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1. Introduction

Recent efforts on the application of product-
form queueing network models [1-4] to the perfor-
mance analysis of store-and-forward packet
switching networks are reviewed in this paper and
a companion paper [5]. Open queueing network
models are covered in the companion paper. The
class of open network models is characterized by

Simon S. Lam received the B.S.E.E.
degree (with Distinction) from
Washington State University, Pull-
man, Washington, in 1969, and the
M.S. and Ph.D. degrees in engineering
from the University of California at
Los Angeles, in 1970 and 1974, respec-
tively.

From 1972 to 1974, he was with the
ARPA Network project at UCLA and
did research on satellite packet com-
munication. From 1974 to 1977, he

. was a research staff member with the
IBM Thomas J. Watson Research Center, Yorktown Heights,
New York, where he worked on performance analysis problems
of packet switching networks, SNA and satellie networks. Since
September 1977, he has been with the University of Texas at
Austin where he is now Associate Professor of Computer
Sciences. His current research interests include modeling and
analysis of computer systems, networks and communication
protocols.

At the University of California at Los Angeles, he held a
Phi Kappa Phi Fellowship from 1969 to 1970, and a Chancel-
lor’s Teaching Fellowship from 1969 to 1973. In 1975, he
received the IEEE Leonard G. Abraham Award for the best
paper in the field of Communications Systems. Simon is a
member of Tau Beta Pi, Sigma Tau, Phi Kappa Phi, Pi Mu
Epsilon and the Association for Computing Machinery, and a
senior member of IEEE.

J.W. Wong received the B.S. in en-
gineering, the M.S. and Ph.D. degrees
in computer science from the Univer-
sity of California at Los Angeles in
1970, 1971, and 1975, respectively. He
is currently an Associate Professor of
Computer Science at the University of
Waterloo, Waterloo, Ontario, Canada.

0166-5316 /82 /0000-0000/$02.75 © 1982 North-Holland



162 S.S. Lam, J W. Wong / Queueing network models of packet switching networks, Part 2

explicit formulas for the performance measures of
mean delay and throughput that are of interest.
Queueing networks with closed chains and other
forms of chain population size constraints are
useful as models for the analysis of various net-
work flow and congestion control mechanisms and
buffer management strategies. This class of queue-
ing network models is characterized by algorithmic
solutions for the mean delay and throughput per-
formance measures. These models constitute the
subject of this paper.

The key modeling assumptions, notation and
definitions needed in this paper are presented next.
The reader is referred to [5] for a more detailed
treatment.

The basic unit of data transfer in the communi-
cation networks being modeled is a packet; it
corresponds to a customer in the queueing net-
work models. A store-and-forward packet switch-
ing network consists of a set of switching nodes
interconnected by full-duplex communication
channels (see Fig.1). The function of the com-
munication network is to transport packets from
their sources to their sinks. Each packet traverses
from its source node to its destination node through
a'series of intermediate nodes and communication
channels along a selected path (or route). Queues
of packets are formed inside the switching nodes.
The key assumption necessary for the application
of queueing network models was first stated by
Kleinrock [6].

Source~destination

I::l Data source/ sink
Q Switching node

———  Communication channel

Fig. 1. A store-and-forward packet switching network.

The Independence Assumption. Each time a packet
joins a queue in the network, its length is de-
termined afresh from the probability density func-
tion

b(x)=pexp{—px}, x>0

where 1/p is the mean packet length (in number
of bits).

In the queueing network models to be consid-
ered, first-come first-served (FCFS) servers are
used to model communication channels and IS
servers are used to model random delays associ-
ated with acknowledgements and timeouts. (An IS
server is a service center with infinitely many
servers in parallel [2].) Processing delays within
switching nodes are often ignored since they are
typically much smaller than channel delays. If
included, nodal processors are also modeled as
FCFS servers [7]. The servers in a network model
are indexed by i=1, 2,...,M. Customers (i.e.,
packets) belong to different (routing) chains, inde-
xed by k=1,2,...,K. Chains are characterized by
different routing behaviors. The routing behavior
of customers in chain k is specified by a first-order
Markov chain with transition probabilities

P!’ = P(to server j | currently at server i),
ij=1,2,...,M.

Such a representation is adequate for modeling
both the case of a single fixed route between a
source and a sink and the case of multiple routes.
When multiple routes exist, the selection of a route
for individual packets is done probabilistically.
Retransmissions and rerouting due to random
transmission errors can also be modeled by an
appropriate definition of the transition probabili-
ties [8]. (A limitation of the class of product-form
queueing networks is that adaptive routing cannot
be modeled.)

Since the routing behaviors of packets travelling
between different source—destination node pairs
must be different, at least one routing chain must
be specified for each source—destination node pair
for which there is nonzero traffic. Sometimes, mul-
tiple chains may be needed between the same
source—destination node pair to correspond to dif-
ferent virtual channels connecting data sources in
the same source node and data sinks in the same
destination node.

It is assumed that the source of chain k gener-
ates new packets according to a Poisson process
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with rate vy, packets per second where k=
1,2,...,K. Define

Y=ntrnt o+t

The corresponding throughput rates are denoted
by y* and v} for k=1,2,...,K. We must have

Y;:<.Yka k:1’2’~'-’K’

since external arrivals to a virtual channel may not
always be accepted due to buffer, flow or conges-
tion control constraints.

Let the state of the queueing network be de-
noted by

S=(n,,n,,....n,)
where

n,=(ng, np,e k)
where n,, is the number of chain k packets at
server i. Define

n=nptnyt - tng
and
n=(n,,Nn,y,....0).

A chain in the queueing network model is said
to be open if both external arrivals to the chain
and departures from the chain can occur freely. A
routing chain is said to be closed if the number of
customers (circulating) in the chain is fixed. (The
concept of closed chains will be explained further
below.)

In Section 2 below we shall describe queueing
network models with closed chains for the perfor-
mance analysis of packet switching networks with
flow controlled virtual channels. A communication
network typically has many virtual channels. The
main source of difficulty in the modeling of such
networks is that the computational requirements
of conventional solution techniques [3,9,10] in-
crease exponentially with the number K of closed
chains in a queueing network model. Some ap-
proximate models and approximate solution tech-
niques have been proposed and found to be useful.
They are described in Section 2. Also described is
the tree convolution algorithm [11] which provides
an exact solution and has been designed to exploit
the sparseness property of chains that is typical of
communication network models. The problem of
optimally routing a small amount of incremental
traffic is also considered.

In Section 3 queueing network models with

various population size constraints for the analysis
of congestion control and buffer management
strategies are described. Approximate models and
solution techniques for a network of finite-buffer
nodes are also presented.

2. Queueing network models with closed chains

Most packet networks nowadays provide virtual
channels that are end-to-end flow controlled. Flow
controlled virtual channels may be maintained be-
tween data sources and sinks [12,13] or between
pairs of source-destination nodes [14,15]. In some
networks, both types of flow controlled virtual
channels are maintained [14]. In the queueing net-
work models to be considered, only one type of
flow controlled virtual channel is assumed. Such
virtual channels may be interpreted as being main-
tained either between packet sources and sinks or
pairs of source—destination switching nodes.

An important function of end-to-end flow con-
trol protocols is the synchronization of the data
source input rate to the data sink acceptance rate.
All of them work by limiting the number of packets
that a virtual channel can have in transit within
the network. Hence, they also provide, to some
extent, a congestion control capability for the net-
work as a whole. (However, when the number -of
virtual channels supported by the network is very
large, a separate congestion control mechanism for
the network is often necessary. Some such conges-
tion control mechanisms are considered in
Section 3.)

In this section we consider the modeling of flow
controlled virtual channels as closed chains. The
chain population size corresponds to the maxi-
mum number of packets that can be in transit
within the virtual channel. This number will be
referred to as the virtual channel window size. The
effect of virtual channel window sizes on the
throughput-delay characteristics of the network can
be studied using queueing network models with
closed chains.

2.1. Modeling virtual channels with closed chains

Fig. 2 illustrates a queueing network model of a
packet switching network with K virtual channels.
Each virtual channel has a source and a sink both
of which are also modeled as FIFO servers with



164 S.S. Lam, J.W. Wong / Queueing network models of packet switching networks, Part 2

Source K

Boundary of the packet
switching network

Fig. 2. Modeling flow controlled virtual channels in a packet
switching network.

exponentially distributed service times. Packets in
the same virtual channel follow a fixed route which
may be chosen probabilistically from a finite set of
routes between source and sink.

The delay for the return of an end-to-end (ETE)
acknowledgement (ACK) from the sink to the
source indicating receipt of a packet is modeled by
an independent random variable, the distribution
of which may be different for different virtual
channels. This delay is modeled by an IS server
that joins the sink to the source to yield a closed
chain in the queueing network model. It is not
really important to model the route of an ACK
explicitly because ETE ACKs are typically either
sent piggybacked in data packets, or, if sent sep-
arately, very short. Thus, they consume relatively
small amounts of buffer and channel resources in
the network, which may be acounted for sep-
arately. In [16] Reiser suggested that the ACK
traffic may be accounted for by reducing the chan-
nel capacities by amounts equal to the throughputs
of ACK packets.

The flow control window size of a virtual chan-
nel is the maximum number of packets that it can
have in transit within the communication network
at the same time. Let N, denote the window size of
virtual channel k for k= 1,..., K. If the number of
packets in transit within a virtual channel is equal
to its window size, then the source server is
‘blocked’. A blocked source server is later un-
blocked when an ETE ACK returns from the sink
indicating receipt of a packet.

The blocking behavior is naturally modeled in a
queueing network by a closed chain with a fixed
number of circulating customers. Each customer

corresponds to an ‘access token’. Initially, N,
tokens are placed at the source server of virtual
channel k. Each packet admitted into the network
carries a token with it. When there is no more
token at the source server, it is blocked. A packet
arriving at the sink node of the virtual channel
releases its token which is then carried back by the
ETE ACK to the source server to be reused again.
Thus, the N, circulating tokens of a virtual chan-
nel correspond to the N, circulating customers of a
closed chain.

When the source server is not blocked, it gen-
erates a new packet for input into the network at
the rate y,. The physical interpretation of the rate
v, depends upon the loading on the virtual chan-
nels. For a lightly loaded network, y, may be
interpreted as the external arrival rate of packets
to the user of virtual channel k4. (This corresponds
to the assumption of packet generation according
to a Poisson process.) For a heavily loaded net-
work such that the queue of data packets at the
source is nonempty most of the time, y, may be
interpreted as the reaction speed of the user to a
signal (or message) from the network interface of
the virtual channel authorizing new input {17,18].

For Section 2 we shall make the assumption
that the number of buffers at each switching node
is very large (infinite). But, with flow control
windows, a virtual channel does not always accept
packets from its source. Thus the throughput ;¥ of
a virtual channel (modeled by chain k) is less than
the rate v,; the latter is often referred to in the
literature as the offered load of the virtual channel.
With the above interpretation, the ratio v} /vy,
measures the fraction of time virtual channel & is
not blocked. The above model assumptions enable
us to focus our attention upon the network behav-
ior only and ignore the behavior of queues exter-
nal to the packet switching network.

2.2. The solution of closed queueing networks

A closed chain has a fixed number of circulat-
ing customers. However, it is sometimes physically
meaningful to think of a closed chain as an open
chain with the following two mechanisms in place
at all times [1,4]:

(@) A loss mechanism whereby an external
arrival to the chain is rejected and lost forever.

(b) A trigger mechanism whereby a departure
from the network triggers an instantaneous injec-
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tion of a new customer into the same chain as the
departed customer (from an infinite source of
customers). '

For a closed chain (say k), its packet arrival
rate to server i in the queueing network can only
be determined to within a multiplicative constant,
called the scaling factor of the chain, from

M
Azk: 2 >\kpj(tk)a 1:152”M (21)

This is due to the fact that the matrix of transition
probabilities of chain k is a stochastic matrix. The
arrival rate of packets from all chains to server i is

K
A= 2 A (2.2)
k=1

If server i is FCFS, it works at a constant rate
of C, bits per second. If server i is IS, it works at a
rate of C,, bits per second for chain k packets. The
traffic intensity of chain k packets at server i is
defined to be

—ik server i is FCFS,
pC;
Py = A " (23)
= serveriisIS,
pCiy

and the overall traffic intensity of server i is
K
pi= 2 Pix- , (24)
k=1

Consider a network consisting of closed chains
only. Let N, be the population size of chain k and
define the population vector

N=(N,,N,,...,Ny).

The equilibrium network state probability has the
following product form [2]:

P(S)= 2.
()= 55 [Lpn) e3)
where
K p{'ik
n,! H ’k', server i is FCFS,
=1 M
Pi(”i):
H plk ..
server i is IS
k=1 N

and G(N) is the normalization constant. By defini-

tion,

2 H Pi("i) (2.6)

ses(N) i=1

G(N)=

where the summation is done over the following
set of feasible network states:

M
8(N):{S: > n,:N}. (2.7)
i=1
From (2.5) the following can be derived:

P(n)= H fi(n:) (2.8)

G(N)
where f,(n;) is given by

[AR server i is FCFS,
f(n)= P_:n'

n,!’

it

server 7 is IS.

We mentioned earlier that the A;,’s can only be
determined to within a multiplicative constant for
each k. We note that, although P(S) is indepen-
dent of the scaling factors, they do affect the
numerical value of the normalization constant [19].
Note that the normalization constant G(N ), de-
fined by (2.6), is the sum of an extremely large
number of product terms when K is large and also
when the chain population sizes {N,} are large.
There are two difficult problems in the evaluation
of G(N). First, depending on the scaling factors
selected in the determination of {A,} in (2.1),
G(N) may become very large (causing a floating
point overflow) or very small (causing a floating
point underflow). This problem may be solved by
a dynamic scaling technique [19]. The second
problem is the extremely large computational time
and space requirements to evaluate G(V) for large
values of K and {N,} using either the convolution
algorithm [3,9], or the MVA algorithm [10]. The
convolution algorithm is presented next. The MVA
algorithm is introduced in Section 2.4.

Note that each of the functions p; in (2.6) can
be represented by a K-dimensional array indexed
between 0 and N, where 0 is a K-vector of all
zeros. The convolution of two such functions, say
p, and p,, defines a real-valued function, say g,
over the same domain, as follows [3,9]:

i ix
&)= 23 - 3 p(f)pli—J)
H=0 Jx=0
for0<i<N. (2.9
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In shorthand notation, (2.9) will be written as

8:=P19®p,=p,®p,. (2.10)

We note that G(/V) is simply the element indexed
by N in the following array:

8.2, my=P1®¥P,® ... 8p,,. (2.11)

The convolution algorithm solves for G(N) by
performing the convolutions in (2.11) sequentially
as follows:

8a.2...my = 8.2, m—1}®Pm form=2,3,...,M.
(2.12)

The time requirement to compute the array
8(.2..my and hence G(N) is of the order of
(M —1) IIF_(3(N, + 2)(N, + 1)) while the space
requirement is of the order 2 [IX_ (N, + 1). Note
that both requirements grow exponentially with K.
Two observations can be made to reduce the time
requirement in queueing network models consid-
ered herein [3]. First, for the purpose of evaluting
G(N), all IS servers can be lumped together into
an equivalent IS server with a traffic intensity
equal to the combined traffic intensities of the
individual IS servers. Second, if server m is an
FCFS server with a constant service rate, the con-
volution of (2.12) can be accomplished with the
following recursion:

8.2, m}(o)zl’
&(1.2..... m)(i):g(l,2 ‘‘‘‘‘ mAl)(i)

>

all k, i, >0

(2.13)

Pk 8(1.2.....m) (i— 1,)

where i, is the kth component of / and 1, is a
K-vector with its k th component equal to one and
all others equal to zero. The time requirement of
the convolution algorithm based on (2.13) is of the
order MK II¥_ (N, + 1) which is still exponential
in K.

The performance measures of throughputs and
mean ETE delays of individual routing chains can
be obtained as follows. The throughput of chain &
at server m for a network of closed chains with
population vector N is [3, 20]

G(N—1,)

A>fnk(jv):}\mk G(N)

forN=1, (2.14)

where G(N — 1,) is the normalization constant of

the same network but with population vector
N—1,,and A, is the relative arrival rate of chain
k customers to server m given by (2.1). The chain
throughput y}* is then equal to the throughput of
chain k& customers at the source server of the
chain.

The mean number of chain k customers at a
FCFS server, say m, is given by [3]

Gm+(N_ lk)

qu(N):Pmk G(N)

forN=1, (2.15)

where G,,, is the result of convolving p,, (again)
with g(, 5 - The mean delay incurred by chain
k customers at a FCFS server (m) is given by
Little’s formula [21] to be g,,,, (V) /A%, (N).

We also know that the mean number of chain k
customers at an IS server (m) is p,,,. Finally, the
mean ETE delay of a virtual channel is given by

1
T, =— 2 Dk
Yk meo(k)

(2.16)
where Q(k) is the set of servers within the
boundary of the packet switching network that are
visited by chain k (see Fig. 2). Note that the argu-
ment N is omitted from T, v} and q,,, in (2.16).
We shall do so as long as there is no ambiguity.
In the rest of Section 2 we shall first discuss two
approximate analysis approaches that avoid the
large space-time computational requirements
encountered when the number of virtual channels
is large. The first approach, in Section 2.3, is to
focus upon a single closed chain and replace all
other closed chains by open chains having the
same throughputs [22]. The second approach, in
Section 2.4, is an approximate solution technique
[16] that is a natural extension of the mean value
analysis (MVA) algorithm of Reiser and Laven-
berg [10]. The tree convolution algorithm [11] for
an exact analysis is next introduced in Section 2.5.
The algorithm makes use of routing information
and is very efficient when routing chains have
sparseness and locality properties that are typical
of communication network models. Next, we ex-
amine in Section 2.6 the traffic conditions under
which an open-chain model accurately predicts the
mean ETE delays of a closed-chain model having
the same chain throughputs [17,18]. Finally, in
Section 2.7, we discuss the problem of optimally
routing a small amount of incremental traffic [18].
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2.3. Analysis of a single virtual channel

One approach to avoid the large computational
requirements of analyzing a closed network is to
approximate some of the closed chains by open
chains having the same throughputs. (We discuss
the accuracy of this approximation in Section 2.6.)
We thus have a queueing network model where
some routing chains are open while others are
closed. This is referred to as a mixed network
model [2]. In this section we first present analytic
results for mixed networks and then illustrate how
these results can be applied to a model which
focuses on a single virtual channel.

For an open chain (say k) its packet arrival
rates to servers in the queueing network are
determined uniquely by

M
Ae=q®P+ T NPl i=1,2,.,M (2.17)
j=1
where g(¥) is the probability for a customer freshly
generated by the source of chain k to be routed
next to server i. For a closed chain these packet
arrival rates to servers are given by (2.1) to within
a multiplicative constant. The traffic intensities p;,
and p, for all i and k are defined as before by (2.3)
and (2.4) for both open and closed chains in a
mixed network model.

The equilibrium state probability of a mixed
network also has the product-form solution [2],
ie.,

| M
p(s)=g I p(n) (218)
where p,(n;) is the same as defined in (2.5). The
normalization constant G can be written as [3]

G=G°G°(N) (2.19)
where G° and G°(V) are defined as follows. Let

2 Pix

all closed
chains, &

fori=1,2,...,.M.

= 3 py and g=
all open
chains, k

G° is given by

M
¢°=1Il 6°
i=1

where

Go_Jtl/(l—p?),

| exp{p?),

(2.20)

server i is FCFS,

! server i is IS.

G°(N) is equal to the normalization constant of a
network model with closed chains only and with
the following modification to the traffic intensities
of the closed chains:

oL = {p,k/(l 0°), server / is FCFS, (2.21)
Pir» server i is IS.
We now apply the above results to the single
virtual channel model shown in Fig. 3. This model
is based on the abstraction of all other network
traffic into a single open chain, an approach used
by Pennotti and Schwartz [22]. Thus, there are two
routing chains; Chain 1 is closed and models the
virtual channel, and chain 2 is the open chain
mentioned above. For notational convenience, the
ETE ACK delay is assumed to be zero. (All servers
in Fig.3 are of the FCFS type. However, an IS
server representing an ETE ACK delay can be
included without much difficulty.) The service time
at the source server is assumed to be exponentially
distributed with mean 1 /vy,. Without loss of gener-
ality, packets belonging to the open chain (chain
2) are assumed to arrive from an external source to
server m, for m=2,3,...,M, at rate A,,, and de-
part from the network after receiving service from
server m.
For chain 1, a solution to (2.1) is A,; =1 for all
i. The equilibrium state probability is then given

by
P(S)=—= Il n,1 L

() Gi=1 " k=1 ny!
where

_ 1/Y15 l-la
PiTV1/(ue), i=2,3,...M
and

(o, i=1,
P2= N,/ (rC), i=2,3,....M.

)‘22 )‘22 x32 )‘32 xMZ )‘MZ
Source L l' L

W circulating Chain 1 paockets

Fig. 3. A model of a single virtual channel.
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Applying (2.19), G is given by

6= (ﬁ(l ~on)) 6°()

where G°(W) is the normalization constant for a
network with a single closed chain of W circulat-
ing customers and with traffic intensity pj, =
pa/(1—py)fori=1,2,... .M.

From the equilibrium state probability, the
marginal queue length distribution of chain 1 (the
virtual channel being considered) can be shown to

be given by [3, 22]
M n,
1 ( i1 ) i

P({n1, nypseestip}) = G(W) i\ 1= p,

This is the same as the queue length distribution of
a network model with only the closed chain but
with the service rate of channel i reduced by the
factor of (1 —p,,) for all i. The reduction factor
accounts for the presence of open-chain packets in
the network.

The mean number of chain 2 (open-chain)
packets at channel / has the following simple form
[22]):

Pi2
P2

E{ns] =722~ (1+Eln,]). (222)
Note that the term p;, /(1 — p;,) is the mean queue
length in a network model with the open chain
only. The expansion factor (1 + E[n;]) accounts
for the presence of closed-chain packets in the
network. E[n,;] may be computed by any of the
computational algorithms for closed networks

using the set of modified traffic intensities {p/;}.

2.4. A heuristic solution technique based upon the
MVA algorithm

The time and space complexity of the MVA
algorithm [10] are of the same order as the con-
volution algorithm. However, it has an intuitively
appealing extension to an efficient heuristic solu-
tion technique that is shown to be asymptotically
valid as the chain population sizes become infinite
[10].

Let Q(k) be the set of servers visited by chain k&
and C(i) be the set of chains that visit server i.
Also define the following notation for a closed
queueing network with population vector NV:

T,(N) - mean delay of a chain k packet at
server i,

g (N) - mean number of chain k packets at
server i,
v¥(N) ~ throughput of chain k in packets

per second (this is equal to the
throughput of the source server).

We first introduce the MVA algorithm which is
based upon the following recursive equation, ! for
i=1,2,....Mand k=1,2,... ,K:

Tik(l + 2 qdN-— lk))’

ceC®H)
server i is FCFS,
7., serveriislIS

Tik(N) = (2'23)

where 7, is the mean service time of server i. It is
equal to 1/uC; for any k if server / is a communi-
cation channel (FCFS server). ¢,(N —1;) is zero
if N, in N is zero.

Using Little’s formula first for chain &, and
then for chain k at server i, the following is also
derived for the MVA algorithm:

y*(N)———i——- fork=1,2,....K
k - Ty Ly
2 Tu(N)
1€Q(K) (2.24)
and

Gu(N)=v2(N) Tu(N) for i=1,2,...M,
k=1,2,...,K.
(2.25)

Starting with ¢,,(0)=0 for i=1,2,...,M and k=
1,2,...,K, T,(N),y*(N)and g,,(N) can be solved
recursively using (2.23)—(2.25) for all i and k.

The computational time and space require-
ments of the above MVA algorithm grow ex-
ponentially with K. For communication network
models characterized by a large K, a heuristic
technique was proposed by Reiser [16] to solve the
above set of equations iteratively. Suppose we can
calculate the difference

g (k=)= 4, (N)— 9. {N—1,)

fori=1,2,....M, ¢c=1,2,...,K. (2.26)

' It is shown in [23] that the MVA recursion in (2.23) can be
derived very simply from the convolution algorithm’s recur-
sion in (2.13). Also, for simplicity, each chain is assumed to
have a single fixed route.
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Then the MVA equations above can be written as

le{l+ 2 (qic_sic(k_))]’
]’;k — ceC(i) (2.27)
server i is FCFS,
T, serveriislIS,

Nk
VWE—a o 2.28
’ Ty 229
i€Q(k)
and
9= Vi Tk (2.29)
where the argument N has been omitted from T,
vi and gy

Eqs. (2.26)-(2.29) form a set of nonlinear
simultaneous equations. A simple method for solv-
ing them is by a successive substitution technique
starting with an initial set of mean queue lengths
{¢,x) and iterating sequentially through the four
equations until convergence is observed.

The space requirement is now substantially less
since we only need to keep a single set of values
for T, v¥, ¢ix and ¢, (k — ). The time requirement
is also significantly reduced with the following
heuristic method [16] for evaluating €, (k—), i=
1,2,....M,c=12,... . K:

(a) Assuming that the chain with one less packet
is affected the most, use the estimate

¢, (k—)=0 foranyc+k. (2.30)

(b) €,,(k—) is estimated by a single-chain net-
work with suitably redefined parameters as fol-
lows. The mean service time for all FCFS servers
in the single-chain network is

Tik
T = 2.31
1 - 2 Y:Tic ( )
cEC>), c*k

where {y*} is the set of chain throughputs at the
current iteration step. Eq. (2.31) suggests that a
chain k packet sees only a fraction of the channel
capacity and it is consistent with the interference
effect of the open-chain traffic on closed chains at
a FCFS queue considered in the last section. Let
q;(N,) denote the mean queue size of server i in
the single-chain network with service times given
by (2.31). These mean queue lengths can be calcu-
lated quickly since K= 1. The following estimate
is used in conjunction with those in (2.30) for the

heuristic method,
€ik(k_):qi(Nk)_qi(Nk— 1). (2.32)
The time complexity per iteration step in the
heuristic solution is of the order KM(N,+ N,
+ -+ +Ng) which is affordable even for large
population sizes provided that convergence is
achievable within a small number of iterations. It
was observed empirically by Reiser [16] that the
above iterative procedure converges rapidly from
any set of initial values for {g,} and {y}}. The
only requirements to be satisfied by the initial
condition are

q,=0 foralli,k
and

> g.=N, forallk.
i€Qk)

If was also argued that the iterative procedure is
asymptotically valid as population sizes become
infinite. This heuristic technique has also been
generalized to queueing network models that do
not have the product-form solution [16].

2.5. The tree convolution algorithm

A computational algorithm, called the tree con-
volution algorithm, was recently reported in [11].
It is intended for the solution of product-form
queueing networks in which routing chains do not
visit all servers (or service centers) in the network.
In models of communication networks and distrib-
uted systems, it is often true that chains visit only
a small faction of all queues in the network (spar-
seness property). Furthermore, chains are often
clustered in certain parts of the network and their
routes are constrained by the network topology
(locality property). By making use of the routing
information of chains, the time and space require-
ments of the tree convolution algorithm can be
made substantially less than those of the (sequen-
tial) convolution and MVA algorithms presented
earlier. The number of routing chains that can be
handled varies depending upon the extent of
sparseness and locality present in their routes. In
[24], many numerical examples with 3250 routing
chains have been found to be solvable. In some
cases, the solution of networks with up to 100
routing chains has been found to be possible.

The tree convolution algorithm provides an ex-
act solution of normalization constants and per-
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formance measures for product-form queueing
networks. It is based upon two ideas. First, we
note that the convolution in (2.11) can be per-
formed in any order to obtain g , . Specifi-
cally, in the tree convolution algorithm, the arrays
{p,) are placed at the leaf nodes of a tree (see
Fig.4). Each node in the tree corresponds to a
subset of service centers that are descendants of
that node. To compute the array g¢; , s, visit all
nodes in the tree according to some order of tree
traversal. The root node is visited last. A branch
node may be visited only after all its sons have
been visited. When a branch node is visited, an
array ggupner 18 computed for the node from the
arrays gsupner: and gsupners Of its (two) sons by

8suBNET = 8sUBNET1 @ §SUBNET2 - (233)

 where SUBNET = SUBNET! U SUBNET2. If the node
has more than two sons, then convolutions are
performed sequentially one after the other. Fi-
nally, when the root node is visited, the array
8(.2.... my 18 Obtained.

Both the tree convolution algorithm and the
sequential convolution algorithm require M — 1
convolutions. In fact, it is easy to see that the
sequential convolution algorithm is just a special
case of the tree algorithm. However, substantial
time and space savings can be achieved by the
general tree algorithm by making use of the fol-
lowing additional observation.

Consider routing chain k. Let CENTERS(k) be
the set of service centers visited by chain k. Let
SUBNET denote a subset of the M service centers.
With respect to SUBNET, chain k is said to be fully
covered if CENTERS(k) C SUBNET; chain k.is said
to be noncovered if the intersection of CENTERS(k)
and SUBNET is null; otherwise, chain k is said to
be partially covered.

Partition the set of K chains into the following
3 sets with respect to SUBNET:

0,. = {k | chain k is partially covered by
SUBNET},

Root
@® branch

o leaf

Fig. 4. A tree.

or, = {k| chain k is fully covered by SUBNET),
6,. = {k | chain k is noncovered by SUBNET}.

Now make the observation that only those ele-
ments of ggupner corresponding to the following
index values are needed for further convulsions to
arrive at G(V),

(ilix=0,1,2,...,N,, kE€aq

o i,=N., k€Eo;

i,=0,kEo0,}.

Let |o| denote the cardinality of set 6. For the
purpose of computing G(N) it is sufficient to
store ggupnet 1N an array with dimensionality | o, |
indexed by i, = {i), k €o,}. Such an array is
termed a partially covered array. The amount of
space needed for a partially covered array is
e, (N +1) locations. (Additionally, a small
amount of space is also needed to store the set
0,.-) The time requirement of the convolution in
(2.33) using partially covered arrays is shown in
[11]. Very large time and space savings are possible
if |6,.| << K at every node of the tree.

Given a subset of centers in a network that has
many centers and sparse routing chains, it is highly
likely that only a few chains will be partially
covered by the subset. Thus, for queueing net-
works with properties of sparseness and locality,
the time and space savings from the use of par-
tially covered arrays instead of K-dimensional
arrays will be very substantial.

The actual time and space needed for the tree
convolution algorithm also depend upon the fol-
lowing ‘tree planting’ decisions: the tree configura-
tion, the order of tree traversal and the placement
of service centers at leaf nodes. The objective of
tree planting is to minimize the overall space and
time needed by the algorithm by minimizing the
numbers of partially covered chains in subnets
associated with branch nodes in the tree. Tree
planting algorithms are discussed in [11, 24].

In addition to substantial space and time sav-
ings, the tree convolution algorithm has several
additional significant advantages over the other
algorithms. First, the tree of partially covered
arrays employed by the algorithm provides a very
flexible data structure for tailoring time-space
tradeoffs to individual queueing networks in the
calculation of network performance measures. It
will also facilitate the solution of very large queue-
ing networks with the help of storage management
techniques or by means of parallel computation on
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a multiprocessor machine. Furthermore, the com-
putation of the marginal distribution of queue
lengths in a service center may be obtained with
(log, M) — 1 convolutions instead of M —1 con-
volutions needed by a sequential convolution algo-
rithm, where M is the total number of service
centers and a balanced binary tree is assumed.
Lastly, an analysis of the expected time and space
requirements of the algorithm as a function of the
sparseness of routing chains is presented in [25].

2.6. Network design using both closed-chain and
open-chain models

With the tree convolution algorithm, communica-
tion network models with many queues and a
relatively large number of sparse routing chains
can be solved exactly. (Chains are said to be sparse
if the average number of queues visited by a chain
is much smaller than the number of queues in the
network.) Both throughputs and mean transit de-
lays for individual chains can be calculated exactly
with time and space requirements within the limits
of present computers. However, these time and
space requirements are still fairly large. Hence, the
tree algorithm is not very practical for use within
network design procedures that require numerous
applications of the algorithm.

Both Pennotti and Schwartz {22] and Gerla and
Nilsson [26] suggested the use of open chains to
approximately model flow controlled virtual chan-
nels. The difficulty encountered is that the
throughputs of the flow controlled virtual channels
needed as input parameters of an open-chain model
are not known. Lam and Lien [17,18] proposed to
use a combination of both open-chain and closed-
chain models in design procedures for networks
with flow controlled virtual channels. A closed-
chain model is first employed and chain through-
puts and mean delays are computed exactly using
the tree convolution algorithm. An open-chain
model with the same chain throughputs is then
employed for a sequence of intermediate optimiza-
tion steps in the network design procedure (e.g.,
the routing of incremental flows to be considered
in Section 2.7). To avoid the accumulation of
errors, the closed-chain model is employed at vari-
ous checkpoints of the design procedure to recom-
pute chain throughputs and mean delays. The
question of interest then is: How accurate is such
an approximation?

" The above question was addressed by Lam and
Lien [17,18] who considered a network model with
64 communication channels and 32 virtual chan-
nels. The throughputs and mean ETE delays of a
closed-chain model are first computed using the
tree convolution algorithm. An open-chain model
having the same chain throughputs is then speci-
fied and its mean ETE delays calculated using the
M/M/1 delay formula for individual queues as
described in [5-7].

The service rate of each communication channel
was assumed to be the same; uC, = 10 packets/
second for all m. The source input rate of each
virtual channel was also assumed to be the same;
v, =7 for all k (see Fig. 2).

The effect of varying the relative source and
communication channel speeds y and uC was con-
sidered. y was varied from 10 to 0.5 while keeping
pC constant at 10 packets/second. The accuracy
of the open-chain model was found to be very
poor for y = 10 (same value as pC) and it improved
as v was decreased. The average error in the mean
ETE delays of the virtual channels was 40.3% for
vy=10, 2.02% for y=1 and 0.40% for y=0.5.
There are two possible reasons for this behavior.
First, when the utilization of a M/M /1 queue is
high, its delay distribution has a long tail, which
gives rise to a poor estimate of the delay in a
closed network where the queue lengths are
bounded. Note that when y = uC, the bottleneck
in a routing chain is at one of the communication
channels within the packet switching network. On
the other hand, when pC is much smaller than v,
the source server is the bottleneck in a routing
chain and it behaves like a Poisson source at rate y
much of the time (i.e., like an open chain).

In general, the accuracy of the open-chain model
suffers from the presence of bottlenecks within the
network (either due to a large vy or due to poor
routing).

The effect of varying the virtual channel window
size was also investigated. Window sizes of 2, 3
and 4 were considered. It was found that as the
window size increases, the accuracy of the open-
chain model improves, despite increases in the
channel utilizations.

Finally, another observation in [17,18] is that in
almost all cases considered, the mean delay esti-
mates are larger than the actual mean delays.
There are two possible reasons for the open-chain
model to overestimate mean delays. First, delay
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estimates are obtained from M /M /1 queue delay
distributions that have long tails. Second, the
mean-value analysis shows that the mean delay
encountered by a closed-chain customer is
determined by the mean queue lengths of a net-
work with that customer removed [10]. The open-
chain model as described above does not account
for this behavior.

A consequence of the overestimation of delays
is that the impact of bottlenecks on chain delays in
an open-chain model is exaggerated compared to
that in a closed-chain model. This means that if an
open-chain model is used for the routing of incre-
mental flows (see the following section), bot-
tlenecks will be avoided more ‘rigorously’ than if a
closed-chain model is employed.

2.7. Optimal routing of incremental flows

We consider the problem of introducing a small
amount of incremental flow from a source node to
a destination node into a network with existing
flows. Several optimal routing problems may be
formulated depending upon the nature of the
incremental flow and the optimization objective.

- The objective of the ARPANET routing algorithm
[27] is to minimize the (estimated) delay of an
individual packet from its source node to its de-
stination node. However, it has been observed by
several authors [28,29] that routing algorithms with
the objective of individual-optimization do not
necessarily lead to network-optimization, i.e.,
minimizing the mean delay of all packets in the
network. The flow deviation method [7,30,31] con-
siders an incremental flow that is infinitesimal
relative to existing flows in the network. The net-
work-optimization objective is pursued; specifi-
cally, the route for the incremental flow is chosen
to minimize the (infinitesimal) increase AT in the
mean network transit delay T of all packets.

A similar problem for networks with flow-con-
trolled virtual channels was posed by Lam and
Lien in [18]. The incremental flow corresponds to
the addition of a new virtual channel with a
window size of one (not necessarily an infinite-
simal amount of flow). In this case, one method to
evaluate AT is to calculate T using the tree con-
volution algorithm for the network both with and
without the additional virtual channel (given a
specific route for it). However, to determine the
optimal route with this approach would require

fiumerous applications of the tree convolution al-
gorithm and would be very expensive in terms of
computation time.

The solution approach described in Section 2.6
was proposed [18]. A closed-chain model is ini-
tially used to calculate the throughputs of the
existing flow controlled virtual channels. These are
then modeled as open chains. The new virtual
channel to be added is modeled as a closed chain.

Let the aggregate arrival rate of the existing
traffic in the network to communication channel
m be denoted by A, packets/second. The service
rate of channel m is pC,, packets/second where
1/u is the average length of a packet in bits and
C,, is the channel speed in bits/second. Define
p,,=A,,/(nC,). The total throughput rate at which
open-chain packets leave (or enter) the network is
¥, packets /second. The mean ETE delay of open-
chain packets is 7. The closed chain representing
the virtual channel being added has a population
size of one (i.e., window size is one), a source
server work-rate of y packets/second and a mean
ETE ACK delay of T seconds. The source and sink
nodes of the virtual channel are known but its
route is to be determined.

Let Q denote the set of communication chan-
nels constituting a route chosen for the new virtual
channel. The increase in the mean network delay
due to the incremental traffic was found to be

e

m
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Since the amount of incremental traffic is not
infinitesimal, it makes sense to impose a maximum
delay bound 7, on the mean delay of the new
virtual channel. (Most likely, the user requesting
for the new virtual channel will want his mean
delay to be bounded.) The following constrained

optimization problem results:

o

min AT

o

1
.t ) < T (2.35)
meg PCn—Am

A dual of the above problem is

. 1
min —

Q MEQ au‘Cm - Am
s.t.  AT<<A . (2.36)
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where A, is a bound on AT. The above problems
were formulated by Lam and Lien [18] who also
provided an algorithm to solve the problem in
(2.35). We can interpret each of the above con-
strained problems as a compromise between the
objectives of individual-optimization and
network-optimization. Note that the individual-
optimization objective of ARPANET routing does
not consider the impact of the incremental flow on
the network. On the other hand, the network-opti-
mization objective of flow deviation ignores the
performance of the incremental flow (since it is
assumed to be infinitesimal). The above con-
strained problems take into account both consider-
ations.

3. Queueing network models with population size
constraints

In this section we shall consider the modeling of
congestion control and buffer management
strategies in packet networks. To do so, we need to
introduce the class of queueing networks with
population size constraints [4].

3.1. The model

Routing chains in queueing network models
considered prior to now in this paper and in [5] are
either open or closed. Recall our discussion in
Section 2.2 that a closed chain can be viewed as an
open chain with the loss and trigger mechanisms
in place at all times. Suppose the loss and trigger
mechanisms are invoked or revoked as a function
of the network’s population vector N = (N,
N,,...,Ny). Such queueing networks are said to
have population size constraints. Given the loss
and trigger mechanisms as functions of IV, let V' be
the set of feasible network population vectors. A
sufficient condition for the equilibrium network
state probability P(S) to have the product-form
solution is stated in [4]:

For any chain k and population vectors N
and N+1, in V, the loss mechanism is
invoked for a chain k external arrival in any
network state with population vector N if
and only if the trigger mechanism is invoked
for a chain k external departure in any net-
work state with population vector N+ 1,.

~This is equivalent to the condition that feasible

transitions between population vectors in V are
always paired.

By permitting ¥ to be a singleton set as well as
an infinite set, both networks of closed chains and
networks of open chains are included here as
special cases. The set of feasible network states is
S= U yop S(IN) where S(N) is defined by (2.7).
Thus, the (improper) equilibrium probability of
the set of states S(NN) is equal to the normaliza-
tion constant G(N) of an equivalent closed net-
work with population vector V; chain arrival rates
to individual servers are given by (2.1) for closed
chains and (2.17) for chains that permit external
arrivals [4,19]. For constant external chain arrival
rates, a queueing network model with population
size constraints has the product-form solution given
by (2.5) with the following expression for the
normalization constant:

G= D G(N). (3.1)
NeV

In Sections 3.2-3.4 we discuss queueing net-
work models with population size constraints for
the analysis of strategies for buffer management
and congestion control.

3.2. Finite-buffer single node model

When a packet is in transit in a packet switch-
ing network, it occupies buffer space in the inter-
mediate store-and-forward nodes. When nodes
with finite buffers are considered, the allocation of
buffers to the various chains will affect the node’s
performance (and hence, the network’s perfor-
mance).

To model a packet switching network with finite
buffer space, one must consider the situation when
a packet forwarded to a node finds no available
buffer in that node. The store-and-forward proto-
col requires the sending node to keep a copy of the
packet until an ACK is returned from the receiv-
ing node. If an ACK is not received within a
time-out interval, the packet is retransmitted.
Buffer space in the sending node is therefore oc-
cupied by this packet until an ACK is received.

An exact analytic model of an entire network
with finite buffers at each node is not presently
available. Models of a single switching node, how-
ver, have been successfully analyzed [32-35]. In
this section, buffer allocation strategies studied by
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Kamoun and Kleinrock [35] are considered. Their
model does not include ACKs. As soon as a
packet has been transmitted on an outgoing chan-
nel, its buffer space is assumed to be released
immediately. A single node model with provisions
for ACK and timeout delays [8,32] will be dis-
cussed in Section 3.4. Approximate solution tech-
niques to analyze a network of finite-buffer nodes
will also be described in that section.

The single node model analyzed by Kamoun
and Kleinrock [35] is shown in Fig.5. It is a
specialized queueing network model with M servers
in parallel, one for each outgoing channel. There
are M routing chains: packets routed to the same
outgoing channel are in the same chain. The arrival
process of chain i packets to the node is assumed
to be Poisson with rate A;, i=1,2,...,M. The
population size constraints for the various routing
chains are determined by the buffer management
scheme used.

Packets belonging to the various chains share a
total of B buffers. When an arriving packet is
rejected from entering the node, it is assumed to
be lost. (In a network of finite-buffer nodes, re-
jected packets are not really lost, but are retrans-
mitted later; hence, the arrival process to each
node is not likely to be Poisson. The Poisson
arrival assumption mentioned above is therefore
only an approximation in this context.)

We next present a general buffer allocation
scheme that includes as special cases the four
different buffer-sharing strategies studied in [35].
The general scheme is specified in terms of mini-
mum allocations and maximum limits for the dif-
ferent classes of packets. Define

(i) the number of buffers dedicated to chain i
to be b, (b;=0), and

(ii) the maximum number of buffers that chain

B buffers

Fig. 5. A model of a switching node with a finite buffer pool.

i packets can occupy to be B, (B,<B) for i=
,2,...,M.
We must have b,<B, for all i, 3¥, b,<B, and
=¥, B,= B to be physically meaningful.

It is often desirable to use an over-commitment
strategy such that

M
> B,>B.

i=1
Let a state of the single node model be
m=(m;,my,...,m,)

where m; is the number of chain i packets in the
node. ?

The general buffer allocation scheme can be
modeled by a queueing network model with popu-
lation size constraints. The set of feasible states
can be written as

V= {m: m; < B;, for all i, and

M M
> max{0,m,— b} <B— Y b,}. (3.2).

i=1 i=1

Applying the product-form solution, the equi-
librium network state probability is given by

| M
P(m)=— I o1 (3.3)
i=1
where p,=A,/(pC;) and
M
G=3 Mo (3.4)
mey i=1

Special cases of the above scheme that have
been studied by Kamoun and Kleinrock [35] are
the following:

Case 1. Complete partitioning (b, >0 and
3M ., b;=B) — The B buffers are partitioned into
M groups, the ith group (with size b;) is allocated
to chain i. There is no sharing of buffers among
chains. Hence, B, is equal to b,, and we also have

M B=B.

i=1

2 In a general network model, n,, denotes the number of chain
k packets at channel . Since the current model has the simple
behavior that chain / packets visit channel i only, n, is
therefore the only non-zero element in the vector n;. We use
m; instead of (0,...,n;,...,0) for convenience. Furthermore,
feasible states in this model correspond to feasible population
vectors considered in Section 3.1.

o
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Case 2. Complete sharing (b, =0 and B,= B) —
The B buffers are completely shared by the M
chains. Buffers are allocated on a FCFS basis.

Case 3. Sharing with maximum allocations
(b, =0 and B;<<B) — The B buffers are shared by
all chains with the restriction that the number of
buffers occupied by chain i cannot exceed B,.

Case 4. Sharing with minimum allocations (b, >
0 and B, = B) — Chain i packets are guaranteed at
least b, buffers, and the remaining B— 3, b,
buffers are shared by all chains.

We now illustrate how one can obtain analytic
expressions for performance measures such as
blocking probability, throughput and mean delay.
Let ¥, C V be the set of states in which a chain i
arrival is rejected. For the general buffer allocation
scheme, V; is given by

V.= {m; m;=B;or | m;=b, and

Aé max{0, m,— b} =B — § bj)}. (3.5)

i=1 Jj=1

Let B, be the blocking probability of chain i
packets,

B= 2 P(m). (3.6)

mev,

The throughput of chain i packets is then given by
vF=A(1-8). (3.7)

To get the mean delay experienced by chain i
packets, we must first get the mean number of
chain i packets in the node. This can be obtained
from
E[m,]= 3 mP(m). (3-8)

meV

Little’s formula [21] is then used to get the follow-
ing expression for the mean delay of chain i:
T,=E[m,]/v*. (3.9)
It should be noted that the mean delay in (3.9) is
for packets which are accepted into the node. It
does not include those that are rejected.

Eqgs. (3.6)-(3.9) are expressed in terms of a
summation over a set of network states. In special
cases, they can often be simplified and expressed
in terms of the normalization constant G. The
reader is referred to [35] for such simplifications.
Numerical examples showing the relative merits of

the four special cases are also provided in that

reference. A general conclusion is that the best
scheme and the best setting of parameters (b; and
B,) depend upon the values of the p,’s.

3.3. Permit-oriented congestion control

A packet switching network can be viewed as a
set of resources shared by a population of users.
Such resources include channels and buffers. If the
resources are not managed properly, an increased
demand from a single user or a group of users may
cause degradation in network performance. This
degradation is usually in the form of substantially
reduced throughput [36,37]. When this happens,
the network is said to be in a state of congestion.
The objective of congestion control is then to
prevent the network from going into the conges-
tion state. Congestion control schemes usually in-
volve some form of restriction on the amount of
network resources allocated to each external user.
The window flow control mechanism discussed in
Section 2.1 provides a congestion control function
because it places a limit on the number of packets
belonging to a virtual channel in the network.
However, if the number of virtual channels is
large, the combined load on the network can still
become excessive, and an additional network-wide
congestion control scheme may be required.

A basic principle is to apply control at the point
of entry to the network. An example of such a
technique is the isarithmic control scheme sug-
gested by Davies [38]. This scheme places a limit
on the total number of packets in the network; no
discrimination is made on the basis of routing
chains. It can be implemented by circulating a
number of ‘permits’ in the network, and requiring
a packet to secure a permit before it can be
admitted into the network. Another example is
window flow control which specifies different types
of permits for packets belonging to different vir-
tual channels.

We observe that the principles of permit-ori-
ented congestion control schemes for a network
are basically the same as those of buffer allocation
schemes for a switching node. Here, permits play
the role of buffers considered earlier in Section
3.2. The general scheme, based upon the specifica-
tion of maximum limits and minimum allocations,
discussed there can be used to specify the alloca-
tion of permits for network congestion control as
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well. In this section we present the work reported
in [39] which considers the special case of maxi-
mum limits only.

The routing chains in the network are assumed
to be partitioned into disjoint groups, and the
number of permits used by each group cannot
exceed some pre-specified maximum. The notion
of group allows the flexibility of imposing controls
on selected sets of routing chains. The resulting
congestion control scheme provides a two-level
isarithmic control [39,40}. At levell, a limit is
placed on the total number of packets in the
network; and at level 2, separate limits are placed
on each group. Let L be the total number of
permits, D be the number of groups, and L, be the
limit for group u, u=1,2,...,D. The general
scheme can be implemented by two types of per-
mits. Type 1 consists of L permits shared by all
packets. Type 2 permits are also distinguished by a
group number; the number of permits for group u
is L,. A packet must acquire both a type 1 permit
and a type2 permit for its group before it can be
admitted into the network.

The two types of permits are not always needed
in special cases. For example, the complete sharing
scheme corresponds to the method of isarithmic
control [38], which can be implemented by the L
type 1 permits only. In the complete partitioning
scheme, type2 permits are required while typel
permits are not used.

The implementation of permit-oriented conges-
tion control for a network is substantially more
complicated than buffer allocation schemes for a
node, due to the need for decentralized control in
a network. A packet acquires one or more permits
when it enters the network and releases its permit(s)
when it reaches its destination node. The distribu-
tion of free permits is an important but difficult
implementation problem. One would like to mini-
mize the probability that when a permit is needed
at a particular node, all the free permits are some-
where else in the network. Davies [38] suggested
that each node may keep up to a maximum num-
ber of free permits, and extra permits are sent to
randomly-selected neighbors. (Note that this is a
maximum allocation strategy applied to individual
nodes.)

We now consider the use of a queueing network
model with population size constraints to study
permit-oriented congestion control. For mathe-
matical tractability we need to assume that the

buffer space at each node is unlimited. It is also
necessary to assume that free permits circulate
through the network with no delay so that an
external packet arrival to the network receives a
permit right away if a free one is present in the
network. In reality, a packet’s entry to the network
may be delayed because the available free permits
may be in other parts of the network. The last
assumption therefore results in optimistic esti-
mates of network performance.

Recall that the state of the network model is
given by S=(n,, n,,...,n,) where n,=(n,,
Riys..sh;x); Ny is the number of chain k packets
at server i. The K routing chains are partitioned
into D groups, and a packet is said to belong to
group u (denoted by T,) if its routing chain is in
group u. The equilibrium network state probability
P(S) is given by the product term in (2.5). The
appropriate normalization constant is defined be-
low.

It is convenient to define a less detailed state
description

S/:(.VUJ’z’-'-’J’M)
where
Y= (m, mi2""9miD)

where m,, is the number of group u packets at
server i. Let

M
Nu = 2 miu

i=1
be the population size of group u packets when the
network is in state S’. The set of feasible network
states is

5= U $Y(N)

where N denotes the population vector (N,
N,,...,Np); the set of feasible population vectors
is
D
V= {N: 3> N,<Land N,<L, for all u} (3.10)
u=1
and
M
S'(N)={S’: S yi:N}.
i=1

By adding all state probabilities P(S) such that
Sier, N =m;, for i=1,2,....M and u=
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1,2,...,D, we get [39]

| M D ey

Ny — = 1 iu ’ ’
P(S") Giglm,.ulel T S'ES (3.11)
where

D

m;= 2 My b, = 2 Pik

u=1 keT,
and
G= 3 G(N)

NeV

where G(N) is the normalization constant of a
closed network with the same set of traffic intensi-
ties {¢,,} and N as its population vector [19].
G(N) may be evaluated using any of the computa-
tional algorithms described earlier in Section 2.

To obtain the network throughput of each
group, we follow the developments which lead to
(3.7) in Section 3.2. The blocking probability of
group u packets is

B.= Z G(N) (3.12)
NEV,

where
D

Vu'—-{N: > N,:LorNu:Lu}. (3.13)
i=1

The throughput of group u is then given by

vi= 2 w(-8). (3.14)

k€ET,

3.4. Finite-buffer network models

The peak throughput of a network is attained
when all its communication channels are transmit-
ting packets (assuming that the mean packet length
and the mean path length of packets in the net-
work are constant). The network throughput over
a period of time is usually less than the peak value
because of (i) the lack of input traffic, or (ii) some
constraints or interference effects that force com-
munication channels to be ‘nonproductive’ part of
the time. In Sections 3.2 and 3.3 we considered
models which were used to study the throughput
degradation behavior arising from interference be-
tween different streams of traffic [34, 35,39]. In
this section we shall consider network throughput
degradation behavior due to insufficient buffers at
switching nodes.

In what follows we shall first describe an ap-
proximate analysis method for dealing with the
problem of blocking arising from the assumption
of finite nodal buffer pools. Two special applica-
tions of the analysis method are discussed: A
model for determining nodal buffer requirements
needed to achieve small nodal blocking probabili-
ties, and a model for studying the performance of
the ‘input buffer limit’ strategy for network con-
gestion control [8, 41].

A packet received by a switching node for
forwarding may be accepted or discarded in accor-
dance with some buffer management strategy de-
pending upon some attribute of the packet (such
as its priority level, class, destination, etc.) and the
utilization level(s) of the node’s buffer pool(s). A
packet, discarded in this fashion, is said to be
blocked. The sending node, however, has a copy of
the packet and will retransmit it later when a
timeout occurs and no positive ACK has been
received.

To get around the difficulty of modeling block-
ing in a queueing network, the following ap-
proximate solution technique was first proposed in
[8). The overall problem (network of switching
nodes) is first decomposed into a set of analyti-
cally tractable problems, i.e., a queueing network
model for each switching node. The single-node
results are then combined by requiring conserva-
tion of the various packet flows within the network
as described below.

The queueing network model of a switching
node shown in Fig. 6 was proposed by Lam and
Schweitzer [8, 32] to study buffer requirements for
networks with completely shared buffer pools. It

Time-out
1-Aj AcK fo
> A —> node j
new input . Channe! )
packets .
N ™~

/7
transit / processor
packets
% —> —>

O

Sink

Fig. 6. A single node model with ACK and time-out delays.
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was also employed later by Lam and Reiser [41] to
study the input buffer limit strategy for network
congestion control. FCFS servers are used to model
the nodal processor, the communication channels
and the sink for packets destined for this node. IS
servers are used to model ACK delays and time-out
delays.

Two types of packets are distinguished *: Tran-
sit packets forwarded by adjacent nodes and new
input packets generated locally. They are repre-
sented by two routing chains with exernal arrival
rates y,.and v, respectively. The following buffer
management strategy is considered. Suppose the
node has N buffers. Transit packets are rejected
only when all buffers are occupied. However, when
there are N; input packets in the node, any newly
arrived input packet is rejected. We have Ny << Ni.
The ratio N; /Ny is said to be the input buffer limit.

For each routing chain, routing transition prob-
abilities from the nodal processor to one of the
communication channels or the sink are de-
termined by the routing behavior of source-de-
stination paths in the real network. The routing
transition probability from a communication
channel to either the ACK or the time-out IS
server depends upon the rejection probability for
transit packets of the neighboring node (say node
J) at the other end of the communication channel.
A packet is accepted by the neighboring node with
probability 4 ; it joins the ACK server and subse-
quently leaves the current node (when an ACK is
received). A packet is rejected with probability
1 —A; by the neighboring node; no ACK will be
returned. Conceptually, the packet joins the time-
out server and subsequently rejoins the channel
queue. Note that this routing behavior is con-
sistent with the probabilistic routing behavior de-
fined for product-form queueing network models.
The acceptance probability 4; is assumed to be the
product (1 — E)(1 — ;) where E is the probability
of a transmission error in the packet and B, is the
blocking probability of node j.

Suppose that the set of nodal blocking probabil-
ities {B;} for transit packets is known for each
communication channel in Fig. 6. Then the node
can be modeled by a product-form queueing net-

3 The model can be used for many types of packets. Only two
types of packets are considered to reduce the computational
requirements of the model.

work with two routing chains and the population
size constraints

0<N, +N,<N,
and
0< N, <N,.

Let P, (N,, N,) be the equilibrium probability of
having N, input packets and N, transit packets in
node m. The equilibrium blocking probability for
transit packets at this node is
N
B,= S P (N,N.—N,), m=1,2,.... M.
N,=0

(3.15)

Since the set {P,(N,, N,)} in turn depends upon
the set {B;}, we thus have a set of M nonlinear
equations for the M unknowns in {8}, which can
be solved numerically.

Note that in the calculation of P, (N,, N,) for
node m, the arrival rate vy, of its transit packets
should be set equal to the throughput rate of such
transit packets multiplied by 1/4,, to account for
retransmissions following rejections. Also, if v, is
the arrival rate of new input packets (offered
load), then the throughput rate of such packets
should be reduced by a fraction equal to the
blocking probability of input packets at node m,
which is

Ny—N—1
Bm+ 2 Pm(NI’NZ)'
N,=0

An iterative solution technique incorporating
the Newton—Raphson method was developed [8]
for the special case of N;= N at each node, i.e.,
no input buffer limit control and the buffer pool is
completely shared. It was found that the model is
accurate when switching nodes have adequate
buffers (for given external input rates) so that {8}
takes on small values. The model is thus useful for
predicting buffer requirements to achieve small
nodal blocking probabilities. (Note that in a pro-
cedure to determine such buffer requirements, al-
though the model results may not be very accurate
at intermediate steps of the procedure, the results
at the termination of the procedure would be
accurate.) The model is also useful for comparing
the performance of various buffer capacity assign-
ment schemes.

The above model was also employed in [41] to

o
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study the design of input buffer limits that can
effectively prevent throughput degradation due to
insufficient buffers when the network is under a
heavy external load. Both the analytic results in
[41] and a subsequent simulation study [42] showed
that input buffer limits can be designed to provide
a very effective congestion control mechanism for
temporary network overloads. For a detailed treat-
ment of input buffer limits as a congestion control
mechanism, see [41,42]. A slightly different input
buffer limit strategy was later proposed and studied
by Saad and Schwartz [43] and independently by
Kamoun et al. [44].

In [41] the homogeneous network model was also
proposed to reduce the computational complexity
of solving numerically the set of nonlinear equa-
tions in (3.15). Instead of considering a specific
network topology, it is assumed that the network
is ‘homogeneous’ so that each node has identical
behavior. Specifically, the blocking probability is
the same at each node. As a result, the evaluation
of a single queueing network model representing a
single switching node is sufficient at each iteration
step of the numerical solution. The homogeneous
network model permits us to examine the in-
fluence of the input buffer limit strategy on the
network’s performance without the computational
complexity that goes with an arbitrary network

topology.

4. Conclusions

We have provided in this paper and in [5] a
tutorial treatment of both exact and approximate
models based upon product-form queueing net-
works, that have proved to be useful for analyzing
the performance of packet communication net-
works. Some approximate solution techniques have
also been described.

We have tried to provide a general framework
for the various models presented. First we ob-
served that the class of product-form queueing
networks with population size constraints [4] in-
clude open networks, closed networks and mixed
networks as special cases [2]. Open network mod-
els are considered in Part 1 [5]. The topics there
include: channel capacity assignment, optimal
routing, distributions of chain ETE delays and a
study of fairness among routing chains. All these
problems may be thought of as resource allocation

problems related to the sharing of finite-capacity
communication channels in 'a packet network.
Problems related to the sharing of finite nodal
buffer pools are considered herein (Part 2). Queue-
ing networks with closed chains and other forms
of population size constraints are employed to
study the performance of window flow controlled
virtual channels, and strategies for buffer manage-
ment and permit-oriented network congestion con-
trol. We observed that all these strategies (includ-
ing window flow control) fall within the general
resource allocation scheme of differentiating packets
into classes, and providing each class with a mini-
mum allocation and a maximum limit of the shared
resource.

We have restricted our discussions to the for-
mulation and application of models based upon
product-form queueing networks only. An earlier
survey article on this subject appeared in [45]. For
a comprehensive survey of network design prob-
lems using the basic model in Part 1, the reader is
referred to [46]. For an in-depth treatment of the
subject of network flow and congestion control
strategies discussed in Part 2, the reader is referred
to [47].
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