
IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 24, NO. 1, FEBRUARY 2016 231

A Scalable and Resilient Layer-2 Network
With Ethernet Compatibility

Chen Qian, Member, IEEE, ACM, and Simon S. Lam, Life Fellow, IEEE, Fellow, ACM

Abstract—We present the architecture and protocols of ROME,
a layer-2 network designed to be backwards-compatible with
Ethernet and scalable to tens of thousands of switches and millions
of end-hosts. Such large-scale networks are needed for emerging
applications including data center networks, wide area networks,
and metro Ethernet. ROME is based upon a recently developed
greedy routing protocol, greedy distance vector (GDV). Protocol
design innovations in ROME include a stateless multicast pro-
tocol, a Delaunay distributed hash table (DHT), as well as routing
and host discovery protocols for a hierarchical network. ROME
protocols do not use broadcast and provide both control-plane
and data-plane scalability. Extensive experimental results from
a packet-level event-driven simulator, in which ROME protocols
are implemented in detail, show that ROME protocols are efficient
and scalable to metropolitan size. Furthermore, ROME protocols
are highly resilient to network dynamics. The routing latency
of ROME is only slightly higher than shortest-path latency.
To demonstrate scalability, we provide simulation performance
results for ROME networks with up to 25 000 switches and 1.25
million hosts.

Index Terms—Ethernet networking, metropolitan area net-
works, routing protocols.

I. INTRODUCTION

L AYER-2 networks, each scalable to tens of thousands of
switches/routers and connecting millions of end-hosts,

are needed for important future and current applications
and services including: data center networks [14], metro
Ethernet [1], [4], [15], [17], wide area networks [5], [19], [16],
as well as enterprise and provider networks.
Ethernet offers plug-and-play functionality and a flat MAC

address space. Ethernet MAC addresses, being permanent
and location-independent, support host mobility and facilitate
management functions, such as troubleshooting and access
control. For these reasons, Ethernet is easy to manage. How-
ever, Ethernet is not scalable to a large network because it uses
a spanning tree routing protocol that is highly inefficient and

Manuscript received October 22, 2013; revised March 27, 2014 and
September 12, 2014; accepted September 12, 2014; approved by IEEE/ACM
TRANSACTIONS ON NETWORKING Editor R. Mahajan. Date of publication
October 31, 2014; date of current version February 12, 2016. This work was
supported by the National Science Foundation under Grants CNS-0830939
and CNS-1214239. An abbreviated version of this paper appeared in the
Proceedings of the IEEE International Conference on Network Protocols
(ICNP), Austin, TX, USA, October 30–November 2, 2012.
C. Qian is with the Department of Computer Science, University of Kentucky,

Lexington, KY 40506 USA (e-mail: qian@cs.uky.edu).
S. S. Lam is with the Department of Computer Science, The University of

Texas at Austin, Austin, TX 78712 USA (e-mail: lam@cs.utexas.edu).
Color versions of one or more of the figures in this paper are available online

at http://ieeexplore.ieee.org.
Digital Object Identifier 10.1109/TNET.2014.2361773

not resilient to failures. Also, after a cache miss, it relies on
network-wide flooding for host discovery and packet delivery.
Today's metropolitan and wide-area Ethernet services pro-

vided by network operators are based upon a network of IP
(layer-3) and MPLS routers that interconnect relatively small
Ethernet LANs [15]. Adding the IP layer to perform end-to-end
routing in these networks nullifies Ethernet's desirable proper-
ties. Large IP networks require massive efforts by human op-
erators to configure and manage, especially for enterprise and
data center networks where host mobility and VM migration
are ubiquitous. This is because IP addresses are location-depen-
dent and change with host mobility and VM migration. Net-
work configurations and policies, such as access control poli-
cies, specified by IP addresses require frequent updates that im-
pose a large administrative burden. As an example, Google's
globally distributed database scales up to millions of machines
across hundreds of data centers [10] that are interconnected in
layer 3. Using a scalable layer-2 networking technology, man-
agement complexity and cost of such huge networks could be
significantly reduced.
Networks that use shortest-path routing on flat addressing in

layer 2 have been proposed [14], [21]. These networks require
a large amount of data-plane state (forwarding table entries) to
reach every destination in the network. Also, when multicast
and VLAN are used, each switch has to store a lot more state
information. Such data-plane scalability is challenging because
high-speed memory is both expensive and power-hungry [49].
Besides scalability, resiliency is also an important require-

ment of large layer-2 networks. According to a recent study by
Cisco [3], availability and resilience are the most important net-
work performance metrics for distributed data processing, such
as Hadoop, in large data centers. Without effective failure re-
covery techniques, job completion will be significantly delayed.
Therefore, it is desirable to have a scalable and resilient

layer-2 network that is backwards-compatible with Ethernet,
i.e., its switches interact with hosts by Ethernet frames using
conventional Ethernet format and semantics. Ethernet com-
patibility provides plug-and-play functionality and ease of
network management. Hosts still run current protocols and use
IP addresses as identifiers, but the network does not use IP
addresses for routing.
In this paper, we present the architecture and protocols of a

scalable and resilient layer-2 network, named ROME (which
is acronym for Routing On Metropolitan-scale Ethernet).
ROME is fully decentralized and self-organizing without
any central controller or special nodes. All switches execute
the same distributed algorithms in the control plane. ROME
uses greedy routing instead of spanning-tree or shortest-path
routing to achieve scalability and resiliency. ROME provides
control-plane scalability by eliminating network broadcast

1063-6692 © 2014 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

232 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 24, NO. 1, FEBRUARY 2016

TABLE I
COMPARISON OF NETWORK PROTOCOLS IN ETHERNET, SEATTLE, AND ROME

and limiting control message propagation within a local area.
ROME provides data-plane scalability because each switch
stores small routing and multicast states.
ROME protocols utilize some recent advances in greedy

routing, namely, GDV on VPoD [37] and MDT [25]. Unlike
greedy routing in wireless sensor and ad hoc networks, switches
in ROME do not need any location information. For routing in
ROME, a virtual space is first specified, such as, a rectangular
area in 2-D.1 Each switch uses the VPoD protocol to compute
a position in the virtual space such that the Euclidean distance
between two switches in the space is proportional to the routing
cost between them. This property enables ROME to provide
routing latency only slightly higher than shortest-path latency.
Switches construct and maintain a multihop Delaunay trian-
gulation (MDT), which guarantees that GDV routing finds the
switch closest to a given destination location [25], [37].

A. High-Level Architecture and Contributions of This Paper
Protocol design innovations in this paper include the fol-

lowing: 1) a stateless multicast protocol to support VLAN and
other multicast applications; 2) protocols for host and service
discovery using a new method, called Delaunay distributed
hash table ; 3) new routing and host discovery proto-
cols for a hierarchical network.
In Table I, we compare the protocols in ROME to those in

Ethernet and SEATTLE [21]. The protocols provide three basic
services of a layer-2 network, i.e., routing, multicast/VLAN,
and host discovery/address resolution. Both ROME and
SEATTLE have been designed to be compatible with Ethernet,
i.e., each network interacts with hosts using Ethernet frames
with conventional Ethernet format and semantics.
Network-wide broadcast is used by the spanning tree protocol

in the data plane and the link-state protocol in the control plane.
ROME does not use any broadcast. Instead, it uses a greedy
routing protocol (GDV) in a 2-D virtual space such that each
switch exchanges control messages with other switches within
a local area. Greedy routing also provides scalability in the data
plane because each switch only stores information about a small
subset of other switches, independent of the network size. The
coordinates of switches in the virtual space are computed by the
VPoD protocol [37]. VPoD [37] incurs control message over-
head, but for each switch, VPoD effectively limits control mes-
sage communication to a small subset of other switches. In this
paper, we will show that the overall control message cost of
ROME is much less than that of link-state broadcast used in
SEATTLE.
Multicast and VLAN protocols of Ethernet and SEATTLE

require storing state in each switch; hence, the number of
multicast or VLAN groups in the network is limited by switch
memory size. ROME resolves this scalability problem by using

1Two-dimensional, 3-D, or a higher dimension can be used [25].

a stateless multicast protocol. Switches are free of multicast
state and utilize information stored in ROME's multicast packet
header and unicast forwarding to provide multicast and VLAN
services.
SEATTLE uses the global switch-level view provided by

link-state routing to form a one-hop distributed hash table
(DHT), which stores the location of each host [21]. This ap-
proach, however, requires each switch to store information
about all other switches in the network. For Delaunay DHT
used in ROME, each switch stores only a subset of other
switches.
It has been shown that the forwarding table size and control

message overhead of SEATTLE are at least an order of magni-
tude smaller than those of Ethernet [21]. Therefore, we evaluate
and compare the performance of ROME with SEATTLE only
using a packet-level event-driven simulator in which ROME
protocols (including GDV, MDT, and VPoD) and SEATTLE
protocols are implemented in detail. Every protocol message is
routed and processed by switches hop by hop from source to
destination. Experimental results show that ROME performed
better than SEATTLE by an order of magnitude with respect to
each of the following performance metrics: switch storage, con-
trol message overhead during initialization and in steady state,
and routing failure rate during network dynamics.
The routing latency of ROME is only slightly higher than

the shortest-path latency. ROME protocols are highly resilient
to network dynamics, and switches quickly recover after a pe-
riod of churn. To demonstrate scalability, we provide simula-
tion performance results for ROME networks with up to 25 000
switches and 1.25 million hosts.

B. Paper Outline
The balance of this paper is organized as follows. In

Section II, we discuss related work. In Section III, we introduce
MDT, VPoD, and GDV routing. We then present location
hashing in a virtual space and stateless multicast. In Section IV,
we present Delaunay DHT and its application to host discovery,
i.e., address and location resolution. In Section V, we present
ROME's architecture and routing protocols for hierarchical
networks. In Section VI, we present performance evaluation
and comparison of ROME and SEATTLE. We conclude in
Section VII.

II. RELATED WORK

A. Scalable Ethernet
Toward the goal of scalability, Myers et al. [34] proposed

replacing Ethernet broadcast for host discovery by a layer-2
distributed directory service. In 2007, replacing Ethernet
broadcast by a DHT was proposed independently by Kim and
Rexford [22] and Ray et al. [42]. In 2008, Kim et al. presented
SEATTLE [21], which uses link-state routing, a one-hop DHT

QIAN AND LAM: SCALABLE AND RESILIENT LAYER-2 NETWORK WITH ETHERNET COMPATIBILITY 233

(based on link-state routing) for host discovery, and multicast
trees for broadcasting to VLANs. Scalability of SEATTLE is
limited by link-state broadcast as well as a large amount of data
plane state needed to reach every switch in the network [49].
In 2010, AIR [44] was proposed to replace link-state routing
in SEATTLE. However, its latency was found to be larger
than the latency of SEATTLE by 1.5 orders of magnitude. In
2011, VIRO [18] was proposed to replace link-state routing. To
construct a rooted virtual binary tree for routing, a centralized
algorithm was used for large networks (e.g., enterprise and
campus networks).
To increase the throughput and scalability of Ethernet for data

center networks, SPAIN [33] and PAST [46] proposed the use of
many spanning trees for routing. In SPAIN, an offline network
controller first precomputes a set of paths that exploit redun-
dancy in a given network topology. The controller then merges
these paths into a set of trees and maps each tree onto a separate
VLAN. SPAIN requires modification to end-hosts. PAST does
not requires end-host modification; instead, a spanning tree is in-
stalled in network switches for every host. The important issue
of data plane scalability was not addressed in both papers.
In four of the five papers with simulation results to show net-

work performance [18], [21], [44], [46], scalability was demon-
strated for networks of several hundred switches. In SPAIN [33],
simulation experiments were performed for special data center
network topologies (e.g., Fat Tree) of up to 2880 switches. In
this paper, we demonstrate scalability of ROME from experi-
ments that ran on a packet-level event-driven simulator for up
to 25 000 switches and 1.25 million hosts.
ROME was designed to run on general topologies. Today's

data center networks are often physically interconnected as
a multirooted tree. Thus, special topologies with a known
structure can be exploited to improve routing and forwarding ef-
ficiency. FCP [24] shows the benefits of assuming some knowl-
edge of baseline topology in routing protocols. PortLand [35] is
a scalable layer-two design for Fat Tree topologies. It employs
a lightweight protocol to enable switches to discover their
positions in the topology. It further assigns internal hierar-
chical addresses to all end-hosts to encode their positions in
the topology. Portland uses a central controller to handle the
more complicated portions of address assignment as well as
all routing. ALIAS was later designed to explore the extent
to which hierarchical host labels can be assigned for routing
and forwarding, in a decentralized, scalable, and broadcast-free
manner for indirect hierarchical topologies [48].

B. Greedy Routing and Virtual Coordinates

Many greedy geographic routing protocols have been de-
signed for wireless sensor and ad hoc networks. Two of the
earliest protocols, GFG [8] and GPSR [20], use face routing to
move packets out of local minima. They require the network
topology to be a planar graph in 2-D to avoid routing failures.
Kim et al. [23] proposed CLDP, which, given any connectivity
graph, produces a subgraph in which face routing would not
cause routing failures. Leong et al. proposed GDSTR [27]
for greedy routing without the planar graph assumption by
maintaining a hull tree. Lam and Qian proposed MDT [25]
for any connectivity graph of nodes with arbitrary coordinates
in a -dimensional Euclidean space . From simu-
lation experiments in which GFG/GPSR, CLDP, GDSTR,

and MDT-greedy ran on the same networks, it is shown that
MDT-greedy provides the lowest routing stretch and the highest
routing success rate (1.0) [25].
Many virtual coordinate schemes have been proposed

for wireless networks when node location information is
unavailable (e.g., [9], [12], and [39]). In each scheme, the
main objective is to improve greedy routing success rate.
Tsuchiya designed a hierarchical routing protocol using virtual
landmarks for large networks [47]. Lua et al. proposed to
use network-aware coordinates for overlay multicast [28].
VPoD [37] is the only virtual coordinate protocol designed to
predict and minimize the routing cost between nodes.

III. ROUTING IN ROME

A. Services Provided by MDT, VPoD, and GDV

ROME uses greedy routing to provide scalability and
resiliency. The protocol used by ROME switches is GDV
routing, which uses services provided by VPoD and MDT
protocols [25], [37].
In what follows, we first define Delaunay triangulation (DT)

before providing a brief overview of the three protocols.
A triangulation of a set of nodes (points) in 2-D is a sub-

division of the convex hull of nodes in into nonoverlapping
triangles such that the vertices of each triangle are nodes in . A
DT in 2-D is a triangulation such that the circumcircle of each
triangle does not contain any other node inside [13]. The defini-
tion of DT can be generalized to a higher-dimensional Euclidean
space using simplexes and circum-hyperspheres. In each case,
the DT of is a graph that can be computed from locations of
the nodes in the Euclidean space.
In a DT, two nodes sharing an edge are said to be DT

neighbors. For 2-D, Bose and Morin [7] proved that greedy
forwarding in a DT guarantees to find the destination node.
For 2-D, 3-D, and higher-dimensional Euclidean spaces, Lee
and Lam [26] generalized their result and proved that greedy
forwarding in a DT guarantees to find the node closest to a
destination location. Since two neighbors in a DT graph may
not be directly connected, nodes maintain forwarding tables
for communication between DT neighbors multiple hops apart
(hence the name, multihop DT [25]).
At network initialization, each ROME switch assigns itself a

random location in the virtual space and discovers its directly
connected neighbors. Each pair of directly connected switches
exchange their unique identifiers (e.g., MAC addresses) and
self-assigned locations. Then, the switches have enough infor-
mation to construct and maintain a multihop Delaunay triangu-
lation using MDT protocols [25].
ROME switches then repeatedly exchange messages with

their neighbors, including multihop DT neighbors, and change
their positions. Using the VPoD protocol [37], each switch
moves its location in the virtual space by comparing, for each
neighbor, the Euclidean distance to the routing cost between
them. (Routing cost can be in any additive metric.) A switch
stops running VPoD when the amount of location change has
converged to less than a threshold value. When all switches
finish, the Euclidean distance between two switches in the
virtual space approximates the routing cost between them.
(This is why greedy routing using VPoD coordinates can
find near-optimal routes.) Then, switches use their updated

234 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 24, NO. 1, FEBRUARY 2016

locations to construct a new multihop DT to be used by GDV
routing [37].
GDV routing is greedy routing in the multihop DT of a set

of nodes with VPoD coordinates [37]. GDV guarantees to route
every packet to the switch that is closest to the packet's destina-
tion location. It has been shown that the VPoD protocol is very
effective such that GDV's routing cost is not much higher than
that of shortest-path routing.
MDT [25] and VPOD [37] protocols do not use broadcast.

MDT has a very efficient and effective search method for each
switch to find its multihop DT neighbors; in particular, each
switch only communicates with a small subset of other switches
in a large network. Also, construction of virtual coordinates by
VPoD can be performed in a short time. Furthermore, MDT and
VPoD protocols have been designed to be highly resilient to
rapid topology changes. Due to space limitation, we omit a de-
tailed explanation of design tradeoffs and performance evalua-
tion results of MDT, VPoD, and GDV. The interested reader is
referred to our prior publications [25], [37].

B. Virtual Space for Switches
Consider a network of switches with an arbitrary topology

(any connected graph). Each switch selects one of its MAC ad-
dresses to be its identifier. End-hosts are connected to switches
that provide frame delivery between hosts. Ethernet frames for
delivery are encapsulated in ROME packets. Switches interact
with hosts by Ethernet frames using conventional Ethernet
format and semantics. ROME protocols run only in switches.
Link-level delivery is assumed to be reliable.
A Euclidean space (2-D, 3-D, or a higher dimension) is

chosen as the virtual space. The number of dimensions and the
minimum and maximum coordinate values of each dimension
are specified in the token at the beginning of VPoD construc-
tion [37] and known to all switches. Each switch determines for
itself a location in the space represented by a set of coordinates.
Location Hashing: To start ROME protocols, each switch

boots up and assigns itself an initial location randomly by
hashing its identifier, , using a globally known hash func-
tion . The hash value is a binary number that is converted
to a set of coordinates. Our protocol implementation uses the
hash function MD5 [43], which outputs a 16-B binary value.
Four bytes are used for each dimension. Thus, locations can be
in 2-D, 3-D, or 4-D.2
Consider, for example, a network that uses a 2-D virtual

space. For 2-D, the last 8 B of are converted to two
4-B binary numbers, and . Let MAX be the maximum 4-B
binary value, that is, . Also let and be the
minimum and maximum coordinate values for the th dimen-
sion. Then, the location in 2-D obtained from the hash value is

,
where each coordinate is a real number. The location can be
stored in decimal format, using 4 B per dimension. Hereafter,
for any identifier, ID, we will use to represent its loca-
tion in the virtual space and refer to as the identifier's
location hash or, simply, location.
Switches discover their directly connected neighbors and,

using their initial locations, proceed to construct a multihop

2Conceptually, a higher-dimensional space gives VPoD more flexibility but
requires more storage space and control overhead. Our experimental results
show that VPoD's performance in 2-D is already very good.

DT [25]. Switches then update their locations using VPoD and
construct a new multihop DT as described in Section III-A.
Unicast Routing: Unicast packet delivery in ROME is

provided by GDV routing in the multihop DT maintained by
switches. In a correct multihop DT, GDV routing of a packet
guarantees to find the switch that is closest to the destination
location of the packet [25], [37] assuming reliable link-level
delivery and no packet drop due to congestion.
As in most prior work [18], [21], [44], [49], the issue of mul-

tipath routing and traffic engineering is not addressed herein and
will be an interesting problem for future work.

C. Hosts
Hosts have IP and MAC addresses. Each host is directly con-

nected to a switch called its access switch. An access switch
knows the IP and MAC addresses of every host connected to
it. The routable address of each host is the location of its ac-
cess switch in the virtual space, also called the host's location.
Hosts are not aware of ROME protocols and run ARP [36],
DHCP [11], and Ethernet protocols in the same way as when
they are connected to a conventional Ethernet.

D. Stateless Multicast and Its Applications
To provide the same services as conventional Ethernet,

ROME needs to support group-wide broadcast or multicast,
for applications, such as VLAN, teleconferencing, television,
replicated storage/update in data centers, etc.
A straightforward way to deliver messages to a group is by

using a multicast tree similar to IP multicast [21]. All broadcast
packets within a group are delivered through a multicast tree
sourced at a dedicated switch, namely a broadcast root, of the
group. When a switch detects that one of its hosts is a member
of a group, the switch joins the group's multicast tree and stores
somemulticast state for this group.When there are many groups
with many hosts in each group, the amount of multicast state
stored in switches can become a scalability problem.
We present a stateless multicast protocol for group-wide

broadcast in ROME. A group message is delivered using the
locations of its receivers without construction of any multicast
tree. Switches do not store any state for delivering group
messages.
The membership information of stateless multicast is main-

tained at a rendezvous point (RP) for each group. The RP of
a group is determined by the location hash , where

is the group's ID. The switch whose location is closest
to serves as the group's RP. The access switch of the
sender of a group message sends the message to the RP by
unicast. GDV routing guarantees to find the switch closest to

.
The RP then forwards the message to other group members

(receivers) as follows: The RP partitions the entire virtual space
intomultiple regions. To each region with one ormore receivers,
the RP sends a copy of the group message with the region's
receivers (their locations) in the message header (actually the
ROME packet header). The destination of the groupmessage for
each region is a location, called split position (SP), which is ei-
ther: 1) the closest receiver location in that region, or 2) the mid-
point of the two closest receiver locations in the region. ByGDV
routing, the group message will be routed to a switch closest to
the SP. This switch will in turn partition its region into multiple
subregions and send a copy of the group message to the SP of

QIAN AND LAM: SCALABLE AND RESILIENT LAYER-2 NETWORK WITH ETHERNET COMPATIBILITY 235

Fig. 1. Example of stateless multicast. (a) Split at . (b) Splits at and .

each subregion. Thus, a multicast tree rooted at the RP grows re-
cursively until it reaches all receivers. The tree structure is not
stored anywhere. At each step of the tree growth, a switch com-
putes SP's for the next step based on receiver locations in the
group message it is to forward.
We present an example of stateless multicast in Fig. 1(a). The

group consists of 7 hosts , connected to different
switches with locations in a 2-D virtual space as shown. Switch

serves as the RP. Host sends a message to the group by first
sending it to .Upon receiving themessage, realizes that it is
the RP. partitions the entire virtual space into four quadrants
and sends a copy of the message by unicast to each of the three
quadrantswith at least one receiver. Themessage to the northeast
quadrant with four receivers (, and) is sent to a split posi-
tion, ,which is themidpoint between the locationsof and ,
the tworeceiversclosest to .Themessagewill thenbe routedby
GDV to , the switch closest to .
Subsequently, partitions the space into four quadrants and

sends a copy of the message to each of the three quadrants with
one or more receivers [see Fig. 1(b)]. For the northeast quadrant
that has two receivers, the message is sent to the split position,

, which is the midpoint between the locations of and .
The message to will be routed by GDV to , the switch
closest to , which will unicast copies of the message to
and .
In ROME, for each group, its group membership information

is stored in only one switch, the group's RP. For this group, no
multicast state is stored in any other switch. This is a major step
toward scalability. The tradeoff for this gain is an increase in
communication overhead from storing a set of receivers in the
ROME header of each group message. Experimental results in
Section VI-H show that this communication overhead is small.
This is because when the group message is forwarded by the RP
and other switches, the receiver set is partitioned into smaller
and smaller subsets. For an extremely large group that does not
fit into the header of a group message, we can trade switch space
for header space by allowing some switches (SPs) to store mem-
bership information of their regions.
The implementation of stateless multicast, as described, is not

limited to the use of a 2-D space. Also, partitioning of a 2-D
space at the RP, or at a switch closest to a SP, is not limited
to four quadrants. The virtual space can be partitioned into any
number of regions evenly or unevenly.
Stateless Multicast for VLAN: Members of a VLAN are in

a logical broadcast domain; their locations may be widely dis-

tributed in a large-scale Ethernet. ROME's stateless multicast
protocol is used to support VLAN broadcast. When a switch
detects that one of its hosts belongs to a VLAN, it sends a Join
message to location , where is the VLAN ID.
By GDV, The Join message is routed to the switch closest to

, which is the RP of the VLAN. The RP then adds the
host to the VLAN membership. The protocol for a host to leave
a VLAN is similar. VLAN protocols in ROME are much more
efficient than the current VLAN Trunk Protocol used in conven-
tional Ethernet [2]. The number of global VLANs is restricted to
4094 in conventional Ethernet [15]. There is no such restriction
in ROME because stateless multicast does not require switches
to store VLAN information to perform forwarding.
If the RP of a group (or VLAN) has failed, the switch that

is closest to the location hash, , of the group becomes
the new RP. Group membership information is backed up on
a server. Periodically, the server probes each RP it backs up.
When a failed RP is detected, the server transfers group mem-
bership information to the new RP.

IV. HOST AND SERVICE DISCOVERY IN ROME
Suppose a host knows the IP address of a destination host

from some upper-layer service. To route a packet from its source
host to its destination host, switches need to know the MAC ad-
dress of the destination host as well as its location, i.e., location
of its access switch. Such address and location resolution are
together referred to as host discovery.

A. Delaunay Distributed Hash Table
The benefits of using a DHT for host discovery include the

following: 1) uniformly distributing the storage cost of host in-
formation over all network switches, and 2) enabling informa-
tion retrieval by unicast rather than flooding. The one-hop DHT
in SEATTLE [21] uses consistent hashing of identifiers into a
circular location space and requires that every switch knows
all other switches. Such global knowledge is made possible by
link-state broadcast, which limits scalability.
In ROME, the Delaunay DHT (or) uses location

hashing of identifiers into a Euclidean space (2-D, 3-D, or a
higher dimension) as described in Section III-B.

uses greedy routing (GDV) in a multihop DT where
every switch only needs to know its directly connected neigh-
bors and its neighbors in the DT graph. Furthermore, each
switch uses a very efficient search method to find its multihop
DT neighbors without broadcast [25].

236 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 24, NO. 1, FEBRUARY 2016

Fig. 2. publishes a tuple of . performs a lookup of .

In , information about host is stored as a key-value
tuple, , where the key may be the IP (or MAC)
address of , and is host information, such as itsMAC address,
location, etc. The access switch of host is the publisher of 's
tuples. A switch that stores is called a resolver of key
. The tuples are stored as soft state.
To publish a tuple, , the publisher computes its

location and sends a publish message of to . Lo-
cation hashes are randomly distributed over the entire virtual
space. It is possible but unlikely that a switch exists at the exact
location . The publish message is routed by GDV to the
switch whose location is closest to , which then becomes
a resolver of . When some other switch needs host 's informa-
tion, it sends a lookup request message to location . The
lookup message is routed by GDV to the resolver of , which
sends the tuple to the requester. A publish-lookup ex-
ample is illustrated in Fig. 2.
Comparison to GHT: At a high level of abstraction,

bears some similarity to Geographic Hash Table (GHT) [41].
However, was designed for a network of switches with
no physical location information. On the other hand, GHT was
designed for a network of sensors in the physical world with
the assumption that sensors know their geographic locations
through use of GPS or some other localization technique. Also,
for greedy routing, GHT uses GPSR, which provides delivery of
a packet to its destination under the highly restrictive assump-
tion that the network connectivity graph can be planarized [20].
Thus, protocols of and GHT are very different, and the
network environments of their intended applications are also
different.
Comparison to CAN: and Content Addressable Net-

work (CAN) [40] are very different in design although they both
use a -dimensional virtual space. In CAN, the entire virtual
space is dynamically partitioned into zones, each of which is
owned by a node. Nodes in a CAN self-organize into an overlay
network that depends on the underlying IP network for packet
delivery. does not have the concepts of zone and zone
ownership. Instead, switches find their locations in a virtual
space using location hashing described in Section III-B.

B. Host Discovery Using
In ROME, the routable address of host is 's location ,

which is the location of its access switch. There are two key-
value tuples for each host, for its IP-to-MAC and MAC-to-lo-
cation mappings.

In a tuple for host , the key may be its IP orMACaddress. If
is theMACaddress,value includes location andtheunique

ID, , of 's access switch. If is the IP address, the value
includes theMACaddress, , aswell as and .Note that
thehost location is included inboth tuples foreachhost.
After a host is plugged into its access switch with lo-

cation , the switch learns the host's IP and MAC addresses,
and , respectively. then constructs two tuples,

and , and stores them in
local memory. then sends publish messages of the two tu-
ples to and .
Note that each switch stores two kinds of tuples. For a tuple

with key stored by switch , if is 's access switch, the tuple
is a local tuple of . Otherwise, the tuple is published by another
switch and is an external tuple of . Switches store key-value
tuples as soft state.
Each switch interacts with directly connected hosts using

frames with conventional Ethernet format and semantics. When
a host sends its access switch an ARP query frame with
destination IP address and the broadcast MAC address,
sends a lookup request to location , which is routed by
GDV to a resolver of . The resolver sends back to the
tuple . After receiving the tuple, the access
switch caches the tuple and transmits a conventional ARP
reply frame to host . When sends an Ethernet frame with
destination , the access switch retrieves location
from its local memory and sends the Ethernet frame to . If
cannot find the location of in its local memory because,
for instance, the cached tuple has been overwritten, it sends a
lookup request which is routed by GDV to to get
the MAC-to-location mapping of host .
All publish and lookup messages are unicast messages.

Host discovery in ROME is accomplished on demand and is
flooding-free.

C. Reducing Lookup Latency
We designed and evaluated several techniques to speed up

key-value lookup for host discovery, namely: 1) using multiple
independent hash functions to publish each key-value tuple at
multiple locations; 2) hashing to a smaller region in the vir-
tual space; 3) caching key-value tuples for popular hosts as well
as other shortcuts for faster responses. These latency reduction
techniques are omitted due to page limitation.

D. Maintaining Consistent Key-Value Tuples
A key-value tuple stored as an external tuple in a

switch is consistent iff: 1) the switch is closest to the loca-
tion among all switches in the virtual space, and 2)
is the correct location of 's access switch. At any time, some
key-value tuples may become inconsistent as a result of host or
network dynamics.
Host Dynamics: A host may change its IP address, such as

when a mobile node moves to a new physical location or a
virtual machine migrates to a new system. A host may also
change its MAC address due to NIC card change or MAC ad-
dress spoofing.
Network Dynamics: These include the addition of new

switches or links to the network as well as deletion/failure
of existing switches and links. MDT and VPoD protocols
have been shown to be highly resilient to network dynamics

QIAN AND LAM: SCALABLE AND RESILIENT LAYER-2 NETWORK WITH ETHERNET COMPATIBILITY 237

(churn) [25], [37]. Switch states of the multihop DT as well as
switch locations in the virtual space recover quickly to correct
values after churn. The following discussion is limited to how
host and network dynamics are handled by switches in the role
of publisher and in the role of resolver in .
As a publisher, each switch ensures that local tuples of its

hosts are correct when there are host dynamics. For example, if
a host has changed its IP or MAC address, the host's tuples are
updated accordingly. If a new host is plugged into the switch, it
creates tuples for the new host. New aswell as updated tuples are
published to the network. In addition to these reactions to host
dynamics, switches also periodically refresh tuples they previ-
ously published. For every local tuple sends a refresh
message every second to its location . The purpose of
a refresh message is twofold: 1) If the switch closest to loca-
tion is the current resolver, timer of the soft-state tuple
in the resolver is refreshed. 2) If the switch closest to is
different from the current resolver, the refresh message notifies
the switch to become a resolver.
As a resolver, each switch sets a timer for every external tuple

stored in local memory. The timer is reset by a request or refresh
message for the tuple. If a timer has not been reset for time,
timeout occurs, and the tuple will be deleted by the resolver.
is set to a value several times that of .
For faster recovery from network dynamics, we designed and

implemented a technique, called external tuple handoff. When a
switch detects topology or location changes in the multihop DT,
it checks the location of every external tuple . If
the switch finds a physical or DT neighbor closer to than
itself, it sends a handoff message including the tuple to the closer
neighbor. The handoff message will be forwarded by GDV until
it reaches the switch closest to , which then becomes the
tuple's new resolver.

E. DHCP Server Discovery Using
In a conventional Ethernet, a new host broadcasts a Dynamic

Host Configuration Protocol (DHCP) discover message to find a
DHCP server. Each DHCP server that has received the discover
message allocates an IP address and broadcasts a DHCP offer
message to the host. The host broadcasts a DHCP request to
accept an offer. The selected server broadcasts a DHCP ACK
message. Other DHCP servers, if any, withdraw their offers.
In ROME, the access switch of each DHCP server publishes

the server's information to a location using a key known by all
switches, such as “DHCPSERVER1.”When some access switch
receives aDHCP discovermessage from one of its hosts, it sends
a server querymessage to the location of a specificDHCP server.
The query is routed by GDV to the resolver of the server. The
resolver sends to the access switch a reply message containing
the location of the specific DHCP server. The access switch then
sends a DHCP request to the server and subsequently receives a
DHCPoffer fromthequeriedserver. In thesemessageexchanges,
eachmessage is sentbyunicast. (UnlikeEthernet,broadcast isnot
used.) To be compatible with a conventional Ethernet, the access
switch replies to the host with a DHCP offer and later transmits a
DHCPACKin response to thehost'sDHCPrequest.

V. ROME FOR A HIERARCHICAL NETWORK

A metropolitan or wide-area Ethernet spanning across a
large geographic area typically has a hierarchical structure

comprising many access networks interconnected by a core
network [17]. Each access network has one or more border
switches. The border switches of all access networks form the
core network. Consider a hierarchical network consisting of
500 access networks, each of which has 2000 switches. The
total number of switches is 1 million. At 100 hosts per switch,
the total number of hosts is 100 million. We believe that a
2-level hierarchy is adequate for metropolitan scale in the
foreseeable future.

A. Routing in a Hierarchical Network

For hierarchical routing in ROME, separate virtual spaces are
specified for the core network and each of the access networks,
called regions. Every switch knows the virtual space of its re-
gion (i.e., dimensionality as well as maximum andminimum co-
ordinate values of each dimension). Every border switch knows
two virtual spaces, the virtual space of its region and the virtual
space of the core network, called backbone.
The switches in a region first discover their directly connected

neighbors. They then use MDT and VPoD protocols to deter-
mine their locations in the region's virtual space (regional lo-
cations) and construct a multihop DT for the access network.
Similarly, the border switches use MDT and VPoD protocols to
determine their locations in the virtual space of the backbone
(backbone locations) and construct a multihop DT for the core
network. Each border switch sends its information (unique ID,
regional and backbone locations) to all switches in its region.
The Delaunay DHT requires the following extension for hier-

archical routing: Each key-value tuple of host stored
at a resolver includes additional information, , which spec-
ifies the IDs and backbone locations of the border switches in
host 's region.
When a host sends an Ethernet frame to another host, its ac-

cess switch obtains, from its cache or using host discovery, the
destination host's key-value tuple, which includes border switch
information of the destination region. This information allows
the access switch to determine whether to route the frame to its
destination using intra-region routing or inter-region routing.
Intra-Region Routing: The sender's access switch indicates in

the ROME packet header that this is an intra-region packet. The
routable address is the regional location of the access switch of
the receiver. The packet will be routed by GDV to the access
switch of the receiver as previously described. In the example
of Fig. 3, an intra-region packet is routed by GDV from access
switch to destination host's access switch in the same
regional virtual space.
Inter-Region Routing: For a destination host in a different re-

gion, an access switch learns, from the host's key-value tuple,
information about the host's border switches and their backbone
locations. This information is included in the ROME header en-
capsulating every Ethernet frame destined for that host.
We describe inter-region routing of a ROME packet as illus-

trated in Fig. 3. The origin switch computes its distances in
the regional virtual space to the region's border switches, and
. chooses , which is closer to than . The packet is

routed by GDV to in the regional virtual space.
learns from the ROME packet header, and , border

switches in the destination's region. computes their distances
to destination in the destination region's virtual space.
chooses because it is closer to the destination location. The

238 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 24, NO. 1, FEBRUARY 2016

Fig. 3. Routing in a hierarchical network.

packet is then routed by GDV in the backbone virtual space to
. Lastly, the packet is routed, in the destination region's vir-

tual space, by GDV from to , which extracts the Ethernet
frame from the ROME packet and transmits the frame to the
destination host.
Note that at the border switch , it has a choice of mini-

mizing the distance traveled by the ROME packet in the back-
bone virtual space or in the destination region's virtual space.
In our current ROME implementation, the distance in the des-
tination region's virtual space is minimized. This is based upon
our current assumption that the number of switches in an ac-
cess network is larger than the number of switches in the core
network. This choice at a border switch is programmable and
can be easily reversed. It is not advisable to use the sum of dis-
tances in two different virtual spaces (specified independently)
to determine routing because they are not comparable. This re-
striction may be relaxed, but it is beyond the scope of this paper.
The destination region may have a large number of border

switches. Inter-region routing works correctly if at least one
border switch of the destination region is included in the ROME
header. Including fewer border switches reduces header size.
The tradeoff is less flexibility for the source region's border
switch to optimize routing distance.

B. Host Discovery in a Hierarchical Network

As illustrated in Fig. 4, the key-value tuple of host
is published to two resolvers in the entire network, namely a re-
gional resolver and a global resolver. The regional resolver is
the switch closest to location in the same region as host ;
it is labeled by in the figure. The publish and lookup proto-
cols are the same as the ones presented in Section IV-B. To find
a tuple with key , a switch sends a lookup message to position

in its own region. A regional resolver provides fast re-
sponses to queries needed for intra-region communications. A
global resolver provides host discovery service for inter-region
communications.
Publish to a Global Resolver: Switches outside of host 's re-

gion cannot find its regional resolver. Therefore, the key-value
tuple of host is also stored in a global resolver to re-
spond to host discovery for inter-region communications. The
global resolver can be found by any switch in the entire net-
work. As shown in Fig. 4, to publish a tuple to its global

Fig. 4. Tuple publishing and lookup in a hierarchical Ethernet.

resolver, the publish message is first routed by GDV to the re-
gional location of one of the border switches in the region, la-
beled by in the figure. computes location in the
backbone virtual space and includes it with the publish message
that is routed by GDV to the border switch closest to backbone
location in the core network, labeled by in the figure.
Switch serves as the global resolver of host if it has

enough memory space. Switch can optionally send the
tuple to a switch in its region such that all switches in the region
share the storage cost of the global resolver function (called
two-level location hashing). In two-level location hashing,
the publish message of tuple sent by is routed by
GDV to a switch closest to the regional location (labeled
by in the figure) inside 's access network. then
becomes a global resolver of host .
Lookup in a Hierarchical Network: To discover the key-value

tuple of host , a switch first sends a lookup message
to location in its region. As illustrated in Fig. 4 (upper
left), the lookupmessage arrives at a switch closest to .
If and host were in the same region, would be the re-
gional resolver of , and it would reply to with the key-value
tuple of host . Given that and host are in different regions, it
is very unlikely that happens to be a global resolver of host
(however the probability is nonzero). If cannot find host 's
tuple in its local memory, it forwards the lookup message to one
of the border switches in its region, in Fig. 4. Then,
computes location in the backbone virtual space and in-
cludes it with the lookup message, which is routed by GDV to
the border switch closest to .
In the scenario illustrated in Fig. 4, is not host 's global

resolver, and it forwards the lookup message to switch
closest to the regional location , which is the global
resolver of host .
Hash Functions: In the above examples, the core and access

networks use different virtual spaces, but they all use the same
hash function . We note that different hash functions can be
used in different networks. It is sufficient that all switches in the
same network (access or core) agree on the same hash function,
just like they must agree on the same virtual space.
Tuple Maintenance at a Border Switch: If a border switch

is replaced by a new switch, all tuples at the backbone level
stored in the old switch are migrated to the new one which is
identified by the same location in the virtual space. If a failed

QIAN AND LAM: SCALABLE AND RESILIENT LAYER-2 NETWORK WITH ETHERNET COMPATIBILITY 239

border switch is not replaced (assuming that its region has an-
other border switch), backbone-level tuples in the failed switch
will be stored by new resolvers when their publishers republish
them periodically (tuples are soft state).

VI. PERFORMANCE EVALUATION

A. Methodology
The ROME architecture and protocols were designed with

the objectives of scalability, efficiency, and reliability. ROME
was evaluated using a packet-level event-driven simulator in
which ROME protocols as well as the protocols GDV, VPoD,
and MDT [25], [37] used by ROME are implemented in detail.
Every protocol message is routed and processed by switches
hop by hop from source to destination. Since our focus is on
routing protocol design, queueing delays at switches were not
simulated. Packet delays from one switch to another on an
Ethernet link are sampled from a uniform distribution in the
interval [50 s, 150 s] with an average value of 100 s. This
abstraction speeds up simulation runs and allows performance
evaluation and comparison of routing protocols unaffected
by congestion issues. The same abstraction was used in the
packet-level simulator of SEATTLE [21].
For comparison to ROME, we implemented SEATTLE pro-

tocols in detail in our simulator. We conducted extensive sim-
ulations to evaluate ROME and SEATTLE in large networks
and dynamic networks with reproducible topologies. For the
link-state protocol used by SEATTLE, we use OSPF [32] in
our simulator. The default OSPF link state broadcast frequency
is once every 30 s. Therefore, in ROME, each switch runs the
MDT maintenance protocol once every 30 s.
In ROME, a host's key-value tuple may be published using

one location hash or two location hashes. In the case of pub-
lishing two location hashes for each tuple, the area of the second
hash region is 1/4 of the entire virtual space.
Performance Criteria: Storage cost is measured by the av-

erage number of entries stored per switch. These entries include
forwarding table entries and host information entries (key-value
tuples).
Control overhead is communication cost measured by the av-

erage number of control message transmissions, for three cases:
1) network initialization; 2) network in steady state; and 3) net-
work under churn. Control overhead of ROME for initialization
includes those used by switches to determine virtual locations
using VPoD, construct a multihop DT using MDT protocols,
and populate the with host information for all hosts. Con-
trol overhead of SEATTLE for initialization includes those used
by switches for link-state broadcast and to populate the one-hop
DHT with host information for all hosts. During steady state
(also during churn), switches in SEATTLE and ROME use con-
trol messages: 1) to detect inconsistencies in forwarding tables
and key-value tuples stored locally and externally, as well as
2) to repair inconsistencies in forwarding tables and key-value
tuples.
We measure two kinds of latencies to deliver ROME packets:

1) latency of the first packet to an unknown host, which includes
the latency for host discovery, and 2) latency of a packet to a
discovered host.
To evaluate ROME's (also SEATTLE's) resilience under

churn, we show the routing failure rates of first packets to
unknown hosts and packets to discovered hosts. Successful

Fig. 5. Performance comparison for 2-D and 3-D virtual spaces. (a) Routing
stretch convergence. (b) Storage cost.

routing of the first packet to an unknown host requires suc-
cessful host discovery as well as successful packet delivery by
switches from source to destination.
Network Topologies Used: To evaluate the performance of

ROME as the number of hosts increases, we used the AS-6461
topology with 654 routers from Rocketfuel data [45] where each
router is modeled as a switch. To evaluate the performance of
ROME as the number of switches increases, synthetic topolo-
gies generated by BRITE with the Waxman model [30] at the
router level were used. We included a set of experiments on typ-
ical data center topologies, FatTrees for , and 16, where
is the number of ports per switch. Every data point plotted

in Figs. 7, 8, and 11 is the average of 20 runs from different
topologies generated by BRITE. Upper and lower bars in the
figures show maximum and minimum values of each data point
[these bars are omitted in Fig. 8(c) for clarity]. Most of the dif-
ferences between maximum and minimum values in these fig-
ures are very small (many not noticeable) with the exception of
latency values in Fig. 8(a) and (b).

B. Choice of Dimensionality
We evaluated GDV routing performance in 2-D and 3-D

spaces for Brite networks. The VPoD adjustment period was
set at 100 ms. Fig. 5(a) shows the GDV routing stretch (equal
to routing latency divided by shortest-path latency) versus
time for simulation runs in 2-D and 3-D. At the start of each
simulation run, the routing stretch was relatively high for both
2-D and 3-D because node locations were randomly selected.
After a number of VPoD adjustments, the routing stretch con-
verged in 2.5 s of simulated time to 1.25 and 1.15 s for 2-D and
3-D, respectively. Our experiments for Rocketfuel networks
show similar results. Fig. 5(b) shows the per node storage cost
(average number of entries in a forwarding table) of ROME
in 2-D and 3-D for BRITE networks. The average number
of directly connected neighbors is shown as the baseline for
comparison. Clearly, running VPoD in 3-D requires a higher
storage cost than in 2-D. From experimental results (presented
below), we found that the routing latency provided by 2-D is
already very good. Therefore, we choose to use 2-D rather than
3-D (or 4-D) to minimize the storage of ROME switches and
control message overhead.

C. Varying the Number of Hosts
For a network with switches and hosts, a conventional

Ethernet requires storage per switch, while SEATTLE
requires storage per switch. We found that ROME also

240 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 24, NO. 1, FEBRUARY 2016

Fig. 6. Performance comparison by varying the number of hosts. (a) Storage cost. (b) Control overhead for initialization. (c) Control overhead in steady state.

Fig. 7. Performance comparison by varying the number of switches. (a) Storage cost. (b) Control overhead for initialization. (c) Control overhead in steady state.

requires storage per switch with a much smaller abso-
lute value than that of SEATTLE. We performed simulation ex-
periments for a fixed topology (Rocketfuel AS-6461) with 654
switches. The number of hosts at each switch varies. The total
number of hosts of the entire network varies from 5000 to 50
000. We found that the storage costs of ROME and SEATTLE
for forwarding tables are constant, while their storage costs for
host information increase linearly as the number of hosts in-
creases. In Fig. 6(a), the difference between the storage costs
of ROME and SEATTLE is the difference in their forwarding
table storage costs per switch. The host information storage cost
of ROME using two (location) hashes is close to, but not larger
than, twice the storage cost of ROME using one hash.
Fig. 6(b) and (c) shows the control overheads of ROME and

SEATTLE, for initialization and in steady state. We found that
the control overheads for constructing and updating SEATTLE's
one-hop DHT and ROME's both increase linearly with
, and they are about the same. However, the figures show that

ROME's overall control overhead is much smaller than that of
SEATTLE. This is because ROME's forwarding table construc-
tion and maintenance are flooding-free and thus much more ef-
ficient.

D. Varying the Number of Switches
In this set of experiments, the number of switches increases

from 300 to 2400, while the average number of hosts per switch
is fixed at 20. Thus, the total number of hosts of the network also
increases linearly from 6000 to 48 000. The results are shown in
Fig. 7. Note that each -axis is in logarithmic scale.

Fig. 7(a) shows storage cost versus . Note that while the
storage cost of SEATTLE increases with , ROME's storage
cost is almost flat versus . At , ROME's storage cost
is less than 1/20 of the storage of SEATTLE.
Fig. 7(b) and (c) shows that the control overheads of ROME

for initialization and in steady state are both substantially lower
than those of SEATTLE. These control overheads of ROME in-
crease slightly with . This is because the paths from publishers
to resolvers in a larger network are longer.

E. Routing Latencies
These experiments were performed using the same net-

work topologies (with 20 hosts per switch on average) as in
Section VI-D. Fig. 8(a) shows the latency (in average number
of hops) of packets to discovered hosts. Note that ROME's
latency is not much higher than the shortest-path latency of
SEATTLE.
Fig. 8(b) shows the latency of first packets to unknown hosts

for SEATTLE and for ROME using one and two hashes. This la-
tency includes the round-trip delay between sender and resolver,
and the subsequent latency from sender to destination. By using
two hashes instead of one, the latency of ROME improves and
becomes very close to the latency of SEATTLE. At ,
the latency of ROME (2-hash) is actually smaller than the la-
tency of SEATTLE.
We also performed experiments to evaluate ROME and

SEATTLE latencies in hybrid networks, where 20% of the
switches are replaced by wireless switches. The packet delay of
a wireless hop is sampled uniformly from [5 ms, 15 ms] with

QIAN AND LAM: SCALABLE AND RESILIENT LAYER-2 NETWORK WITH ETHERNET COMPATIBILITY 241

Fig. 8. Latency versus number of switches. (a) Packet to a discovered host. (b) First packet to an unknown host. (c) First packet to unknown host in hybrid nets.

Fig. 9. Performance comparison for FatTrees. (a) Routing latency. (b) Storage
cost.

an average value of 10 ms, much higher than 100 s for a wired
connection. Fig. 8(c) shows that SEATTLE still has the lowest
latency, but the difference between SEATTLE and ROME is
negligible.

F. Data Center Topologies

We evaluated the performance of ROME running on typ-
ical data center topologies, i.e., FatTrees for , and
16. Fig. 9(a) shows latency comparison between SEATTLE and
ROME for FatTrees. We found that when becomes larger,
the latency difference between SEATTLE and ROME reduces.
Fig. 9(b) shows the average number of entries per switch. Sim-
ilar to previous results, ROME requires substantially less data
plane storage than SEATTLE. Network throughput achieved by
load-balanced routing is an important performance metric for
data center networks. We discuss a design of high-throughput
greedy routing in another paper [51].

G. Resilience to Network Dynamics

We performed experiments to evaluate the resilience of
ROME using two hashes and SEATTLE under network dy-
namics for networks with 1000 switches and 20 000 hosts.
Before starting each experiment, consistent forwarding tables
and DHTs were first constructed. During the period of 0–60 s,
new switches joined the network, and existing switches failed.
The rate at which switches join, equal to the rate at which
switches fail, is called the churn rate. Fig. 10(a) shows the
routing failure rates to discovered hosts as a function of time for
ROME and SEATTLE. Different curves correspond to churn
rates of 20, 60, and 100 switches per minute. At these very high
churn rates, the routing failure rate of ROME is close to zero.
The routing failure rate of SEATTLE is relatively high, but it
converged to zero after 100 s (40 s after churn stopped).

Fig. 10(b) shows routing failure rates to unknown hosts
versus time. Both SEATTLE and ROME experienced many
more routing failures, which include host discovery fail-
ures. The routing failure rate of ROME at the churn rate of
100 switches/min is still less than that of SEATTLE at the
churn rate of 20 switches/min.
Fig. 10(c) shows the control overhead (per switch per second)

during a churn and recovery period versus churn rate during the
period. The control overhead of SEATTLE is very high due to
link-state broadcast. The control overhead of ROME is about
two orders of magnitude smaller than that of SEATTLE.
The results show that for networks under churn, ROME has

much smaller routing failure rates and control overheads than
those of SEATTLE. This is because each ROME switch (using
theMDTmaintenance protocol [25]) can find all its neighbors in
the multihop DT of switches very efficiently without broadcast.

H. Performance of Multicast

Both SEATTLE and ROME provide multicast support for
services like VLAN. SEATTLE uses a multicast tree for each
group, which requires switches in the tree to store some multi-
cast state. ROME uses the stateless multicast protocol described
in Section III-D.We performed experiments using the same net-
work topologies (with 20 hosts per switch on average) as in
Section VI-D. The average multicast group size is 50 or 250
in an experiment. The number of groups is 1/10 of the number
of hosts.
Fig. 11(a) shows the average number of transmissions used

to deliver a group message versus the number of switches.
For multicast using a tree, this is equal to the number of links
in the tree. SEATTLE used fewer transmissions than ROME
in experiments for average group size 250. ROME used fewer
transmissions in experiments for average group size 50.
Fig. 11(b) shows the amount of multicast state (average

number of groups) per switch in SEATTLE versus , the
number of switches. (ROME's multicast is stateless.) Each
switch in SEATTLE stores multicast state for a large number
of groups, i.e., thousands in these experiments. (Group mem-
bership information stored at rendezvous points is not included
because it is needed by both ROME and SEATTLE.) On the
other hand, ROME requires the packet header of each group
message to store a subset of hosts in the group. (SEATTLE
does not have this overhead.) Fig. 11(c) shows the average
number of hosts in a ROME packet header. For experiments in
which average group size is 50, the number is around 3. For

242 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 24, NO. 1, FEBRUARY 2016

Fig. 10. Performance under network dynamics. (a) Routing failure rate to a discovered host. (b) Routing failure rate to an unknown host. (c) Control overhead.

Fig. 11. Performance of multicast. (a) Average number of transmissions to deliver a group message. (b)Multicast storage cost per switch of SEATTLE. (c) Average
number of destinations in the header of a ROME group message.

experiments in which average group size is 250, the number is
about 6.

I. Performance of a Very Large Hierarchical Network
We use a hierarchical network consisting of 25 access net-

works of 1000 switches each (generated by BRITE at router
level). Two switches in each access network serve as border
switches in a backbone network of 50 switches with topology
generated by Brite at AS level. Kim et al. [21] discussed ideas
for a multilevel one-hop DHT. Based upon the discussion, we
implemented in our packet-level event-driven simulator an
extension to SEATTLE for routing in a hierarchical network,
which we refer to as “ .”
We performed experiments for this network of 25 000

switches for 250 K to 1.25 million hosts. Fig. 12 shows the
routing latencies for ROME and . ROME's
latency to a discovered host is very close to the shortest-path
latency of , much closer than the latencies in
single-region experiments shown in Fig. 8(a). ROME's latency
to an unknown host is also very close to the shortest-path
latency of . Fig. 13 shows the storage cost per
switch and control overheads for initialization and in steady
state. The performance of ROME is about an order of magni-
tude better than the approach.

J. Comparison of ROME and SEATTLE
ROME is much more scalable than SEATTLE in the data

plane. Based on our results, its storage cost is almost flat versus

Fig. 12. Latency comparison for a very large hierarchical network (25 000
switches).

the number of switches and more than an order of magnitude
smaller than that of SEATTLE. The control message overhead
incurred per node by all protocols used in ROME is more than
an order of magnitude smaller than that of link-state broadcast
in SEATTLE for network initialization, for networks in steady
state, and for networks under churn. The routing failure rates
of ROME to discovered hosts as well as unknown hosts are
much smaller than those of SEATTLE under churn. ROME uses
stateless multicast, which does not require data-plane state for
multicast trees (as in SEATTLE), but it uses additional space in
the header of group packets. The packet latency of ROME to a
discovered host is only slightly higher than that of SEATTLE,
which uses shortest path routing.

QIAN AND LAM: SCALABLE AND RESILIENT LAYER-2 NETWORK WITH ETHERNET COMPATIBILITY 243

Fig. 13. Performance comparison for a very large hierarchical network (25 000 switches). (a) Storage cost. (b) Control overhead for initialization. (c) Control
overhead in steady state.

VII. DISCUSSION OF IMPLEMENTATION

ROME can be implemented in custom-built switches.
ROME's data plane consists of the greedy routing and
forwarding logic, which only includes simple arithmetic
computation and numerical comparison and hence can be
implemented at low cost. ROME's control plane consists of two
functional components: 1) a module for maintaining neighbor
information, and 2) a module for maintaining end-host in-
formation and a consistent . Compared to SEATTLE,
ROME's control plane does not require connectivity informa-
tion of the entire network and its data plane requires a much
smaller routing/forwarding table, as shown in the experimental
results. ROME's multicast requires that switches perform two
additional operations: hashing and space splitting, which can
also be implemented by special hardware. According to the
implementation of OpenSketch [50], hashing and some other
operations implemented in hardware do not affect switch
throughput.
ROME can also be implemented by software defined net-

working (SDN) such as OpenFlow [29]. Even though ROME
was designed for distributed control, the existence of an SDN
controller provides simplified control-plane and switch-state
management for ROME. Recent technologies, such as De-
voflow [31], can extend OpenFlow forwarding rules with local
routing decisions for forwarding flows that do not require
vetting by the controller. Hence, the SDN controller only
needs to specify the greedy routing algorithm in local actions
of switches. Therefore, ROME can improve SDN scalability
by reducing communication cost between switches and the
controller. Lastly, multiple independent controllers can be used
for a large network that runs ROME, with each controller
responsible for switches in a local area. Such load distribution
can effectively mitigate the scalability problem of a single
controller [6].

VIII. CONCLUSION
We present the architecture and protocols of ROME, a scal-

able and resilient layer-2 network that is backwards-compat-
ible with Ethernet. Our protocol design innovations include a
stateless multicast protocol, a Delaunay DHT , as well
as routing and host discovery protocols for a hierarchical net-
work. Experimental results using both real and synthetic net-
work topologies show that ROME protocols are efficient and

scalable. ROME protocols are highly resilient to network dy-
namics, and its switches quickly recover after a period of churn.
The routing latency of ROME is only slightly higher than the
shortest-path latency.
Experimental results show that ROME performs better than

SEATTLE by an order of magnitude with respect to each of the
following performance metrics: switch storage, control message
overhead (for networks during initialization, in steady state, and
under churn), as well as routing failure rates for networks under
churn. To demonstrate scalability, we provide simulation perfor-
mance results for ROME networks with up to 25 000 switches
and 1.25 million hosts.

REFERENCES
[1] “Metro Ethernet,” [Online]. Available: http://metro-ethernet.org/
[2] Cisco, San Jose, CA, USA, “Understanding VLAN Trunk Protocol

(VTP),” Cisco technical support and documentation, 2007.
[3] Cisco, San Jose, CA, USA, “Big data in the enterprise: Network design

considerations,” Cisco White Paper, 2011.
[4] AT&T, Dallas, TX, USA, “AT&T. Metro Ethernet service,” [Online].

Available: http://www.business.att.com/enterprise/Service/ network-
services/ethernet/metro-gigabit/

[5] AT&T, Dallas, TX, USA, “AT&T. wide area Ethernet,” [On-
line]. Available: http://www.business.att.com/enterprise/Service/
network-services/ethernet/wide-area-vpls/

[6] T. Benson, A. Akella, and D. A. Maltz, “Network traffic characteristics
of data centers in the wild,” in Proc. ACM IMC, 2010, pp. 267–280.

[7] P. Bose and P. Morin, “Online routing in triangulations,” SIAM J.
Comput., vol. 33, no. 4, pp. 937–951, 2004.

[8] P. Bose, P. Morin, I. Stojmenovic, and J. Urrutia, “Routing with guar-
anteed delivery in ad hoc wireless networks,” in Proc. DIALM, 1999,
pp. 48–55.

[9] A. Caruso, S. Chessa, S. De, and R. Urpi, “GPS free coordinate as-
signment and routing in wireless sensor networks,” in Proc. IEEE IN-
FOCOM, 2005, pp. 150–160.

[10] J. C. Corbett et al., “Spanner: Google's globally-distributed database,”
in Proc. USENIX OSDI, 2012, pp. 251–264.

[11] R. Droms, “Dynamic host configuration protocol,” RFC 2131, 1997.
[12] R. Fonseca et al., “Beacon-vector routing: Scalable point-to-point

routing in wireless sensor networks,” in Proc. NSDI, 2005.
[13] S. Fortune, “Voronoi diagrams and Delaunay triangulations,” inHand-

book of Discrete and Computational Geometry, J. E. Goodman and J.
O'Rourke, Eds., 2nd ed. Boca Raton, FL, USA: CRC Press, 2004.

[14] A. Greenberg et al., “VL2: A scalable and flexible data center net-
work,” in Proc. ACM SIGCOMM, 2009, pp. 51–62.

[15] S. Halabi, Metro Ethernet. San Jose, CA, USA: Cisco Press, 2003.
[16] C.-Y. Hong et al., “Achieving high utilization with software-driven

WAN,” in Proc. ACM SIGCOMM, 2013, pp. 15–26.
[17] M. Huynh and P. Mohapatra, “Metropolitan Ethernet network: A move

from LAN to MAN,” Comput. Netw., vol. 51, no. 17, pp. 4867–4894,
2007.

244 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 24, NO. 1, FEBRUARY 2016

[18] S. Jain, Y. Chen, S. Jain, and Z.-L. Zhang, “VIRO: A scalable, robust
and name-space independent virtual Id routing for future networks,” in
Proc. IEEE INFOCOM, 2011, pp. 2381–2389.

[19] S. Jain et al., “B4: Experience with a globally-deployed software de-
fined WAN,” in Proc. ACM SIGCOMM, 2013, pp. 3–14.

[20] B. Karp and H. Kung, “GPSR: Greedy perimeter stateless routing for
wireless networks,” in Proc. ACM MobiCom, 2000, pp. 243–254.

[21] C.Kim,M.Caesar, and J. Rexford, “Floodless in SEATTLE:A scalable
ethernet architecture for large enterprises,” in Proc. SIGCOMM, 2008,
pp. 3–14.

[22] C. Kim and J. Rexford, “Revisiting Ethernet: Plug-and-play made scal-
able and efficient,” in Proc. EEE LAN/MAN Workshop, May 2007, pp.
163–169.

[23] Y.-J. Kim, R. Govindan, B. Karp, and S. Shenker, “Geographic routing
made practical,” in Proc. USENIX NSDI, 2005, vol. 2, pp. 217–230.

[24] K. Lakshminaryanan et al., “Achieving convergence-free routing
using failure-carrying packets,” in Proc. ACM SIGCOMM, 2007, pp.
241–252.

[25] S. S. Lam and C. Qian, “Geographic routing in -dimensional spaces
with guaranteed delivery and low stretch,” in Proc. ACM SIGMET-
RICS, Jun. 2011, pp. 257–268.

[26] D.-Y. Lee and S. S. Lam, “Protocol design for dynamic Delaunay tri-
angulation,” Dept. Comput. Sci. Univ. Texas at Austin, Austin, TX,
USA, Tech. Rep. TR-06-48, Dec. 2006.

[27] B. Leong, B. Liskov, and R. Morris, “Geographic routing without pla-
narization,” in Proc. USENIX NSDI, 2006, p. 25.

[28] E. K. Lua, X. Zhou, J. Crowcroft, and P. V. Mieghem, “Scalable mul-
ticasting with network-aware geometric overlay,” Comput. Commun.,
vol. 31, no. 3, pp. 464–488, 2008.

[29] N. McKeown et al., “OpenFlow: Enabling innovation in campus net-
works,” Comput. Commun. Rev., vol. 38, no. 2, pp. 69–74, 2008.

[30] A. Medina, A. Lakhina, I. Matta, and J. Byers, “BRITE: An approach
to universal topology generation,” in Proc. Int. Workshop Modeling,
Anal. Simulation Comput. Telecommun. Syst., 2001, p. 346.

[31] J. C. Mogul et al., “DevoFlow: scaling flow management for high-per-
formance networks,” in Proc. ACM SIGCOMM, 2011, pp. 254–265.

[32] J. Moy, “OSPF version 2,” RFC 2328, 1998.
[33] J. Mudigonda, P. Yalagandula, M. Al-Fares, and J. C. Mogul, “SPAIN:

COTS data-center Ethernet for multipathing over arbitrary topologies,”
in Proc. USENIX NSDI, 2010, p. 18.

[34] A. Myers, T. E. Ng, and H. Zhang, “Rethinking the service model:
Scaling ethernet to a million nodes,” in Proc. HotNets, 2004.

[35] R. Niranjan Mysore et al., “PortLand: A scalable fault-tolerant layer
2 data center network fabric,” in Proc. ACM SIGCOMM, 2009, pp.
39–50.

[36] D. Plummer, “An Ethernet address resolution protocol,” RFC 826,
1982.

[37] C. Qian and S. S. Lam, “Greedy distance vector routing,” inProc. IEEE
ICDCS, Jun. 2011, pp. 857–868.

[38] C. Qian and S. S. Lam, “ROME: Routing on metropolitan-scale eth-
ernet,” in Proc. IEEE ICNP, 2012, pp. 1–10.

[39] A. Rao, S. Ratnasamy, C. Papadimitriou, S. Shenker, and I. Stoica,
“Geographic routing without location information,” in Proc. ACMMo-
biCom, 2003, pp. 96–108.

[40] S. Ratnasamy, P. Francis, M. Handley, R. Karp, and S. Shenker, “A
scalable content-addressable network,” in Proc. ACM SIGCOMM,
2001, pp. 161–172.

[41] S. Ratnasamy et al., “GHT: a geographic hash table for data-centric
storage,” in Proc. ACM WSNA, 2002, pp. 78–87.

[42] S. Ray, R. Guerin, and R. Sofia, “A distributed hash table based address
resolution scheme for large-scale Ethernet networks,” in Proc. IEEE
Int. Conf. Commun., Jun. 2007, pp. 6446–6453.

[43] R. Rivest, “The MD5 message-digest algorithm,” RFC 1321, 1992.
[44] D. Sampath, S. Agarwal, and J. Garcia-Luna-Aceves, “`Ethernet on

AIR': Scalable routing in very large ethernet-based networks,” in Proc.
IEEE ICDCS, 2010, pp. 1–9.

[45] N. Spring, R. Mahajan, and D. Wetherall, “Measuring ISP topologies
with rocketfuel,” in Proc. ACM SIGCOMM, 2002, pp. 133–145.

[46] B. Stephens, A. Cox, W. Felter, C. Dixon, and J. Carter, “PAST:
Scalable ethernet for data centers,” in Proc. ACM CoNEXT, 2012, pp.
49–60.

[47] P. F. Tsuchiya, “The landmark hierarchy: A new hierarchy for routing
in very large networks,” Comput. Commun. Rev., vol. 18, no. 4, pp.
35–42, 1988.

[48] M. Walraed-Sullivan et al., “ALIAS: Scalable, decentralized label as-
signment for data centers,” in Proc. ACM SOCC, 2011, Art. no. 6.

[49] M. Yu, A. Fabrikant, and J. Rexford, “BUFFALO: Bloom filter for-
warding architecture for large organizations,” in Proc. ACM CoNEXT,
2009, pp. 313–324.

[50] M. Yu, L. Jose, and R. Miao, “Software defined traffic measurement
with OpenSketch,” in Proc. USENIX NSDI, 2013, pp. 29–42.

[51] Y. Yu and C. Qian, “Space shuffle: A scalable, flexible, and high-band-
width data center network,” inProc. IEEE ICNP, 2014, to be published.

Chen Qian (M'08) received the B.Sc. degree from
Nanjing University, Nanjing, China, in 2006, the
M.Phil. degree from the Hong Kong University of
Science and Technology, Hong Kong, in 2008, and
the Ph.D. degree from the University of Texas at
Austin, Austin, TX, USA, in 2013, all in computer
science.
He is an Assistant Professor with the Department

of Computer Science, University of Kentucky,
Lexington, KY, USA. He has published research
papers in a number of conferences and journals

including ACM SIGMETRICS, IEEE ICNP, IEEE ICDCS, IEEE PerCom, the
IEEE/ACM TRANSACTIONS ON NETWORKING, and the IEEE TRANSACTIONS
ON PARALLEL AND DISTRIBUTED SYSTEMS. His research interests include
computer networking, data center networks and cloud computing, and scalable
routing and multicast protocols.
Dr. Qian is a member of the Association for Computing Machinery (ACM).

He is the recipient of the James C. Browne Outstanding Graduate Fellowship in
2011.

Simon S. Lam (M'69–SM'80–F'85–LF'13) received
the B.S.E.E. degree with Distinction from Wash-
ington State University, Pullman,WA, USA, in 1969,
and the M.S. and Ph.D. degrees in engineering from
the University of California, Los Angeles (UCLA),
CA, USA, in 1970 and 1974, respectively.
From 1971 to 1974, he was a Postgraduate Re-

search Engineer with the ARPA Network Measure-
ment Center, UCLA, where he worked on satellite
and radio packet switching networks. From 1974 to
1977, he was a Research Staff Member with the IBM

T. J. Watson Research Center, Yorktown Heights, NY, USA. Since 1977, he
has been on the faculty of the University of Texas at Austin, Austin, TX, USA,
where he is Professor and Regents Chair in computer science and served as De-
partment Chair from 1992 to 1994.
Prof. Lam is a member of the National Academy of Engineering and a

Fellow of the Association for Computing Machinery (ACM). He served as
Editor-in-Chief of the IEEE/ACM TRANSACTIONS ON NETWORKING from 1995
to 1999. He served on the editorial boards of the IEEE/ACM TRANSACTIONS
ON NETWORKING, IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, IEEE
TRANSACTIONS ON COMMUNICATIONS, PROCEEDINGS OF THE IEEE, Computer
Networks, and Performance Evaluation. He co-founded the ACM SIGCOMM
conference in 1983 and the IEEE International Conference on Network
Protocols in 1993. He received the 2004 ACM SIGCOMM Award for lifetime
contribution to the field of communication networks, the 2004 ACM Software
System Award for inventing secure sockets and prototyping the first secure
sockets layer (named Secure Network Programming), the 2004 W. Wallace
McDowell Award from the IEEE Computer Society, as well as the 1975
Leonard G. Abraham Prize and the 2001 William R. Bennett Prize from the
IEEE Communications Society.

