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Abstract errors — a small perturbation in measurement data may re-
sult in a large difference in the estimated location [18]eTh
Determining the physical location of wireless nodes is im- novel approaches, proposed by Galstyan et al. and Guha et
portant to a wide variety of applications. In this paper, al. [8, 10], are to represent the estimated location as a re-
we propose a series of probabilistic region-based localiza gion that consists of all points satisfying the location-con
tion algorithms, including using static grids, segments of straints. Such a region-based representation has the-poten
grids, and dynamic meshes. These algorithms provide &tial to yield higher accuracy.
wide range of trade-off between accuracy and cost, mak- Motivated by [8, 10], we also use a region to represent
ing them suitable for different types of networks, such as a node’s estimated location. To achieve even higher accu-
sensor networks and mesh networks. Furthermore, we proracy, we propose a probabilistic localization approach. In
pose several techniques to extract and leverage additionahis approach, each node derives a probability distributio
information on location constraints, which is shown to sig- over a set of cells that it can possibly reside in. Every cell
nificantly improve the localization accuracy and can be ap-is associated with a probability about the likelihood that
plied to other localization schemes. Finally we develop it contains the true position of the node. Furthermore, we
techniques to enhance robustness of localization, and showropose two techniques to reduce computation cost. The
that the enhanced scheme can achieve high accuracy evirst technique combines cells into segments, which signif-
in the presence of significant measurement errors. icantly reduces computation cost with a moderate increase
in localization error. The second technique is called proba
bilistic dynamic mesh-based localization (PDM). It uses a
mesh generator to partition a region into a mesh, and rep-
resents the estimated location of a wireless node as a set of
mesh cells. It iteratively refines the estimated location us
ing location constraints extracted from the underlying net
work. It achieves high accuracy by deriving the probability
distribution of a node’s position over the region. It acleigv
reasonable cost by adaptively changing the mesh cell size
using DistMesh [5], which is an efficient way to generate
an unstructured triangular and tetrahedral mesh to cover a

I. Introduction

Determining the physical location of wireless nodes is im-
portant to a wide variety of applications, ranging from geo-
graphic routing [13, 22] to context-aware applications,[15
16], from habitat monitoring [4] to environment surveil-
lance [2, 28].

A global positioning system (GPS) [9] can be used to
obtain location information. But it does not work indoors,
and itis also costly to equip every wireless node with GPS. .

ST . region.
The limitation of GPS has motivated researchers to develop o . :
Second, localization accuracy relies heavily on the

algorithms to infer location using cheap hardware by lever- ) . . : .
! L . amount of available information about location constint
aging network connectivity, signal strength, and angle-of . . -y
Lo . .. For example, as shown in [6], there is a fundamental limit
arrival information [29, 3, 19, 17, 11, 27, 26, 12]. Despite . L ! .
. ) e . in localization accuracy using commodity 802.11 hard-
extensive research in the area of localization, the folhgwi . . . .
L L . ware. To further improve accuracy, additional information
three topics in localization research require further wtud : A .
on location constraints is necessary. In this paper, we pro-

which is the subject of this paper. ; . I
First, developing accurate localization algorithms based pose thg follo_wmg ways to obtain anq I_everage at_jd|t|onal
on only; connectivity information is an active researchtopi |nforma.1t|0.n: () using networ.I.< connectlvny under differte
A major factor that determines the effectiveness of the al_transm|53|on power levels, (i) using kqowledge of whether
gorithms is how the estimated locations are representedtWO nodes can sense each o'Fher’s carmer, which can be mea-
) dies. the location of a node is esti_’sured_ empl_rlcally as shown in [1], (iii) using layout maps,
In many previous studies, and (iv) using more powerful anchor nodes (e.g., the an-

ma’;ed as racliiimtgle poiml;[.mArS\tSTr?V\:n Ir’li [71, t:]helre atrie r:)ftez chor nodes can not only extract distance constraints for its
any coorginate assignments that sa sfy the location co neighbors, but also obtain the approximate angles). We also
straints derived from an underlying network. Therefore as-

o : . ) -~ evaluate the benefit of each type of such additional infor-
signing the location of a wireless node to a single point

LT ) mation.
may result in significant error. For example, as described

: . . Third, therobustness issue in localization has received
in [10], when a node is constrained to be located at four . . X )

: ) : - little attention, even though robustness is essential @o th
corners of a region, a single point estimation may place

o . . . success of any localization scheme since we cannot ex-
the node at the center, which is misleading. In addition, y

. . . Pect that measurements are always accurate. Erroneous
a single point representation is vulnerable to measuremen .
measurement reports may arise from measurement errors,
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a natural mechanism to handle measurement errors — th@eously locates a set of wireless clients (as opposed to lo-
probability computation can take into account of the extent calizing one user at a time). Refer to [11] for a nice survey
to which the location constraints are satisfied. In thiswaay, on the location systems for single hop wireless networks.
mesh cell that is inconsistent with most location constgain
is assigned a IO‘,N probability gnd pf““e‘? out, whereas 4 ocalization in a multihop wireless network: Local-
mesh_cell satisfying mqst Iocg‘uor_l Constral_nts (but not nec ization in multihop environments is even more challeng-
essarily all the con;tramts) WI|.| still be retained. . ing, since nodes are often multiple hops away from anchor
In summary, while localization has been an extensively y,qes; thereby increasing the uncertainty in location.
studied subject, our approach has the following three novel A number of interesting localization algorithms have
contributions. First, we develop probabilistic regiorséd  poen proposed for such networks. For example, the au-
localization algorithms, including using static grids,-dy s in [24] develop a distributed localization approach

namic meshes, and segments of grids. These algorithms, o+ jterates through a two-phase process: ranging and es-
provide a wide range of trade-off between accuracy andyyqrion During the ranging phase, each node estimates

cost. For example, the segments-based approach yieldgg gistance to its neighbors, whereas during the estima-

low cost and high accuracy, and is well suited for net- i, hhase nodes use the ranging information and their

works formed by less powerful nodes, such as sensor nety,qighhors whose positions have been determined to esti-

works. In comparison, the PDM achieves a higher accuracyp, e their own location. In [25], the authors enhance the

at a higher cost, making it suitable for networks formed previous approach by formulating the problem as a global
by more powerful nodes, such as mesh networks. Secondy, jinear optimization problem. This limits error accu-

we propose several techniques to extract and leverage addir'nulation in [24]. Shangt al. in [27] propose to use multi-

tional information on location constraints. The additibna ;< sional scaling (MDS) to determine location in a cen-
information can be applied to both our and others’ local- 5jizeq fashion. The localization accuracy is limitedtfyar
ization schemes. Our results show that the additional in-p .o 1<e it cannot handle violation of triangulation (espe-

for!”nat|on can S|gn|f|canFIy improve localization accuracy cially for irregular-shaped networks). Later they develop
Thl'.rd’ we develorf) teckr:nlqﬁes tohenhanC(Ia rol?l;]stness Ofl 03 distributed version of MDS-based approach in [26]. It
calization, and show that the enhanced algorithm can toleryg ghown to out-perform the original centralized version in

ate significant errors from measurement data, irregular-shaped networks by ignoring the distance infor-
_ The rest of the paper is organized as follows. In Sec- ation among nodes that are far-apart. In [18], the authors
tion Il, we overview the related work. We propose the prob- resent algorithms that use robust quadrilateral for Ipaal
abilistic region-based localization algorithms in Seati, jo Their approach finds sets of four nodes that are fully

and evaluate the performance in Section IV. In Section V. ¢nnected, and localizes the fourth node based on the posi-
we present and evaluate the following two extensions: Weyjong of the other three nodes. To prevent error accumula-

further improve accuracy by taking advantagelof additional tion, the four-node set needs to satisfy robust quadriter
information, and enhance t_he robustness a_gal_nst erroneoUsynditions. This improves accuracy at the cost of leaving
measurements by leveraging our probabilistic-based apome nodes unlocalized. In [12], the authors propose a se-
proach. Finally we conclude in Section VI. quential Monte Carlo localization method to enhance the
accuracy of localization by exploiting mobility. In parntic
II. Related Work lar, the approach leverages mobility history to predict-pos
sible locations based on previous location samples and its
Localization has been extensively studied due to its greatmovement, and uses the new connectivity information to
importance. We broadly classify previous work into the eliminate inconsistent location samples.
following four areas: (i) localization schemes in singlegph Unlike most of the previous approaches, which repre-
wireless networks (e.g., WLAN), (ii) localization schemes sent inferred locations using points, Sextant [10] devel-
in multihop wireless networks, (iii) analysis of the funda- ops a novel approach that denotes inferred locations as re-
mental limitations of localization schemes, and (iv) con- gions represented by Bezier curves. Such a representation
trolling node placement to ease localization. is shown to significantly improve accuracy. Motivated by
their approach, in this paper we also use region-based rep-
In the resentation. Different from their work, we use a dynamic

area of localization for single-hop wireless networks, a Mesh to represent a region, and derive the probability for

number of interesting approaches have been proposeo‘?‘ node to reside in eac.h mesh cell. Such a represen?ation
For example, Active badge [29] locates users by havin e_nal_)I_es usto achlev_e high accuracy and robustness without
them wear infrared badges that transmit unique identifiers Significant computation cost.

RADAR [3] relies on signal strength measurement gath-

ered at multiple receiver locations to triangulate users’ | Analysisof limitson localization accuracy: In addition
cations. Cricket [21] uses the difference between thealrriv to developing novel localization algorithms, researchers
time of radio and ultrasound signals to estimate distance.have also analyzed the fundamental limits on localization
VORBA [19] determines location based on angle of arrival algorithms. For example, the authors in [6] compare a se-
measurements from 802.11 base stations. In [17], Madigarries of localization algorithms, and find that using com-
et al. develop a Bayesian hierarchical model that simulta- modity 802.11 technology over a range of algorithms, ap-

Localization in a single hop wireless network:



proaches and environments, it is expected to have a medialll.A. Probabilistic Region-Based Local-
localization error of 10 feet and 97th percentile error of 30 ization

feet. They conclude that these limitations are fundamental
and unlikely to be significantly improved without funda-
mentally more detailed environmental models or additional
localization infrastructure. It points out that leveraged-
ditional information is necessary in order to improve the
accuracy.

The probabilistic region-based localization proceed®hs f
lows. First, every node’s location is initialized to be the
entire space. Then each node extracts location constraints
by measuring the connectivity of the underlying network,
and propagates these constraints to nodes within a certain
hops away. (We use 3 hops in our evaluation.) If angle and
received signal strength index (RSSI) measurements are
available, they can be used to extract location constraints
and processed in a similar way. Based on the constraints
Node placement: Complementary to developing local- reported by other nodes and its own observation, a node es-
ization algorithms, researchers have also designed algotimates its new location by pruning out the sub-regions that
rithms to place nodes to reduce the ambiguity of estimatedayre jnconsistent with the constraints. For the sub-regions
location. Forexample, in [11] Rag al. apply the theory of  that are consistent with the constraints, a node further com

identifying codes to determine the placement of sensors sqyytes a probability distribution over them. The approach is
that each position is uniquely identified by a set of sensorsyyn in a distributed way.

that it can directly communicate with. The authors further

extend their algorithms to tolerate errors (e.g., sensit_ar fa Extracting location constraints: To estimate its loca-
ures). In [7], Ereret al. show that a network has a unique o, 5 node first extracts location constraints from the un-
localization if and only if its corresponding grounded drap e ying network. Examples of location constraints inelud
is generally globally rigid. Applying graph-r_|g|d|ty_l|ta- “the distance between nodand nodej is at mosid” (also
wre, they develop approaches to constructing uniquely _Io'called distance constraints), and “the angle betweerijine
callzabl_e ngtworks, and study the computation complexity 44 the direction of North is withiff, 62]" (also called an-

of localization. Node placement algorithms are comple- gle constraints). Such location constraints can be oldaine

mentary to IocaIizatiqn algorithms. The localization algo by measuring network connectivity and angle-of-arrival. |
rithms should be applicable even when we do not have th his section, we only consider distance constraints. \We wil

flexibility to alter the graph to make it uniquely localiz- consider angle constraints in Section V.A.

able. To handle irregular wireless propagation, each wireless
node is associated with two separate radiiandr (R >
r), whereR denotes the maximum transmission range the
node can reach, anddenotes the minimum transmission
III. Probabilistic Dynamic Mesh- range the node can reach [10R # r arises when the

Based Localization signal propagation is not the same in all directions. When
node: can hear nodg, we obtain a constraint;; < R;.

) ) ) ) o ) This is apositive constraint. When nodé cannot hear node
As mentioned in the previous s_ectlon, a S|gn|f|c§mt differ- j, we obtain a constraintd;; > r;. This is anegative
ence between various localization approaches is how theongraint.

estimated location is represented. To achieve high accu- Next we introduce some more notations. lef;; de-
racy and robustness, we adopt a region-based representay,e 4 |ocation constraint for nogeusing node as a ref-

tion, where an estimated location is represented as a regiog o ce point. LePOS() denote a positive constraint, and

that consists of all points satisfying the location coriatsa NEG() denote a negative constraint. L&tand.s; be the
extracted from the underlying network. We furtherimprove ggiimated region of nodeandj, respectively. ’

tbhe. existing vt:/ork 8, 10] byﬂderiv;]ngl_ak F;fr?ba:“i? r(]jistri- If node j can hear nodé we obtain a positive constraint:
ution over the region to reflect the likelihood of the true ; : : )
position. Such probability distribution, combined with an glrjes_se];'a-ls-:hen the estimated region of nogean be ex
explicitly represented region, provides much richer loca-

tion information than a single position, and allows us to  S; = POS(S;, R) = {p;|3p; € Si, d(pi,pj) < R},
achieve higher accuracy in face of insufficient information

whered(p;, p;) is the distance between two pointsand
and measurement errors.

pj. This region is a union of discs that are centered at each
Below we first present a probabilistic region-based lo- point insideS; with radiusR. Similarly if nodej cannot

calization approach. Then we describe two techniques tohear node, we derive a negative constraint, and the region
improve the efficiency of the approach. The first one com- of nodej is estimated to be

bines multiple horizontal (or vertical) cells (in an estied

region) intopa single segrg"nent, whic)h redu(ces computation Sj = NEG(Si,r) ={pjBpi €5, dlpipj) > 1}
cost at the expense of slightly higher error. The second.
technique is based on a dynamic mesh, where mesh cells If there are multiple constraints derived (e.g., by using
are dynamically adjusted according to the size and shapeamultiple reference points), the final output is the intersec
of the region. It can achieve both efficiency and accuracy. tion of the regions from all these constraints. Note that



while we use connectivity information to extract location where/3 is a normalization factor so that,, - P;(u;) = 1.
constraints, our approach can easily incorporate other in- '

formation, such as angle estimation and layout maps, which Figure 1 shows how a node’s estimated location con-
will be described in Section V.A. verges. After the first iteration, the region is approxinhate

a circle since this node is a neighbor of an anchor. The
probability distribution is uniform over all cells. Aftehé
second iteration, the estimated region is refined, with the
updated probability distribution and smaller area, by teve
aging the constraints from the anchors that are 2 hops away.
After the third iteration, the region is reduced further (al
though the amount of reduction is less than in the second
iteration because the constraints from the 3-hop neighbors
have less impact on the region than constraints from the 2-
hop neighbors). As it shows, the cell containing the true po-
sition (marked as the shaded cell) and its surrounding cells
have significantly higher probabilities than the remaining
region.

Computing probability: Next we describe how each
nodei derives a probability distributiod®; over its region
S;. Todo so, we partition the whole space into (small) cells,
where each cell is a square with a fixed size. A cell is the
smallest unit for which we compute probability. Lebe a
cell. P;(s) is the probability that nodeis in s. Each loca-
tion constraint gives a probability distribution over ati-es
mated region. The final relative probability of each cell is
the product of the probabilities derived from all consttain
(including both positive and negative constraints). We fur
ther derive the absolute probability by normalizing the rel
ative probabilities.

Below we show how to derive a probability distribution
from one location constraint. Since the probability compu-
tation using positive and negative connectivity inforroati
is similar, we illustrate the idea by considering only a pos-
itive connectivity constraint.

First we describe how to compute probabil®(s) us-
ing an anchor nodes;, whose location is known, as a ref-
erence point. Using network connectivity, we obtain a dis- o
tance constraint frona to ¢ asd,, < k = R, wherek is 50 “oo” 20
the number of hops betweenandi. ThereforeS; is the A
disc centered at with radiusk = R. Since only connectiv- ¥ Coordinates™® 150 % x coordinates
ity information is available, we assume nodelocation is
uniformly distributed inside the circle. Therefore, forellc

g,

Probability Distribution

(a) Snapshot after 1 iteration.

(g) = 0 if g is outside the circle,
TN 1/e otherwise,

wherec; is the number of cells inside the circle. (Note e o [ S
that application of negative connectivity information il N e T
change the above probability distribution. For example, if el E NI *
a node is 2 hop away froma, the fact that it is not’s im- pos'iﬁé> kil o S
mediate neighbor allows us to prune out the area of a circle R 5
centered at with radiusr.) To avoid leaving out the true 30 g 0
position, a cell is considered “inside” the circle as long as ¥ Coordinates = 20 0 X Coordinates
it overlaps with.the circle. Consequent& =U(g)is ngt (b) Snapshot after 2 iterations.
exactly the region enclosed by the circle, but the union of
all cells considered “inside” the circle. Thereforgc; is
an approximation since some cells are partially inside the
circle. The accuracy of such approximation depends on the
cell size. Smaller cell sizes reduce the approximationrerro
at the cost of increasing computation and storage cost.
Next we describe how to compute probabiliy(s) us-
ing a non-anchor node (whose location is not known in ad- gl
vance) as a reference point. Consider a ndgl@eeighbor 40 PaSitioR=
Jj. Foracellu; C Sj, the relative magnitude of its prob-
ability is determined by the probability of subregionSh
that satisfies/(u,, u;) < R. This results in the following:

o oo o o

Probability Distribution

Probability Distribution
© o o o

Y Coordinates 20 0 X Coordinates
(c) Snapshot after 3 iterations.
Z’lti Cd(’lti ,Uj)SR PZ (ul)
Pi(u;) = - = @ | |
chsi i (ui) Figure 1: Snapshots of a node’s estimated location for the
= 8- Z P;(u;) ) first three iterations.
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III.B. Enhancing Efficiency have,

A(v;)
So far we consider using static grids. In this case, the com- Pj(uj) = - Z Auy) (i), ©)
putation cost is determined by the number of cells. If a
node’s location has high uncertainty due to lack of suffi- wherey is a normalization factor.
cient location constraints, its estimated region is large,

sulting in a large number of cells and hence high compu- pyopapilistic dynamic mesh-based localization (PDM):
tation and storage costs. In this section, we describe tWocombining consecutive cells in one dimension can signifi-
techniques to improve the efficiency of the above local- cantly reduce computation and storage costs. On the other
ization approach. The first.approach reduces the cost b¥hand, its accuracy depends on how accurately a uniform
combining horizontally (vertically) contiguous cellsan& gistribution captures the actual probability distributiover
row (column) segment. The second approach dynamicallyihe set of combined cells. When the actual distribution sig-
adapts the cell size so that coarse-grained cells are usefsicantly deviates from a uniform distribution, localiiat
when the estimated region is large and fine-grained cellsyccyracy will decrease. To achieve both high accuracy and
are used when the estimated region is small. low cost, we propose an alternative approach that dynami-
cally adjusts the cell size as needed.

At a high level, we use coarse-grained cells when the es-
Segment-based localization: One way to reduce the timated region is large, and use fine-grained cells when the
complexity is to combine horizontally (vertically) contig estimated region is small. To achieve this goal, we lever-
ous cells into a row (column) segment. Since computationage mesh generation work developed in the area of com-
using row segments is similar as using column segments, iputer graphics. We use DistMesh [5, 20] because it can
the following description we focus on using row segments. efficiently generate high-quality meshes. DistMesh uses a
The width of each segment is fixed, but the length is vari- signed distance function d(x, y) to specify a region. The
able. A row segment is specified by a 3-tudle,z1, x2), absolute value ofi(x,y) is the minimum distance from
where (x1,y) is the left end andzs,y) is the right end.  (z,y) to the boundary of the region, where a negative dis-
Each estimated region is represented as a set of row segance means it is inside the region and a positive distance
ments. We want to calculate the probability of each row means it is outside the region. It generates meshes using
segment containing the true position. Now the complexity Delaunay triangulation, and optimizes node locationsgisin
is determined by the number of row segments. a force-based smoothing procedure as described in [5, 20].

Suppose we obtain nodés estimated region and the It also provides a parameter to control the sizes of triangle

probability distribution over the region. We calculate its ~We apply DistMesh to localize wireless nodes as fol-
neighbor;j’s estimated region and probability distribution lows. Each node represents its estimated region using a
as follows. The location constraiftCy; is dj; < R. set of triangular cells. A triangular cell is the smallest
Hence,S; = POS(S;, R). Letu; denote a row segment of unit for which we compute a probability. We control the
7, anduj denote a row segment gf The genera| formula mesh structure so that each triangle has similar sizes in
to derive probability is similar to (1). Since a row segment both dimensions, and the sizes of triangles are adaptive ac-
may be significantly larger than a cell, treating partialreve ~cording to the size of the region. It is straightforward to
lap as complete overlap may result in high error. Thereforewrite distance functions for distance constraints andeang|
we further calculate the fraction of a row segment that sat-constraints. Each node calculates its region based on the

isfies location constraints. measured distance constraints. Given a combined distance
function from all location constraints, DistMesh can gen-
POS(U,R) erate a set of triangular meshes to represent the region that

satisfies the location constraints.

Figure 3 illustrates two examples of triangular mesh gen-
erated by Distmesh. Figure 3(a) shows the mesh cells for a
circle. Figure 3(b) shows the mesh cell that represents the
estimated region for the same node as in Figure 1, resulting
from subtracting three circles from one circle.

AVAVAY> 40
Figure 2: Example of Using Segments 05 &X‘VXQX%X%A A true
NNNINININNNA 35/ A2
VAVAVAVAVAVAVAVAN
U \VAVAVAVAVAVAVAVA S
Figure 2 shows an example, is a row segment i§;. osl QOO
POS(uj, R) is the region expanded from; by R. u; is a '%ngvgﬁfé' 25
row segment ins;. wu; is partially in POS(u;, R). When 1 0 1 10 20 30
calculatingP; (u;), we need to calculate the portion of
that is insidePOS (u;, R). (a)Mesh cells for a circle.  (b)Mesh cells for anode’s
Letv; = u; N POS(uj, R). Let A(S) denote regiors’s location.

size. Assuming uniform distribution within a segment, we Figure 3: Triangular mesh generated by Distmesh.



After obtaining its estimated region, a node can derive number of sample points in a cell is proportional to its prob-
the probability distribution over the triangles (inside tte- ability. As we will show, the probabilistic-based approach
gion) in a similar way as in static grids. Suppose we know can significantly improve the localization accuracy.
the region and probability distribution over the triangbds
a given node. A neighbor; of node: has location con-
straintd;; < R, and calculates its regiasy; as follows. Let
t; denote a triangle is;, andt; denote a triangle ;. We
derive the probability associated withby first computing
the fraction oft; satisfying the location constraint, and then
weighting the fraction by the probability of nodeesiding : ‘ NEShRTRRS ATIORALEY
Int;. 8

Figure 4 shows an example of deriving probability dis-
tribution. ¢; is a triangle inS;. POS(t;, R) is the region
expanded fromt; by R. t; is a triangle inS;. t; is par-
tially in POS(t;, R). When calculating? (t;), we need to
determine what fraction df; is insidePOS(¢;, R).

Effects of the number of nodes Figure 5 shows the
cumulative distribution of position errors fav = 50,
R =12.5,andA = 10%. The size of the space is 50x50.
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Figure 5: Probability distribution improves localizatian-
curacy (50 nodes)

We make the following observations. First, PDM sig-
nificantly out-performs Sextant. For example, the per-
centage of nodes achieving 30% * R = 3.75 errors
in dynamic mesh i$50% compared t036% in Sextant.

Figure 4: Example of mesh model. This is because in Sextant different points inside a re-
gion are treated equally, whereas PDM leverages the de-

Let#, = t; N POS(t;, R). Assuming uniform distribu- rived probability distribution over the region. Second, as
tion within a triangle, we have we would expect, the static grid approach using 0.5x0.5
grids yields smaller errors than using 2x2 grids. Third,

A(th) the dynamic mesh approach performs better than the static
Pity) =~ Z A(t;) - Pi(ts), (4) grid approach with 2x2 grids at the lower end of the er-
t; CS; s
rors (£ 10%, 20%, 30% = R errors). Fourth, combining

cells into segments with width 0.5 (denoted as “Segment
(width=0.5)" in the figure) yields slightly larger errorsah
using static grids or dynamic meshs, but still out-performs

where~ is a hormalization factor.

IV. Performance Evaluation Sextant by a significant amount.
We evaluate localization schemes using a methodology Sextant| Grid-2 [ Grid-0.5 | PDM | Segment
similar to [27] and [26]. We uniformly place a set of nodes 1.98 1.225 | 56.67 6.82 | 3.66

over a 2-dimensional space. We compare different local-
ization schemes while varying the number of nod&3,( Table 1. Average running time in seconds using a 1200
the maximum transmission rang&)( and the fraction of ~ MHz UltraSPARC-III+ processor with 16GB memory.
anchor nodes4). In this section, our evaluation uses one
power level. In section V.C.1, we will further study the  Table 1 summarizes average running time of different
effect of power control by varying the number of power algorithms. As we can see, the running time of static grid
levels. approach decreases with increasing grid size. When the
We quantify the localization error using the same method grid size is as large as 2x2, the static grid approach takes
as in [10]. For both Sextant and our approach, we useless time than Sextant. In all other three schemes, the run-
Monte Carlo sampling to sample 1000 points in a node’s ning time is longer than Sextant. (Note that Sextant code
estimated region, and pick the one that minimizes the av-is from its original authors and it is implemented in JAVA,
erage error to other sampled points inside the region. Thewhile all of our approaches are implemented in MATLAB.
localization error is then calculated as the distance fromWe expect the running time of our approaches can be sig-
this point to the node’s true position. nificantly improved by converting the MATLAB code into
However, there is a difference in choosing sample pointsC or JAVA.)
between Sextant and our approach. Sextant uniformly sam- For the rest of evaluation, we choose PDM as a represen-
ples points inside a region, whereas in our approach thetative of our probabilistic approaches.



N=100.R =125 A=10%.P=1 ‘ 50-node (not shown) is similar. Again, PDM consistently
outperforms Sextant. As we would expect, the accuracy is
higher when the transmission range is larger, which results
in higher network density. Since the transmission range is
determined by transmission power, there is a tradeoff be-
tween energy-efficiency and localization accuracy.
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Effects of the fraction of anchor nodes Next, we study
how the fraction of anchor nodesl, affects localization
accuracy. In our evaluatio®® = 12.5. Figure 8 shows the

Cumulative Distribution of Nodes with Error<:

0'; ‘ ‘ ‘ ‘ localization accuracy of 100-node networks as we vary the

° : A S anchor fraction from 5% to 20%. (The results of 50-node
networks are similar and omitted in the interest of breyity.

Figure 6: Probability distribution improves localizatian- As before, PDM yields lower error than Sextant. In addi-
curacy (100 nodes) tion, we find that the anchor fraction significantly affects

localization accuracy. The more anchor nodes, the higher
Figure 6 shows the performance for networks with 100 |ocalization accuracy. This is consistent with our expec-
nodes in a space of size 70x70. Similar to networks with tation, because 1-hop neighbors of anchor nodes can be
50 nodes, PDM achieves higher accuracy than Sextant. Fofpcalized more accurately than nodes multiple hops away
example, the percentage of nodes achieving0% =« R = from anchor nodes due to smaller uncertainty. As shown in
3.75 errors is40% in Sextant, and i§7% in PDM. On av-  Figure 8, the increase in localization accuracy is significa
erage, Sextant takes 2.14 seconds per node to compute, ang the anchor fraction increases from 5% to 10%. A further

PDM takes 10.23 seconds per node to compute. increase in the anchor fraction leads to more moderate in-
crease in the accuracy. Therefore we U&% as the anchor
Effectsof transmissionrange Transmission rang®& de- fraction for the remaining evaluation.

termines network density. More neighbors mean more lo-

cation constraints, which usually result in higher localiz ‘ _ N=100.R=125PL=1

tion accuracy. We vary to obtain different network densi- nel Tk s =
ties shown in Table 2. For simplicity, we assume the wire-

less propagation is regular (i.&2 = r) in our simulation.
It is not difficult to generalize t? # r cases.

=

0.8

0.7

0.6

0.51

N Space| R=10 | R=125 | R=15

Cumulative Distribution of Nodes with Error<=x

50 | 50x50 | 6.0612 | 8.9592 11.28 o4t | e e aaa| |
100 | 70x70 | 6.0562 | 8.58 11.28 T2 Dymamic Meah acsoe | |
— 6 — Sextant: A=20%
) o 0.21 — % — Sextant: A=15%
Table 2: Average node degrees under different transmission 0al ~ & ~ Seant Acs
ranges. 0

0 2 N Poésmun Erroré(x) 1‘0 1‘2 14
As described in [14], 6 is a “magic” average node degree ' )
for a wireless network to be connected. So we choose the Figure 8: Effects of anchor nodes fraction (100 nodes)

shortest range to be 10, which gives an average node degree

of 6. Summary In this section, we compare different local-
ization algorithms. Our results show that probabilistic
region-based localization schemes using static grids, dy-
namic meshes, and segments of grids, achieve higher local-
ization accuracy than Sextant. In addition, PDM provides
a reasonable balance between accuracy and computation
cost.

N =100, A=10%, PL=1
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V. Two Extensions

—&— Dynamic Mesh: R=15 | |

Cumulative Distribution of Nodes with Error<=x

02 e e 1”1 In this section, we extend our approach in two directions.
01l N Semmhss | First, to further improve the localization performance, we
] propose to extract and take advantage of additional infor-

Posiion Error (x) mation by (i) using power control, (i) using carrier-sense

range as another reference distance besides communica-

tion range, (iii) incorporating physical layout, and (iy-e
Figure 7 shows the results for different transmission ploiting more powerful anchor nodes. The additional infor-

ranges, while fixingA = 10%. The accuracy results of mation is useful to many localization algorithms including

Figure 7: Effects of Transmission Range (100 nodes)



ours. Second, we enhance the robustness of our approadtately, and denote it @8scparate. I ?;ﬁ is close to

against erroneous measurement by tolerating certainelegre1, it means that the two nodes do not sense each other’s

of inconsistency among location constraints. Finally, we carrier; otherwise they do.

evaluate the effectiveness of these extensions. As with power control, we extract more precise distance
information using the carrier-sense range, and it can be ap-

V.A. Extract and Leverage Additional plied to different localization schemes.

Information Using physical layout: In some applications, we may
have a rough idea of physical layout of wireless nodes. For
example, in residential mesh networks [23], we know that
wireless nodes are deployed at different houses, and we
also have a neighborhood layout map. The map provides
additional information for us to narrow down the location.
Since a node can only be located at one of the houses, its fi-
nal estimated location should be the intersection of itis est
mated region (without considering the physical layout) and
&he regions occupied by the houses.

Using more powerful anchor nodes. As the previous
work shows, angle information is valuable for location es-
timation. However, obtaining angle information often re-
quires more expensive hardware (e.g., directional anten-
nas or additional transmitters like ultrasound). In order t
achieve both high accuracy and low cost, a promising ap-
proach is to use a combination of more powerful nodes and

distance between and j should be betwee®(p;) and less poyverful ngdes. For example, only the anchor nodes
are equipped with powerful devices for more detailed mea-

r(px—1). This additional information makes range esti- surement, whereas the remaining nodes use cheap devices
mation more accurate, and can be easily incorporated into ' 9 P

any localization algorithm. As we would expect, a larger as usual. An interesting question_is how much benefit such
number of power levels provides more information and im- powerful anchor nodes offer. In this paF_’er' we study the fol-
proves localization accuracy. Power control is an inter- lowing t_ype of F’OW‘?”“' .anchor nodes: anchor noFies that
esting and practical way for obtaining additional informa- are eqUIpped with dlrgct[onal ar?tennas. for measuring angle
tion since power control is readily available in commercial |nformat|_on f[owards its immediate ne|ghbors_. We evalu-
wireless cards. In addition, it only requires nodes to abtai ate localization accuracy as we vary the fraction of anchor

network connectivity information, and does not require sig nodes.
nal strength measurements or additional hardware.
Using carrier-sense range: Many existing localization V,B. Enhance Robustness
algorithms rely on network connectivity information for lo
cation estimation. This gives us information as to whether A node estimates its location by finding regions that sat-
a node is within or outside the communication range of an-isfy a set of location constraints. Location constraints ar
other node. However we do not have further information usually obtained by measuring distances or angles between
about the nodes that are outside the communication rangenodes. However, such measurements can be erroneous, and
We make an interesting observation: in addition to com- in some cases even lead twonsistent location constraints.
munication range, carrier-sense range can also be used & set of location constraints araconsistent if there is no
a reference for distance estimation. For example, if two point that can satisfy all these constraints.
nodes cannot sense each other’s carrier, they are outside We propose a technique on top of our probabilistic
each other’s carrier-sense range. This type of informationregion-based approach to achieve robustness againstincon
is not available if we only use network connectivity, since sistent location constraints. We leverage the fact that ma-
the carrier-sense range is typically larger than the com-jority of location measurements are consistent; and only a
munication range. LeR and R, denote communi- few constraints may contain significant errors and result in
cation range and carrier-sense range, respectively. If twonconsistency. Therefore a mesh cell belongs to a node’s es-
nodes are outside communication range but can sense eadlnated region as long as it satisfies most of the constraints
other’s carrier, their distance should be within the ranige [  In our evaluation, we use 80% as a threshold (i.e., a mesh
Reqrrier]; if two nodes cannot sense each other’s carrier, cell is considered to belong to a node’s estimated region if
their distance is larger thaR.q, e/ it satisfies at least 80% of the constraints for that node). As
To determine whether two nodes can sense each other'part of our future work, we plan to choose the threshold
carrier, we can measure whether these nodes can simulteadaptively.
neously broadcast [1]. More specifically, we measure the Our robust localization proceeds in the following three
broadcast rate from the two senders when they are active sisteps. First, as before, every node propagates location con
multaneously, and denote it &%,4¢:.-. We also measure  straints to all nodes within 3 hops away (i.e. TTL=3). Sec-
the broadcast rate when the two senders are active sepand, each nodé calculates its own region based on the

The accuracy of a localization system highly depends on
the amount of information available. We propose several
ways to obtain additional information. They can be used
separately or jointly, and can be applied to different lecal
ization algorithms. Note that while this is not the first pape
that uses additional information besides network connec-
tivity to infer location, several of the techniques present
here are novel. In addition, we evaluate and compare th
effects of the additional information.

Using power control: Power control enables wireless
nodes to obtain additional information in the following
way. Suppose each power leyglhas corresponding max-
imum and minimum transmission rang¥p; ) andr (px).

By adjusting the transmission power, if a nadénds out
that it can communicate with another nogeat power
level pi., but cannot communicate at power leygl 1, the



location constraints from other nodes. Location constsain power level, a node can extract more accurate distance con-
from a nodej determine a regio;; for i. Unlike in Sec-  straints in the above form. As shown in Figure 9, the ac-
tion 11, ¢ does not calculate its region & = N;.S;;. In- curacy improves with an increasing number of power lev-
stead,S; is calculated as the set of mesh celjssuch that els. For example, 20% nodes achieve position error within
u,; satisfies at least 80% of the constraints. Finally, each10% * R = 1.25 when 1 power level is used. In compari-
node calculates the probability distribution over all mesh son, 32%, 35%, 50%, and 65% nodes achieve similar errors
cells within its estimated region. This step is similar to when the number of power levels is 2, 3, 5, and 10, respec-
what we describe in Section IIl. tively. This demonstrates that power control is effective i
improving localization accuracy.

V.C. Performance Evaluation of Exten-
sions

N =100, R =125, A=10%
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In this section, we evaluate the performance benefits of ad-
ditional information and robustness enhancement.
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V.C.1. Evaluation of Leveraging Addi-
tional Information
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Cumulative Distribution of Nodes with Error<=x
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In this section, we study the effects of leveraging addi- o3/ 1
. . . R . & —6—PL=10
tional information. First, we examine the effect of power 02 —rres
control by varying the number of power leveld. that a 01 “gom=2 g
node can use for its transmission. Table 3 lists the trans- g
mission power at different levels, whekeis the maximum Position Error (x

transmission power. Note th&l = 5 corresponds to or
approximates several commercial wireless cards (e.g-, Net
gear WAG511 and Cisco Aironet 350 series). Next we ex-
amine the effect of carrier-sense range-based consthyints Effects of carrier sense constraint Besides power con-
varying Rearrier = 1.5R, 2R, 2.5R, 3R, whereR is com-  trol, carrier-sense range can also help to extract more ac-
munication range. Table 4 summarizes the notation wecurate distance constraints. As shown in Figure 10, com-
use. Then we evaluate the performance benefit from in-pared with the base case without carrier sense informa-
corporating a physical layout map. Finally, we examine the tion, constraints derived using carrier-sense ranges im-
effect of using powerful anchors that have angle informa- prove localization accuracy by a considerable amount. As
tion. We consider three levels of angle measurement erthe carrier-sense range increases, the negative cottstrain
rors: large errors withif—20, 20] degrees, medium errors (i.e.,d > Rearricr) become tighter, and the positive con-

Figure 9: Effects of power control (100 nodes).

within [-10, 10] degrees and small errors wittjin5, 5] de-  straints (i.e.d < Rearrier) become looser. Interestingly,
grees. These values are consistent with commercial direcg,,,,,.. = 2 * R yields the highest accuracy among all
tional antennas. the carrier-sense ranges considered. This suggests ¢éhat th

positive and negative constraints extracted uginrgR are

PL | Fraction of maximum transmission r . . . .
action of maximum transmission pows especially effective under the scenarios we consider.

1 100%

2 25%,100%

3 6.25%,25%,100%

5 6.25%,12.5%,25%,50%,100%
10 | 6.25%,10%,12.5%,20%,25%,35%,50%,65p0,
80%,100%

N =100, R=125,A=10%, PL=1
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Table 3: Transmission power for different power levels

04

Cumulative Distribution of Nodes with Error<=x
o
[l

N the number of nodes 03y i on
R transmission range 02 I SR=ZR N
A the fraction of anchor nodes 01r B ateoncilll
PL the number of power levels % . . . s - - -
Rearrier | cCarrier-sense range Position Error (x)
Table 4: Notation used in performance evaluation. Figure 10: Effects of carrier sense constraints (100 nodes)

Effects of map constraint Next we study the perfor-
Effects of power control When only connectivity infor-  mance gain from a layout map. In our evaluation, we ob-
mation is available, the distance measurement is binary-tain a real neighborhood map, which contains the coordi-
eitherd < R ord > R. By adjusting the transmission nates of houses. We select 56 houses from the map over



a 1400m x 700m space. Since there is no house size inSecond, even when the angle measurement contains errors
formation, we generate the regions occupied by the house®f [—20, 20] degrees, localization accuracy is still signifi-

as follows. Each house is a square and has the same sizeantly higher than the accuracy achieved without angle in-
A house is centered at its coordinate, and its shzgze, formation. Compared witli—5, 5] degrees of angle mea-

is determined based on the minimum distance between angurement error, its accuracy is slightly lower at the low end
pair of housesd, ;.. In the localization process, each node of position errors, and comparable for the remaining posi-
derives its region and probability distribution based am th tion errors.

constraints imposed by the map (i.e., a node can only be in-

side a house), as well as th_e location constraints from OtherSummary In this section, we study the effect of addi-
nodes. We use transmission range of 150 meters, whichjon,) information, including using power control, carrie

gives an average node degree of 6.39. sense range-based constraints, a layout map, and angle
measurements from anchor nodes. Our results demonstrate
that the additional information is effective in significhnt
x| improving localization accuracy.

N =56, R = 150(meters), A = 10%, PL =1
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V.C.2. Evaluation of Robustness En-
hancement
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In this section, we evaluate the robustness of our extended
localization algorithms. First we consider the case where

Cumulative Distribution of Nodes with Error<:

o2 —o— PR the transmission range information is inaccurate. More
ol T heze=qn || specifically, each node’s true communication ranBg ié
LS ‘ ‘ . L =%—NoMapinto R = Rest + Rerror, WhereRe,...- iS @ positive or nega-
¢ e ety tive range estimation error, aril. ., is the communication
range that we have estimatef. ..., arises from the differ-
Figure 11: Effects of a physical layout. ence in transceivers’ properties and environmental effect

As shown in Figure 11, a layout map significantly im- While one may try to reducé.,,., by individually cal-
proves localization accuracy. In addition, the smallerdeou ibrating each node (e.g., obtaining conservative minimum
size, the higher localization accuracy. This is what we and maximum communication ranges), such calibration is
would expect. Because a node can only reside in a housegostly. Moreover even with calibration, errors cannot be
the location constraints imposed by the map is tighter for completely eliminated due to changing environmental ef-

smaller houses. Nevertheless, even wheixe = d,,i,, fects. As shown in Figure 13, with robustness enhance-
localization accuracy is still significantly higher tharnthvi ment, the localization algorithm maintains high accuracy
out the layout map. when the communication ranges contain upa = R er-

rors. The accuracy is lower wheR..,.,.,,- increases up to

Effects of powerful anchors Finally, we examine how  40% * R, but still all nodes can be localized, with around
anchor nodes with angle measurement affect the accurac$0% nodes achieving withif? /2 = 6.25 position error.

of localization. We use three levels of angle measurement
errors:[—20, 20] degrees|—10, 10] degrees anf-5, 5] de- .
grees. An estimated angle is then the true angle plus noise ool
uniformly distributed within the error intervals. Figur&2
summarizes the results.
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Figure 13: Effects of inaccurate communication range
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ol Sl (N =50, R=125, A =10%, PL = 1).

S ) Next we consider errors arising from malicious nodes.
Positon Efror () In our evaluation, we randomly select a few nodes as ma-

licious nodes. Such a node pretends to be at a randomly

generated location. It calculates a region of a circle cen-
We make the following observations. First, angle infor- tered at the false location with radii and then transmits

mation helps to decrease the localization error signifigant this region as a false constraint to its neighbors. Figure 14

Figure 12: Effects of angle information (100 nodes).



shows the effects of malicious nodes. There are two setsReferences
of curves, corresponding to the results of position errors

within R/2 and within R. “Grid-2” and “Robust Grid-2"

curves represent the results from using fixed 2x2 rectan-
gular cells with and without the additional robustness en-
hancement, respectively. After introducing such malisiou
nodes, not all nodes can be localized due to potentially in-
consistent constraints. For the nodes that have inconsiste

constraints and cannot be localized, their localization er [2

ror is considered larger thaR. As Figure 14 shows, even

when the fraction of malicious nodes is only 10%, the per-

centage of nodes with position errefsR/2 = 6.25 drops
as much as 30% under both Sextant and Grid-2. In com-

parison, with the additional robustness enhancement, the[ ]
accuracy reduction under the “Robust Grid-2" is small es-

pecially when the fraction of malicious nodes is within 10%
(only 10% reduction). Moreover, even when 30% nodes are
malicious, majority of nodes can still be localized within
errors of R under “Robust Grid-2". This demonstrates the
effectiveness of our robustness enhancement. [5]
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Figure 14: Effects of malicious node®d’(= 50, R = 12.5,

A =10%, PL = 1).

Summary Our evaluation results show that the robust- [9]
ness enhancement is effective. The enhancement helps
maintain high localization accuracy even when there are
20% * R range errors 0ot0% malicious nodes.

VI. Conclusion

In this paper, we present probabilistic region-based local

[10]

[11]

ization schemes. We use static grids, dynamic meshes, and
segments of grids as units for which probability is com- [12]
puted. Our results show that these probabilistic-based lo-
calization schemes achieve high accuracy. We further ex-
tend our approach in two ways: we exploit new ways to ob-

tain and leverage additional information, and enhance ro-
bustness by tolerating inconsistency in location constsai  [13]
arising from measurement errors and/or malicious nodes.
Our evaluation demonstrates the effectiveness of these ex-

tensions.
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