TIME-DEPENDENT DISTRIBUTED SYSTEMS:
PROVING SAFETY, LIVENESS AND
REAL-TIME PROPERTIES

* *k
A. Udaya Shankar and Simon S. Lam
Department of Computer Sciences
University of Texas at Austin

Austin, Texas 78712

TR-83-24 October 1985

X
Department of Computer Science, University of Maryland, College Park, Maryland 20742. Work sup-
ported by National Science Foundation under Grant. No. ECS 85-02113.

%k %
Work supported by National Science Foundation under Grant No. ECS 83-04734.

Table of Contents

. INTRODUCTION

1.1 Some features of our model

1.2 Summary of this paper

. EVENTS AND THEIR SPECIFICATION

2.1 Input-output Predicates

2.2 Specifying an Event-Driven System

2.3 Distributed System Model

. DISTRIBUTED REAL-TIME SYSTEM MODEL
3.1 Measures of Time

3.2 Implementable Time Constraints

3.3 Derived Time Constraints

3.4 Modeling Real-Time Channels

. PROVING SAFETY PROPERTIES

. A DATA TRANSFER PROTOCOL

5.1 Safety Verification and Timing Analysis

. PROVING LIVENESS PROPERTIES

6.1 Liveness Verification of Data Transfer Protocol

. REAL-TIME DATA TRANSFER PROTOCOL
7.1 Modified Protocol

7.2 Verification of Real-Time Property

8. CONCLUSION
REFERENCES
Appendix A
Appendix B
Appendix C

b I BT Y N M

Abstract

Most communication protocol systems utilize timers to implement real-time con-
straints between system event occurrences. Such systems are said to be time-dependent
if these real-time constraints are crucial to the correct functioning of the systems. We
present a model for specifying and verifying time-dependent distributed systems. A dis-
tributed system is a network of processes that communicate with one another by
message-passing. In the context of communication network protocols, each process is ei-
ther a communication channel or a protocol entity.

Each process in our distributed system model has a set of state variables and a set
of events. An event is described by a predicate that relates the values of the system
state variables immediately before to their values immediately after the event occur-
rence. The predicate embodies specifications of both the event’s enabling condition and
action. Inference rules for both safety and liveness properties are presented. Liveness
properties are expressed in the form of inductive properties of bounded-length paths in
a system’s reachability space.

Measures of time are explicitly included in our model in the form of discrete-
valued timer variables and time events that age the timer variables. Time constraints
enforced within individual processes are modeled by including timer values in the ena-
bling conditions of system events and time events of those processes. Time constraints
between events in remote processes can then be specified and verified as safety asser-
tions. Arbitrary constraints on the enabling conditions of time events can cause them
to deadlock. We give sufficient conditions to avoid this possibility. These conditions
correspond to time constraints that are implementable within individual processes and
they are independent of the accuracy of the process timers.

We have applied our model and inference rules to construct and verify several
large time-dependent communication protocols, including a transport-layer protocol of
window size N and a version of the High-level Data Link Control (HDLC) protocol. For
the sake of brevity, a relatively small data transfer protocol is modeled herein for il-
lustration. This protocol can reliably transfer data over bounded-delay channels that
can lose, reorder and duplicate messages in transit. The protocol’s safety, liveness and
real-time properties are verified.

1. INTRODUCTION

We consider distributed systems in which individual processes employ timers to
enforce time constraints between event occurrences. These time constraints enforced
within individual processes can give rise to global precedence relations, including time
constraints, between events in remote processes. We refer to a distributed system as
ttme-dependent when these global precedence relations are essential to the correct
functioning of the system.

Our work has been motivated primarily by communication network protocols
which are invariably time-dependent systems [1, 5, 6, 15]. Time-dependent behavior
arises naturally in communication networks because errors and failures that occur in
one process of the network are usually not communicated explicitly to other processes in
the network that may be affected by these errors and failures. In such situations, only
by the use of timeouts can a process infer that a failure (or an error) has occurred and
initiate recovery action. Because such recovery mechanisms are themselves subject to

the same kinds of failures or errors, the time-dependent behavior can be quite complex. ~

We present in this paper an event-driven process model for specifying and verify-
ing distributed systems, both time-dependent and time-independent. We have applied
this model to construct and verify several nontrivial communication protocols, including
a transport-layer protocol of window size N [20] and a version of the High-level Data
Link Control (HDLC) protocol [18]. To illustrate our model, we present below a protocol
for reliable data transfer over bounded-delay channels that can lose, reorder and dupli-
cate messages in transit. The protocol employs cyclic sequence numbers, timers and
timeouts.

1.1 Some features of our model

Each process in the distributed system has a set of state variables and a set of
events. Each event is described by a predicate that relates the values of the system
state variables immediately before the event occurrence to their values immediately
after the event occurrence. The predicate embodies specifications of both the event’s
enabling condition and action. There is no algorithmic code in our model. (Any
automated verification or implementation method that handles predicate logic expres-
sions can be used on our system specifications.)

This compromise between implementation-dependent features (the state variables)
and implementation-independent features (predicates for specifying events) has ad-
vantages. The state variables allow us to give compact specifications of large systems
and their logical correctness properties. The predicate specifications of events allow us
to directly substitute the events into proofs in predicate logic. By combining these fea-
tures with the event-driven structure of the system model, we get simple inference rules
for safety and liveness properties. Safety properties state that certain relations always

-

hold between the current values of system variables, irrespective of whether the values
change or not. Liveness properties state that the values of system variables will indeed
change in a certain manner within a finite time. We find it convenient to convert live-
ness properties concerning unbounded-length paths in a system’s reachability graph into
inductive liveness properties of bounded-length paths.

We use discrete-valued timer variables to measure the elapse of time, and define
time events to age these timer variables. By imposing conditions, referred to as
accuracy azioms, on the time events, we are able to model timers realistically: our
timer variables are uncoupled and can tick at any rate within specified error bounds of
a given rate. Time constraints enforced within a process of the form "event e will occur
only 1f elapsed times satisfy certain bounds" are modeled by including timer variables
in the enabling conditions of system events of the process. Time constraints enforced
within a process of the form "event e must occur within certain elapsed times" are
modeled by imposing conditions, referred to as timer axtoms, on the time event of the
process.

The time constraints enforced within individual processes give rise to more general
time constraints which depend on the interaction between processes. With timer vari-
ables, such time constraints can be specified by safety assertions, and formally verified
through the inference rules. We have found that such time constraints are very useful
for describing progress in communication network protocols. Typically, if a protocol
does not achieve progress (transfer of data, establishment of a connection, etc.) within a
bounded time duration T, then the protocol resets or aborts. Hence, a liveness assertion
stating progress within a finite but unbounded time duration is not realistic. More ap-
propriate is the assertion of a time constraint such as "progress is achieved within a
time duration T provided that the channels have not lost more than n messages in that
time duration.”

Our distributed system specifications can be implemented by programmers who
may not be familiar with system analysis. A correct implementation of any process is
possible from the specifications of that process alone, without the implementor having
to analyze that process’s interactions with other processes. In the case of a time-
dependent system, this means that the only time constraints allowed in the specifica-
tions are those which can be implemented within individual processes. We give a for-
mal definition of implementable time constraints in Section 3.3. It is the task of the
protocol designer or verifier, not the implementor, to establish that these implementable
time constraints do indeed give rise to the desired global precedence relations.

Our approach to verification is rigorous: a system property is proved only when it
is the result of a sequence of inference rules applications. Our proofs can therefore be
checked by automated techniques.

1.2 Summary of this paper

In Section 2, we describe the notation needed in using predicates to specify events.
A general transition system is modeled. It is then specialized to a time-independent dis-
tributed system model. In Section 3, we describe our modeling of timers and time con-
straints, and present our time-dependent distributed system model. In Section 4, we
present inference rules for verifying safety properties and heuristics to generate the
assertions needed to apply the inference rules. In Section 5, a time-dependent data
transfer protocol example is constructed and its safety properties verified. In Section 6,
we present inference rules for verifying liveness properties. We use them to verify the
liveness of the data transfer protocol example. In Section 7, we modify the data trans-
fer protocol example so that it now offers real-time service; i.e., data transfer within a
specified response time. This real-time service is specified and then verified. In Section
8, we review our modeling and verification methods with respect to modularity,
implementation-independence and high-level specifications, and discuss related works.

2. EVENTS AND THEIR SPECIFICATION

We use the term "predicate" to refer to a well-formed sentence of first-order
predicate logic augmented by appropriate mathematics for the variables of the predi-
cate. We use and and or to denote logical conjunction and disjunction respectively.
We use for all and for some to denote universal and existential quantification respec-
tively. Throughout, we assume that for every variable there is a specified domain of al-
lowed values. We use for all x in X to denote a universally quantified variable x rang-
ing over the domain X. The corresponding existential declaration is for some x in
X. Where ambiguity may arise, the scope of the quantification is enclosed by square
brackets. An example of a predicate is (for some X, in integers)[x,=x,+1 or X, =X,],

where X; Xy and X3 are integer-valued variables; the free variables of this predicate are
X, and Xg.

Let x=(x1,x2,...,xn) be a set of variables that can take values from domain X. Let

P be a predicate expression with free variables from x. For every value in X, p
evaluates to either True or False. p specifies a subset of X, namely those values for
which the predicate evaluates to True.

The notation e(x)=p declares that e(x) refers to p; for example, e(xXy%5) = (for
some x, in integers)[x1=x2+1 and x1=x3]. The expression to the right of "=" is
referred to as the body of e(x). The expression to the left of the "=" is referred to as
the header. We will refer to the free variables in the header as parameters of the predi-
cate e(x). It is not neccessary that every parameter in the header must occur in the
body (though that would normally be the case). We adopt the convention that any
variable found in the body but not in the header is universally quantified, unless other-
wise mentioned. For any given value of x, we shall also use e(x) to denote the value

that the predicate evaluates to. Thus, in the above example, €(1,2) is True while e(1,1)
is False.

We use the terms "variable" and "parameter" in the mathematical sense, i.e., to
denote some value from a domain of values. We use the term "state variable" to refer
to a variable in the programming language sense, i.e., to denote both a location where a
value may be stored, as well as the stored value. As in the case of variables, we assume
that for every state variable there is a specified domain of allowed values. The Pascal-

like syntax x:X is often used to indicate that state variable x takes values from domain
X.

2.1 Input-output Predicates

An input-output predicate is a predicate whose free variables are classified into in-
put parameters and output parameters. The notation e(x;y) denotes an input-output
predicate named e where the input parameters x=(x1,x2,...,xn) are listed before the

semicolon, and the output parameters y=(y1,y2,...,ym) are listed after the semicolon.

Assume there are no parameters in common between x and y. If x has the domain X
and y has the domain Y, then e(x;y) specifies a subset of XXY, namely those value
pairs for which the predicate evaluates to True.

We use input-output predicates instead of algorithmic code. For example, given
integers z and y, an algorithm that assigns to y the value z+1, can be modeled as e(z;y)
= (y==z+1). The body of e(z;y) can also be (y-z=1). A nondeterministic algorithm that
assigns to y either the value z+1 or the value z-2 provided that x is positive, can be
modeled by e(z;y) = (>0 and (y=z+1 or y=z+2)). Note that within the body of an
input-output predicate there is no distinction between the input and output parameters
because there are no assignment statements as found in algorithmic code. We insist
that every output parameter in y must occur in the body of .e(x;y). Every input
parameter in x need not occur in the body of e(x;y) (although that will normally be the
case).

An input-output predicate e(x;y) is said to be enabled for a given value of x if
there is a value of y such that e(x;y) evaluates to True for that value pair. The
enabling condition of e(x;y) is defined to be any predicate in x which is True for ex-
actly those values of x where e(x;y) is enabled; e.g., the predicate (for some y in

Ye(x;y)-

An input-output predicate e(x;y) can be composed from other predicates. For ex-
ample, it is often very natural to have e(x;y) = (e,(x) and e2(x;y)), where e,(x;y) is en-
abled for every value where e,(x) is True. Then, e,(x) is the enabling condition of e(x;y)
and ey(x;y) embodies the "action" of e(x;y). For another example, given input-output

predicates e,(x,;;y,) and eo(Xo5¥,) Where the domain of y, is a subset of the domain of
Xy, We can construct e(x;y,) = (for some y,) le;(x;5¥,) and eg(¥5¥,)]- A program-
ming language analogy to this example is the sequential composition of two procedures
to form a third procedure.

2.2 Specifying an Event-Driven System

We model a general event-driven system by a set of state variables whose values
indicate the system state, a set of events that cause changes to the state variable values,
and a set of initial conditions on the state variables.

Let v——(vl,v2, ..,vn) denote the set of state variables of the system. v is also

- referred to as the state vector. The domain of v is the system state space. In addition to
state variables needed to model the system, v can contain auxiliary state variables
needed for verification purposes only.

The initial conditions are specified by a predicate Initial(v). Any value of v that
satisfies Initial(v) is an allowed initial state of the system.

Let €1€gseees€ be the set of events of the system. Each event e can occur only

when the state vector v has certain values. Its occurrence causes the state vector v to
assume a new value. Thus, the event e corresponds to a collection of input-output value
pairs where the input and output values are the values of the state vector before and
after the event occurrence. Applying our notation for input-output predicates, we
specify a system event e by a predicate e(v;v"), where the input parameter v denotes
the value of the state vector immediately before the event occurrence and the output
parameter v" denotes the value of the state vector immediately after t;he event occur-
rence. Such predicates are referred to as event predicates.

The notions of enabling condition, composition, action, etc., carry over from
input-output predicates to event predicates. Unlike in the case of input-output predi-
cates, we do not insist that every parameter in v" need occur in the body of e(v;v"). If
a parameter v" in v" does not occur in the body of e(v;v"), then we take the conven-
tion that the value of the state variable v is not affected by the occurrence of e(v;v");
i.e., (v*=v) is an implicit conjunct in the body of e(v;v"). This convention helps in
writing compact predicate specifications of events. We allow event e to be represented
by the header e(va;vb"), where v, and vy" can be any subsets of v and v" respectively

such that v, U v, " include all the free variables that occur in the body of e.

2.3 Distributed System Model

In this section, the event-driven model described above is specialized to model a
distributed system of processes. Our distributed system model incorporates terminology
from the networking area because our applications are from that area. Each process is
either a protocol entity or a communication channel. The distributed system is a net-
work of protocol entities P, Pg..sPy interconnected by communication channels

01,02,...,CK. The interconnection topology can be arbitrary.

For each protocol entity P, let v, be the set of state variables of P,. For each
channel G, let Z; be the sequence of messages in transit in the channel. The system
state vector, also referred to as the global state vector, is defined by

v = (vl, Vo oy Vs Zqy Zgy oo zK)

As before, the system initial conditions are specified by a predicate Initial(v).

Each process in the distributed system has a set of events. The events of entity P,
can only involve the state vector vy and the state vectors of channels accessible from ¥
i.e., only these state vectors can occur in its event headers. Entity events model mes-
sage receptions, message sends, and internal activities such as timeout handling. The
events of channel C; can involve only the state vector z,. Channel events model channel

errors such as loss, duplication, and reordering of messages in transit (see Appendix B
for their predicate definitions).

Entity events can access channel state variables only via send and receitve
primitives. The send primitive for channel G, is defined by Sendi(zi,m;zi") =

(zi"=(zi,m)); i.e., append the message value m to the tail of Z;. (We will use a comma
as the concatenation operator, and use parentheses to resolve ambiguities.) The receive
primitive for channel C, is defined by Rec,(z;m,z,") = ((m,2,")=3,); i.e., remove the
message at the head of z; and assign it to m, provided that z; is not empty. When these
primitives are used in the predicate bodies of entity events, the formal message

parameter m is replaced by the actual message sent or received. (The definition of
Sendi(zi,m;zi") above assumes that C; has unbounded message capacity; see Appendix B

for the bounded-capacity case.)

3. DISTRIBUTED REAL-TIME SYSTEM MODEL

In Section 3.1, we define timers and time events. In Sections 3.2 and 3.3 respec-
tively, we model time constraints that are enforced by individual processes, and time
constraints that are enforced due to the cooperation of the processes. In these sections,
we treat the distributed system as a general collection of processes; no distinction is
made between channels and entities. In Section 3.4, we model bounded-delay com-
munication channels.

3.1 Measures of Time

We use the term local timers to refer to the timers that are implemented within
individual processes of a distributed system. Owur local timers have several realistic
properties. First, the interval between successive ticks of a local timer is not in-
finitesimally small. Second, local timers in different processes are not coupled: the ticks
of one timer do not coincide in time with the ticks of another timer. Third, the rates of
local timers in different processes are not constant but may vary within specified error
bounds of a constant rate.

A local timer is a discrete-valued state variable that can take values from the
domain {Off,0,1,2,...}. For this domain, define the successor function next as follows:
next(Off)=0ff and next(:)=1+1 for 1520ff. When a timer is aged, if the original value
is ¢ then its new value is next(t). (Other domains and aging definitions can be chosen if
needed; e.g., domain of {0,1,...,n-1} and aging corresponding to modulo n addition.)

For each process, there is a local time event (corresponding to a clock tick) whose
occurrence ages all local timers within that process. Since no other timer is affected, lo-
cal timers in this process are effectively decoupled from timers in other processes of the
distributed system. We shall use the term system events to refer to the events of the
process other than the time event; i.e., the communication and internal events of the
process. (Note that a communication event is a system event of each process involved
in the communication.) In addition to being aged by its time event, a local timer can
be reset to some value by a system event of that process. Thus, a local timer can be
used to measure the time elapsed (in number of occurrences of its local time event) fol-
lowing a system event occurrence.

At this point in the modeling, the time events of different processes are entirely
decoupled and may occur at vastly different rates. To keep the rate of time event occur-
rences in different processes within specified bounds, we include in our model a
hypothetical time event, referred to as the ideal time event, that is assumed to occur at
an absolutely constant rate. Each local time event’s occurrences will be allowed to drift
within a specified bound of the ideal time event’s occurrences. For process i, let m

denote the number of occurrences of its local time event since system initialization, and
let & denote the maximum error in the tick rate. (Typically, ¢; < 1; for a crystal oscil-
lator, € 3 10'6.) Let n denote the number of occurrences of the ideal time event since

initialization. The 5’s are auxiliary state variables that are not implemented, and can
never be reset by any system event.

Neither the local time event for process i nor the ideal time event is allowed to oc-
cur if such an occurrence will violate the following accuracy axiom of the local time
event of process i

AccuracyAxiomi(ni,n): For any earlier instant a,

| (n; - ny(a)) - (n - n(a)) | < max(1, ¢(n-n(a))).
where n(a) refers to the value of 5 at instant a, and 5 refers to the current value of the
state variable 5. The above accuracy axiom states that over any time span since in-
itialization, the number of occurrences of process i’s local time event differs from the
number of ideal time event occurrences by at most ¢ times the number of ideal time

event occurrences. (The minimum upper bound of 1 is necessary since the n’s are
integer-valued.) This accuracy axiom is a discrete version of the following drift con-
dition for continuous clocks

dn.
ll'('l"llf_fi

usually found in the literature [8].

For analyzing the relationships between time constraints enforced within processes
and the resulting system-wide time constraints, it is convenient to have timers that are
driven by the ideal time event. These timers are referred to as tdeal timers. Ideal
timers are not available to the implementation. Rather they are auxiliary variables
used to record the actual time elapsed between occurrences of system events (not necces-
sarily of the same process). The analysis can then be divided into two phases: a global
analysis phase involving only ideal timers, followed by a local analysis phase during
which implementable time constraints (defined below) expressed with ideal timers are
realized using local timers (see example in Section 5.1). In this latter phase, processes
need to approximate the values of ideal timers by using local timers. Given an ideal
timer u and a local timer v, we say: (u,v) started at (a,b), to mean that at some instant
in the past u and v were simultaneously reset to a and b respectively, and after that in-
stant there has been no reset to either u or v. If a=b then we say: (u,v) started at a.

If & is the error rate of the local time event that drives timer v, then the following
property clearly holds.

Started-at Property. (u,v) started at (a,b) = |(u-a) - (v-b)| < max(1, ¢(u-2))

For convenience in specifying timers with limited counting capacity, we also allow
a timer v to have the domain {Off,0,1,...,M} where M is some positive integer. The
time event for aging v will reset v to Off if v=M before the time event occurrence.
Note that this action is referred to as a reset (see started-at definition above), and not
as aging. This reset action is incorporated by defining next(M) to be Off. Also, we
shall extend the function next as follows: for any structured value u, nezt(u) returns u
with every time value in it aged.

10

3.2 Implementable Time Constraints

Implementable time constraints are time constraints that are realizable by in-
dividual processes without any cooperation from the rest of the distributed system.
They are guaranteed by the implementations of individual processes, and are not
properties that have to be verified by analyzing the interaction of processes.

Let \£ denote the state vector of process i (vi is a component of the global state
vector v). Let e, and €y be system events of process i, and let v be a timer in \ that is
reset to 0 by e and reset to Off by €y where ey is different from e,. Then, the time
constraint (E1) "e, will not occur within T time units of e,’s occurrence" is modeled by
including v>T in the enabling condition of e,. The time constraint (E2) "if e, occurs,
then it occurs within T time units of el’s occurrence" is modeled by including v<T in
the enabling condition of e,. The time constraint (E3) "e, must occur within T time
units of e,’s occurrence" is modeled by including v<T in the enabling condition of the

time event that ages v. Note that E3 cannot be modeled by including v<T in the ena-
bling condition of €9 because in our model an enabled event is not forced to occur.

E1l and E2 are examples of time constraints of the form "system event e will occur
only i f the elapsed times satisfy a condition TC(vi)." They are modeled by including

TC(v,) in the enabling condition of event e.

E3 is an example of time constraints of the form "system event e must occur
while the elapsed times satisfy a condition TC(vi)" They are modeled by including

TC(next(v;)) in the enabling conditions of time events.

The TC conditions introduced above on the time events will be referred to as
timer azioms. Let TimerAxiom,(v.) denote the conjunct of all the timer axioms of

process i.

The local time event for process i is formally defined by the event predicate
(for all local timer v in v,)[v"=nezt(v)] and TimerAxiom,(v,")
and 7" = 5,+1 and AccuracyAxiom,(n,",n)

The ideal time event is defined by
(for all ideal timer v in v)[v"=nezt(v)] and " = n+1

and (for all process i)[TimerAxiom,(v,") and AccuracyAxiom,(n,,n")]

Observe that the time events are completely defined by the ideal and local timers,
the timer axioms, and the error rates of the local time events. Unlike system events,
time events are not implemented.

11

Because of the timer axioms, time events may deadlock. Consider the example E3
where e, and e, are both events of process i but ey involves the reception of a message

(we shall refer to this example as E4). If there is no message in the channel to receive,
then the time events will deadlock. We now present conditions to ensure that this will
not happen. These conditions correspond to a formal definition of implementable time
constraints.

A system event e of process i is said to be controlled by process i if the enabling
condition of e depends only on the value of v;; i.e,, e is an internal event or a message

send into a nonblocking channel.

Definition. TimerAxiom,(v,) is implementable if the following conditions hold:

(IC1) TimerAxiom,(v.) holds initially.

(IC2) No system event of process i sets v, to a value such that
TimerAxiom,(v;)=False or TimerAxiom,(nezt(v,))=False.

(IC3) For every value of v, such that TimerAxiom,(next(v,))=False, there is a se-
quence of system events €,,€q...,¢, controlled by process i whose occurrence
will set v, to a value such that TimerAxiom,(next(v,))=True.

Note that IC3 is the key condition. In example E4, IC3 is violated because the
receive event e, is not controlled by process i. (The events referred to in IC3 can

generally be found in the English statements of the time constraints, e.g., the event €

in example E3.) Also, note that the above definition does not depend on whether the
timers involved are ideal or local. Therefore, it has the desirable feature of being inde-
pendent of the error rate of the local time event of process i.

The distributed system is said to have implementable time constraints if the
TimerAxiom of each process is implementable. The following result justifies our defini-
tion of implementable time constraints:

Theorem 1. If each process in a distributed system has an implementable TimerAxiom,
then all timer and accuracy axioms hold at all times, and the time event counts will in-
crease without bound. (Proof in Appendix A.)

3.3 Derived Time Constraints

Derived time constraints are time constraints that hold for the distributed system
as a result of individual processes enforcing implementable time constraints. They are
not guaranteed by the implementation but must be verified for the distributed system.

12

Derived time constraints can be global time constraints on the elapsed times between
events in different processes. Derived time constraints can also be time constraints on
events of the same process. An instance of that is example E4 where e, is a receive

event.

A derived time constraint of the form "system event e will occur only if the
elapsed times satisfy a condition TC(v)" is logically equivalent to the statement that
TC(v) holds whenever e is enabled. It is established by proving that e(v;v")=TC(v) is
invariant (proving invariance is covered in Section 4).

A derived time constraint of the form "system event e must occur while the
elapsed times satisfy a condition TC(v)" is logically equivalent to the statement that
TC(v) holds immediately after the occurrence of any time event. It is established by
proving that (for every time event e)[e,(v;v")=TC(v")] is invariant.

3.4 Modeling Real-Time Channels

In this section, we model a channel C; that displays a maximum message lifetime
MaxDelay;; i.e., any message attempting to stay in channel C; for longer than
MaxDelay, time units is lost or removed by some intermediate network node [21]. Such

behavior is not only common in communication networks, but is crucial for the correct
operation of communication protocols.

With each message in transit we associate a timer age that indicates the age of the
message (time spent in the channel). For notational convenience, we assume that age is
an ideal timer. The state variable z; of C, now denotes the sequence of <message,age>

value pairs in C,. Initially, any age timer in z; has the value 0. The maximum message
lifetime MaxDelay; constraint is modeled by the following timer axiom
TimerAxiomg (z;) = (for every <message,age> in z,)[0 < age < MaxDelay|]
1

The send and receive primitives are modified to the following: Sendi(zi,m;zi") =
(2=(2,<m,0>)), ie., append message m with an age of O to the tail of z.
Rec(z;m,z,") = (for some t)[(<m,t>,z,")=z], i.e., receive the message m from the
head of z; irrespective of its age.

In practice, to check that TimerAxiomi(zi) is implementable amounts to ensuring
that at least one of the following conditions holds:

(a) The channel can delete any message of age MaxDelay;. (Typically, a channel

will have a loss event that can delete any <message,age> pair including
those of age MaxDelay,.)

13

(b) The entity that receives messages from C; is always enabled to receive the
first message (and hence by successive applications, any message) in C;.

This guarantees IC3. IC1 is ensured since all age timers are initially zero. IC2 is
guaranteed because neither the channel events nor the channel receive primitive reset
age timers, and the channel send primitive resets age timers to O.

4. PROVING SAFETY PROPERTIES

In this section, we present the inference rule for verifying safety properties, includ-
ing those which involve started-at statements. We also describe how the method of
preconditions can be used to generate the assertions needed to apply the safety inference
rule. Our inference rules do not distinguish between distributed and non-distributed
systems. Hence, in this section, we will consider the system model of Section 2.2: i.e,
specified by a state vector v, an initial condition predicate Initial(v), and event predi-
cates e (v;v"), ..., e (v;v"). Our reasons for adopting this approach are explained in
the conclusion.

To justify the inference rules, we will appeal to the following state transition
representation of the system model. The set of all possible value assignments to the sys-
tem state variables defines the state space of the system. Those system states that
satisfy Initial(v) are referred to as initial system states. Each event specifies a set of
transitions between system states; each transition is from a system state where the event
is enabled to a system state that can result from changes to the state variable values. A
system state that can be reached from an initial state via a sequence of event transitions
is referred to as a reachable system state. The graph whose nodes are the reachable
global states and whose arcs are the event transitions is referred to as the reachability
graph of the system. A realization of system behavior is represented by some path in
the reachability graph starting from an initial state.

A safety property of the system states relationships between values of the system
state variables. It can be represented by a predicate in the variables of the global state
vector v. An example of a safety property involving two integer state variables and y
is (zr < y < = + 1). A safety property Ay(v) holds for the system if it holds at every
reachable state. Such a property is said to be tnvartant. We now present the inference
rule for proving invariance (following our convention, variables in the predicates are
universally quantified over their domains unless otherwise indicated).

Inference Rule for Safety. If I(v) is invariant and A(v) satisfies

(i) Initial(v) = A(v)

(ii) (for every event e)[(I(v) and A(v) and e(v;v")) = A(v")]

14

(iii) A(v) = Ay(v)

then we can infer that Ay(v) is invariant.

Note that the inference rule is quite simple because of our use of predicates to define
events. Ao(v) represents a desired safety property and I(v) can be any safety property

whose invariance has already been verified. In particular, any timer or accuracy axiom
can be a conjunct of I(v) (from Theorem 1). Generating A(v) from Ay(v) and I(v) is a

nontrivial task analogous to generating loop invariants in program verification (see
below).

The validity of the rule is obvious from the following. From (ii) we know that at
every system state g where A(g) = I(g) = True, every enabled event e takes the system
to a state h where A(h) = True. Because I(v) is invariant, I(h) = True. Hence, once
the system is in a state where A(v) and I(v) hold, all future states also satisfy the two
predicates. From (i), we know that any initial state satisfies A(v) (and I(v) because of
its invariance). Hence all reachable states satisfy A(v). Because Ay (v) is implied by

A(v) (from (iii)), we know that all reachable states also satisfy A (v).

Note that since I(v) is given to be invariant, part (ii) of the above inference rule
can be modified to the following:

(for every event e)[(I(v) and I(v") and A(v) and e(v;v")) = A(v")]
Because this change strengthens the left hand side of the implication, it usually helps in
deriving the right hand side.

Safety assertions with started-at statements

We will allow safety assertions to contain started-at statements; e.g., >y =
((u,v) started at 0). We next present rules for applying the safety inference rule to such
assertions (below, u is an ideal timer and v is a local timer).

Started-at Rule 1. In part(i) of the safety inference rule, if
Initial(v) = (u=a and v=b)

then we can infer
Initial(v) = ((u,v) started at (a,b))

Started-at Rule 2. In part(ii) of the safety inference rule,

(i) If system event e satisfies
(I(v) and A(v) and ¢(v;v")) = (u"=a and v"=b)
then we can infer
(I(v) and A(v) and e(v;v")) = (u",v") started at (a,b)

(L

15

(ii) If system event e satisfies
(I(v) and A(v) and e(v;v"))
= (u"=u and v"=v and ((u,v) started at (a,b)))
then we can infer
(I(v) and A(v) and e(v;v")) = ((u",v") started at (a,b))

(iii) If time event e does not reset u or v (recall that time events can reset timers
with bounded domains), then we can infer

(e(v;v") and ((u,v) started at (a,b))) = ((u",v") started at (a,b))

Method of preconditions

The inputs for the safety inference rule comsist of Ay(v), I(v) and the system

specifications. The method of preconditions [2] can be used to generate from these in-
puts either an assertion A(v) that satisfies the requirements of the rule, or a sequence of
events that takes the system from an initial state to a state that violates Ay(v).

For an event e(v;v") and an assertion C(v), the weakest precondition of C with
respect to e can be defined by the following predicate in v: (for all g)le(v;g) = C(g)).
It specifies the set of all states from where the occurrence of e, if it is enabled, takes the
system to a state that satisfies C(v). The following iterative procedure generates a se-
quence of events together with a sequence of assertions Ay(v), A,(v), Ay(V), ..., where

A; (v) = A((v) for all i. The procedure will terminate provided that Ay(v) is a decid-
able property.

1. Initially i=1, A (v) = I(v) and A (v), and the event sequence is empty.
2. If there exists a state g such that Initial(g) = True and A(g) = False,
then terminate procedure: Ay(v) is not invariant and the event sequence
will take the system from initial state g to a state that violates Ao(v)
3. If for every event e in the event set, the weakest precondition
of A(v) with respect to e is implied by A,(v), then
terminate procedure: A (v) is invariant and
A;(v) is the weakest desired assertion.
4. Choose an event e’i from the event set. Let A +1 be the conjunct of A,
and the weakest precondition of A, with respect to e’
Append e’; to the event sequence. Increment i by 1 and go to step 2.

From our experience, a blind application of the above iterative procedure often
leads to an expression for Ai(v) that grows unmanageably with increasing i. The choice
of the event in step 4 of each iteration is usually crucial in avoiding this. Unfor-
tunately, the correct choice becomes clear only with increasing intuitive understanding
of the system’s behavior.

16

In practice, it is fruitful to strengthen A,(v) by including "relevant" properties

that are either known to be invariant or are suspected of being invariant. In this case,
the precondition obtained upon termination may not be the weakest precondition; this
method is illustrated in Section 5.1 with an example. If we included a property C which
turns out to be not invariant, then the above procedure may terminate improperly by
declaring Ao(v) to be not invariant while it is actually invariant. This improper ter-

mination may be detected by trying out the event sequence generated by the procedure
on the initial state g. It will take the system to a state that violates C rather than
Ao(v). It is then necessary to resume the procedure from the point just prior to where C

was introduced and not to utilize C.

5. A DATA TRANSFER PROTOCOL

We now present a data transfer protocol that reliably transfers data blocks from
entity P, to P, using channels C, and G, (see Fig. 1), where each channel C, has a

bounded-delay of MaxDelayi, and can lose, duplicate and reorder messages in transit.
There is a source at P, which produces new data blocks to be transferred to a destina-
tion at P2 which consumes them.

C

1

Y

C

2
Figure 1. Network configuration of protocol example.

Let DataSet be the set of data blocks that can be sent in this protocol. P, sends
messages of type (D,data,ns) where D is the name of the message type, data can be any
data block from DataSet, and ns is a sequence number that identifies the data block.
P, sends messages of type (ACK,nr) where nr is a sequence number identifying the next
expected data block. In this example, ns and nr are restricted to the values of 0 and 1.

(The reader is referred to [9] for the general case of ns and nr taking values from
{0,1,...,N-1} for any N>2.)

Let Source[n] for n>0 denote the sequence of data blocks that have been accepted
by P, from its source. P1 sends Source[n] accompanied by sequence number equal to n

mod 2. Let Sink[n] for n>0 denote the sequence of data blocks that have been passed
by P2 to the destination. When P2 receives a (D,data,ns) message, if ns equals the next

expected sequence number then the data block is passed on to the destination, else it is
ignored. In either case, P, sends an (ACK,nr) where nr equals the next expected value of

ns. When P, receives an (ACK,nr), if there is an outstanding data block Source[n] such
that nr=(n+1)mod 2 then the (ACK,nr) is considered to acknowledge Source[n| (as well

(x

17

as any data blocks accepted earlier). An outstanding data block is one that has been
accepted but not yet acknowledged. (This is compatible with the usual notion of out-
standing because we allow P, to send an outstanding block at any time.)

In order to ensure that received sequence numbers are correctly interpreted, P, ac-

cepts a new data block Source[n| only when the following three conditions hold: First,
all data blocks accepted earlier have been acknowledged. Second, at least MaxDela,y1

time has elapsed since the last send of data block Source[n-1]. Third, at least
MaxDelay, time has elapsed since P, first received the acknowledgement to Source[n-1].

If the first condition is violated, then both Source[n] and Source[n-1] would be-
come outstanding, and a received (ACK, n+1 mod 2) could signify either an ack-
nowledgement for Source[n] or an old acknowledgement for Source[n-2]. The second
and third conditions are implementable time constraints. In Section 5.1, we will derive
these time constraints as sufficient conditions for the correct interpretation of received
sequence numbers.

Once Source[n] is accepted by Pl, it is repeatedly sent until it is acknowledged.

Neither of the above time constraints apply to the retransmissions of Source[n|. The
time to wait before a retransmission should be chosen on the basis of performance goals
and the probability distributions of channel delays, channel loss, etc. (further discus-
sions in Section 7). Here we see a system with two different types of time constraints:
one necessary for logical correctness and one concerned only with performance. In other
protocols, the separation is not always so clear.

We now list the state variables and events of the entities. Auxiliary state vari-
ables needed for stating and verifying desired logical correctness properties are also in-
cluded. Below, ¢ and & denote modulo 2 addition and subtraction respectively.
Also, MDelay; = 14+(1+¢;) X MaxDelay, for i=1 and 2 (recall that P,’s timers have an

accuracy of el). Finally, for brevity in stating an event predicate, we use the following
guarded command [2] notation e (V;v")—ey(v;v") to mean that the action in e, is done
only if e, is enabled. Formally, e,(v;v")—ey(v;v") expands to (e,(v;v")=e,(v;v") and
(not e, (v;v")=(for every v" in the body of e,)[v"=v]).

Variables of P1

Source : array{0..s-1] of DataSet; {Source is an auxiliary history variable that records
the sequence of data blocks accepted by P,. s indicates the
length of Source. Initially, s=0 and Source is the null
sequence. }

a : 0..00; {Auxiliary variable indicating the number of data blocks that have been ack-
nowledged; i.e., Source[a],...,Source[s-1] are outstanding. a is
initialized to O and is always less than or equal to s.}

18

vs : 0..1; {Initialized to O and always equals s mod 2}
va : 0..1; {Initialized to O and always equals a mod 2}‘

DTimer : (Off,0,1,2,...,MDelay,); {Local timer which measures elapsed time since last D
message sent. Initialized to Off}

DTimerG : (Off,0,1,...); {Ideal timer associated with DTimer. Auxiliary variable initial-
ized to Off}

ATimer : (Off,0,1,2,....MDelay,); {Local timer that measures time elapsed since recep-

tion of ACK message that first acknowledged Sources-1]. In-
itialized to Off}

ATimerG : (Off,0,1,...); {Ideal timer associated with ATimer. Auxiliary variable initial-
ized to Off}

Let v, denote a list of the above variables along with the local time event count
n,- The initial condition of P, is given by

Initial (v,) = (a=s=vs=va=0 and DTimer=DTimerG=ATimer=ATimerG=O0ff).
Events of P,

1. AcceptData(v,;v,")
= vs=va and DTimer=0Off and ATimer=0ff {If new data can be accepted}
and Source(s]" ¢ DataSet and s"=s+1 and vs"=vs P 1 {then do so}

2. Send_ D(v,,z;;v,",2,")

= vs 5 va and Send,((D,Source[s-1],vs-1), z,;2,") {send outstanding data}
and DTimer"=0 and DTimerG"=0 {start DTimer}

3. Rec_ACK(v,,z4;v,"2,")
= (for some nr in {0,1})[Recy(zq;(ACK,nr),z,") {Receive nr}
and ((vs#%va and nr=va@ 1) — {if outstanding data acknowledged}
(a"=a+1 and va"=va @1 {then update state}
and ATimer"=0 and ATimerG"=0))] {and start ATimer}

Variables of P2

Sink : array[0..r-1] of DataSet; {Sink is an auxiliary history variable that records the se-
quence of data blocks passed on to the destination. r indicates
its length. Initially r==0 and Sink is the null sequence}

19

vr : 0..1; {Sequence number of the next expected data block. vr is initialized to O and
always equals (r mod 2)}

SendACK: Boolean; {True iff a received D message has not been acknowledged}

Let v, denote a list of the above variables. The initial condition of P, is given by
the following predicate.

Initialy(v,) = (r=vr=0 and SendACK = False)

Events of P2

1. Send_ACK (v,,Z4;Vy",2,")
= SendACK = True and Send, ((ACK,vr), 24;z,")
and SendACK"=False

2. Rec_D (v2,zl;v2",z1")
= (for some data in DataSet)(for some ns in {0,1})[Rec, (z,;(D,data,ns),z,")

and (ns=vr — {if next expected sequence number}
(Sink[r]"=data and r"=r+1 and vr"=vr P 1)) {then accept data}
and SendACK" = True]

Other events

z; is the sequence of (message,age) pairs in C;. The channel events of C; are
specified by a predicate ChannelError(zi,zi") that allows all possible losses, duplications
and reorderings of (message,age) pairs in the channel. The time axiom for G is
TimerAxiom,(z;) = (for all <m,t> in z,)[0 < t < MaxDelay;].

The local time event for the local timers at P1 is specified by

n" =2 +1 {age n, and its associated local time variables}

and DTimer" = next(DTimer) and ATimer" = next(ATimer)
and AccuracyAxiom(n1 ".n) {if aging does not violate any accuracy or time axioms}

and DTimer" < MDelay, and ATimer" <MDelay,
The 1deal time event is specified by
AccuracyAxiom, (n,,7") andTimeAxiom (z,") and TimeAxiom,(z,")

and n"=y+1 and z,"=next(z,) and z,"=next(z,)
and DTimerG" = next(DTimerG) and ATimerG" = next(ATimerG)

20

System initial condition

The initial condition of the system is given by the following predicate

Initial(v) = Initial,(v,) and Initial,(v,) and z is empty and z, is empty
and r)=n1=0.

5.1 Safety Verification and Timing Analysis

For the above protocol, we would like to verify that following safety property is
invariant:

A

o () Sink[i] = Sourcefi] for0 <i<r

ba<r<L<s<La+1

A, states that the sequence of data blocks passed to the destination at P, is a prefix of
the sequence of data blocks accepted from the source at Pl’ and that a data block is
acknowledged at P, only after it has indeed been passed on to the destination at P,.
We have included in part (b) of A, the requirement that P, can have at most one out-
standing data block. In order to show that A, is invariant, we need to find an assertion
A that implies A, and satisfies the inference rule for safety (Section 4). We will obtain
such an assertion using the heuristic approach outlined in Section 4.

For brevity, we shall refer to a predicate A(v) as simply A, and use A" to refer to
A(v"). Also, we shall refer to an event e(v;v") as simply e. When we prove that (A
and e)=A" holds, the proof will be presented as a sequence of steps, each consisting of
a statement L (at the left) and a list of statements R,,R,, ... (at the right). L derives

(in predicate calculus) from the list R ,R,, ... Each R, is (a) a statement that has been

derived in an earlier step; or (b) a statement that is implied by the event under con-
sideration; or (¢) an assumption when the implication R=1L, rather than L, is being
proved. Finally, we say that event e does not affect predicate A if event e implies that

v'=v for every variable v in Aj; clearly, if e does not affect A then (e and A)=A"
holds. '

The following property is obviously invariant:

Al vs=smod 2 and va = a mod 2 and vr = r mod 2

Proof of Al’s invariance
Each individual conjunct in Al satisfies the safety inference rule. We will give the
details for (vs==s mod 2) only.

Initial(v)=(vs=s=0)=(vs=s mod 2).
For every event e other than AcceptData, e does not effect Al.
AcceptDatas:

21

vs"=s" mod 2 (from vs=s mod 2 (from A1), s"=s+1, vs"=vs P 1)
End of proof

In order that P, correctly interprets received D messages, it is neccessary that at
any time all the D messages in C1 must have the same sequence number. Suppose this
is not the case, and C, contains the messages (D,datal,l) and (D,dataz,o). Because C,
can duplicate and reorder messages, P, can receive the messages in the following alter-
nating sequence: (D,data, i), (D,dataiel,i @ 1), (D,data,i), ..., where i=vr. Then, P
will pass the sequence datai,datai ® 1,da.ta.i,..., to the destination, thus violating Ay

2

Recall that once P1 accepts a data block, it can be sent immediately. Therefore,
to ensure that all the D messages in C, have the same sequence number, P, must ensure
before accepting a new data block Source[s] that Source[s-1] is no longer in C,. This

desired precedence relation can be enforced by exploiting the maximum message lifetime
property of C,. Specifically, P, waits until the time elapsed since the last send of

Source[s-1] exceeds MaxDelay,. This explains the implementable timer constraint
DTimer=Off in the AcceptData event.

From the Send _D event and part (b) of AO, observe that whenever a (D,data,ns)
is sent into C,, we have data = Source[s-1], ns = vs & 1, and DTimerG reset to 0 so

that DTimerG lower bounds the age of every D message in C,. Further, s and vs are
changed only when when DTimer = Off, i.e., when there are no D messages in 2

L
Thus, the following assertion is invariant:
A2 <(D,data,ns),age> in z, =
(a) (data = Source[s-1] and ns =vsS'1
(b) and (DTimerG, DTimer) started at O
(¢) and age > DTimerG)
Proof of A2’s invariance
Initial(v)=z, is empty=rA2.
Events Rec__ ACK and Send _ ACK do not affect A2.
Consider the channel events and Rec _D:
(a) A2" (from A2, v,"=v, <m,t>inz" = <m,t>in zl)
Consider AcceptData:
(a) not ((DTimerG,DTimer) started at 0) (from DTimer=0ff)
(b) A2n ; (from a, A2)
Consider Send _D:
(a) DTimerG"=DTimer"=0, s"=s, vs"=vs, (Send _D)

z,"=(z,,<(D,Source[s-1},vs © 1),0>)
(b) A2 (from a, A2, Timer axiom for C,)

22

Consider the ideal time event:

(a) A2" (from A2, age"=age+1, DTimerG=next(DTimerG), v,"=v,)
Consider the local time event of P,

(a) DTimer<MDelay, (from (DTimerG,DTimer) started at 0)
=(DTimerG",DTimer") started at O

(b) DTimer=l\/[Dela,y1 (from A2, Started-at property 1, Timer axiom for Cl)
=>DTimerG>MaxDelay1.
=no D messages in zZ,

(¢) A2" (from a, b)

End of proof

In order that P1 correctly interprets a received (ACK,nr) message, it is necessary
that the following is invariant:

A3 (((ACK,vapl)inz,) and vs # va)=r =s

Otherwise, the reception of the ACK message will cause P, to violate A,

To have A3 invariant, P, must ensure before sending a new data block Source[n]
that C, does not contain old (ACK,n-1 mod 2) messages which were used to acknow-
ledge the reception of Source[n-2]. Thus, before sending Source[n], P, must ensure that
the elapsed time since the last send of (ACK,n-1 mod 2) exceeds MaxDelay,. Unlike in
the above case of the D messages, P1 does not have access to this elapsed time.
However, note that P, does not send (ACK,n-1 mod 2) once r equals n. Also, from Ay

a=n is true only after r=n is true. Thus, the time elapsed since a==n became true is a
lower bound on the time elapsed since P2’s last send of (ACK,n-1 mod 2). Furthermore,

P, does have access to this elapsed time. In our specifications, ATimerG indicates this
elapsed time. Thus, P, can ensure that A3 is invariant by ensuring that ATimerG ex-
ceeds MaxDelay, before sending Source[n]. This is the derivation of the time constraint
ATimer=0ff in the AcceptData event.

Immediately after a and ATimerG are set equal to n and O respectively, we have
s=a==n and ATimerG lower bounding the age of every (ACK,n-1 mod 2) message in
C2. vs and va remain constant until new data is accepted, at which point C2 has no

(ACK,n-1 mod 2) messages and vss%va. Thus, we expect the following property to be
invariant (note that va& 1 = vap 1).

A4 ((<(ACK,va @ 1),age> in 2,) and vs = va) = (age > ATimerG
and ((ATimerG, ATimer) started at 0)

Proof of invariance of A0 and A3 and A4

23

The following proof relies upon the invariance of A1 and A2 (proved above).
Initial(v)=(s=r=0 and z, is empty)= (AO and A3 and A4)

Consider channel events. They do not affect AO.

(a) A3" and A4" (A3, A4, <m,t> in z,"=<m,t> in z,)
Consider AcceptDatas:

(a) AoO" (AO, s"=s+1, r"=r, Sink"="Sink)
(b) not ((ACK,va (1) in z,) (A4, vs=va, ATimer=0ff)
(¢) A3", A4 (b, vs"Fvar=va, z,"=1,)

Send _ D does not affect AO, A3, and A4.

Consider Rec__D. If received (D,data,ns) has nss£vr, then A0,A3,A4 unaffected.
We now consider the other case:

(a) Rec(z;;(D,data,ns),z,") and ns=vr (assumption)
(b) data=Source[s-1], ns=vr=vs & 1=(s-1) mod 2 (a, A1, A2)
(¢) vs&O l=vr, r=s-1, vs#va (b, AO)
(d) vs=vr", r"=s, AO" (e, r"=r+1, vr"=vr @ 1, Sink|r|"=data)
(e) A3", A4q" (r=s, vs7%va)
Consider Send _ ACK. AO is not affected.

(a) A3",A4" (va=vr (assumption), A3, A4, z,"=(z,, <(ACK,vr),0>))
(b) r=s=a+l, vs#va (vr=va @ 1 (assumption), A0, Al)
() A3", A4" (b, A3, A4, 22"=(22’<(ACK’VI')’O>))
Consider Rec__ ACK:

(a) (for some age)[z,=(<(ACK,nr),age>,z,")] (Rec__ ACK)
(b) AO", A3", A4" ((not (nr==vs5%va)) (assumption), a, s"=s, a"=a)
(¢) nr=vssva (assumption)
(d) r=s=a+l (c, AO, A1, A3)
(e) AO", A3" . (d, AO, a"=a+1)
(f) A4 (ATimerG"=ATimer"==0, Timer axiom for C,)
Consider the ideal time event. AO and A3 are unaffected.

(a) A4 (A4, age"=age+1, ATimerG"=ATimerG+1, ATimer not reset)
Consider the local time event of P,. A0 and A3 not affected.

(a) A4 (ATimer <MDelay, (assumption), ATimer not reset)
(b) ATimerG>MaxDelay, (ATimer=MDelay, (assmpt.), A4, Started-at ppty.)
(¢) mnot ((ACK,vaD1)in z,) (b, Timer axiom of C,, A4)
(d) A4 (a, ¢)

End of proof

24

6. PROVING LIVENESS PROPERTIES

In this section, we describe how liveness properties are specified, and give the in-
ference rules for verifying them. As an application, we verify the liveness of the
protocol example. A liveness property of a distributed system states relationships that
values of the system variables eventually satisfy. An example of a liveness property in-
volving integer state variables # and vy is as follows: during the course of the system
operation, if x does not increase without bounds then y will increase without bounds.
Note that a liveness property is not a property of each reachable state and cannot be
stated as a predicate in the variables of v. Rather it is a property of the paths in the
reachability graph. Our method of verifying liveness properties is based on specifying
and verifying inductive properties of bounded-length paths in the reachability graph.
We assume that any implementation of the protocol system is fa:r, by which we mean
the following: any event that is enabled infinitely often will eventually occur.

Given predicates A(v) and B(v), we say that A(v) leads-next-to B(v) if for every
reachable global state g where A(g) = True, the following holds: for every event en-
abled in state g, its occurrence takes the system to a state A where either A(h) = True
or B(h) = True, and there is at least one event enabled in state g whose occurrence can
take the system to a state h where B(h) = True.

In any system implementation that is fair, if A(v) leads-next-to B(v) then on any
outgoing path from a reachable state ¢ where A(g) = True, the system will eventually
reach a state h where B(h) = True.

For stating most liveness properties, it necessary to relate values of variables when
A(v) holds to values of variables some time later when B(v) holds. For example, we will
need to make statements such as: (for all integers m,)[x>m, leads-next-to x>m,+1].
For this purpose, we need to consider assertions whose free variables now include vari-
ables different from v. Let m denote the set of these new variables. Then, A(v,m) leads-
next-to B(v,m) means that A(v,m) leads-next-to B(v,m) for each possible value of m.
For notational convenience, we will assume each variable m; in m takes nonnegative in-

teger values.
We now present the inference rule used to establish the leads-next-to property.

Inference Rule for leads-next-to. If I(v) is invariant and there is a set of events E
such that A(v,m) and B(v,m) satisfy:
(i) (for every event e in the system)|{(I(v) and A(v,m) and e(v;v")) =
(A(v",m) or B(v",m))]
(ii) (I(v) and A(v,m)) = (for some event e in E) (for some v") [e(v;v")) and

B(v",m)|

then we can infer that A(v,m) leads-next-to B(v,m) via E.

25

This inference rule is very similar to the definition of leads-next-to, except that in-
stead of referring to reachable states it allows us to utilize any safety property I(v) that
is known. It also explicitly indicates the set E of events that allow the system to ach-
ieve the leads-next-to property. Therefore, a leads-next-to statement can be verified by
examining each event individually. As in the case of the inference rule for safety, we
can replace I{(v) by (I(v) and I(v")) in parts (i) and (ii) of the above inference rule. This
will make it easier to establish the right hand sides of the implications.

We now extend the leads-next-to definition. Given assertions A(v,m) and B(v,m),
we say that A(v,m) leads-to B(v,m) if for every value of m and every reachable system
state g, where A(go,m)=True, the following holds: for every unbounded-length path

90091991+ in the reachability graph, either there is a state 9, where B(gn,m)-—-—True, or

there is an event e which is enabled at an infinite number of states in the path but
never occurs.

The leads-to construct is similar to the "eventually" operator of temporal logic
[14]: (A(v,m) leads-to B(v,m)) is equivalent to (A(v,m) = o B(v,m)). It is quite ade-
quate for stating desired liveness properties; e.g., the liveness property example men-
tioned above can be stated by (x>0 and y>0) leads-to (x=>m, or y>m,)). We will

now state two inference rules for the leads-to relationship.
Inference Rule for leads-to. Given assertions A(v,m), B(v,m), and C, (v,m),
Cy(v,m), ..., C_(v,m) that satisfy

(i) A(v,m) leads-next-to (B(v,m) or C,(v,m))

(ii) For 1<i<n: C;(v,m) leads-next-to (B(v,m) or C,_,(v,m))
(iii) C,(v,m) leads-next-to B(v,m)

then we can infer that A(v,m) leads-to B(v,m).

This inference rule can be used to derive properties such as ((me1 and Yng)
leads-to (x>m,+1 or (x>m, and y>m,+1))). The next inference rule allows us to
take the above leads-to statement and infer that ((x>0 and y>0) leads-to (x=>m, or
Yng)-

Induction Rule for leads-to. Given assertions A(v), B(v), Dl(v,ml), D2(v,m2), veey
D/(v,m,) that satisfy

26

(A(v) and D;(v,m,) and ... and D(v,m,)) leads-to
(B(v) or
(A(v) and
(D,(vym,+1) or
(D(v,m,) and
(Dy(v,my+1) or
(Dy(v,m,) and
(D4(vym4+1) or
(...or
(Dy4(vym; ;) and
D/(v,m;+1))...)
we can infer
(A(v) and D,(v,0) and ... and D/(v,0)) leads-to
(B(v) or D,(v,m,) or ... or D/(v,m))).

We refer to the first leads-to statement in the induction rule as an snductive
leads-to statement. The induction rule merely applies mathematical induction to induc-
tive leads-to statements. The validity of the above induction rule may require some
thought. The case when /=1 is obvious: Given

(A(v) and D (v,m,)) leads-to (B(v) or (A(v) and D, (v,m,+1)))
we can infer
(A(v) and D (v,0)) leads-to (B(v) or D,(v,m,))
The case when 1=2 is fairly obvious: Given
(A(v) and D,(v,m,) and D,y(v,m,)) leads-to
(B(v) or (A(v) and (D,(v,m,+1) or (D,(v,m,) and Dy(v,m,+1)))))
we can infer :
(A(v) and D,(v,0) and D,(v,0)) leads-to (B(v) or D,(v,m,) or D,(v,m,))

We now list a few rather obvious properties of the leads-to relationship.

Leads-to Property 1. If (A(v,m) leads-to B(v,m)) and (C(v,m) leads-to D(v,m)), then
((A(v,m) or C(v,m)) leads-to (B(v,m) or D(v,m))).

Leads-to Property 2. If (A(v,m) leads-to B(v,m)) and (B(v,m) leads-to C(v,m)), then
(A(v,m) leads-to C(v,m)).

Leads-to Property 3. If (A(v,m) = B(v,m)), then (A(v,m) leads-to B(v,m)).

Leads-to Property 4. If (A(v,m) leads-to B(v,m)), I(v) is invariant, and C(v,m) is
any assertion, then ((A(v,m) and C(v,m)) leads-to (B(v,m) and I(v)).

(ke

27

6.1 Liveness Verification of Data Transfer Protocol

For the protocol example, we would like to prove the following liveness property:
If P, accepts data block Source[n-1] then it is eventually acknowledged, provided C1

does not continuously lose (D,Source[n-1],n-1 mod 2) messages and C, does not con-

tinuously lose (ACK,n mod 2) messages. Note that once Source[n-1] is acknowledged,
P, will be eventually ready to accept Source[n] (in fact, P1 will be ready within

max(MaxDelay,, MaxDelay,) time units).

To formally state this property, we define the following auxiliary variable arrays:
LCountl, LCount2: array[0..s-1] of integers; {initialized to 0}

For the duration that Source[n-1] is outstanding, LCount1[n-1] indicates the number of
times that C, has lost a (D,Source[n-1],n-1 mod 2) message since the previous reception

of such a message at P,. LCountl[n-1] is reset to O at each reception of
(D,Source[n-1],n-1 mod 2), and incremented by 1 whenever a loss event of C, deletes a

(D,Source[n-1}],n-1 mod 2) message. For the duration that Source[n-1] is outstanding,
LCount2[n-1] indicates the number of times that C, has lost a (ACK,n mod 2) message.

(Note that Source[n-1] is not outstanding as soon as an (ACK,n mod 2) message is
received at P,.)

The desired liveness property can be stated by

L, s=a+l=n leads-to (s==a=n or LCounti[n-1]>m, or LCount2[n-1]>m,)

We first prove that Source[n-1] will be received at P, unless C, continuously loses
(D,Source[n-1],n-1 mod 2) messages. This property is formally stated as follows:

L1 s=a+l=r+1=n leads-to (s=r==a+1=n or LCount1[n-1]>m,)

Proof of L1

In the proof, LCountl and <n-1> denote LCountl[n-1] and (D,Source[n-1],n-1
mod 2) respectively. It can be easily checked that the following leads-next-to state-
ments satisfy the inference rule for leads-next-to.

(i) (s=atl=r+l=n and LCountl > m,) leads-next-to
(s==a+l==r=n or (s=a+l=r+l=n and (<n-1> in z,) and LCountl > m,))
via {Rec_D, Send D}

(ii) (s=a+l=r+l=n and (<n-1> in z;) and LCountl > m,) leads-next-to
(s=a+l=r=n or (s=a+l=r+1=n and LCountl > m,+1)
via {Rec_D, Loss event for C,}

From the inference rule for leads-to, (i) and (ii) imply the following inductive leads-to
property:

28

(iii) (s==a+1=r+1=n and LCountl > m,)
leads-to (s=r==a+1=n or (s=a+l=r+1=n) and LCountl > m,+1))

From the induction rule for leads-to for the case I=1, (iii) implies L1 (since LCountl >
0 is always true). End of proof

We next prove that once P, has received Source[n-1], then P, eventually receives
the required acknowledgement (ACK,n mod 2), unless 02 continuously loses (ACK,n
mod 2) messages or C, continuously loses (D,Source[n-1],n-1 mod 2) (which means that
P, may not repeatedly send ACK messages). This property is formally stated as fol-
lows:

L2 s=r=a+1=n leads-to

(s==r=a=n or LCountl[n-1] > m, or LCount2[n-1] > m,)

1
Proof of L2

In the proof, LCountl and LCount2 denote LCountl[n-1] and LCount2[n-1]
respectively; <n-1> in z, denotes (D,Source[n-1],n-1 mod 2); <n> in z, denotes

(ACK,n mod 2). It can be easily checked that the following leads-next-to statements
satisfy the inference rule for leads-next-to.

(i) (s=r=a+l1=n and LCount, >m, and LCount,>m,) leads-next-to (s=r=a=n or
(M1) (s==r==a+1=n and LCount;, > m, and LCount, > m, and <n-1> in z,))
via {Rec__ACK, Send _D}

(b) M1 leads-next-to (s=r=a==n or
(M2) (s=r=a+1=n and LCount; > m,+1 and LCount, > m,)
or
(M3) (s=r==a+1=n and LCount, > m, and SendACK = True))
via {Rec_ ACK, Loss event of C;, Rec_ D}

(iii) M3 leads-next-to (s=r==a==n or
(M4) (s=r=a+1=n and LCount, > m, and <n> in z,)
via {Rec__ACK, Send _ ACK}

(iv) M4 leads-next-to (s==r==a=n
or (s==r==a+1=n and LCount, > m,+1)
via {Rec__ ACK, Loss event of C,}

From the inference rule for leads-to, (i), (ii), (iii) and (iv) imply the following inductive
leads-to property:

(v) (s=r=a+l=n and LCount, > m, and LCount, > m,) leads-to
(s==r=a=n or (s=r=a+1=n and LCount;, > m,+1 and LCount, > m,)

29

or (s=r=a+1=n and LCount, > m,+1))

From the induction rule for the case /=2, (v) implies L2 (let LCount, > m, be D, and
let LCount, >m, be D,). End of proof

The two liveness properties L1 and L2 together imply Lo

Proof of L0

Applying leads-to property 2 to L1, L2, we have
(s==a+1 and r=a) leads-to (s=r=a or LCountl > m
Applying leads-to property 1 to the above and L2, we have
(s=a+1 and a<r<a+1) leads-to (s=a or LCountl > m, or LCount2>m,)
Since (a<r<a+1) is invariant, it can be deleted from the above, leading to L,. End of
proof

, or LCount2 > m,)

7. REAL-TIME DATA TRANSFER PROTOCOL

To make our data transfer protocol more realistic, we include the following real-
time behavior into its model. First, entity P, will send an ACK message within a

specified time interval MaxResponseTime of receiving a D message. Second, let
Delayi(S MaxDelayi) be the delay that a message is expected to encounter in channel G,

(Delay, < MaxDelay, for a realistic channel). Third, entity P, transmits data block

Source([n-1] as soon as it is accepted, and retransmits it once every RoundTripDelay
time units until it is acknowledged, where RoundTripDelay = Del:aby1 + Delay2 + Max-

ResponseTime. P1 retransmits Source[n-1] at most MaxRetryCount number of times,
after which P, aborts the connection (enters a state called LinkDown).

We say that a message m in C, is overdelayed if it is not received within Delay;
time of its send. Note that if Delay; = MaxDelay, then overdelaying message m cor-

responds to losing m and any of its duplicates. For this more realistic model, we will
prove the following: within a time T (= RoundTripDelay X MaxRetryCount) of P, ac-

cepting data block Source[n-1], either that data block is acknowledged or [the number
of times that C; has overdelayed the message (D,Source[n-1],n-1 mod 2)] + [the number

of times that C, has overdelayed the message (ACK, (n+1) mod 2)] exceeds Max-
RetryCount.

7.1 Modified Protocol

To implement the above real-time behavior, the previous data transfer protocol is
modified as follows. At P,, let Send ACKTimer be a local timer which is reset to Off in

the Send __ACK event and reset to 0, if it was Off, in the Rec__D event. SendACK-
Timer is initially Off. SendACKTimer is constrained by the timer axiom

30

SendACKTimer < MResponseTime
where MResponseTime = ((1-¢,) X MaxResponseTime - 1) and ¢, is the maximum error
rate in the local time event of P,. Let SendACKTimerG be an auxiliary ideal timer
that is reset along with SendACKTimer.

We have the following modifications at Pl' First, let LinkDown be a boolean vari-
able which is set to True when the current outstanding data block Source[s-1] has been
sent MaxRetryCount number of times and no acknowledgement has been received
within RoundTripDelay of the last send. LinkDown is initially False. Once LinkDown
= True, Pl does not send or receive any more messages. Second, let DTimer be con-
strained by the timer axiom

(LinkDown=False and vss£va) = DTimer < RTripDelay
where RTripDelay = (1+(1+¢;) X RoundTripDelay). (D,Sources-1], vs© 1) will be
retransmitted when vs £ va and DTimer = RTripDelay. Third, let the AcceptData
event also transmit the accepted data block. Fourth, for the current value of s, let the
variable RetryCount indicate the number of times that (D,Source[s-1], vs & 1) has been
sent. RetryCount is initially 0.

In addition to the above variables, we need to define auxiliary variables in order
to formally state and verify the desired real-time property.

Trynumber: 0..MaxRetryCount; {An auxiliary field in each D message. Set to the
(updated) value of RetryCount when the D message is sent}

DRecd: {sequence of the try numbers of currently outstanding D messages received at
P,. DRecd is set to empty when a equals s. When P, receives a D mes-

sage, the try number of the received D message is appended in DRecd
if a<s holds at that time. DRecd is initially empty}

AckSent: {Sequence of ideal timers indicating the times elapsed since transmissions of
acknowledgements to the currently outstanding data block Source[s-1].
AckSent is set to empty when a equals s. AckSent is updated by global
time value O when P, sends (ACK,vr) and vr = vs £ va. AckSent is

initially empty}

SCount,: integers; {number of times that C, overdelays message (D,Source[s-1], vs S 1)
while Source[s-1] is outstanding. Set to O when a equals s. SCount, is

incremented by 1 whenever a global tick occurs and DTimerG =
Delay1 but RetryCount is not in DRecd for any t. SCount, is intially

0}

o

31

SCount2: integers; {number of times that 02 overdelays message (ACK,vs) while

Source[s-1] is outstanding. Set to 0 when a equals s. SCount,, is incre-

mented by 1 whenever a global tick occurs and there exists a time
value equal to Delay, in ACKSent but a<s holds. SCount,, is initially

0}

OutTimer: (Off,0,1,...); {Local timer of P1 which when active indicates the local time

elapsed since Source[s-1] became outstanding. OutTimer is initially
Off}

The events of the protocol system are now specified. The AcceptData event, -

which now also sends the accepted data block, has been renamed as SendNewData.

Events of P1

1.

SendNewData(v V"2
= LinkDown=False
and vs=va and DTimer=0ff and ATimer=Off {If new data can be accepted}
and Source[s|" ¢ DataSet and s"=s+1 and vs"=vs P 1 {then do so}
and Send, ((D,Source[s],vs,1), z,; 2,") {and send it with try number 1}

and DTimer"=DTimerG"=0 and RetryCount"=1 and OutTimer"=0

Send _D(v,,z,;v,",2,")

= LinkDown=False
and vs % va and DTimer=RTripDelay and RetryCount <MaxRetryCount
and Send, ((D,Source[s-1],vs-1,RetryCount), z,;z,") {send outstanding data}
and DTimer"=0 and DTimerG"=0 {start DTimer}
and RetryCount"=RetryCount+1

Abort(v ;v ")

= LinkDown=False
and vs % va and DTimer=RTripDelay and RetryCount=MaxRetryCount
and LinkDown"=True

Rec__ ACK(v,,zy;v,",2,")
= LinkDown=False and Rec,(z,;(ACK,nr),z,") {Receive nr}
and ((vs%va and nr=va 1) — {if outstanding data acknowledged}
(a"=a+1 and va"=va P 1 {then update state}
and ATimer"=ATimerG"=0 and RetryCount"==0
and OutTimer"=0ff and DRecd"=empty {and auxiliary variables}
and ACKSent"=empty and SCount,=SCount,=0))

32

Events of P2

1. Send ACK (v2,z2;v2",22")
= SendACK = True and Send, ((ACK,vr), z,;z,")

and SendACK"=False and SendACKTimer"=8SendACKTimerG"=0ff
and (r=s=a+1 — ACKSent"=(ACKSent,0)) {update auxiliary variables}

2. Rec_D (vg,z,5v,",2,")
= Rec, (z;(D,data,ns,try number),z, ") |
and (ns=vr — {if next expected sequence number}
(Sink[r|*=data and r"=r+1 and vr"=vr @ 1)) {then accept data}
and SendACK" = True and i
and (SendACKTimer=0ff — SendACKTimer"=SendACKTimerG"=0)
and (s=a+1 — DRecd"=(DRecd, try number)

Time Events

The ideal time event is defined by the conjunct of the previous ideal time event
predicate (in Section 5) and the following:
AccuracyAxiomy(ng,n")
and ACKSent" == next(ACKSent)

and SendACKTimerG" = next(SendACKTimerG)
and (DTimerG = Delay, and RetryCount not in DRecd

— SCount, " = SCount, + 1)
and (Delay, in ACKSent — SCount," = SCount, +1)
The local time event for P, is the conjunct of the previous local time event predi-
cate (in Section 5) with the timer axiom for DTimer (stated above).

The local time event for P2 is
ny" = 1y + 1 and AccuracyAxiom2(02,q)

and SendACKTimer" = next(SendACKTimer)
and SendACKTimer" < MResponseTime

7.2 Verification of Real-Time Property

The desired real-time property can be stated as follows:
DO (a) LinkDown = False = OutTimer < MaxRetryCount X RTripDelay
(b) LinkDown == True

= (OutTimer > MaxRetryCount X RTripDelay and SCount1 + SCount2 >
MaxRetryCount)

Notice that this real-time property is a safety propefty and not a liveness property re-
quiring the leads-to operator.

(%

33

Observe that the modified protocol is a refinement of the previous data transfer
protocol in the following sense: For each event €04 0 the modified protocol, either

there is a corresponding event e in the previous protocol such that € o d(v;v“) =
e(v;v"), or € od does not affect any variables of the previous protocol (the Abort event

falls in this category). Thus, the safety property A that was shown to be invariant for
the previous protocol continues to be invariant for the modified protocol.

The safety assertions D1-D7 below satisfy the safety inference rule, given that A is
invariant (details of proof in Appendix C). D1 and D2 imply DO, which is therefore
verified.

D1. LinkDown == False =

(a) ((OutTimer=Off and s=a and RetryCount=0
and SCount1=SCount2=O and DRecd=ACKSent=empty)

(b) or (s==a+1 and ((DTimerG,DTimer) started at 0
and RetryCount>1
and OutTimer = (RetryCount - l)XRTrlpDelay + DTimer

D2. LinkDown = True = (OutTimer > MaxRetryCount X RTripDelay
and SCount; + SCount, > MaxRetryCount)

D3. (a) trynumber in DReed = 1 < trynumber < RetryCount
(b) ((D,Source[s-1], vs © 1, trynumber) in z; and s=a+1) =
1 < trynumber < RetryCount

D4.0 < DTimerG < Delay,
= (SCount, + SCount, > RetryCount -1

and (RetryCount in DRecd = (r=s=a+1
and (SendACKTimerG > 0 or (for some t in ACKSent)[t > 0]))))

D5. Delay1 < DTimerG < Delay, + MaxResponseTime

= (SCount, + SCount, > RetryCount
or (SCount, + SCount, > RetryCount - 1 and r=s=a+1
and (SendACKTimerG > DTimerG - Delay,
or (for some t in ACKSent)[t > 0])))

De. Delay1 + MaxResponseTime < DTimerG < RoundTripDelay

= (SCount, + SCount, > RetryCount
or (SCount + SCount > RetryCount - 1 and r=s=a+1
and (for some t in ACKSent)

34

[t = DTimerG - (Delay,+MaxResponseTime)}))

D7. DTimerG > RoundTripDelay = SCount1 + SCount, > RetryCount

8. CONCLUSION

We have developed a model for specifying time-dependent distributed systems,
and presented inference rules for verifying safety and liveness properties. Our proofs
can be checked by automated techniques. A data transfer protocol example was used to
illustrate the model and application of inference rules.

Our prime objective in developing this model was to be able to specify, verify and
ultimately construct realistic communication network protocols. In [20], we have con-
structed, starting from desired safety requirements, a time-dependent data transfer
protocol that generalizes the protocol in this paper to one with an arbitrary window size
of N. In [18], we used a preliminary version of this model to specify and verify a ver-
sion of the HDLC protocol, complete with all its principal functions and mechanisms,
including cyclic sequence numbers, polling, checkpointing, connection management, and
flow control.

Our model has several distinctive features. First, measures of real time are ex-
plicit in our model. Real-time constraints enforced within individual processes are in-
corporated into the time and system events of the process. Unlike other models [9, 11,
16] which explicitly incorporate measures of time, our model does not require that an
enabled event must occur, and thereby avoids an explicit scheduling of event occur-
rences. Derived real-time properties which hold for the distributed system can be stated
as safety assertions, and formally verified using inference rules. Our system specifica-
tions can then be implemented by programmers who may not be familiar with system
analysis. It is our experience that measures of time are central to the working and un-
derstanding of communication protocols. Utilizing them is not only realistic, but, per-
haps contrary to popular notion, it also greatly simplifies the specification, verification
and construction of communication protocols [20].

Second, our specification of processes involves state information within the
processes. In particular, we do not specify a process strictly in terms of the trace of
message communications that the process has already performed with its environment
[4, 12, 17). We did not adopt trace specifications because we find that the lack of inter-
nal state structure typically results in large and cumbersome specifications of processes,
especially when considering real-life aspects of communication protocols such as
bounded capacity channels, flow control, real-time constraints, connection management,
etc. This effect has been pointed out in [17] for the case of the alternating-bit protocol.
A secondary reason why we did not adopt traces is that the implementor often prefers
guidance (and the resulting constraints) to the total independence and lack of guidance
resulting from trace specifications of processes.

35

The third major difference is in our inference rules. To verify a system property
A, (either safety or liveness), it is neccessary to obtain an assertion A which implies A,

and satisfies the requirements of the inference rules. The difficulty of verification lies in
obtaining A. Invariably, one obtains A as the end product in a sequence of approxima-
tions A, A,,... Each successive A is determined by examining how the earlier ap-

proximations failed to satisfy the inference rules. One approach that is popular in the
distributed systems area is to imsist that each A, be expressed as a collection of

properties A , where j ranges over the processes, such that each A, . can be verified by

examining the behavior of process j alone [4, 12, 13]. This approach which will be
refered to as the process decomposition approach, is often used in conjunction with
trace specifications of processes.

Our experience in verifying distributed systems, and communication protocols in
particular, has been that it is easier to obtain A (as well as to present a formal proof of
it) if we do not have to decompose each A, into such A, ; J s. For this reason, our in-

ference rules do not follow the process decomposmon approach. Instead, the inputs to
our inference rules are assertions that can involve state variables in different processes,
and events that specify changes to the values of variable. Ewvents, and not processes,
are the units of composition in our system model. Note that each event affects only a
small part of the distributed system. Therefore, when applying an inference rule to an
assertion A,, most of A, is not affected and need not be examined. Thus, the presence

of distribution does in fact help our verification, even though it is not formally captured
in the syntax of our inference rules. The comments above apply also to the construc-
tion of communication protocols, and not only to their verification [20].

The combination of an event-driven system model and the use of predicates to
specify events results in some rather simple inference rules for safety and liveness
properties. It reduces the gap between specification and verification, and has proved to
be useful in protocol construction [20]. The use of predicates to specify events follows
the recent trend towards logic programming languages [3, 7], and should not present
difficulty in implementation. This is especially so in communication network systems,
where each event corresponds to the limited amount of processing associated with the
handling of a message transfer or timeout condition.

Protocol projections

In addition to time-dependent behavior, another characteristic of real-life com-
munication protocols is that each protocol typically performs multiple distinct functions,
such as connection management, one-way data transfers, etc. The method of projec-
tions provides an approach to reduce the analysis of a multifunction protocol system
into analyses of smaller single-function protocol systems, called image protocol systems
[10]. The theory of projections was originally developed in [10] using a set-theoretic
notation. In a companion paper [19], we specialize this theory to the time-dependent
system model herein. The use of state variables and predicates (to specify events)
greatly facilitates the construction of image protocol systems.

36

REFERENCES

[1] Clark, D. D., "Protocol Implementation: Practical Considerations," ACM
SIGCOMM'83 Tutorial, University of Texas at Austin, March 7, 1983.

[2] Dijkstra, E. W., A Discipline of Programming, Prentice-Hall, Englewood
Cliffs, N.J., 1976.

[3] Ferguson, R., "PROLOG: A Step Toward the Ultimate Computer
Language," Buyte, Vol. 6, No. 11, Nov. 1981, pp. 384-399.

[4] Hoare, C. A. R., "A Calculus of Total Correctness for Communicating
Processes," Science of Computer Programmaing, 1, 1981, pp. 49-72.

[5] IEEE Project 802 Local Area Network Standards, "CSMA/CD Access
Method and Physical Layer Specifications," Draft IEEE Standard 802.3,
Revision D, December 1982.

[6] International Standards Organization, "Data Communication—High-level
Data Link Control Procedures—Frame Structure," Ref. No. ISO 3309,

Second Edition, 1979. "Data Communications—HDLC Procedures—Elements
of Procedures," Ref. No. ISO 4335, First Edition, 1979. International Stan-
dards Organization, Geneva, Switzerland.

[7] Kowalski, R., Logic for Problem Soluving, Elsevier North-Holland, Amster-
dam, 1979.

[8] Lamport, L, "Time, Clocks, and the Ordering of Events in a Distributed
System," Comm. ACM, Vol. 21, No. 7, July 1978, pp. 558-565.

[9] Lamport, L., "Using Time Instead of Timeout for Fault-Tolerant Distributed
Systems," ACM Trans. Prog. Lang. Syst., Vol. 6, 2, April 1984, 254-280.

[10] Lam, S. S. and A. U. Shankar, "Protocol Verification via Projections,"
IEEE Trans. on Software Eng., Vol. SE-10, No. 4, July 1984, pp. 325-342.

[11] Merlin, P. and D. Farber, "A Methodology for the Design and Implemen-
tation of Communications Protocols," IEEE Trans. Commun., Vol.
COM-24, 6, June 1976.

[12] Misra, J. and K. M. Chandy, "Proofs of Networks of Processes," IEEE
Trans. Soft. Eng., Vol. SE-7, No. 4, July 1981.

[13] Owicki, S. and D. Gries, "Verifying Properties of Parallel Programs: An
Axiomatic Approach," Commun. ACM, Vol. 19, No. 5, May 1976.

37

[14] Owicki, S. and L. Lamport, "Proving Liveness Properties of Concurrent
Programs," ACM TOPLAS, Vol. 4, No. 3, July 1982, pp. 455-495.

[15] Postel, J. (ed.), "DOD Standard Transmission Control Protocol," Defense
Advanced Research Projects Agency, Information Processing Techniques Of-
fice, RFC 761, IEN 129, January 1980; in ACM Computer Communication
Rewview, Vol. 10, No. 4, October 1980, pp. 52-132.

[16] Razouk, R. R., "The Derivation of Performance Expressions for Communica-
tion Protocols from Timed Petri Net Models," Proc. IFIP 4th Int. Workshop
on Protocol Specification, Verification and Testing, Columbia University,
June 11-14, 1984, North-Holland, 1985.

[17] Schwartz, R. L. and P. M. Melliar-Smith, "From state machines to temporal
logic: Specification methods for protocol standards,* IEEE Trans.
Commun., Vol. COM-30, pp. 2486-2496, Dec. 1982.

(18] Shankar, A. U. and S. S. Lam, "An HDLC Protocol Specification and its
Verification Using Image Protocols," ACM Trans. on Computer Systems,
Vol. 1, No. 4, November 1983, pp. 331-368.

[19] Shankar, A. U. and S. S. Lam, "Verification of Communication Networks
via Projections," Tech. Rep. in preparation, Dept. of Computer Sciences,
Univ. of Texas at Austin, 1985.

[20] Shankar, A. U. and S. S. Lam, "An Exercise in Protocol Construction,"
Tech. Rep. in preparation, Dept. of Computer Sciences, Univ. of Texas at
Austin, 1985.

[21] Sloan, L., "Mechanisms that Enforce Bounds on Packet Lifetimes," ACM
Trans. Comput. Syst., Vol. 1, No. 4, Nov. 1983, pp. 311-330.

Appendix A

Proof of Theorem 1

The accuracy and timer axioms hold initially (from IC1). No system event can
reset the time event counts or timers to values that can violate the axioms (from IC2

and definition of time events). Thus, the axioms are invariant and part (a) is es-
tablished.

We now prove part(b), i.e., that time events do not deadlock. Let s be any reach-
able system state where all the time events are blocked. Because s is reachable we know
that all the accuracy and timer axioms hold at state s. From condition IC3, we know

38

that there exists a sequence of enabled events that will take the system from state s to
state r where TimerAxiom(next(v)) = True for every timer axiom in the system. Thus,
from the definitions of the ideal and local time events, we see that the only way that all
time events can be blocked at state r is if

(for all n,)[{AccuracyAxiom,(n,+1,7) = False]
and (for some #,)[AccuracyAxiom,(n,,n+1) = False].
Thus, we prove the theorem by establishing the following: AccuracyAxiomn.(ni+1,r,) —
1

False = AccuracyAxiomn.(ni,n+1) = True.
1

Let the current values of n, and 5 be denoted by "i(c) and n(c). Now,

AccuracyAxiomn'

1

(n(b) - n(2)) | < max(1,¢(n(b) - n(a))). Because the AccuracyAxiom has held at every in-

stant so far, the only way that AccuracyAxiomn_(ni+1,n) = False, is if there is some in-
1

(nn) For all instants a and b where b is later than a, |(5,(b) - n,(2)) -

stant a in the past (i.e. somewhere in the current execution path) such that

| (n(c) + 1 - ni(a)) - (n(c) - n(a)) | > max(L(n(c) - n(2)))- (A1)

We know that | (n;(c) - m(a)) - (n(c) - n(a)) | < max(1,¢(n(c) - n(a))) (A2)
Similarly, AccuracyAxiom n.("i"’+1) = False implies that there is some instant b in the
1

past such that

| (n;(c) - m;(P)) - (n(c) + 1 - n(b)) | > max(1,e;(n(c) - a(b))). (A3)

and

| (m(c) - m(b)) - (n(c) - n(b)) | < max(1,e(n(c) - n(b)))- (A4)
For brevity, let n(a), n(b), n(c), "i(a‘)’ ”i(b)’ ”i(c)’ be denoted respectively by t, t,, t_, u,,
U, U

From Al, either
(u, +1-1u,)- (b, -t,) > max(l,(t-t,))
or(u,+1-u)-(t, -t,) <-max(l,(t-t,))
But the second alternative means that
(u, - u,) - (¢, - t,) < -max(l,(t,t,)),
which violates A2. Hence only the first alternative can hold.

A3 implies either

(u, - up) - (t, + 1-t) > max(Le(t +1-t,)),

or (u, - up) - (t, + 1 - t,) < -max(le(t,+1-t,)) -
The first alternative implies that

(u, - wp) - (¢, - t,) > max(le(t +1-t,)) > max(l,e(t,+1-t,)),
which violates A4. Hence, only the second alternative can hold.

39

Thus, we now have to derive a contradiction from

(u, +1-u)-(t, -t,) > max(le(t,-t,)) (A5)
and (u, - up) - (t, + 1 -t,) > -max(1,¢(t,+1-t,)) (AS)

Before deriving the contradiction, we will next show that | ¢(t, - t,) | > 1.
From A5, we have
(v, -u,)- (t,-t,) > max(le(t-t,)) > O.
This implies
(w,-u)-(t,-t,)>1 (A7)
From A8, we have
(u, - w)- (b, - t,) < -max(lg(t +1-t.)) + 1 < 0.

This implies
(uc - ub) - (tc - < -1= (tc - tb) - (uc -y)>1 (A8)

Adding A7 and A8, we have
(t;a - tb) -(u,-u) >2 (A9)

Since AccuracyAxiom holds at instants a and b, we know that
&b, - ty) > 1 (A10)
(This simplifies the proof in that we do not have to consider (t, - t,) < 1.)

Case 1: Assume a is later than b

Case 1(a): ¢(t, - t,) < 1. Since ¢(t, - t,) > 1 (from A10), we have ¢(t - t,) > 1.
A5 reduces to
(w,+1-w)-(t,-t)>1
= (u,-u,)-(t,-t,)>1
= (t,-t,) - (v, -v,) <-1
A6 reduces to
(ug - up) - (b - 8) - 1 < (bt +1)

Adding the two, we get
(u, - up) - (b, - t) < -¢(t,-t,+1)
Now -¢(t -ty +1) = -¢,(t -t +t -t) - ¢
= -¢i(t:t,) - 6(aty) -
< -ei(ta-tb)

This contradicts the AccuracyAxiom at instants a and b.

Case 1(b): ¢(t-t,) > 1

40

A5 reduces to
(u,-u,)-(t,-t,) + 1> ¢lt-t,)
= (b, - t,) - (0, - u,) - 1 < -¢(t-t,)

ABb reduces to
(uc - ub) - (tc - tlb) - 1 < fi(tc'tb + 1)

Adding the two, we get
(u, - up) - (b, - t) - 2 < -€(26-t -t + 1) = -¢(2(t-t.) + (t,-t,) + 1)

From conditions of Case 1(b) we have ¢(t-t,) > 1. Hence, RHS < - 2 - ¢(t,-t, +1).
Thus, we have (u, - u,) - (t, - t,) < -¢(t,-t,+1). Again, we have a contradiction with
the AccuracyAxiom at instants a and b.

Case 2: Assume b is later than a

Case 2(a): ¢(t, - t,) < 1. Since ¢(t, - t,) > 1 (from A10), we have t.(t_-t,) > 1. A5
reduces to (as in Case 1(b)) (t - t,) - (u - u,) -1 < -¢(t, - t,)
AB6 reduces to
(o -up)-(t,-t)-1<-1
= (u,-u)-(b,-t) <-1

Adding the two, we get
(b - 1) - (U - w,) < -et, -t,) < -elty -t,)

which contradicts the AccuracyAxiom at instants a and b.
Case 2(b): ¢(t_ - t,) > 1.

This is like Case 1(b), and we have

(w,-up)-(t,-t,)-2 < -2 -t -t +1)

= (uy, - u,)- (b, - t,) > (26, - t, +tp t,) +1)-2
Since (t, - t,) > 1, we have (u, - u,) - (t, - t,) > ¢(t, - t,), which contradicts the Ac-
curacyAxiom at instants a and b.

End of proof of Theorem 1

Appendix B

Modeling a variety of channels

Recall that a channel C; with state variable z; has three predicates specifying it:
Send;(m,z;;z,"), Rec,(z;;m,z,"), and ChannelError(z;;z,").

41

Infinite-buffer, finite-buffer blocking, and finite-buffer loss channels can be
modeled by appropriate Send primitives.

1. In finite-bu ffer channel. This is the one modeled in Section 4.
Send,(m,z;;z,") = (z," = (z;,m))

2. Finite-bu f fer blocking channel. Send is blocked if the channel is full.
Send,(m,z;;z,") = (|z;| < J and z," = (z,,m)),
where |z;| denotes the length of z, and J denotes the channel capacity.

3. Finuste-buffer loss channels. Sending of a message into a full channel causes
a message (either the new one or one already in the channel) to be lost.
Send,(m,z;;z;") = (for some message sequences a,b,c)(for some message n)

[(a.=(zi,m)) and (Ja| < J = z," = a)
and (Ja| = J+1 = (a=(b,n,c) and z," = (b,c)))|

In the above, we have assumed zZ; is a sequence of messages. If z; is a sequence of
< message,age> pairs, then m is replaced by <m,0> in the body of the send primitive.

Minimum delay channels can be modeled by an appropriate Rec primitive. For
channel Ci’ let state variable z; be the sequence of <message,age> pairs. Then, a min-

imum delay of D can be modeled by
Rec;(z;;m,z,") = (for some t)[(z,=(<m,t>,z.,")) and t > D]

Recall that the internal behavior of channel G, is specified by ChannelError(zi;zi).

We formally specify different types of channel errors below (a, b, ¢ are existentially
quantified over sequences of messages, while m is existentially quantified over messages).

Loss(z;;2,") = (z;=(a,m,b) and z,"=(a,b))
Duplicate(z;;z,") = (z;=(a,m,b) and z," = (a,m,m,b))
Reorder(z;;2,") = ((3; = (a,m,b,c) and z," = (a,b,m,c))
or (z; = (a,b,m,c) and z.," = (a,m,b,c))
We can have combinations of the above; e.g.,
ChannelError(z;z,") = (Loss(z,,z;") or Duplicate(z;;z,") or Reorder(z;;z."))

Appendix C

Proof that D satisfies safety inference rule

Throughout this proof, safety property A is assumed to be invariant, as also are
the timer and accuracy axioms.

42

Initial Conditions
OutTimer = DTimer = Off, s=a=0, SCount1 = SCount;2 = 0, RetryCount
= 0, DRecd = ACKSent = empty, z, = Z, = empty. Thus, D1 holds non
vacuously, while D2-D7 hold vacuously.

SendNewData
(i) LinkDown = LinkDown" == False (SendNewData)
(i) OutTimer" = DTimer" = DTimerG" = 0 (SendNewData)
(iii) RetryCount" =1 (SendNewData)
(iv) s"=s+1=a+1 (SendNewData)
(v) z,"=1z,, ((D,Source[s"-1], vs" © 1,1),age) (SendNewData)
(a) Din (from (i), (ii), (iii), (iv))
(b) D2" holds vacuously (from (i)
(¢) D3"(a) (from D3(a))
(d) D3"(b) (from D3(b) and (v))
(¢) D4an (from (iii), DRecd = empty (from D1(a)))
(f) Ds5",D6", D7" hold vacuously (from DTimerG" = 0 (from (ii)))
Send D
(i) LinkDown = LinkDown" = False (Send _D)
(ii) DTimer = RTripDelay (Send _D)
(iii) DTimer" = DTimerG" =0 (Send _D)
(iv) RetryCount" = RetryCount + 1 (Send _D)
(v) s"=s=a+l1l=a"+1 (Send _D)
(vi) 2" = z,, (D,Source[s"-1], vs" S 1, RetryCount") (Send _ D)
(a) D1" holds (from D1(b), (ii), (iii), (iv), (v))
(b) D2" holds vacuously (from (i)
(¢) D3" holds (from D3, (vi))
(d) DTimerG > RoundTripDelay (from (ii), ((DTimerG,DTimer) started
at 0) (from D1(b)), Started-at property)
(¢) SCount, + SCount, > RetryCount (from d, D7)
(f) D4 (from e, (iv), D4)
(g) D5" - D7" hold vacuously (from (iii))
Abort
(i) LinkDown = False (Abort)
(ii) LinkDown" = True (Abort)
(iii) DTimer"=DTimer = RTripDelay, s=s"=a"+1=a+1 (Abort)
(iv) RetryCount = MaxRetryCount (Abort)
(a) D1" holds vacuously (from (ii))

(b) DTimerG > RoundTripDelay (from (ii), (DTimerG,DTimer) started

43

at 0) (from D1(b)), Started-at property)

(¢) D2" holds (from (i), (iii), (iv), D1(b), b, D7)
(d) D3" holds (from D3)
() D4" - D6" hold vacuously (from (iii))
(f) D7" holds (from b, D7)
Rec _ ACK

Case 1. vVvs = va or nr = va.

D" holds from D

Case 2

(i) vss#*vaandor=vadl (Rec__ACK)
(i) s=s"=a"=a+1 (Rec__ ACK)
(iii) DTimer" = DTimerG" = OutTimer = Off (Rec__ACK)

and ACKSent" = DRecd" = empty
and SCount1 = SCount2" =0

(iv) LinkDown = LinkDown" = False (Rec_ACK)
(a) D1" holds (from (ii), (iii), (iv))
(b) D2" - D7" hold vacuously (from (iii), (iv))
Send _ ACK
(i) r=s=a2a+1— ACKSent" = (ACKSent, 0) (Send _ACK)
(ii) SendACK = True (Send _ ACK)
(a) Di", D2", D3" hold (D1 and (i); D2 and D3 not affected)
(b) RetryCount in DRecd = r=s=12a+1 (from D4)
= (for some t in ACKSent")[t = 0] (from (1))
(¢) D4" holds (from b, D4)
(d) D5" holds (from D5, b)
(e) D6",D7" hold (D86, D7 not affected)
Rec_D
(i) z, = (<(D,data,ns,trynumber),age>, z,") (Rec_D)
(ii) SendACKTimerG" > 0, SendACKTimer" > 0 (Rec_D)
(i) s=a+ 1 — DRecd" = DRecd, trynumber (Rec_D)
(iv) s=r" (from A2)
(a) D1i" holds (from D1, (iii))
(b) D2" holds (from D2)
(¢) D3"(a) holds (from D3(b), D3(a))
(d) D3"(b) holds (D3(b) not affected)
(e) D4n ((RetryCount in DRecd or s=a or trynumbers#RetryCount), D4)

44

(f) D4 (RetryCount not in DRecd, s==a+1, trynumber=RetryCount,

(iv), (i), (i)

(g) Db5",D6",D7" hold (D5, D6, D7 not affected)
Local Time event for n,

(a) D1(a)" holds (from D1(a), local time event)

(b) D1i(b)" holds (from D1(b), (OutTimers£0ff = OutTimer"=OutTimer+1),

(LinkDown=False and s#a = DTimer" <RTripDelay = DTimer"=DTimer+1))

(¢) D2"-D7" hold (from D2 - D7 not affected)

Local time event for Ny
Does not effect D

Global time event
D1, D2, D3 not affected.

Assume DTimerG < Delayl. Then DTimerG" < Delay,

D4" holds (from D4)
D5" - D7" holds vacuously

Assume DTimerG = Delayl. Then DTimerG" = Delay1 +1
Assume RetryCount in DRecd. Then D5" holds with
SCount, + SCount, > RetryCount -1 (from D4)
Assume RetryCount not in DRecd. Then D5" holds with
SCount, + SCount, > RetryCount (from D4, updating of SCount,
in global time event)
Thus D5" holds
D6", D7" hold vacuously

Assume Delay, < DTimerG < Delay, + MaxResponseTime
Then, D5" holds (from D5, and global time event increments
SendACKTimerG, DTimerG, t if they are active)
D4", D6", D7" hold vacuously

Assume DTimerG = Delay, + MaxResponseTime

Assume SCount, + SCount, > RetryCount. Then D6" holds

Assume SCount1 + SCount2 = RetryCount -1. Then, since
SendACKTimerG" < MaxResponseTime (from Timer Axiom),
we have (for some t in ACKSent)[t > 0] holding.

Thus, (for some t in ACKSent")[t > 1] holds.
Thus D6" holds
D4", D5", D7" hold vacuously

45

Assume Dela,y1 + MaxResponseTime < DTimerG < RoundTripDelay

Then D6" holds (from D8, and t (if it exists) and DTimerG are both
incremented by 1).

Assume DTimerG = RoundTripDelay
Then, from D7, either SCount1 + SCount;2 > RetryCount
or (for some t in ACKSent)[t > Delay,)].
Then, SCount2" = SCount2 +1
(in update of SCount, in global time event).

D7" holds
D4" - D6" hold vacuously.

Assume DTimerG > RoundTripDelay.
D7" holds (from D7)
D4" - D6" hold vacuously.

End of proof

