
IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 21, NO. 2, APRIL 2013 663

Geographic Routing in -Dimensional Spaces
With Guaranteed Delivery and Low Stretch

Simon S. Lam, Fellow, IEEE, ACM, and Chen Qian, Student Member, IEEE

Abstract—Almost all geographic routing protocols have been
designed for 2-D. We present a novel geographic routing protocol,
named Multihop Delaunay Triangulation (MDT), for 2-D, 3-D,
and higher dimensions with these properties: 1) guaranteed de-
livery for any connected graph of nodes and physical links, and
2) low routing stretch from efficient forwarding of packets out of
local minima. The guaranteed delivery property holds for node lo-
cations specified by accurate, inaccurate, or arbitrary coordinates.
The MDT protocol suite includes a packet forwarding protocol
together with protocols for nodes to construct and maintain a dis-
tributed MDT for routing. We present the performance of MDT
protocols in 3-D and 4-D as well as performance comparisons of
MDT routing versus representative geographic routing protocols
for nodes in 2-D and 3-D. Experimental results show that MDT
provides the lowest routing stretch in the comparisons. Further-
more, MDT protocols are specially designed to handle churn, i.e.,
dynamic topology changes due to addition and deletion of nodes
and links. Experimental results show that MDT’s routing success
rate is close to 100% during churn, and node states converge
quickly to a correct MDT after churn.

Index Terms—Distributed Delaunay triangulation, geographic
routing, greedy forwarding, protocol design, resilience to churn.

I. INTRODUCTION

G EOGRAPHIC routing (also known as location-based or
geometric routing) is attractive because the routing state

needed for greedy forwarding at each node is independent of
network size. Almost all geographic routing protocols have been
designed for nodes in 2-D. In reality, many wireless applications
run on nodes located in 3-D [22], [1], [7], [8]. Furthermore,
node location information may be highly inaccurate or simply
unavailable.
Consider a network represented by a connected graph of

nodes and physical links (to be referred to as the connectivity
graph). Greedy forwarding of a packet may be stuck at a local
minimum, i.e., the packet is at a node closer to the packet’s
destination than any of the node’s directly connected neighbors.
Geographic routing protocols differ mainly in their recovery
methods designed to move packets out of local minima. For

Manuscript received July 05, 2011; revised January 11, 2012; accepted June
18, 2012; approved by IEEE/ACM TRANSACTIONS ON NETWORKING Editor C.
Westphal. Date of publication September 06, 2012; date of current version April
12, 2013. This work was supported by the National Science Foundation under
Grant CNS-0830939. An abbreviated version of this paper appeared in the Pro-
ceedings of the ACM SIGMETRICS Conference, San Jose, CA, June 7–11,
2011.
The authors are with the Department of Computer Science, The University

of Texas at Austin, Austin, TX 78712 USA (e-mail: lam@cs.utexas.edu;
cqian@cs.utexas.edu).
Color versions of one or more of the figures in this paper are available online

at http://ieeexplore.ieee.org.
Digital Object Identifier 10.1109/TNET.2012.2214056

general connectivity graphs in 3-D, face routing methods de-
signed for 2-D [4], [13], [14] are not applicable. Furthermore,
Durocher et al. [7] proved that there is no “local” routing
protocol that provides guaranteed delivery, even under the
strong assumptions of a “unit ball graph” and accurate location
information. Thus, designing a geographic routing protocol that
provides guaranteed delivery in 3-D is a challenging problem.
We present in this paper a novel geographic routing protocol,

Multihop Delaunay Triangulation (MDT), that provides guaran-
teed delivery for a network of nodes in a -dimensional space,
for . (Only Euclidean spaces are considered in this paper.)
The guaranteed delivery property is proved for node locations
specified by arbitrary coordinates; thus, the property also holds
for node locations specified by inaccurate coordinates or ac-
curate coordinates. We show experimentally that MDT routing
provides a routing (distance) stretch close to 1 for nodes in 2-D
and 3-D when coordinates specifying node locations are accu-
rate.1 When coordinates specifying node locations are highly
inaccurate, we show that MDT routing provides a low routing
(distance) stretch relative to other geographic routing protocols.
Nodes may also be arbitrarily located in a virtual space with
packets routed by MDT using the coordinates of nodes in the
virtual space (instead of their coordinates in physical space). In
this case, MDT routing still provides guaranteed delivery, but
the distance stretch in physical space may be high.
Geographic routing in a virtual space is useful for networks

without location information or networks in which the routing
cost between two directly connected neighbors is neither a con-
stant nor proportional to the physical distance between them
(such as ETT [6]). For example, a 4-D virtual space can be
used for geographic routing of nodes physically located in a 3-D
space. The extra dimension makes it possible to assign nodes to
locations in the virtual space such that the Euclidean distance
between each pair of nodes in the virtual space is a good estimate
of the routing cost between them. The design of a positioning
system to embed routing costs in a virtual space is a challenging
problem for wireless networks without any-to-any routing sup-
port and beyond the scope of this paper. The problem is solved
in a companion paper [23] where we show how to: 1) make use
of MDT protocols to embed routing costs in virtual spaces (such
as 4-D), and 2) extendMDT routing to optimize end-to-end path
costs for any additive routing metric.
MDT was designed to leverage the guaranteed delivery prop-

erty of Delaunay triangulation (DT) graphs. For nodes in 2-D,
Bose and Morin proved that greedy routing in a DT always
finds a given destination node [3]. Lee and Lam [16] general-
ized their result and proved that in a -dimensional Euclidean

1Routing and distance stretch are defined later.

1063-6692/$31.00 © 2012 IEEE

664 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 21, NO. 2, APRIL 2013

Fig. 1. Illustration of (a) connectivity, (b) DT, and (c) MDT graphs of a set of nodes in 2-D.

space , given a destination location , greedy routing in
a DT always finds a node that is closest to .
Fig. 1(a) shows a 2-D space with three large obstacles and an

arbitrary connectivity graph. Fig. 1(b) shows the DT graph [9]
of the nodes in Fig. 1(a). In the DT graph, the dashed lines de-
note DT edges between nodes that are not connected by physical
links. The MDT graph of the connectivity graph in Fig. 1(a) is
illustrated in Fig. 1(c). By definition, the MDT graph includes
every physical link in the connectivity graph and every edge
in the DT graph. In MDT routing, when a packet is stuck at a
local minimum of the connectivity graph. the packet is next for-
warded, via a “virtual link,” to the DT neighbor that is closest
to the destination. In short, the recovery method of MDT is to
forward greedily in the DT graph that is guaranteed to succeed.
In this paper, we present MDT protocols for a set of nodes to

construct and maintain a correct multihop DT (formal definition
in Section II). In a multihop DT, two nodes that are neighbors
in the DT graph communicate directly if there is a physical link
between them; otherwise, they communicate via a virtual link,
i.e., a multihop path provided by soft-state forwarding tables in
nodes along the path.
MDT protocols are also designed specially for networks

where node churn and link churn are nontrivial concerns. For
example, in a wireless community network, nodes join and
leave whenever computers in the community are powered on
and off. Furthermore, the quality of wireless links may vary
widely over time for many reasons (e.g., fading effects, external
interference, and weather conditions). Link quality fluctuations
cause dynamic addition and deletion of physical links in the
connectivity graph used for MDT routing.
The MDT protocol suite consists of protocols for forwarding,

join, leave, failure, maintenance, and system initialization. The
MDT join protocol was proven correct for a single join. Thus,
it constructs a correct multihop DT when nodes join serially.
The maintenance protocol enables concurrent joins at system
initialization. Experimental results show that MDT constructs
a correct multihop DT very quickly using concurrent joins. The
join and maintenance protocols are sufficient for a system under
churn to provide a routing success rate close to 100% and for
node states to converge to a correct multihop DT after churn.
The leave and failure protocols are used to improve accuracy
and reduce communication cost.
MDT is communication-efficient because MDT does not use

flooding to discover multihop DT neighbors. MDT’s search

technique is also not limited by a maximum hop count (needed
in scoped flooding used by many wireless routing protocols)
and is guaranteed to succeed when the existing multihop DT is
correct.
Lastly, since MDT routing is designed to run correctly in any

connected graph of nodes and physical links, it is possible to
use MDT for layer-2 routing in wireline networks. For example,
ROME [24], an architecture for metropolitan-scale layer-2 net-
works, makes use of MDT routing in virtual spaces.
For a given set of nodes, under the restrictive assumption that

every node can directly communicate with every other node,
Lee and Lam [16], [17] presented protocols for the construction
and maintenance of a correct distributed DT. These protocols
cannot be used for routing in an arbitrary connectivity graph
because their assumption is not satisfied. Major contributions
of this paper include the definition of a correct distributed mul-
tihop DT, a new two-step greedy forwarding protocol, proofs
of guaranteed delivery by the new forwarding protocol and cor-
rectness of the join protocol, as well as designing each protocol
in the MDT suite to correctly construct/repair forwarding tables
in paths between multihop DT neighbors to provide a correct
distributed multihop DT.

A. Related Work

There were several prior proposals to apply DT to geographic
routing. None of them addressed the underlying technical issue
that the DT graph of a wireless network is, in general, not a
subgraph of its connectivity graph. In [30], requirements are
imposed on the placement of nodes and links in 2-D such the
DT graph is a subgraph of the connectivity graph. In other
approaches, the restricted DT graph [11] and the -localized
DT [20] are both approximations of the DT graph. These graphs
were shown to be good spanners with constant stretch factors.
However, being DT approximations, they do not provide guar-
anteed delivery. Furthermore, they were designed for nodes in
2-D with connectivity graphs restricted to unit disk graphs. (A
unit disk graph requires that a physical link exists between two
nodes if and only if the distance between them is within a given
radio transmission range.)
Many geographic routing protocols have been designed for

nodes in 2-D based upon greedy forwarding. Two of the ear-
liest protocols, GFG [4] and GPSR [13], use face routing to
move packets out of local minima. Bose et al. [2] proposed other
memoryless routing algorithms for special planar graphs. These

LAM AND QIAN: GEOGRAPHIC ROUTING IN -DIMENSIONAL SPACES WITH GUARANTEED DELIVERY AND LOW STRETCH 665

protocols provide guaranteed delivery for a planar graph. If the
connectivity graph is not planar, a planarization algorithm (such
as GG [10] or RNG [26]) is used to construct a connected planar
subgraph. Successful construction requires that the original con-
nectivity graph is a unit disk graph and node location informa-
tion is accurate. Both assumptions are unrealistic.
Kim et al. [14] proposed CLDP, which, given any connec-

tivity graph, produces a subgraph in which face routing would
not cause routing failures. When stuck at a local minimum,
GPSR routing uses the subgraph produced by CLDP instead of
by GG or RNG. CLDP was designed to provide guaranteed de-
livery for nodes in 2-D under the assumption that there are no
degenerate link crossings caused by exactly colinear links [14].
Leong et al. proposed GDSTR [18], which provides guar-

anteed delivery for any connectivity graph. Initially, nodes ex-
change messages to compute and store a distributed spanning
tree. Each node also computes and stores a convex hull of the lo-
cations of all of its descendants in the subtree rooted at the node;
the resulting tree is called a hull tree. Subsequently, a packet is
routed greedily until it is stuck at a local minimum. For recovery,
the packet is routed upwards in the spanning tree until it reaches
a point where greedy routing can again make progress.
GHG [21] and GRG [8] are geographic protocols designed

for 3-D. GHG assumes a unit-ball graph and accurate loca-
tion information, which are unrealistic assumptions. GRG uses
random recovery, which is inefficient and does not provide guar-
anteed delivery. For Poisson distributed nodes and ball graphs
in 3-D [28] (disk graphs in 2-D [27]), the use of a “sufficiently”
large transmission radius can provide guaranteed delivery.
Aside from MDT, there is one other geographic routing

protocol that provides guaranteed delivery for general connec-
tivity graphs in 3-D, namely, GDSTR-3D [31]. For recovery,
GDSTR-3D uses two distributed hull trees, while MDT uses
a distributed DT graph. GDSTR-3D, designed for sensor net-
works, assumes a static network topology; the protocol has no
provision for any dynamic topology change.
Embedding nodes into a virtual space and assigning them vir-

tual coordinates can provide guaranteed delivery for geographic
routing. The VPoD protocol [23] can be used by nodes to as-
sign themselves coordinates in a Euclidean virtual space such
that the distance between any two nodes in the space is a good
estimate of the routing cost (in any additive metric) between
them. For quasi-unit disk graph models, Sarkar et al. [25] pro-
posed to use conformal mapping computed with Ricci flow to
obtain an embedding such that greedy forwarding guarantees
delivery. Xia et al. [29] proposed a unit tetrahedron cell mesh
structure to obtain virtual coordinates to achieve deterministic
greedy routing in 3-D. PIE [12] produces a greedy embedding
by isometrically embedding trees in non-Euclidean spaces of
dimension . Its design targets Internet-like graphs.
Each node in the graph belongs to trees. PIE achieves
a success ratio of 100% for any connected graph.

B. Outline

The balance of this paper is organized as follows. In
Section II, we present concepts, definitions, and model assump-
tions. In Section III, we present the MDT forwarding protocol.
In Section IV, we present join, maintenance, and initialization

TABLE I
DEFINITIONS OF TERMS

protocols. In Section V, we present an experimental perfor-
mance evaluation of MDT in 3-D and 4-D. We also present
experimental results to demonstrate MDT’s resilience to node
churn and link churn. In Section VI, we present performance
comparisons of MDT to geographic routing protocols designed
for 2-D and 3-D. We conclude in Section VII.

II. CONCEPTS AND DEFINITIONS

A triangulation of a set of nodes (points) in 2-D is a max-
imal planar subdivision2 of the convex hull of nodes in into
nonoverlapping triangles such that the vertices of each triangle
are nodes in . A DT in 2-D is a triangulation such that the
circumcircle of each triangle does not contain any other node
inside [9]. The definition of DT can be generalized to a higher
dimensional space using simplexes and circum-hyperspheres.
In each case, the DT of is a graph to be denoted by .
Consider a set of nodes in a -dimensional space, for .

Each node in is identified by its location specified by coor-
dinates. There is at most one node at each location. When we
say node knows node , node knows node ’s coordinates.
A node’s coordinates may be accurate, inaccurate, or arbitrary
(that is, its known location may differ from its actual location).
In Section II-A, we present the definition of a distributed DT
and a key result from Lee and Lam [16], [17] that we need later.
(See Table I for definitions and terms.)

A. Distributed DT

A distributed DT of a set of nodes is specified by
, where represents the set of ’s neighbor

nodes, which is locally determined by .
Definition 1: A distributed DT is correct if and only if for

every node is the same as the neighbor set of in
.

To construct a correct distributed DT, each node, , dis-
covers a set of nodes (includes). Then, computes

locally to determine its set of neighbor nodes.
Note that is information discovered by , while is global
knowledge. For the extreme case of is guaranteed

2A maximal planar subdivision is a subdivision such that no more edges con-
necting two nodes can be added to the subdivision without destroying its pla-
narity.

666 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 21, NO. 2, APRIL 2013

Fig. 2. MDT graph of 10 nodes.

to know its neighbors in . However, the communication
cost for each node to discover (using, for example, a broad-
cast protocol) would be very high and not scalable. A necessary
and sufficient condition [16], [17] for a distributed DT to be cor-
rect is that for all includes all neighbor nodes of
in . The condition’s necessity is obvious. Its sufficiency
requires a nontrivial proof (see [17]). This result enabled the de-
sign of efficient protocols for distributed DT construction.

B. Model Assumptions

Two nodes directly connected by a physical link are said to
be physical neighbors. Each link is bidirectional. In our protocol
descriptions, each link is assumed to provide reliable message
delivery.3

The graph of nodes and physical links may be arbitrary so
long as it is a connected graph. We provide protocols to handle
dynamic topology changes. In particular, new nodes may join,
and existing nodes may leave or fail.4 Furthermore, new phys-
ical links may be added, and existing physical links that have
become error-prone are deleted.
Each node runs the same protocols. After a node boots up, it

knows all of its physical neighbors. Subsequently, it discovers
other nodes, including its multihop DT neighbors, from sending
and receiving protocol messages.

C. Multihop DT

A multihop DT is specified by , where
is a soft-state forwarding table, and is ’s neighbor set

that is derived from information in . The multihop DT model
generalizes the distributed DT model by relaxing the require-
ment that every node in be able to communicate directly with
each of its neighbors. (We use the term “neighbor” to refer to
a DT neighbor.) In a multihop DT, the neighbor of a node may
not be a physical neighbor; see, for example, nodes and in
Fig. 2.
For a node , each entry in its forwarding table is a 4-tuple

, which is a sequence of nodes with
and being the source and destination nodes of a

path, and and being node ’s predecessor and suc-
cessor nodes in the path. In a tuple, and may be
the same node; also, and may be the same node. A
tuple in is used by for message forwarding from
to or from to . For a specific tuple , we use

3Only links that are reliable and have an acceptable error rate are included in
the connectivity graph.
4When a node fails, it becomes silent.

, and to denote the corresponding
nodes in .
For ease of exposition, we assume that a tuple and its “re-

verse” are inserted in and deleted from as a pair. For ex-
ample, is in if and only if is in .
(In fact, only one tuple is stored with each of its two endpoints
being both source and destination.) A tuple in with itself
as the source is represented as , which does
not have a reverse in .
For an example of a forwarding path, consider theMDT graph

in Fig. 2. The DT edge between nodes and is a virtual link;
messages are routed along the paths, and ,
using the following tuples: in node in
node in node , and in node .
Tuples in are maintained as soft states. Each tuple is re-

freshedwhenever there is packet traffic (e.g., application data or
keep-alive messages) between its endpoints. A tuple that is not
refreshed will be deleted when its timeout occurs.
Definition 2: A multihop DT of , is

correct if and only if the following conditions hold: 1) the dis-
tributed DT of , , is correct; and 2) for every
neighbor pair , there exists a unique -hop path between
and in the forwarding tables of nodes in , where is finite.
For a dynamic network in which nodes and physical links

may be added and deleted, we define a metric for quantifying the
accuracy of a multihop DT. We consider a node to be in-system
from when it has finished joining until when it starts leaving
or has failed. Let denote a multihop DT of a set
of in-system nodes. Let be the total number of
correct neighbor entries and be the total number
of wrong neighbor entries in the forwarding tables of all nodes.
A neighbor in is correct when and are neighbors in

and wrong when and are not neighbors in .
Let be the number of edges in . Let

be the number of edges in that do not
have forwarding paths in the multihop DT of . The accuracy
of is defined to be

(1)

It is straightforward to prove that the accuracy of
is 1 (or 100%) if and only if the multihop DT of is correct.
Terminology: For a node , a physical neighbor that has

just booted up is represented in by the tuple . A
physical neighbor that has sent a join request and received a
join reply from a DT node is said to be a physical neighbor at-
tached to the DT. It is represented in by . We use
to denote ’s set of physical neighbors attached to the DT.

A node in will become a DT node when it finishes executing
the join protocol.

III. MDT FORWARDING PROTOCOL

The key idea of MDT forwarding at a node, say , is con-
ceptually simple: For a packet with destination , if is not a
local minimum, the packet is forwarded to a physical neighbor
closest to ; else, the packet is forwarded, via a virtual link, to
a multihop DT neighbor closest to .

LAM AND QIAN: GEOGRAPHIC ROUTING IN -DIMENSIONAL SPACES WITH GUARANTEED DELIVERY AND LOW STRETCH 667

TABLE II
MDT FORWARDING PROTOCOL AT NODE

For a more detailed specification, consider a node that has
received a data message to forward. Node stores it with
the format: in
a local data structure, where is the destination location,

is the source node, is the relay node, and
is the payload of the message. Note that if

, message is traversing a virtual link.
TheMDT forwarding protocol at a node, say , is specified by

the conditions and actions in Table II. To forward message to
a node closest to location , the conditions in Table II are
checked sequentially. The first condition found to be true deter-
mines the forwarding action. In particular, line 3 is for handling
messages traversing a virtual link. Line 4 is greedy forwarding
to physical neighbors. Line 5 is greedy forwarding to multihop
DT neighbors.
The following theorem, which states that MDT forwarding in

a correct multihop DT provides guaranteed delivery, is proved
in the Appendix.
Theorem 1: Consider a correct multihop DT of a finite set

of nodes in a -dimensional Euclidean space . Given a
location in the space, the MDT forwarding protocol succeeds
to find a node in closest to in a finite number of hops.

IV. MDT PROTOCOL SUITE

In addition to the forwarding protocol, MDT includes join,
maintenance, leave, failure, and initialization protocols. The
join protocol is designed to have the following correctness prop-
erty: Given a system of nodes maintaining a correct multihop
DT, after a new node has finished joining the system, the re-
sulting multihop DT is correct. This property ensures that a cor-
rect multihop DT can be constructed for any system of nodes
by starting with one node, say with initially, which is
a correct multihop DT by definition, and letting the other nodes
join the existing multihop DT serially.
Two nodes are said to join a system concurrently if their

join protocol executions overlap in time. When two nodes join
concurrently, the joins are independent if the sets of nodes
whose states are changed by the join protocol executions do
not overlap. For a large network, two nodes joining different
parts of the network are likely to be independent. If nodes
join a correct multihop DT concurrently and independently
using the MDT join protocol, the resulting multihop DT is also
guaranteed to be correct.
The maintenance protocol is designed to repair errors in node

states after concurrent joins that are dependent, after nodes leave
or fail, after the addition of physical links, and after the deletion
of existing physical links (due to, for example, degraded link
quality). Experimental results show that join and maintenance

protocols are sufficient for a system of nodes to recover from
dynamic topology changes and their multihop DT to converge
to 100% accuracy.
MDT includes leave and failure protocols designed for a

single leave and failure, respectively, for two reasons. 1) A
departed node has almost all recovery information in its state to
inform its neighbors how to repair their states. Such recovery
information is not available to the maintenance protocol and
would be lost if not provided by a leave or failure protocol be-
fore the node leaves or fails. (For failure recovery, each node
prestores the recovery information in a selected neighbor which
serves as ’s monitor node.) Thus, having leave and failure
protocols allows the maintenance protocol, which has a higher
communication cost, to run less frequently than otherwise.
2) Concurrent join, leave, and failure occurrences in different
parts of a large network are often independent of each other.
After a leave or failure, node states can be quickly and effec-
tively repaired by leave and failure protocols without waiting
for the maintenance protocol to run. The leave and failure
protocols are presented in the Appendix.
For a multihop DT, in addition to constructing and main-

taining a distributed DT, join and maintenance protocols in-
sert tuples into forwarding tables and update some existing tu-
ples to correctly construct paths between multihop neighbors.
Leave, failure, and maintenance protocols construct a new path
between two multihop neighbors whenever the previous path
between them has been broken due to a node leave/failure or a
link deletion.

A. Join Protocol

Consider a new node, say . It boots up and discovers its
physical neighbors. If one of the physical neighbors is a DT node
(say), then sends a join request to to join the existing DT.5

In theMDT join protocol, a node uses the basic search technique
of Lee and Lam [16] to find its DT neighbors. First, greedy for-
warding of ’s join request finds ’s closest DT neighbor. Sub-
sequently, sends a neighbor-set request to every new neighbor
it has found; each new neighbor replies with a set of ’s neigh-
bors in the new neighbor’s local view. If more new neighbors
are found in the replies, sends a neighbor-set request to each
of them. This search process is iteratively repeated until finds
no more new neighbor in the replies. The MDT join protocol
also constructs a forwarding path between and every one of
its multihop DT neighbors. A more detailed protocol descrip-
tion follows.

5If node discovers only physical neighbors, it will not start the join protocol
until it hears from a physical neighbor that is attached to the DT, e.g., it receives
a token from such a node at system initialization.

668 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 21, NO. 2, APRIL 2013

Finding the Closest Node and Path Construction: Node
joins by sending a join request to node with ’s own location
as the destination location. MDT forwarding is used to forward
the join request to a DT node that is closest to (success is
guaranteed by Theorem 1). A forwarding path between and
is constructed as follows. When sends the join request to
, it stores the tuple in its forwarding table. Subse-
quently, suppose an intermediate node (say) receives the join
request from a physical neighbor (say) and forwards it to a
physical neighbor (say), the tuple is stored in .
When node finally receives the join request of from a

physical neighbor (say), it stores the tuple in
its forwarding table for the reverse path. The join reply is for-
warded along the reverse path from to using tuples stored
when the join request traveled from to earlier. Additionally,
each such tuple is updated with as an endpoint. For example,
suppose node receives a join reply from to from its phys-
ical neighbor . Node changes the existing tuple
in to , where denotes any node already in the
tuple.
After node has received the join reply, it notifies each of

its physical neighbors that is now attached to the DT and
they should change their tuple for from to

.
Physical-Link Shortcuts: The join reply message, at any node

along the path from to (including node), can be trans-
mitted directly to if node is a physical neighbor (i.e., for
message , there is a tuple in the forwarding table such that

). If such a physical-link shortcut is taken, the
path previously set up between and is changed. Tuples with
and as endpoints stored by nodes in the abandoned portion

of the previous path will be deleted because they will not be re-
freshed by the endpoints.
A physical-link shortcut can also be taken when other mes-

sages in theMDT join, maintenance, leave, and failure protocols
are forwarded, but they require the stronger condition: There is
a tuple in the forwarding table such that

, that is, the shortcut can be taken only if is a
physical neighbor attached to the DT.
Finding DT Neighbors:Node , after receiving the join reply

from node , sends a neighbor-set request to for neighbor in-
formation. At this time, , the set of nodes known to in-
cludes both and . Node computes , finds nodes
that are neighbors of in , and sends them to in a
neighbor-set reply message.
When receives the neighbor-set reply from adds

neighbors in the reply (if any) to its candidate set, , and
updates its neighbor set, , from computing . If
finds new neighbors in sends neighbor-set requests

to them for more neighbor information. The joining node
iteratively repeats the above search process until it cannot find
any more new neighbor in . At this time, has successfully
joined and become a DT node.
Nodes in , the set of nodes known to a node , are main-

tained as hard states in distributed DT protocols [16], [17]. In
MDT protocols, nodes in are maintained as soft states. More
specifically, tuples in are maintained as soft states. By defi-
nition, consists of nodes in as
well as new nodes that may become DT neighbors. A new node

in is deleted if it does not become the destination of a tuple
in within a timeout period. Furthermore, whenever a tuple
is deleted from upon timeout, each endpoint of is deleted
from unless it is also an endpoint of another tuple.
Path Construction to Multihop DT Neighbors: TheMDT join

protocol also constructs a forwarding path between the joining
node and each of its multihop neighbors. Whenever learns
a new node from the join reply or a neighbor-set reply sent by
some node, say , node sends a neighbor-set request to , with
as the relay and as the destination (that is, in neighbor-set

request and). Note that a for-
warding path has already been established between and .
Also, since and are DT neighbors, a forwarding path exists
between and (given that is joining a correct multihop DT).
As the neighbor-set request is forwarded and relayed from to
, tuples with and as endpoints are stored in forwarding ta-
bles of nodes along the path from to . The forwarding path
that has been set up between and is then used by to return
a neighbor-set reply to .
Note that serves two different functions in different

types of MDT protocol messages [15]. In a data message (also
a join request message), is used to indicate a multihop
DT neighbor that can route the message out of a local minimum.
In a neighbor-set request message sent by a joining node (say),

is the node that previously informed of the new node
to which the neighbor-set request is destined.
Example: Let node in Fig. 2 be a joining node. Suppose

has found , and to be DT neighbors and it has just learned
from that is a new neighbor. Node sends a neighbor-set re-
quest to with indicated in the message as the relay. Because
the existing multihop DT (of nine nodes) is correct, a unique
forwarding path exists between node and node , which is

. After receiving the message, forwards it to
on the path. At and every node along the way
to , a tuple with endpoints and is stored in the node’s for-
warding table. When the neighbor-set reply from travels back
via , node searches and finds that node is a physical
neighbor attached to the DT (see Fig. 2). Node then trans-
mits ’s reply directly to node . (This is an example of a phys-
ical-link shortcut.) Subsequently, nodes and will select and
refresh only the path between them. Tuples previ-
ously stored in nodes , and for endpoints and will be
deleted upon timeout. Lastly, from ’s reply, learns no new
neighbor other than , and . Without any more new neighbor
to query, ’s join protocol execution terminates, and it becomes
a DT node.
Theorem 2: Let be a set of nodes and be a joining node

that is a physical neighbor of at least one node in . Suppose the
existing multihop DT of is correct, joins using the MDT
join protocol, and no other node joins, leaves, or fails. Then,
the MDT join protocol finishes and the updated multihop DT of

is correct.
A proof of Theorem 2 is presented in the Appendix. A pseu-

docode specification of the MDT join protocol can be found in
our technical report [15].

B. Maintenance Protocol

The MDT maintenance protocol for repairing node states is
designed for systems with frequent addition and deletion of

LAM AND QIAN: GEOGRAPHIC ROUTING IN -DIMENSIONAL SPACES WITH GUARANTEED DELIVERY AND LOW STRETCH 669

nodes and physical links. For a distributed DT to be correct,
each node must know all of its neighbors in the global DT. To-
ward this goal, each node (say) runs the maintenance pro-
tocol by first querying a subset of its neighbors, one for each
simplex including in . More specifically, node se-
lects the smallest subset of neighbors such that every simplex
including in includes one node in . Node then
sends a neighbor-set request to each node in . A node that
has received the neighbor-set request adds to and com-
putes . Node then sends a neighbor-set reply con-
taining neighbors of in to .
Node adds new nodes found in each neighbor-set reply

to ; it then computes to get . If finds a new
neighbor, say , in , node sends a neighbor-set request to
if satisfies the following condition.6

C1: The simplex in that includes both and
neighbor does not include any node to which has sent a
neighbor-set request.
Node keeps sending neighbor-set requests until it cannot

find any more new neighbor in that satisfiesC1. Node then
sends neighbor-set notifications to neighbors in that have not
been sent neighbor-set requests (these notifications announce
’s presence and do not require replies). The protocol code for
constructing forwarding paths between node and each new
neighbor is the same as in the MDT join protocol.
If after sending a neighbor-set request to a node, say , and

a neighbor-set reply is not received from within a timeout
period, node is deemed to have failed. Node sends a failure
notification about to inform each node in ’s updated neighbor
set. These notifications are unnecessary since MDT uses soft
states; they are performed to speed up convergence to correct
node states.
Each node runs the maintenance protocol independently, con-

trolled by a timeout value . After a node has finished running
the maintenance protocol, it waits for time before starting
the maintenance protocol again. The value of should be
set adaptively. When a system has a low churn rate, a large
value should be used for to reduce communication cost. We
found that if each node runs the maintenance protocol repeat-
edly, the node states converge to a correct multihop DT very
quickly. (See results from our system initialization experiments
in Section V-C and churn experiments in Section V-F.)

C. Initialization Protocols

Serial Joins by Token Passing: Starting from one node, other
nodes join serially using the join protocol. The ordering of joins
is controlled by the passing of a single token from one node to
another.
Concurrent Joins by Token Broadcast: Starting from one

node, other nodes join concurrently using the join and mainte-
nance protocols. The ordering of joins is controlled by a token
broadcast protocol. Initially, a token is installed in a selected
node. When a node has a token, it runs the join protocol once
(except the selected node) and then the maintenance protocol
repeatedly, controlled by the timeout value . It also sends

6The maintenance protocol can use the same iterative search technique used
in the join protocol. However, experimental results show that condition C1 can
be used to reduce the number of neighbor-set messages sent by the maintenance
protocol without any impact on its effectiveness to find DT neighbors.

a token to each physical neighbor that is not known to have
joined the multihop DT. Each token is sent after a random delay
uniformly distributed over time interval , where is in
seconds. If a node receives more than one token, any duplicate
token is discarded.

V. PERFORMANCE EVALUATION

A. Methodology

We evaluate MDT protocols using a packet-level dis-
crete-event simulator in which every protocol message created
is routed and processed hop by hop from its source to destina-
tion. We will not evaluate metrics that depend on congestion,
e.g., end-to-end throughput and latency. Hence, queueing
delays at a node are not simulated. Instead, message delivery
times from one node to the next are sampled from a uniform
distribution over a specified time interval. Time-varying wire-
less link characteristics and interference problems are modeled
by allowing physical links to be added and deleted dynamically.
Creating General Connectivity Graphs: To create general

connectivity graphs for simulation experiments, a physical
space in 3-D (2-D) is first specified. Obstacles are then placed
in the physical space. The number, location, shape, and size
of the obstacles are constrained by the requirement that the
unoccupied physical space is not disconnected by the obstacles.
(Any real network environment can be modeled accurately if
computational cost is not a limiting factor.) Nodes are then
placed randomly in the unoccupied physical space. Let
denote the radio transmission range. Physical links are then
placed using the following algorithm: For each pair of nodes, if
the distance between them is larger than or the line between
them intersects an obstacle, there is no physical link; else a
physical link is placed between the nodes with probability .
We refer to as the connection probability and as the
missing link probability. If a graph created using the above
procedure is disconnected, it is not used. Alternatively, to
replicate the connectivity graph of a real network, missing links
between neighbors can be specified deterministically rather
than with probability .
Inaccurate Coordinates: The known coordinates of a node

may be highly inaccurate [19] because some localization
methods have large location errors. In our experiments, after
placing nodes in the physical space, their “known” coordinates
are then generated with randomized location errors. The lo-
cation errors are generated to satisfy a location error ratio, ,
which is defined to be the ratio of the average location error to
the average distance between nodes that are physical neighbors.
We experimented with location error ratios from 0 to 2.
Definitions: The routing stretch value of a pair of nodes,

and , in a multihop DT of is defined to be the ratio of the
number of physical links in the MDT route to the number of
physical links in the shortest route in the connectivity graph be-
tween and . The routing stretch of the multihop DT is defined
to be the average of the routing stretch values of all source–des-
tination pairs in . The distance stretch of the multihop DT is
defined similarly with distance replacing number of physical
links as metric.

670 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 21, NO. 2, APRIL 2013

Fig. 3. Accuracy versus time for concurrent joins in 3-D. (a) Obstacles in a 3-D space. (b) Ave. message delay ms. (c) Ave. message delay ms.

B. Design of Experiments

Our simulation experiments were designed to evaluate geo-
graphic routing in the most challenging environments. In gen-
eral, everything else being equal, the challenge is bigger for a
higher dimensional space, larger obstacles, a higher missing link
probability, a lower node density, a larger network size, or larger
node location errors. Furthermore, we performed experiments to
evaluate MDT’s resilience to dynamic topology changes at very
high churn rates. In the geographic routing literature, no other
protocol has been shown to meet all of these challenges.
Our simulator enables evaluation of geographic routing pro-

tocols in the most challenging environments. In the simulator,
any connectivity graph can be created to represent any real net-
work environment with obstacles of different shapes and sizes.
The connectivity graphs created as described above have prop-
erties of real wireless networks, unlike unit-disk and unit-ball
graphs used in prior work on geographic routing.7 We experi-
mented with obstacles of different shapes and sizes and nodes
with large location errors or arbitrary coordinates in 2-D, 3-D,
and 4-D. In this paper, we present experimental results for large
obstacles, such as those shown in Fig. 3(a), because large obsta-
cles are more challenging to geographic routing than small ones;
these very large obstacles may represent tall buildings in an out-
door space or large machinery in a factory. Between neighbors
that are in line of sight and within radio transmission range, we
experimented with a missing link probability as high as 0.5.
Node density (average node degree) is an important param-

eter that impacts geographic routing performance. We present
experiments for node densities of 13.5 for 3-D and 9.7 for 2-D.
These node densities are relatively low compared to node den-
sities used in prior work on geographic routing. We found that
node densities lower than 13.5 for 3-D and 9.7 for 2-D would re-
sult in many disconnected graphs for spaces with large obstacles
and a high missing link probability. We also conducted experi-
ments for higher node densities that resulted in better MDT per-
formance, thus allowing us to conclude thatMDTworks well for
a wide range of node densities. When we scale up the network
size in a set of experiments, we increase the space and obstacle
sizes to keep node density approximately the same. For exper-
iments with different missing link probabilities, we vary the

7In a recent paper on 3-D routing, unit-ball graphs were still used for simu-
lation experiments [31].

radio transmission range to keep node density approximately
the same.

C. System Initialization Experiments

We have performed numerous experiments using our initial-
ization protocols. In every experiment, a correct multihop DT is
constructed. Concurrent joins can do so much faster than serial
joins, but with a higher message cost (see Fig. 10 for message
cost comparison).
Fig. 3(b) and (c) shows results from two sets of experi-

ments using concurrent-join initialization. In each experiment,
the physical space is a 1000 1000 1000 3-D space, with
three large obstacles, placed as shown in Fig. 3(a). The size
of one obstacle is 200 300 1000. Each of the other two
is 200 350 1000 in size. The obstacles occupy 20% of
the physical space. Connectivity graphs are then created for
300 nodes using the procedure described in Section V-A for
radio transmission range and link connection prob-
ability . The average node degree, i.e., number of
physical neighbors per node, is 13.5. The (known) coordinates
of the nodes are inaccurate with location error ratio .
The first set of experiments is for low-speed networks

with one-hop message delays sampled from 100 to 200 ms
(average ms) and a maintenance protocol timeout
duration of 60 s. The second set of experiments is for faster
networks with one-hop message delays sampled from 10 to 20
ms (average ms) and a maintenance protocol timeout
duration of 10 s.
In the legend of Fig. 3(b) and (c), “max. token delay” is max-

imum token delay . In each experiment, note that accuracy of
the multihop DT is low initially when many nodes are joining
at the same time. With a smaller , more nodes initiate their
join process earlier at about the same time, resulting in a lower
MDT accuracy at the beginning. However, accuracy improves
and converges to 100% quickly for all values. In every exper-
iment, after each node’s initial join, the node had run the main-
tenance protocol only once or twice by the time 100% accuracy
was achieved.

D. MDT Performance in 3-D

We evaluated the performance of MDT routing for 100–1300
nodes in 3-D. We present results from four different sets of
experiments using connectivity graphs created in a 3-D space

LAM AND QIAN: GEOGRAPHIC ROUTING IN -DIMENSIONAL SPACES WITH GUARANTEED DELIVERY AND LOW STRETCH 671

Fig. 4. MDT performance in 3-D average node degree . (a) Routing stretch versus . (b) Distance stretch versus . (c) Storage cost versus .

with and without obstacles, for node locations specified by ac-
curate and inaccurate coordinates. There are four cases:
• accurate coordinates , few missing links ,
no obstacle;

• inaccurate coordinates , few missing links
, no obstacle;

• accurate coordinates , many missing links
, large obstacles (obs);

• inaccurate coordinates , many missing links
, large obstacles (obs).

For 300 nodes, dimensions of the physical space and obsta-
cles are the same as in Fig. 3(a). For a smaller (or larger) number
of nodes, dimensions of the physical space and obstacles are
scaled down (or up) proportionally. For each obs experiment,
the three obstacles are randomly placed in the horizontal plane.

is used for , and is used for
such that the average node degree is approximately 13.5. At the
beginning of each experiment, a correct multihop DT was first
constructed. Routing success rate was 100% in every experi-
ment and is not plotted.
Fig. 4(a) and (b) shows that both routing stretch and distance

stretch versus network size are close to 1 for the easy case of
accurate coordinates , few missing links ,
and no obstacle. Either inaccurate coordinates or many
missing links and large obstacles (obs) increase both
the routing stretch and distance stretch of MDT routing. Note
that both the routing and distance stretch of MDT remain low
as network size becomes large.8

Storage Cost: The most important routing information stored
in a node is the set of nodes it uses for forwarding; the known
coordinates of each node in the set are stored in a location table.
We use 4 B per dimension for storing each node’s coordinates
(e.g., 12 B for a node in 3-D); this design choice is intended
for very large networks. The coordinates of a node are used
as its global identifier. Each node is also represented by a 1-B
local identifier in our current implementation. The location table
stores pairs of global and local identifiers (e.g., 13 B per node for
nodes in 3-D). In the forwarding table, local identifiers are used
to represent nodes in tuples. To illustrate MDT’s storage cost
in bytes, consider the case of 1300 nodes, , and

8Distance stretch is almost the same as routing stretch (except in 4-D exper-
iments for which physical distance is not meaningful) and will not be shown
again.

with obstacles. The average location table size is 540.2 B. The
average forwarding table size is 88.8 B. The average location
table size is 86% of the combined storage cost. We found that
this percentage is unchanged for all network sizes (100–1300)
in each set of experiments, indicating that the forwarding table
size is also proportional to the number of distinct nodes stored.
In this paper, the storage cost is measured by the average

number of distinct nodes a node needs to know (and store) to
perform forwarding. This represents the storage cost of a node’s
minimum required knowledge of other nodes. This metric, un-
like counting bytes, requires no implementation assumptions
that may cause bias when different routing protocols are com-
pared. Fig. 4(c) shows the storage cost per node versus network
size. As expected, either inaccurate coordinates or many
missing links and large obstacles requiremore storage
per node due to the need for more multihop DT neighbors. For
comparison, the bottom curve is the average number of physical
neighbors per node.
Varying Obstacle Locations: Each data point plotted in

Fig. 4(a)–(c) is the average value of 50 simulation runs for
50 different connectivity graphs, each of which was created
from a different placement of the obstacles. Also shown as
bars are the 10th and 90th percentile values. Observe that the
intervals between 10th and 90th percentile values are small for
all data points. (These intervals are also small in experimental
results to be presented in Figs. 5 and 8–11 and will be omitted
from those figures for clarity.) The small intervals between 10th
and 90th percentile values demonstrate that varying obstacle
locations has negligible impact on MDT routing performance.
Varying Number and Size of Obstacles: Aside from varying

the locations of obstacles, we also experimented with varying
the number and size of obstacles. In particular, we repeated the
experiments in Fig. 4 for six obstacles and also for nine obsta-
cles. In each such experiment, the fraction of physical space oc-
cupied by obstacles was kept at 20%. We found the resulting
changes in MDT’s routing stretch, distance stretch, and storage
cost to be too small to be visible when plotted in Fig. 4.9 How-
ever, when we increased the fraction of physical space occupied
by obstacles from 20% to 30%, the resulting increases inMDT’s
routing and distance stretch were significant (about 6%).

9Performance measures from experiments for nine obstacles are smaller than
those from experiments for three obstacles by less than 0.5%.

672 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 21, NO. 2, APRIL 2013

Fig. 5. MDT performance in 3-D and 4-D (average node degree , obstacles). (a) Routing stretch versus . (b) Storage cost versus .

Fig. 6. MDT performance under node churn (ave. message delay ms, timeout s). (a) Churn rate nodes/min. (b) Churn rate nodes/min.
(c) Communication cost versus churn rate.

E. MDT Performance in 4-D

To illustrate how MDT can be used in 4-D, consider the con-
nectivity graphs created for the set of experiments in Fig. 4 with
many missing links and large obstacles. Suppose the
nodes have no location information. We experimented with two
cases. 1) Each node assigns itself an arbitrary location in a 4-D
space and sends its (arbitrary) coordinates to its physical neigh-
bors. These coordinates are used byMDT protocols to construct
and maintain a multihop DT as well as for routing. 2) After a
multihop DT has been constructed by the nodes using the initial
(arbitrary) coordinates, each node then runs VPoD [23], which
is a virtual positioning protocol that does not require any node
location information, any special nodes (such as, landmarks),
nor any use of flooding. Nodes use VPoD to change their coor-
dinates by comparing distances with routing costs to their phys-
ical and DT neighbors. A new multihop DT is then constructed
using the new coordinates. After several iterations, the node co-
ordinates will converge to achieve the following property [23]:
The distance between any two nodes in the virtual space is a
good estimate of the routing cost (in any additive metric) be-
tween them.
For the results presented in Fig. 5, we used 1 (hop) as the

routing metric between two physical neighbors. Each data point
plotted in Fig. 5 is the average value from 50 experiments.
For comparison, we have also plotted the results for MDT

routing using inaccurate 3-D coordinates, that is, the case of
(, obs) in Fig. 4. Fig. 5(a) on routing stretch,
plotted in logarithmic scale, shows that MDT routing using 4-D
virtual coordinates is better than using inaccurate coordinates

in 3-D. Fig. 5(b) on storage cost shows that MDT routing using
inaccurate coordinates in 3-D is better than using 4-D virtual
coordinates. In both figures, MDT routing using arbitrary co-
ordinates has the worst performance. Routing success rate was
100% in every experiment and is not shown.

F. Resilience to Churn

We performed a large number of experiments to evaluate
the performance of MDT protocols for systems under churn,
with 300 nodes in a 1000 1000 1000 3-D physical space.
Like the experiments used to evaluate MDT routing stretch in
Fig. 4, four sets of experiments were performed using connec-
tivity graphs created with and without three large obstacles, for
node locations specified by accurate and inaccurate coordinates.
The average node degree is kept at approximately 13.5 for every
experiment.
In a node churn experiment, the rate at which new nodes join

is equal to the churn rate; the rate of nodes leaving and the rate of
nodes failing are each equal to half the churn rate. In a link churn
experiment, the churn rate is equal to the rate at which new
physical links are added and the rate at which existing physical
links are deleted. In each experiment, the 300 nodes initially
maintain a correct multihop DT. Churn begins at time and
ends at time s.
Fig. 6 presents results from node churn experiments for

low-speed networks where one-hop message delays are sam-
pled from [100 ms, 200 ms]. The maintenance timeout value is
60 s. The churn rate is 100 nodes/min in Fig. 6(a) and (b) and
varies in Fig. 6(c). Fig. 6(a) shows the accuracy of the multihop
DT versus time. The accuracy returns to 100% quickly after

LAM AND QIAN: GEOGRAPHIC ROUTING IN -DIMENSIONAL SPACES WITH GUARANTEED DELIVERY AND LOW STRETCH 673

Fig. 7. MDT performance under link churn (ave. message delay ms, timeout s). (a) Churn rate links/min. (b) Churn rate links/min.
(c) Communication cost versus churn rate.

Fig. 8. Performance comparison of 2-D protocols average node degree . (a) Routing success rate versus . (b) Routing stretch versus . (c) Storage cost
versus .

churn. Fig. 6(b) shows the routing success rate versus time.
The success rate is close to 100% during churn and returns to
100% quickly after churn. Fig. 6(c) shows the communication
cost (per node per second) versus churn rate.
By Little’s Law, for 300 nodes and a churn rate of 100 nodes

per minute, the average lifetime of a node is min,
which represents a very high churn rate for most practical
systems.
Fig. 7 presents results from link churn experiments for

low-speed networks with a maintenance timeout value of 60 s.
Fig. 7(a) shows the accuracy of the multihop DT versus time.
The accuracy returns to 100% quickly after churn. Fig. 7(b)
shows the routing success rate versus time. The success rate is
close to 100% during churn and returns to 100% quickly after
churn. Fig. 7(c) shows the communication cost (per node per
second) versus churn rate.
Note that the convergence times to 100% accuracy in

Figs. 6(a) and 7(a) and to 100% success rate in Figs. 6(b) and
7(b) are almost the same for the four cases. These results are
typical of all churn experiments performed.

G. Discussion on Overheads

Nodes that implement MDT protocols incur extra storage and
communication costs when compared to a simple greedy routing
protocol. The extra storage cost of MDT is the difference be-
tween the MDT storage cost and the number of physical neigh-
bors; see Fig. 4(c). Observe that the extra storage cost converges
to an asymptotic constant as becomes large. There are two

types of extra communication costs: 1) communication costs to
construct a multihop DT initially (see Fig. 10 in the next sec-
tion), and 2) communication costs incurred by the maintenance
protocol during churn [see Figs. 6(c) and 7(c)]. The per-node
churn cost is less than 0.8 messages/s for very high churn rates
and the most difficult case. Note that when the network topology
is static, MDT incurs (essentially) no extra overhead.

VI. PERFORMANCE COMPARISON

A. Comparison of 2-D Protocols

The geographic routing protocols, GPSR running on GG,
RNG, and CLDP graphs [13], [14], and GDSTR [18] were
designed for routing in 2-D. We implemented these protocols
in our simulator.10 The experiments in Fig. 8 were carried out
for 300 nodes in a 1000 1000 2-D space with no obstacle and
few missing links . The radio transmission range is

. The average node degree is 16.5. The performance
results are plotted versus location error ratio, from (no
error) to (very large location errors).
The experiments of Fig. 9 were carried out for 300 nodes in

a 1000 1000 2-D space with three randomly placed obstacles
(a 200 300 rectangle and two 200 350 rectangles) and many
missing links . The radio transmission range is

10Using, as our references, [14] for CLDP; GDSTR code from http://www.
comp.nus.edu.sg/~bleong/geographic/; and GPSR, GG, and RNG code from
http://www.cs.ucl.ac.uk/staff/B.Karp/gpsr/. GDSTR uses two hull trees [18].

674 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 21, NO. 2, APRIL 2013

Fig. 9. Performance comparison of 2-D protocols (three large obstacles, average node degree). (a) Routing success rate versus . (b) Routing stretch versus
. (c) Storage cost versus .

. The average node degree is 9.7. The performance results
are plotted versus location error ratio, from to .
In Figs. 8(a) and 9(a), the routing success rates of MDT and

GDSTR are both 100% for all values (it was 100% in every
experiment). As the location error ratio increases from 0, the
routing success rates of RNG, GG, and CLDP drop off gradually
from 100%. For in Fig. 8(a) and in Fig. 9(a),
their routing success rates drop significantly.
Figs. 8(b) and 9(b), in logarithmic scale, show that MDT has

the lowest routing stretch for all values, with GDSTR a close
second, followed by CLDP, GG, and RNG in that order. Note
that routing stretch increases as increases for all protocols.
Figs. 8(c) and 9(c) show storage cost comparisons. The GPSR

protocols (CLDP, GG, and RNG) have the lowest storage cost,
with the storage costs of GDSTR and MDT about the same.
Comparison of Graph Construction Costs: We compare

MDT’s message cost to construct a correct multihop DT
with message costs of CLDP graph construction using serial
probes [14] and GDSTR hull tree construction [18]. The phys-
ical space is a 2-D square with three large rectangular obstacles,
occupying 20% of the physical space. There are many missing
links . Nodes have inaccurate coordinates .
The number of nodes is varied from 100 to 1300. For the
radio transmission range , the sizes of the physical
space and obstacles are determined for each value of such
that the average node degree is approximately 12.
In Fig. 10, the vertical axis is in logarithmic scale. The

message cost of a protocol is the average number of messages
sent per node (we did not account for message size differences
among the protocols). Note that each GDSTR message is a
broadcast message sent by a node to all of its physical neigh-
bors and is counted only as one message sent. Messages sent
by CLDP and MDT are unicast messages.
Fig. 10 shows that with the average number of messages sent

per node as metric, GDSTR has the best message cost perfor-
mance for up to 900 nodes. For more than 900 nodes, MDT (se-
rial joins) has the lowest cost. CLDP has a very high cost. Note
that the CLDP and GDSTR curves increase gradually with .
The MDT curves are flat.

B. Comparison of 3-D Protocols

We compare the routing performance of MDT with GRG [8]
and GDSTR-3D [31]. We implemented the basic version of

Fig. 10. Initialization message cost versus average node degree .

GRG in our simulator. Several techniques to improve the per-
formance of GRG are presented for unit ball graphs [8]. Since
arbitrary connectivity graphs are used in our experiments, these
techniques are not applicable and not implemented.
GDSTR-3D uses two hull trees for recovery. For each tree,

each node stores two 2-D convex hulls to aggregate the locations
of all descendants in the subtree rooted at the node; the two 2-D
convex hulls approximate a 3-D convex hull at each node. We
implemented GDSTR-3D using its authors’ TinyOS 2.x source
code available at Google Sites.
Unlike other geographic protocols, each node in GDSTR-3D

stores 2-hop neighbors and uses 2-hop greedy forwarding to
reduce routing stretch at the expense of a much larger storage
cost per node. This performance tradeoff may not be appropriate
for networks with limited nodal storage.
A nongeographic routing protocol, VRR [5], is included

in the comparison. We implemented VRR for static networks
without joins and failures.11 For each pair of virtual neighbors,
we used the shortest path (in hops) between them as the for-
warding path (the routing stretch value is 1 between virtual
neighbors). Thus, the routing stretch and storage cost results
shown in Fig. 11(b) and (c) for VRR are slightly optimistic. In
VRR, each node also stores 2-hop neighbors for forwarding.
MDT can be easily modified to use 2-hop greedy forwarding.

We present results for both MDT (which uses 1-hop greedy for-
warding) and MDTv2 (which uses 2-hop greedy fowarding).
In our experiments, the number of nodes is varied from 100

to 1300. The physical space and large obstacles are the same as

11With reference from http://www.cs.berkeley.edu/~mccaesar/vrrcode.

LAM AND QIAN: GEOGRAPHIC ROUTING IN -DIMENSIONAL SPACES WITH GUARANTEED DELIVERY AND LOW STRETCH 675

Fig. 11. Performance comparison of 3-D protocols average node degree . (a) Routing success rate versus . (b) Routing stretch versus . (c) Storage
cost versus .

the ones used in Fig. 4. The average node degree was kept at ap-
proximately 13.5. Experiments were performed using connec-
tivity graphs created for the following case: inaccurate coordi-
nates , many missing links , and three large
obstacles that occupy 20% of the physical space.
Fig. 11(a) shows that MDT (also MDTv2), GDSTR-3D, and

VRR all achieve 100% routing success rate while the routing
success rate of GRG is about 86%. Fig. 11(b), in logarithmic
scale, shows that the routing stretch of GRG is very high, the
routing stretch of VRR is high for , and both increase
with . The routing stretch of MDTv2 is the lowest and slightly
lower than that of GDSTR-3D for every network size [the dif-
ferences are, however, too small to be seen in Fig. 11(b)]. MDT,
which uses 1-hop greedy forwarding, ranks a close third.
In Fig. 11(c), GDSTR-3D, VRR,MDTv2 have large per-node

storage costs because each node stores 2-hop neighbors as well
as physical neighbors. The storage cost of MDTv2 is smaller
than that of GDSTR-3D and VRR. Both GRG and MDT have
much lower storage costs because they use 1-hop greedy for-
warding. The per-node storage cost of GRG, equal to the av-
erage number of physical neighbors, is the lowest of the five
protocols.
MDT Versus GDSTR-3D:MDT,MDTv2, and GDSTR-3D all

provide guaranteed delivery in 3-D and achieve routing stretch
close to 1. GDSTR-3D has a higher storage cost than MDTv2
and a much higher storage cost than MDT. One clear advantage
MDT (or MDTv2) has over GDSTR-3D is that MDT is highly
resilient to dynamic topology changes (both node churn and
link churn), while GDSTR-3D is designed for a static topology
without provision to handle any dynamic topology change. An-
other advantage of MDT is that it provides guaranteed delivery
for nodes with arbitrary coordinates in higher dimensions
.

VII. CONCLUSION

MDT is the only geographic routing protocol that provides
guaranteed delivery in 2-D, 3-D, and higher dimensions. The
graph of nodes and physical links is required to be connected,
but may otherwise be arbitrary. MDT’s guaranteed delivery
property holds for nodes with accurate, inaccurate, or arbitrary
coordinates.
Experimental results show that MDT constructs a correct

multihop DT very quickly at system initialization. MDT is also

highly resilient to both node churn and link churn. Furthermore,
MDT achieves a routing stretch (also distance stretch) close
to 1.
The performance of MDT scales well to a large network size
.We observed that as becomes large,MDT’s routing (dis-

tance) stretch and per-node storage cost converge to horizontal
asymptotes. MDT does not use special nodes (such as beacons
and landmarks) that are required in many wireless routing pro-
tocols; every MDT node runs the same protocols. Each node
computes its own local DT with computation cost dependent
upon its storage cost, rather than . Lastly, MDT’s per-node
communication costs for constructing and maintaining a correct
multihop DT are fairly low and independent of .

APPENDIX

Theorem 1: Consider a correct multihop DT of a finite set
of nodes in a -dimensional Euclidean space . Given a
location in the space, the MDT forwarding protocol succeeds
to find a node in closest to in a finite number of hops.

Proof:
1) By definition, a correct multihop DT of is a correct dis-
tributed DT of . The distributed DT maintained by nodes
in is the same as .

2) Given a correct multihopDT, eachDT neighbor of a node
in is either a physical neighbor or connected to by
a forwarding path of finite length (in hops) that exists in

.
3) When a message, say , arrives at a node, say , if the
condition in line 1, 2, or 6 in Table II is true, then a node
closest to is found. If the conditions in lines 1–3 are all
false, node performs greedy forwarding in lines 4 and
5. If it succeeds to find in a physical neighbor that
is closer to than node , message is transmitted di-
rectly to (line 4 in Table II); else, greedy forwarding is
performed over the set of DT neighbors (line 5 in Table II).
The proof of [16, Theorem 1] for a distributed DT guaran-
tees that either node is closest to or there exists in a
node that is closer to than . Therefore, if node is not
a closest node to , executing the greedy forwarding code
(lines 4 and 5 in Table II) finds a node that is closer to
than node .

4) Any other node in that is closer to than will not use
the actions in lines 4 and 5 in Table II to send message

676 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 21, NO. 2, APRIL 2013

back to node . It is, however, possible for message to
visit node again in the forwarding path between two DT
neighbors that are closer to than . In this case, the con-
dition of line 3 in Table II must be true for at node .
Thus, node executes the greedy forwarding code (lines 4
and 5 in Table II) for message at most once. This prop-
erty holds for every node. By 2), 3), and the assumption
that has a finite number of nodes, MDT forwarding finds
a closest node in to in a finite number of hops.

Theorem 2: Let be a set of nodes and be a joining node
that is a physical neighbor of at least one node in . Suppose the
existing multihop DT of is correct, joins using the MDT
join protocol, and no other node joins, leaves, or fails. Then,
the MDT join protocol finishes and the updated multihop DT of

is correct.
Proof: By Theorem 1, the join request of succeeds to

find a DT node (say) closest to , which sends back a joint
reply. By a property of DT, node , being closest to , is guar-
anteed to be a neighbor of in . A forwarding
path is constructed between and . Subsequently, because the
multihop DT of is correct, forwarding paths are constructed
between and each neighbor it sends a neighbor-set request.
After receiving a request from , each neighbor of updates
its own neighbor set to include . They also send back replies to
. By [16, Lemma 9], the join process finishes and consists
of all neighbor nodes of in .
By construction, two DT neighbors select only one path to

use between them by refreshing only tuples stored in nodes
along the selected path. Therefore, the path between each pair
of neighbors in is unique after the join. Each path
also has a finite number of hops because: 1) the path from the
joining node to its closest DT node has a finite number of
hops (by Theorem 1); and 2) the path from the joining node to
each of its other DT neighbors is either a one-hop path or the
concatenation of two paths, each of which has a finite number
of hops. By Definition 3, the updated multihop DT is correct.
In the above proof, we make use of [16, Lemma 9] for a dis-

tributed DT in which every node can directly communicate with
every other node. Let denote . The main ideas used
in the proof of this lemma are the following. 1) The existing
node closest to the joining node is a neighbor of in

. 2) For any two neighbors of in , say and
, if the facet shared by the Voronoi cells of and is adjacent
to the facet shared by the Voronoi cells of and in ,
then and are neighbors in . Therefore, having found
at least one neighbor in can find any other neighbor
in by following a sequence of existing edges in .
A detailed proof is presented in [16].
We next describe the MDT leave and failure protocols de-

signed for handling a single leave and failure, respectively. Con-
current join, leave, and failure occurrences in different parts of a
large network are often independent of each other. In this case,
after a leave or failure, node states can be quickly and effectively
repaired by these leave and failure protocols without waiting for
the maintenance protocol to run upon timeout.
Leave Protocol: Consider a node that leaves gracefully.

When node ’s neighbors update their states, it is not sufficient
for a neighbor to delete from and . This is because

may have a new neighbor that was not a neighbor of before
’s departure and does not know after ’s departure. How-
ever, such a node is always a neighbor of prior to ’s depar-
ture ([16, Lemma 10]). Therefore, node can notify neighbor
that is leaving and provide with the following information:
1) ’s neighbor set in 12;
2) a graph , where the set of vertices ,
and the set of edges, are neighbors in

and does not contain a tuple with and as
endpoints .

We use vertex to refer to a node in graph and route to refer to a
path in graph connecting two vertices. Note that all vertices in
are DT nodes. Edges in connect neighbors in the multihop

DT of . By the definition of , none of these edges uses as
a node in its forwarding path.
After receiving a leave notification, computes a route in

to every node in its updated neighbor set. Suppose such a route
exists in between and . Node sends to a path-recover
message along the route as follows. The path-recovermessage is
relayed by vertices along the route. Two adjacent vertices in the
route, being neighbors in the multihop DT of , are connected
by a physical link or a forwarding path. At every hop along the
route from to , a tuple with and as endpoints is stored,
thus establishing a forwarding path between and . The leave
protocol is highly efficient for repairing node states after a leave.
For some rare cases, the leave protocol may not be able to

repair all node states after a leave for two reasons. First, the
leaving node may be an articulation point of the connectivity
graph. Second, even if is not an articulation point, it is pos-
sible that and some neighbor are disconnected in because
the forwarding paths of all routes between them in the
graph use node to forward messages. In this case, node exits
the leave protocol and immediately runs the maintenance pro-
tocol to repair node states.
A pseudocode specification of the MDT leave protocol is pre-

sented in our technical report [15].
Failure Protocol: The failure protocol is similar to the leave

protocol and almost as efficient. The key idea is that every
node prepares recovery information for its neighbors in case
fails. The recovery information includes, for each neighbor ,

its neighbor set in after ’s departure as well
as the graph in the leave protocol. Node selects one of
its neighbors (say) as its monitor node and sends to the
recovery information. (The recovery information is updated
by whenever there is a change in .) The monitor node
periodically probes to check that is alive. When detects
failure of sends to each of ’s former neighbors its
recovery information prepared by .

ACKNOWLEDGMENT

The authors thank B. Leong, their ACM SIGMETRICS
shepherd, Q. Lv, and the IEEE/ACM TRANSACTIONS ON

NETWORKING reviewers for their constructive comments and
suggestions. They also thank J. Kim for programming help.

REFERENCES
[1] S. M. N. Alam and Z. J. Haas, “Coverage and connectivity in three-

dimensional networks,” in Proc. ACM MobiCom, 2006, pp. 346–357.

12Note that is not in .

LAM AND QIAN: GEOGRAPHIC ROUTING IN -DIMENSIONAL SPACES WITH GUARANTEED DELIVERY AND LOW STRETCH 677

[2] P. Bose, A. Brodnik, S. Carlsson, E. Demaine, R. Fleischer, A. Lopez-
Ortiz, P.Morin, and J.Munro, “Online routing in convex subdivisions,”
Int. J. Comput. Geom. Appl., vol. 12, no. 4, pp. 283–295, 2002.

[3] P. Bose and P. Morin, “Online routing in triangulations,” SIAM J.
Comput., vol. 33, no. 4, pp. 937–951, 2004.

[4] P. Bose, P. Morin, I. Stojmenovic, and J. Urrutia, “Routing with Guar-
anteed delivery in Ad Hoc wireless networks,” in Proc. DIALM, 1999,
pp. 48–55.

[5] M. Caesar, M. Castro, E. B. Nightingale, G. O’Shea, and A. Rowstron,
“Virtual ring routing: Networking routing inspired by DHTs,” in Proc.
ACM SIGCOMM, 2006, pp. 351–362.

[6] R. Draves, J. Padhye, and B. Zill, “Routing in multi-radio, multi-hop
wireless mesh networks,” in Proc. ACMMobiCom, 2004, pp. 114–128.

[7] S. Durocher, D. Kirkpatrick, and L. Narayanan, “On routing with guar-
anteed delivery in three-dimensional ad hoc wireless networks,” in
Proc. ICDCN, 2008, pp. 546–557.

[8] R. Flury and R. Wattenhofer, “Randomized 3D geographic routing,” in
Proc. IEEE INFOCOM, 2008, pp. 834–842.

[9] S. Fortune, , J. E. Goodman and J. O’Rourke, Eds., “Voronoi diagrams
and Delaunay triangulations,” in Handbook of Discrete and Computa-
tional Geometry, 2nd ed. Boca Raton, FL: CRC Press, 2004.

[10] K. R. Gabriel and R. R. Sokal, “A new statistical approach to geo-
graphic variation analysis,” Syst. Zool., vol. 18, no. 3, pp. 259–278,
1969.

[11] J. Gao, L. Guibas, J. Hershberger, L. Zhang, and A. Zhu, “Geometric
spanner for routing in mobile networks,” in Proc. MobiHoc, 2001, pp.
45–55.

[12] J. Herzen, C. Westphal, and P. Thiran, “Scalable routing easy as PIE:
A practical isometric embedding protocol,” in Proc. IEEE ICNP, 2011,
pp. 49–58.

[13] B. Karp and H. Kung, “GPSR: Greedy perimeter stateless routing for
wireless networks,” in Proc. ACM MobiCom, 2000, pp. 243–254.

[14] Y.-J. Kim, R. Govindan, B. Karp, and S. Shenker, “Geographic routing
made practical,” in Proc. USENIX NSDI, 2005, vol. 2, pp. 217–230.

[15] S. S. Lam and C. Qian, “Geographic routing in -dimensional spaces
with guaranteed delivery and low stretch,” Dept. Comput. Sci., Univ.
Texas Austin, , Austin, TX, Tech. Rep. TR-10-03, Jan. 2010, (revised,
March 18, 2011).

[16] D.-Y. Lee and S. S. Lam, “Protocol design for dynamic Delaunay
triangulation,” Dept. Comput. Sci., Univ. Texas Austin, Tech. Rep.
TR-06-48, Dec. 2006.

[17] D.-Y. Lee and S. S. Lam, “Efficient and accurate protocols for dis-
tributed Delaunay triangulation under churn,” in Proc. IEEE ICNP,
Nov. 2008, pp. 124–136.

[18] B. Leong, B. Liskov, and R. Morris, “Geographic routing without pla-
narization,” in Proc. USENIX NSDI, 2006, vol. 3, p. 25.

[19] M. Li and Y. Liu, “Rendered path: Range-free localization in
anisotropic sensor networks with holes,” in Proc. ACM MobiCom,
2007, pp. 51–62.

[20] X.-Y. Li, G. Calinescu, P.-J. Wan, and Y. Wang, “Localized Delaunay
triangulation with application in ad hoc wireless networks,” IEEE
Trans. Parallel Distrib. Syst., vol. 14, no. 10, pp. 1035–1047, Oct.
2003.

[21] C. Liu and J. Wu, “Efficient geometric routing in three dimensional ad
hoc networks,” in Proc. IEEE INFOCOM, 2009, pp. 2751–2755.

[22] D. Pompili, T.Melodia, and I. Akyildiz, “Routing algorithms for delay-
insensitive and delay-sensitive applications in underwater sensor net-
works,” in Proc. 12th MobiCom, 2006, pp. 298–309.

[23] C. Qian and S. S. Lam, “Greedy distance vector routing,” inProc. IEEE
ICDCS, Jun. 2011, pp. 857–868.

[24] C. Qian and S. S. Lam, “ROME: Routing on metropolitan-scale Eth-
ernet,” in Proc. IEEE ICNP, 2012, to be published.

[25] R. Sarkar, X. Yin, J. Gao, F. Luo, and X. D. Gu, “Greedy routing
with guaranteed delivery using Ricci flows,” in Proc. IPSN, 2009, pp.
121–132.

[26] G. Toussaint, “The relative neighborhood graph of a finite planar set,”
Pattern Recogn., vol. 12, no. 4, pp. 261–268, 1980.

[27] P.-J. Wan, C.-W. Yi, L. Wang, F. Yao, and X. Jia, “Asymptotic crit-
ical transmission radius for greedy forward routing in wireless ad hoc
networks,” IEEE Trans. Commun., vol. 57, no. 5, pp. 1433–1443, May
2009.

[28] Y. Wang, C.-W. Yi, and F. Li, “Delivery guarantee of greedy routing in
three dimensional wireless networks,” in Proc. WASA, 2008, pp. 4–16.

[29] S. Xia, X. Yin, H. Wu, M. Jin, and X. D. Gu, “Deterministic greedy
routing with guaranteed delivery in 3D wireless sensor networks,” in
Proc. MobiHoc, 2011, Article no. 1.

[30] G. Xing, C. Lu, R. Pless, and Q. Huang, “On greedy geographic
routing algorithms in sensing-covered networks,” in Proc. ACM
MobiHoc, 2004, pp. 31–42.

[31] J. Zhou, Y. Chen, B. Leong, and P. Sundaramoorthy, “Practical 3D ge-
ographic routing for wireless sensor networks,” in Proc. SenSys, Nov.
2010, pp. 337–350.

Simon S. Lam (M’69–SM’80–F’85) received the
B.S.E.E. degree with Distinction from Washington
State University, Pullman, in 1969, and the M.S. and
Ph.D. degrees in engineering from the University of
California, Los Angeles (UCLA), in 1970 and 1974,
respectively.
From 1971 to 1974, he was a Postgraduate Re-

search Engineer with the ARPA Network Measure-
ment Center, UCLA, where he worked on satellite
and radio packet switching networks. From 1974 to
1977, he was a Research Staff Member with the IBM

T. J. Watson Research Center, Yorktown Heights, NY. Since 1977, he has been
with the faculty of the University of Texas at Austin, where he is Professor and
Regents Chair in computer science and served as Department Chair from 1992
to 1994.
Prof. Lam is a Member of the National Academy of Engineering and a Fellow

of the ACM. He served as Editor-in-Chief of the IEEE/ACM TRANSACTIONS
ON NETWORKING from 1995 to 1999. He served on the Editorial Boards
of the IEEE/ACM TRANSACTIONS ON NETWORKING, IEEE TRANSACTIONS
ON SOFTWARE ENGINEERING, IEEE TRANSACTIONS ON COMMUNICATIONS,
PROCEEDINGS OF THE IEEE, Computer Networks, and Performance Evalua-
tion. He cofounded the ACM SIGCOMM conference in 1983 and the IEEE
International Conference on Network Protocols in 1993. He received the
2004 ACM SIGCOMM Award for lifetime contribution to the field of com-
munication networks, the 2004 ACM Software System Award for inventing
secure sockets and prototyping the first secure sockets layer (named Secure
Network Programming), the 2004 W. Wallace McDowell Award from the
IEEE Computer Society, as well as the 1975 Leonard G. Abraham Prize and
the 2001 William R. Bennett Prize from the IEEE Communications Society.

Chen Qian (S’08) received the B.Sc. degree in com-
puter science and technology from Nanjing Univer-
sity, Nanjing, China, in 2006, and the M.Phil. degree
in computer science and engineering from the Hong
Kong University of Science and Technology, Hong
Kong, in 2008, and is currently pursuing the Ph.D.
degree in computer science at the University of Texas
at Austin.
He has published research papers in a number of

conferences and journals including ACM SIGMET-
RICS, IEEE ICNP, IEEE ICDCS, IEEE PerCom,

IEEE/ACM TRANSACTIONS ON NETWORKING, and IEEE TRANSACTIONS
ON PARALLEL AND DISTRIBUTED SYSTEMS. His research interests include
computer networking, data-center networks and cloud computing, and scalable
routing and multicast protocols.
Mr. Qian is a student member of the ACM. He is the recipient of the James C.

Browne Outstanding Graduate Fellowship at the University of Texas at Austin.

