B,.

We prove that Bs is invariant given that Bg and By,
are invariant. Bs holds initially. It is preserved by every
event occurrence. The only nontrivial case is an occur-
rence of Return(Read, key, obj, val). Assume the anteced-
ent of Bg, which is implied by the antecedent of Bs.

From the consequent of Bg and from B,,, we see that
the value returned by the Read is lastvalue(obj, H (key) ).

We prove that Bg is invariant given that By, B,
and B;, are invariant. Assume the antecedent of By,
namely: for some key k and some i, S(> key);=(Read,
k, obj, val) and (obj)¢S(>key).;. From B,, there is an
oveversions(obj) such that ke[ov.wkey+1...0v.rkey]
and ov.wkey is committed. Because (obj)¢S(>key).;
and key is not committed, it follows that ov.wkey < key.
Because (key)¢S(>key), we have k>key. Thus,
keyelov.wkey+1...ov.rkey—1] and transaction id could
not have written obj, by B, and B, ;.

We still have to establish that B, through B,, are
invariant. B; and By hold initially, because (obj)¢ H (key).
Successful reads and writes preserve B, and Bg. A ver-
sion ov referred to in their consequents ceases to exist
only if the transition using ov.wkey aborts, in which case
dependsupon(key) n aborted is not empty and B, and By
hold vacuously.

B, holds initially because S is the null sequence. B,
is affected only by a transaction committing, when
H(key) is inserted into S. B, is preserved because of B,
and because key is committed only after all the keys
it depends upon have committed.

B, through B, hold initially. It is easy to see that
they are preserved by every event occurrence.

Lemma 6. Myyr satisfies (invariant correctkeyuse=-
invariantBy{_, A B;_1,).

Proof omitted.

To prove the above lemma formally, by showing that
the assertion satisfies the invariance rule, additional in-
variant assertions are needed.

Recall that invariance of B, _,, is sufficient for invar-
iance of B, _¢. Thus Lemma 6 is sufficient for satisfaction
of B5.

Satisfaction of condition B6

Recall that module Myyy has fairness requirements F1.
We next prove that module M,y satisfies the progress
requirement of interface U assuming that correctkeyuse
is invariant.

In the following, we use lastdone to denote the largest
key such that [0...lastdone] =done. We use lastdone
= dependsupon(key) to mean lastdone 2k for every ke
dependsupon(key).

Lemma 7. Module My satisfies the following progress
assertions:
X | =status(id)=(Begin)

leads-to status(id)e {READY, NOTBEGUN}
X, =status(id)=(Abort) leads-to status(id)= ABORTED
X s =status(id) = (obj)

leads-to status(id)e (READY, ABORTED}
X =status(id)=(End, key)

A lastdone = dependsupon(key)

leads-to status(id)e {COMMITTED, ABORTED}

X s=lastdone=j A laststarted > j leads-to lastdone > j



Proof. X, and X, are proved exactly as W, and W,
are proved for the two-phase locking module (in proof
of Lemma 2).

X, holds as follows. Assume status(id)=(Read, key,
obj). 1f dependsupon(key)naborted={}, then Return
(Read, key, val) is continuously enabled; it eventually
occurs, resulting in status(id)=READY, unless depends-
upon(key) m aborted becomes nonempty. If the latter hap-
pens, then Return(Read, key, ABORT) is continuously
enabled and it eventually occurs, resulting in status(id)
= ABORTED. The argument for status(id)=(Write, key,
obj) is similar.

X, holds as follows. Assume status(id)=(End, key)
and lastdone = dependsupon(key). Either Return(End, key,
ABORT) or Return(End, key, OK) is continuously en-
abled and it eventually occurs. Occurrence of the former
results.in status(id)= ABORTED, the latter in status(id)
=COMMITTED.

X 5 holds as follows. Assume lastdone=j A laststarted
>j. Thus, all transactions with keys less than or equal
to j have either committed or aborted. Consider the
transaction using key j+1. This transaction is active,
otherwise lastdone would be greater than j. From R,,
it eventually issues a Call(End), unless it is aborted (dur-
ing a write attempt or due to an abort request). If it
is aborted, then lastdone increases. Assume that the
transaction issues Call(End). Because all transactions it
depends upon have committed (otherwise it would have
aborted), it commits and lastdone increases. Thus, in each
case, lastdone>j holds. []

Applying the transitivity rule repeatedly to X, we
get status(id)=(End, key) leads-to lastdone 2 depends-
upon(key). Combining this with X,, we get status(id)
=(End) leads-to status(id)e {COMMITTED, ABORT-
ED}. Applying the disjunction rule to this and X,
through X ;, module My satisfies the progress require-
ment of interface U.

7 Implementation of procedure calls

Lamport’s informal specification of a module interface
consists of a set of procedures [13]. In our model, each
interface procedure P is represented by Call(id, P) and
Return(id, P) events. In a practical programming lan-
guage, such as Pascal or C, the return of a procedure
call transfers control and parameter values only. State
variables are updated during the call execution by atom-
ic events that constitute the body of the procedure. In
our specification of module events, however, nonauxiliary
state variables can be updated as part of the atomic
action of Return(id, P). For example, given an interface
procedure P with input parameters x and result parame-
ters y, we have module events of the following form:

Return(id, P, x, y)= status(id) = (P, x)
A status(id) = READY
AY=FW) AV =g(v)

where, f and g are functions and v is a subset of state

variables, some of which are nonauxiliary. The second
and third conjuncts in the above event formula represent
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the transfer of control and parameter values respectively,
and the last conjunct specifies the update of state vari-
ables.

To satisfy the practical requirement that the return
of a procedure call transfers only control and parameter
values, the module specifications in this paper need to
be refined further. We briefly discuss how such a refine-
ment can be carried out without actually doing it, under
the assumption that procedure bodies do not interfere
with each other [20].

We can make all variables in v into auxiliary vari-
ables, and introduce additional state variables u. Let w
be a subset of u that holds the result parameters. The
return event above is refined to have the following form:

Return(id, P, x, y) = status(id)= (P, x) A finished (n)
A status(id) =READY
AY=WAV =g(V)

where finished is a boolean function of u. Note that aside
from status(id), the state variables that are updated in
the action of the above event are auxiliary. Hence, it
satisfies the requirement of a practical programming lan-
guage stated above. For this new event to be a refinement
of the old event, however, we will have to establish the
following to be invariant:

status(id)=(P, X) A finished(n) = w=f(v)

To update the state variables in u, we need to intro-
duce a set of events {body;, i=1, ..., n} that constitute
the body of the procedure P. Each such event has the
following form:

body;(id, P, x) = status(id)=(P, x) A b;(w)
A =h;(n)

where b; is a boolean function of u and w’ =#;(u) repre-
sents a computation that the new module can perform
as an atomic action. Observe that each body; event sat-
isfies the null image condition for the new module to
be a refinement of the old module. These events perform
updates specified by function g in the old event, but
in n atomic actions instead of one.

The above approach is similar to one suggested by
Lamport [11], where he transforms the nonauxiliary
state variables in v of the old module into auxiliary state
functions of the new module.

8 Concluding remarks

An interface between a module and its environment is
defined by a set of allowed sequences of interface events.
This is like specifications of CSP processes [5] and 1/O
automata [15, 16]. However, other than this, our theory
and the theories of CSP and I/O automata are quite
different.

In the theory of CSP, the semantics of a process is
defined by a set of finite traces and associated refusal
sets; in our theory, the semantics of a module is defined
by a set of behaviors and a set of fairness requirements
(each behavior is represented by a sequence of alternat-
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ing states and events). Specifically, the concepts of inter-
nal state and fairness are essential in our theory but
are absent in the theory of CSP. Also, there is no require-
ment in the CSP model that interface events are parti-
tioned into inputs and outputs. Such a requirement is
essential for formalizing our notion of a two-sided inter-
face between a service provider and service consumer,
i.e., defining what it means to offer an interface and to
use an interface (see [10] for a more in-depth compari-
son).

In the theory of [/O automata [15, 16], there is no
distinction between module and interface, service provid-
er and service consumer. There is the notion of one au-
tomaton simulating another automaton, but not our no-
tion of a two-sided interface. Furthermore, each I/O au-
tomaton is required to be input-enabled, i.c., every input
event is enabled in every state of the automaton. In this
respect, our model is more general; a module in our
theory is required to be input-enabled only when the
occurrence of an input event would not violate any safety
requirement of the module’s interface(s). For an input
event whose occurrence would be unsafe, the module
has a choice: it may disable the input or let it occur.

The model of Abadi and Lamport [2] is state-based,
without interface events. In this respect, it is fundamen-
tally different from our model and those in [5, 15].

A restriction in our model that is uniquely our is
that modules can only be composed hierarchically. We
accepted this restriction because we were motivated by
our interest in decomposing the specification of a com-
plex system (such as the protocols of a computer net-
work) rather than the kind of composition problems of
interest in the area of distributed algorithms.

To specify nontrivial examples, we prefer to use the
relational notation [9]. We find it more convenient to
work with state formulas and event formulas than indi-
vidual states and transitions, and to reason with invar-
iant and progress assertions than safe and allowed even
sequences.

In relational specifications, the set of allowed se-
quences of interface events is not represented directly.
Instead, a labeled state transition system and a set of
invariant and progress requirements are specified, and
the set of allowed sequences is obtained from event se-
quences in the allowed behaviors of the state transition
system. Having states represented explicitly in behaviors
facilitates our proof that a module offers an interface.
Specifically, we make use of a projection mapping from
module states to interface states to prove that the state
transition systems of the module and interface satisfy
a refinement relation. By using auxiliary variables, our
projection mappings [9] are as general as multi-valued
possibilities mappings [15].

Conceptually, the use of a state transition system in
an interface specification should not influence an imple-
mentor, because only the set of allowed event sequences,
generated by the state transition system and constrained
by the assertions, is of interest. In practice, however,
the state transition system might bias implementors of
modules that offer the interface.
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Appendix A

A proof of Lemma 1 is given in two steps. First, we prove the
invariance of the following formulas, which specify that every allo-
cated key is associated with a unique active transaction:

Ag="allocated(key)=>[Yid: keyof (id) =+ key]
Ag=allocated (key)=>[Aexactly one id: keyof (id) = key]

Lemma Al. Agn Ay satisfies the invariance rule, assuming that
correctkeyuse is invariant.

Proof omitted.

To prove Lemma 1, namely, A, A A,_, is invariant, we need
the following formulas, which specify relationships between state
variables during the growing stage of a transaction. During this
stage, the transaction acquires a key and then acquires locks.

Ao =status(id)e (NOTBEGUN, (Begin)} = (id)¢ H
Ay =keyof (id)=key A status(id)=READY
= status; (key)=READY
As =keyof (id)=key A —1locked(key, obj)
=>(id, obj)¢ H A localvalue(obj, key)=NULL
Ay, =keyof (id)=key A statusy (key)=(AcqLock, obj)
="1locked (key, obj) A status(id) = (key, obj)
As =keyof (id)=key A locked(key, obj) A status(id) = (End)
=>storedvalue(obj)=lastvalue(obj, S)
A [(a) ((id, objy¢ H A localvalue(obj, key)=NULL)
v (b) ((id, obj)¢ H A localvalue(obj, key)=
lastvalue(obj, S))
v (¢} ((id, obj)e H A
localvalue(obj, key) = lastvalue(obj, H (id)))]
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Ay =keyof (id)=key A status(id)=(key, obj) A locked(key, obj)
Alocalvalue(obj, key)=NULL=>(id, obj)¢ H
As=keyof (id)=key A status, (key)=(Ready , obj)
=>locked (key, obj) A localvalue(obj, key)=NULL
Afid, objy¢ H A status(id)=(Read, key, obj)

A s=keyof (id)=key  locked(key, obj)=objeaccessed(id)

The following formulas specify relationships when a transaction
is aborting:

A, =keyof (id)=key A aborting (key)
=>[Jobj: status(id) = (key, obj)]
A, =keyof (id)=key A aborting(key)=>concurrentaccess(id)

The following formulas specify relationships when a transaction
is committing its writes:

Ay,= keyof (id)=key A locked(key, obj) A status(id)=(End)
A localvalue(obj, key)+=NULL
=>storedvalue(obj) = lastvalue(obj, S)

A s= keyof (id)=key A status (key) =(Write,, obj, val)
=>status(id)=(End, key) A val = lastvalue(obj, H (id))
A locked (key, obj)
A, = keyof (id)=key A locked(key, obj) A status(id)=(End)
=(id, obj)e H
A [(@) (localvalue(obj, key)=lastvalue(obj, H (id))
A storedvalue (obj) = lastvalue (obj, S))

v (b) (localvalue(obj, keyy=NULL
A storedvalue(obj) = lastvalue(obj, H (id)))]

The following formulas specify relationships during the lock-
releasing stage of a transaction:

A;o="1allocated(key)=>localvalue(obj, key)=NULL
A, = statusy (key)=(RelLock, obj)

=1allocated(key) A locked(key, obj)
Ay ="1locked (key, obj)=>localvalue(obj, key)=NULL

The following are also needed:

A, =(Vkey: 1locked(key, obj))
=>storedvalue(obj) = lastvalue(obj, S)

Ay, =owned(key, obj)<locked(key, obj)
A,y =owned(key, obj)=(Y k= key: —1owned(k, obj)).
Lemma A2. A, A A, 7 A Ajg_3 satisfies the invariance rule, given
that Ag A Ay is invariant,
Proof omitted.



