
Probabilistic Region-based Localization for
Wireless Networks ∗

Feng Wang, Lili Qiu, and Simon S. Lam
University of Texas at Austin

Abstract

Determining the physical location of wireless nodes is im-
portant to a wide variety of applications. In this paper,
we propose a series of probabilistic region-based localiza-
tion algorithms, including using static grids, segments of
grids, and dynamic meshes. These algorithms provide a
wide range of trade-off between accuracy and cost, mak-
ing them suitable for different types of networks, such as
sensor networks and mesh networks. Furthermore, we pro-
pose several techniques to extract and leverage additional
information on location constraints, which is shown to sig-
nificantly improve the localization accuracy and can be ap-
plied to other localization schemes. Finally we develop
techniques to enhance robustness of localization, and show
that the enhanced scheme can achieve high accuracy even
in the presence of significant measurement errors.

I. Introduction

Determining the physical location of wireless nodes is im-
portant to a wide variety of applications, ranging from geo-
graphic routing [13, 22] to context-aware applications [15,
16], from habitat monitoring [4] to environment surveil-
lance [2, 28].

A global positioning system (GPS) [9] can be used to
obtain location information. But it does not work indoors,
and it is also costly to equip every wireless node with GPS.
The limitation of GPS has motivated researchers to develop
algorithms to infer location using cheap hardware by lever-
aging network connectivity, signal strength, and angle-of-
arrival information [29, 3, 19, 17, 11, 27, 26, 12]. Despite
extensive research in the area of localization, the following
three topics in localization research require further study,
which is the subject of this paper.

First, developing accurate localization algorithms based
on only connectivity information is an active research topic.
A major factor that determines the effectiveness of the al-
gorithms is how the estimated locations are represented.
In many previous studies, the location of a node is esti-
mated as a single point. As shown in [7], there are often
many coordinate assignments that satisfy the location con-
straints derived from an underlying network. Therefore as-
signing the location of a wireless node to a single point
may result in significant error. For example, as described
in [10], when a node is constrained to be located at four
corners of a region, a single point estimation may place
the node at the center, which is misleading. In addition,
a single point representation is vulnerable to measurement
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errors – a small perturbation in measurement data may re-
sult in a large difference in the estimated location [18]. The
novel approaches, proposed by Galstyan et al. and Guha et
al. [8, 10], are to represent the estimated location as a re-
gion that consists of all points satisfying the location con-
straints. Such a region-based representation has the poten-
tial to yield higher accuracy.

Motivated by [8, 10], we also use a region to represent
a node’s estimated location. To achieve even higher accu-
racy, we propose a probabilistic localization approach. In
this approach, each node derives a probability distribution
over a set of cells that it can possibly reside in. Every cell
is associated with a probability about the likelihood that
it contains the true position of the node. Furthermore, we
propose two techniques to reduce computation cost. The
first technique combines cells into segments, which signif-
icantly reduces computation cost with a moderate increase
in localization error. The second technique is called proba-
bilistic dynamic mesh-based localization (PDM). It uses a
mesh generator to partition a region into a mesh, and rep-
resents the estimated location of a wireless node as a set of
mesh cells. It iteratively refines the estimated location us-
ing location constraints extracted from the underlying net-
work. It achieves high accuracy by deriving the probability
distribution of a node’s position over the region. It achieves
reasonable cost by adaptively changing the mesh cell size
using DistMesh [5], which is an efficient way to generate
an unstructured triangular and tetrahedral mesh to cover a
region.

Second, localization accuracy relies heavily on the
amount of available information about location constraints.
For example, as shown in [6], there is a fundamental limit
in localization accuracy using commodity 802.11 hard-
ware. To further improve accuracy, additional information
on location constraints is necessary. In this paper, we pro-
pose the following ways to obtain and leverage additional
information: (i) using network connectivity under different
transmission power levels, (ii) using knowledge of whether
two nodes can sense each other’s carrier, which can be mea-
sured empirically as shown in [1], (iii) using layout maps,
and (iv) using more powerful anchor nodes (e.g., the an-
chor nodes can not only extract distance constraints for its
neighbors, but also obtain the approximate angles). We also
evaluate the benefit of each type of such additional infor-
mation.

Third, therobustness issue in localization has received
little attention, even though robustness is essential to the
success of any localization scheme since we cannot ex-
pect that measurements are always accurate. Erroneous
measurement reports may arise from measurement errors,
loss of measurement data, and hardware/software prob-
lems. Our probabilistic region-based localization provides



a natural mechanism to handle measurement errors – the
probability computation can take into account of the extent
to which the location constraints are satisfied. In this way,a
mesh cell that is inconsistent with most location constraints
is assigned a low probability and pruned out, whereas a
mesh cell satisfying most location constraints (but not nec-
essarily all the constraints) will still be retained.

In summary, while localization has been an extensively
studied subject, our approach has the following three novel
contributions. First, we develop probabilistic region-based
localization algorithms, including using static grids, dy-
namic meshes, and segments of grids. These algorithms
provide a wide range of trade-off between accuracy and
cost. For example, the segments-based approach yields
low cost and high accuracy, and is well suited for net-
works formed by less powerful nodes, such as sensor net-
works. In comparison, the PDM achieves a higher accuracy
at a higher cost, making it suitable for networks formed
by more powerful nodes, such as mesh networks. Second,
we propose several techniques to extract and leverage addi-
tional information on location constraints. The additional
information can be applied to both our and others’ local-
ization schemes. Our results show that the additional in-
formation can significantly improve localization accuracy.
Third, we develop techniques to enhance robustness of lo-
calization, and show that the enhanced algorithm can toler-
ate significant errors from measurement data.

The rest of the paper is organized as follows. In Sec-
tion II, we overview the related work. We propose the prob-
abilistic region-based localization algorithms in Section III,
and evaluate the performance in Section IV. In Section V,
we present and evaluate the following two extensions: we
further improve accuracy by taking advantage of additional
information, and enhance the robustness against erroneous
measurements by leveraging our probabilistic-based ap-
proach. Finally we conclude in Section VI.

II. Related Work

Localization has been extensively studied due to its great
importance. We broadly classify previous work into the
following four areas: (i) localization schemes in single-hop
wireless networks (e.g., WLAN), (ii) localization schemes
in multihop wireless networks, (iii) analysis of the funda-
mental limitations of localization schemes, and (iv) con-
trolling node placement to ease localization.

Localization in a single hop wireless network: In the
area of localization for single-hop wireless networks, a
number of interesting approaches have been proposed.
For example, Active badge [29] locates users by having
them wear infrared badges that transmit unique identifiers.
RADAR [3] relies on signal strength measurement gath-
ered at multiple receiver locations to triangulate users’ lo-
cations. Cricket [21] uses the difference between the arrival
time of radio and ultrasound signals to estimate distance.
VORBA [19] determines location based on angle of arrival
measurements from 802.11 base stations. In [17], Madigan
et al. develop a Bayesian hierarchical model that simulta-

neously locates a set of wireless clients (as opposed to lo-
calizing one user at a time). Refer to [11] for a nice survey
on the location systems for single hop wireless networks.

Localization in a multihop wireless network: Local-
ization in multihop environments is even more challeng-
ing, since nodes are often multiple hops away from anchor
nodes, thereby increasing the uncertainty in location.

A number of interesting localization algorithms have
been proposed for such networks. For example, the au-
thors in [24] develop a distributed localization approach
that iterates through a two-phase process: ranging and es-
timation. During the ranging phase, each node estimates
its distance to its neighbors, whereas during the estima-
tion phase, nodes use the ranging information and their
neighbors whose positions have been determined to esti-
mate their own location. In [25], the authors enhance the
previous approach by formulating the problem as a global
non-linear optimization problem. This limits error accu-
mulation in [24]. Shanget al. in [27] propose to use multi-
dimensional scaling (MDS) to determine location in a cen-
tralized fashion. The localization accuracy is limited partly
because it cannot handle violation of triangulation (espe-
cially for irregular-shaped networks). Later they develop
a distributed version of MDS-based approach in [26]. It
is shown to out-perform the original centralized version in
irregular-shaped networks by ignoring the distance infor-
mation among nodes that are far-apart. In [18], the authors
present algorithms that use robust quadrilateral for localiza-
tion. Their approach finds sets of four nodes that are fully
connected, and localizes the fourth node based on the posi-
tions of the other three nodes. To prevent error accumula-
tion, the four-node set needs to satisfy robust quadrilateral
conditions. This improves accuracy at the cost of leaving
some nodes unlocalized. In [12], the authors propose a se-
quential Monte Carlo localization method to enhance the
accuracy of localization by exploiting mobility. In particu-
lar, the approach leverages mobility history to predict pos-
sible locations based on previous location samples and its
movement, and uses the new connectivity information to
eliminate inconsistent location samples.

Unlike most of the previous approaches, which repre-
sent inferred locations using points, Sextant [10] devel-
ops a novel approach that denotes inferred locations as re-
gions represented by Bezier curves. Such a representation
is shown to significantly improve accuracy. Motivated by
their approach, in this paper we also use region-based rep-
resentation. Different from their work, we use a dynamic
mesh to represent a region, and derive the probability for
a node to reside in each mesh cell. Such a representation
enables us to achieve high accuracy and robustness without
significant computation cost.

Analysis of limits on localization accuracy: In addition
to developing novel localization algorithms, researchers
have also analyzed the fundamental limits on localization
algorithms. For example, the authors in [6] compare a se-
ries of localization algorithms, and find that using com-
modity 802.11 technology over a range of algorithms, ap-



proaches and environments, it is expected to have a median
localization error of 10 feet and 97th percentile error of 30
feet. They conclude that these limitations are fundamental
and unlikely to be significantly improved without funda-
mentally more detailed environmental models or additional
localization infrastructure. It points out that leveraging ad-
ditional information is necessary in order to improve the
accuracy.

Node placement: Complementary to developing local-
ization algorithms, researchers have also designed algo-
rithms to place nodes to reduce the ambiguity of estimated
location. For example, in [11] Rayet al. apply the theory of
identifying codes to determine the placement of sensors so
that each position is uniquely identified by a set of sensors
that it can directly communicate with. The authors further
extend their algorithms to tolerate errors (e.g., sensor fail-
ures). In [7], Erenet al. show that a network has a unique
localization if and only if its corresponding grounded graph
is generally globally rigid. Applying graph-rigidity litera-
ture, they develop approaches to constructing uniquely lo-
calizable networks, and study the computation complexity
of localization. Node placement algorithms are comple-
mentary to localization algorithms. The localization algo-
rithms should be applicable even when we do not have the
flexibility to alter the graph to make it uniquely localiz-
able.

III. Probabilistic Dynamic Mesh-
Based Localization

As mentioned in the previous section, a significant differ-
ence between various localization approaches is how the
estimated location is represented. To achieve high accu-
racy and robustness, we adopt a region-based representa-
tion, where an estimated location is represented as a region
that consists of all points satisfying the location constraints
extracted from the underlying network. We further improve
the existing work [8, 10] by deriving a probability distri-
bution over the region to reflect the likelihood of the true
position. Such probability distribution, combined with an
explicitly represented region, provides much richer loca-
tion information than a single position, and allows us to
achieve higher accuracy in face of insufficient information
and measurement errors.

Below we first present a probabilistic region-based lo-
calization approach. Then we describe two techniques to
improve the efficiency of the approach. The first one com-
bines multiple horizontal (or vertical) cells (in an estimated
region) into a single segment, which reduces computation
cost at the expense of slightly higher error. The second
technique is based on a dynamic mesh, where mesh cells
are dynamically adjusted according to the size and shape
of the region. It can achieve both efficiency and accuracy.

III.A. Probabilistic Region-Based Local-
ization

The probabilistic region-based localization proceeds as fol-
lows. First, every node’s location is initialized to be the
entire space. Then each node extracts location constraints
by measuring the connectivity of the underlying network,
and propagates these constraints to nodes within a certain
hops away. (We use 3 hops in our evaluation.) If angle and
received signal strength index (RSSI) measurements are
available, they can be used to extract location constraints
and processed in a similar way. Based on the constraints
reported by other nodes and its own observation, a node es-
timates its new location by pruning out the sub-regions that
are inconsistent with the constraints. For the sub-regions
that are consistent with the constraints, a node further com-
putes a probability distribution over them. The approach is
run in a distributed way.

Extracting location constraints: To estimate its loca-
tion, a node first extracts location constraints from the un-
derlying network. Examples of location constraints include
“the distance between nodei and nodej is at mostd” (also
called distance constraints), and “the angle between lineij
and the direction of North is within[θ1, θ2]” (also called an-
gle constraints). Such location constraints can be obtained
by measuring network connectivity and angle-of-arrival. In
this section, we only consider distance constraints. We will
consider angle constraints in Section V.A.

To handle irregular wireless propagation, each wireless
node is associated with two separate radii:R andr (R ≥
r), whereR denotes the maximum transmission range the
node can reach, andr denotes the minimum transmission
range the node can reach [10].R 6= r arises when the
signal propagation is not the same in all directions. When
nodei can hear nodej, we obtain a constraint:dij ≤ Rj .
This is apositive constraint. When nodei cannot hear node
j, we obtain a constraint:dij > rj . This is anegative
constraint.

Next we introduce some more notations. LetLCji de-
note a location constraint for nodej using nodei as a ref-
erence point. LetPOS() denote a positive constraint, and
NEG() denote a negative constraint. LetSi andSj be the
estimated region of nodei andj, respectively.

If nodej can hear nodei, we obtain a positive constraint:
dij ≤ R. Then the estimated region of nodej can be ex-
pressed as:

Sj = POS(Si, R) = {pj |∃ pi ∈ Si, d(pi, pj) ≤ R},

whered(pi, pj) is the distance between two pointspi and
pj . This region is a union of discs that are centered at each
point insideSi with radiusR. Similarly if nodej cannot
hear nodei, we derive a negative constraint, and the region
of nodej is estimated to be

Sj = NEG(Si, r) = {pj |∃ pi ∈ Si, d(pi, pj) > r}

.
If there are multiple constraints derived (e.g., by using

multiple reference points), the final output is the intersec-
tion of the regions from all these constraints. Note that



while we use connectivity information to extract location
constraints, our approach can easily incorporate other in-
formation, such as angle estimation and layout maps, which
will be described in Section V.A.

Computing probability: Next we describe how each
nodei derives a probability distributionPi over its region
Si. To do so, we partition the whole space into (small) cells,
where each cell is a square with a fixed size. A cell is the
smallest unit for which we compute probability. Lets be a
cell. Pi(s) is the probability that nodei is in s. Each loca-
tion constraint gives a probability distribution over an esti-
mated region. The final relative probability of each cell is
the product of the probabilities derived from all constraints
(including both positive and negative constraints). We fur-
ther derive the absolute probability by normalizing the rel-
ative probabilities.

Below we show how to derive a probability distribution
from one location constraint. Since the probability compu-
tation using positive and negative connectivity information
is similar, we illustrate the idea by considering only a pos-
itive connectivity constraint.

First we describe how to compute probabilityPi(s) us-
ing an anchor node,a, whose location is known, as a ref-
erence point. Using network connectivity, we obtain a dis-
tance constraint froma to i asdia ≤ k ∗ R, wherek is
the number of hops betweena andi. ThereforeSi is the
disc centered ata with radiusk ∗ R. Since only connectiv-
ity information is available, we assume nodei’s location is
uniformly distributed inside the circle. Therefore, for a cell
g,

Pi(g) =

{

0 if g is outside the circle,

1/c1 otherwise,

wherec1 is the number of cells inside the circle. (Note
that application of negative connectivity information will
change the above probability distribution. For example, if
a node is 2 hop away froma, the fact that it is nota’s im-
mediate neighbor allows us to prune out the area of a circle
centered ata with radiusr.) To avoid leaving out the true
position, a cell is considered “inside” the circle as long as
it overlaps with the circle. Consequently,Si =

⋃

(g) is not
exactly the region enclosed by the circle, but the union of
all cells considered “inside” the circle. Therefore1/c1 is
an approximation since some cells are partially inside the
circle. The accuracy of such approximation depends on the
cell size. Smaller cell sizes reduce the approximation error
at the cost of increasing computation and storage cost.

Next we describe how to compute probabilityPi(s) us-
ing a non-anchor node (whose location is not known in ad-
vance) as a reference point. Consider a nodei’s neighbor
j. For a celluj ⊂ Sj , the relative magnitude of its prob-
ability is determined by the probability of subregion inSi

that satisfiesd(ui, uj) ≤ R. This results in the following:

Pj(uj) = β ·

∑

ui⊂d(ui,uj)≤R Pi(ui)
∑

ui⊂Si
Pi(ui)

(1)

= β ·
∑

ui⊂d(ui,uj)≤R

Pi(ui) (2)

whereβ is a normalization factor so that
∑

uj
Pj(uj) = 1.

Figure 1 shows how a node’s estimated location con-
verges. After the first iteration, the region is approximately
a circle since this node is a neighbor of an anchor. The
probability distribution is uniform over all cells. After the
second iteration, the estimated region is refined, with the
updated probability distribution and smaller area, by lever-
aging the constraints from the anchors that are 2 hops away.
After the third iteration, the region is reduced further (al-
though the amount of reduction is less than in the second
iteration because the constraints from the 3-hop neighbors
have less impact on the region than constraints from the 2-
hop neighbors). As it shows, the cell containing the true po-
sition (marked as the shaded cell) and its surrounding cells
have significantly higher probabilities than the remaining
region.
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(a) Snapshot after 1 iteration.
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(b) Snapshot after 2 iterations.
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(c) Snapshot after 3 iterations.

Figure 1: Snapshots of a node’s estimated location for the
first three iterations.



III.B. Enhancing Efficiency

So far we consider using static grids. In this case, the com-
putation cost is determined by the number of cells. If a
node’s location has high uncertainty due to lack of suffi-
cient location constraints, its estimated region is large,re-
sulting in a large number of cells and hence high compu-
tation and storage costs. In this section, we describe two
techniques to improve the efficiency of the above local-
ization approach. The first approach reduces the cost by
combining horizontally (vertically) contiguous cells into a
row (column) segment. The second approach dynamically
adapts the cell size so that coarse-grained cells are used
when the estimated region is large and fine-grained cells
are used when the estimated region is small.

Segment-based localization: One way to reduce the
complexity is to combine horizontally (vertically) contigu-
ous cells into a row (column) segment. Since computation
using row segments is similar as using column segments, in
the following description we focus on using row segments.
The width of each segment is fixed, but the length is vari-
able. A row segment is specified by a 3-tuple,(y, x1, x2),
where(x1, y) is the left end and(x2, y) is the right end.
Each estimated region is represented as a set of row seg-
ments. We want to calculate the probability of each row
segment containing the true position. Now the complexity
is determined by the number of row segments.

Suppose we obtain nodei’s estimated region and the
probability distribution over the region. We calculate its
neighborj’s estimated region and probability distribution
as follows. The location constraintLCji is dji ≤ R.
Hence,Sj = POS(Si, R). Letui denote a row segment of
i, anduj denote a row segment ofj. The general formula
to derive probability is similar to (1). Since a row segment
may be significantly larger than a cell, treating partial over-
lap as complete overlap may result in high error. Therefore
we further calculate the fraction of a row segment that sat-
isfies location constraints.
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Figure 2: Example of Using Segments

Figure 2 shows an example.uj is a row segment inSj .
POS(uj , R) is the region expanded fromuj by R. ui is a
row segment inSi. ui is partially inPOS(uj , R). When
calculatingPj(uj), we need to calculate the portion ofui

that is insidePOS(uj , R).

Let vi = ui ∩POS(uj , R). Let A(S) denote regionS’s
size. Assuming uniform distribution within a segment, we

have,

Pj(uj) = γ ·
∑

ui⊂Si

A(vi)

A(ui)
· Pi(ui), (3)

whereγ is a normalization factor.

Probabilistic dynamic mesh-based localization (PDM):
Combining consecutive cells in one dimension can signifi-
cantly reduce computation and storage costs. On the other
hand, its accuracy depends on how accurately a uniform
distribution captures the actual probability distribution over
the set of combined cells. When the actual distribution sig-
nificantly deviates from a uniform distribution, localization
accuracy will decrease. To achieve both high accuracy and
low cost, we propose an alternative approach that dynami-
cally adjusts the cell size as needed.

At a high level, we use coarse-grained cells when the es-
timated region is large, and use fine-grained cells when the
estimated region is small. To achieve this goal, we lever-
age mesh generation work developed in the area of com-
puter graphics. We use DistMesh [5, 20] because it can
efficiently generate high-quality meshes. DistMesh uses a
signed distance function d(x, y) to specify a region. The
absolute value ofd(x, y) is the minimum distance from
(x, y) to the boundary of the region, where a negative dis-
tance means it is inside the region and a positive distance
means it is outside the region. It generates meshes using
Delaunay triangulation, and optimizes node locations using
a force-based smoothing procedure as described in [5, 20].
It also provides a parameter to control the sizes of triangles.

We apply DistMesh to localize wireless nodes as fol-
lows. Each node represents its estimated region using a
set of triangular cells. A triangular cell is the smallest
unit for which we compute a probability. We control the
mesh structure so that each triangle has similar sizes in
both dimensions, and the sizes of triangles are adaptive ac-
cording to the size of the region. It is straightforward to
write distance functions for distance constraints and angle
constraints. Each node calculates its region based on the
measured distance constraints. Given a combined distance
function from all location constraints, DistMesh can gen-
erate a set of triangular meshes to represent the region that
satisfies the location constraints.

Figure 3 illustrates two examples of triangular mesh gen-
erated by Distmesh. Figure 3(a) shows the mesh cells for a
circle. Figure 3(b) shows the mesh cell that represents the
estimated region for the same node as in Figure 1, resulting
from subtracting three circles from one circle.
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Figure 3: Triangular mesh generated by Distmesh.



After obtaining its estimated region, a node can derive
the probability distribution over the triangles (inside the re-
gion) in a similar way as in static grids. Suppose we know
the region and probability distribution over the trianglesof
a given nodei. A neighborj of nodei has location con-
straintdji ≤ R, and calculates its regionSj as follows. Let
ti denote a triangle inSi, andtj denote a triangle inSj . We
derive the probability associated withtj by first computing
the fraction ofti satisfying the location constraint, and then
weighting the fraction by the probability of nodei residing
in ti.

Figure 4 shows an example of deriving probability dis-
tribution. tj is a triangle inSj . POS(tj , R) is the region
expanded fromtj by R. ti is a triangle inSi. ti is par-
tially in POS(tj , R). When calculatingPj(tj), we need to
determine what fraction ofti is insidePOS(tj , R).
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Figure 4: Example of mesh model.

Let t′i = ti ∩ POS(tj , R). Assuming uniform distribu-
tion within a triangle, we have

Pj(tj) = γ ·
∑

ti⊂Si

A(t′i)

A(ti)
· Pi(ti), (4)

whereγ is a normalization factor.

IV. Performance Evaluation

We evaluate localization schemes using a methodology
similar to [27] and [26]. We uniformly place a set of nodes
over a 2-dimensional space. We compare different local-
ization schemes while varying the number of nodes (N ),
the maximum transmission range (R), and the fraction of
anchor nodes (A). In this section, our evaluation uses one
power level. In section V.C.1, we will further study the
effect of power control by varying the number of power
levels.

We quantify the localization error using the same method
as in [10]. For both Sextant and our approach, we use
Monte Carlo sampling to sample 1000 points in a node’s
estimated region, and pick the one that minimizes the av-
erage error to other sampled points inside the region. The
localization error is then calculated as the distance from
this point to the node’s true position.

However, there is a difference in choosing sample points
between Sextant and our approach. Sextant uniformly sam-
ples points inside a region, whereas in our approach the

number of sample points in a cell is proportional to its prob-
ability. As we will show, the probabilistic-based approach
can significantly improve the localization accuracy.

Effects of the number of nodes Figure 5 shows the
cumulative distribution of position errors forN = 50,
R = 12.5, andA = 10%. The size of the space is 50x50.
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We make the following observations. First, PDM sig-
nificantly out-performs Sextant. For example, the per-
centage of nodes achieving≤ 30% ∗ R = 3.75 errors
in dynamic mesh is60% compared to36% in Sextant.
This is because in Sextant different points inside a re-
gion are treated equally, whereas PDM leverages the de-
rived probability distribution over the region. Second, as
we would expect, the static grid approach using 0.5x0.5
grids yields smaller errors than using 2x2 grids. Third,
the dynamic mesh approach performs better than the static
grid approach with 2x2 grids at the lower end of the er-
rors (≤ 10%, 20%, 30% ∗ R errors). Fourth, combining
cells into segments with width 0.5 (denoted as “Segment
(width=0.5)” in the figure) yields slightly larger errors than
using static grids or dynamic meshs, but still out-performs
Sextant by a significant amount.

Sextant Grid-2 Grid-0.5 PDM Segment
1.98 1.225 56.67 6.82 3.66

Table 1: Average running time in seconds using a 1200
MHz UltraSPARC-III+ processor with 16GB memory.

Table 1 summarizes average running time of different
algorithms. As we can see, the running time of static grid
approach decreases with increasing grid size. When the
grid size is as large as 2x2, the static grid approach takes
less time than Sextant. In all other three schemes, the run-
ning time is longer than Sextant. (Note that Sextant code
is from its original authors and it is implemented in JAVA,
while all of our approaches are implemented in MATLAB.
We expect the running time of our approaches can be sig-
nificantly improved by converting the MATLAB code into
C or JAVA.)

For the rest of evaluation, we choose PDM as a represen-
tative of our probabilistic approaches.
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Figure 6: Probability distribution improves localizationac-
curacy (100 nodes)

Figure 6 shows the performance for networks with 100
nodes in a space of size 70x70. Similar to networks with
50 nodes, PDM achieves higher accuracy than Sextant. For
example, the percentage of nodes achieving≤ 30% ∗ R =
3.75 errors is40% in Sextant, and is67% in PDM. On av-
erage, Sextant takes 2.14 seconds per node to compute, and
PDM takes 10.23 seconds per node to compute.

Effects of transmission range Transmission rangeR de-
termines network density. More neighbors mean more lo-
cation constraints, which usually result in higher localiza-
tion accuracy. We varyR to obtain different network densi-
ties shown in Table 2. For simplicity, we assume the wire-
less propagation is regular (i.e.R = r) in our simulation.
It is not difficult to generalize toR 6= r cases.

N Space R = 10 R = 12.5 R = 15

50 50x50 6.0612 8.9592 11.28
100 70x70 6.0562 8.58 11.28

Table 2: Average node degrees under different transmission
ranges.

As described in [14], 6 is a “magic” average node degree
for a wireless network to be connected. So we choose the
shortest range to be 10, which gives an average node degree
of 6.
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Figure 7: Effects of Transmission Range (100 nodes)

Figure 7 shows the results for different transmission
ranges, while fixingA = 10%. The accuracy results of

50-node (not shown) is similar. Again, PDM consistently
outperforms Sextant. As we would expect, the accuracy is
higher when the transmission range is larger, which results
in higher network density. Since the transmission range is
determined by transmission power, there is a tradeoff be-
tween energy-efficiency and localization accuracy.

Effects of the fraction of anchor nodes Next, we study
how the fraction of anchor nodes,A, affects localization
accuracy. In our evaluation,R = 12.5. Figure 8 shows the
localization accuracy of 100-node networks as we vary the
anchor fraction from 5% to 20%. (The results of 50-node
networks are similar and omitted in the interest of brevity.)
As before, PDM yields lower error than Sextant. In addi-
tion, we find that the anchor fraction significantly affects
localization accuracy. The more anchor nodes, the higher
localization accuracy. This is consistent with our expec-
tation, because 1-hop neighbors of anchor nodes can be
localized more accurately than nodes multiple hops away
from anchor nodes due to smaller uncertainty. As shown in
Figure 8, the increase in localization accuracy is significant
as the anchor fraction increases from 5% to 10%. A further
increase in the anchor fraction leads to more moderate in-
crease in the accuracy. Therefore we use10% as the anchor
fraction for the remaining evaluation.
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Figure 8: Effects of anchor nodes fraction (100 nodes)

Summary In this section, we compare different local-
ization algorithms. Our results show that probabilistic
region-based localization schemes using static grids, dy-
namic meshes, and segments of grids, achieve higher local-
ization accuracy than Sextant. In addition, PDM provides
a reasonable balance between accuracy and computation
cost.

V. Two Extensions

In this section, we extend our approach in two directions.
First, to further improve the localization performance, we
propose to extract and take advantage of additional infor-
mation by (i) using power control, (ii) using carrier-sense
range as another reference distance besides communica-
tion range, (iii) incorporating physical layout, and (iv) ex-
ploiting more powerful anchor nodes. The additional infor-
mation is useful to many localization algorithms including



ours. Second, we enhance the robustness of our approach
against erroneous measurement by tolerating certain degree
of inconsistency among location constraints. Finally, we
evaluate the effectiveness of these extensions.

V.A. Extract and Leverage Additional
Information

The accuracy of a localization system highly depends on
the amount of information available. We propose several
ways to obtain additional information. They can be used
separately or jointly, and can be applied to different local-
ization algorithms. Note that while this is not the first paper
that uses additional information besides network connec-
tivity to infer location, several of the techniques presented
here are novel. In addition, we evaluate and compare the
effects of the additional information.

Using power control: Power control enables wireless
nodes to obtain additional information in the following
way. Suppose each power levelpk has corresponding max-
imum and minimum transmission rangeR(pk) andr(pk).
By adjusting the transmission power, if a nodei finds out
that it can communicate with another nodej at power
level pk, but cannot communicate at power levelpk−1, the
distance betweeni and j should be betweenR(pk) and
r(pk−1). This additional information makes range esti-
mation more accurate, and can be easily incorporated into
any localization algorithm. As we would expect, a larger
number of power levels provides more information and im-
proves localization accuracy. Power control is an inter-
esting and practical way for obtaining additional informa-
tion since power control is readily available in commercial
wireless cards. In addition, it only requires nodes to obtain
network connectivity information, and does not require sig-
nal strength measurements or additional hardware.

Using carrier-sense range: Many existing localization
algorithms rely on network connectivity information for lo-
cation estimation. This gives us information as to whether
a node is within or outside the communication range of an-
other node. However we do not have further information
about the nodes that are outside the communication range.

We make an interesting observation: in addition to com-
munication range, carrier-sense range can also be used as
a reference for distance estimation. For example, if two
nodes cannot sense each other’s carrier, they are outside
each other’s carrier-sense range. This type of information
is not available if we only use network connectivity, since
the carrier-sense range is typically larger than the com-
munication range. LetR andRcarrier denote communi-
cation range and carrier-sense range, respectively. If two
nodes are outside communication range but can sense each
other’s carrier, their distance should be within the range [R,
Rcarrier]; if two nodes cannot sense each other’s carrier,
their distance is larger thanRcarrier.

To determine whether two nodes can sense each other’s
carrier, we can measure whether these nodes can simulta-
neously broadcast [1]. More specifically, we measure the
broadcast rate from the two senders when they are active si-
multaneously, and denote it asTtogether. We also measure
the broadcast rate when the two senders are active sepa-

rately, and denote it asTseparate. If Ttogether

Tseparate
is close to

1, it means that the two nodes do not sense each other’s
carrier; otherwise they do.

As with power control, we extract more precise distance
information using the carrier-sense range, and it can be ap-
plied to different localization schemes.

Using physical layout: In some applications, we may
have a rough idea of physical layout of wireless nodes. For
example, in residential mesh networks [23], we know that
wireless nodes are deployed at different houses, and we
also have a neighborhood layout map. The map provides
additional information for us to narrow down the location.
Since a node can only be located at one of the houses, its fi-
nal estimated location should be the intersection of its esti-
mated region (without considering the physical layout) and
the regions occupied by the houses.

Using more powerful anchor nodes: As the previous
work shows, angle information is valuable for location es-
timation. However, obtaining angle information often re-
quires more expensive hardware (e.g., directional anten-
nas or additional transmitters like ultrasound). In order to
achieve both high accuracy and low cost, a promising ap-
proach is to use a combination of more powerful nodes and
less powerful nodes. For example, only the anchor nodes
are equipped with powerful devices for more detailed mea-
surement, whereas the remaining nodes use cheap devices
as usual. An interesting question is how much benefit such
powerful anchor nodes offer. In this paper, we study the fol-
lowing type of powerful anchor nodes: anchor nodes that
are equipped with directional antennas for measuring angle
information towards its immediate neighbors. We evalu-
ate localization accuracy as we vary the fraction of anchor
nodes.

V.B. Enhance Robustness

A node estimates its location by finding regions that sat-
isfy a set of location constraints. Location constraints are
usually obtained by measuring distances or angles between
nodes. However, such measurements can be erroneous, and
in some cases even lead toinconsistent location constraints.
A set of location constraints areinconsistent if there is no
point that can satisfy all these constraints.

We propose a technique on top of our probabilistic
region-based approach to achieve robustness against incon-
sistent location constraints. We leverage the fact that ma-
jority of location measurements are consistent; and only a
few constraints may contain significant errors and result in
inconsistency. Therefore a mesh cell belongs to a node’s es-
timated region as long as it satisfies most of the constraints.
In our evaluation, we use 80% as a threshold (i.e., a mesh
cell is considered to belong to a node’s estimated region if
it satisfies at least 80% of the constraints for that node). As
part of our future work, we plan to choose the threshold
adaptively.

Our robust localization proceeds in the following three
steps. First, as before, every node propagates location con-
straints to all nodes within 3 hops away (i.e. TTL=3). Sec-
ond, each nodei calculates its own region based on the



location constraints from other nodes. Location constraints
from a nodej determine a regionSij for i. Unlike in Sec-
tion III, i does not calculate its region asSi = ∩jSij . In-
stead,Si is calculated as the set of mesh cellsui such that
ui satisfies at least 80% of the constraints. Finally, each
node calculates the probability distribution over all mesh
cells within its estimated region. This step is similar to
what we describe in Section III.

V.C. Performance Evaluation of Exten-
sions

In this section, we evaluate the performance benefits of ad-
ditional information and robustness enhancement.

V.C.1. Evaluation of Leveraging Addi-
tional Information

In this section, we study the effects of leveraging addi-
tional information. First, we examine the effect of power
control by varying the number of power levelsPL that a
node can use for its transmission. Table 3 lists the trans-
mission power at different levels, whereP is the maximum
transmission power. Note thatPL = 5 corresponds to or
approximates several commercial wireless cards (e.g., Net-
gear WAG511 and Cisco Aironet 350 series). Next we ex-
amine the effect of carrier-sense range-based constraintsby
varyingRcarrier = 1.5R, 2R, 2.5R, 3R, whereR is com-
munication range. Table 4 summarizes the notation we
use. Then we evaluate the performance benefit from in-
corporating a physical layout map. Finally, we examine the
effect of using powerful anchors that have angle informa-
tion. We consider three levels of angle measurement er-
rors: large errors within[−20, 20] degrees, medium errors
within [−10, 10] degrees and small errors within[−5, 5] de-
grees. These values are consistent with commercial direc-
tional antennas.

PL Fraction of maximum transmission powerP

1 100%
2 25%,100%
3 6.25%,25%,100%
5 6.25%,12.5%,25%,50%,100%
10 6.25%,10%,12.5%,20%,25%,35%,50%,65%,

80%,100%

Table 3: Transmission power for different power levels

N the number of nodes
R transmission range
A the fraction of anchor nodes
PL the number of power levels
Rcarrier carrier-sense range

Table 4: Notation used in performance evaluation.

Effects of power control When only connectivity infor-
mation is available, the distance measurement is binary–
eitherd ≤ R or d > R. By adjusting the transmission

power level, a node can extract more accurate distance con-
straints in the above form. As shown in Figure 9, the ac-
curacy improves with an increasing number of power lev-
els. For example, 20% nodes achieve position error within
10% ∗ R = 1.25 when 1 power level is used. In compari-
son, 32%, 35%, 50%, and 65% nodes achieve similar errors
when the number of power levels is 2, 3, 5, and 10, respec-
tively. This demonstrates that power control is effective in
improving localization accuracy.
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Figure 9: Effects of power control (100 nodes).

Effects of carrier sense constraint Besides power con-
trol, carrier-sense range can also help to extract more ac-
curate distance constraints. As shown in Figure 10, com-
pared with the base case without carrier sense informa-
tion, constraints derived using carrier-sense ranges im-
prove localization accuracy by a considerable amount. As
the carrier-sense range increases, the negative constraints
(i.e., d > Rcarrier) become tighter, and the positive con-
straints (i.e.,d < Rcarrier) become looser. Interestingly,
Rcarrier = 2 ∗ R yields the highest accuracy among all
the carrier-sense ranges considered. This suggests that the
positive and negative constraints extracted using2 ∗ R are
especially effective under the scenarios we consider.

0 2 4 6 8 10 12 14
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
N = 100, R = 12.5, A = 10%, PL = 1

Position Error (x)

C
um

ul
at

iv
e 

D
is

tr
ib

ut
io

n 
of

 N
od

es
 w

ith
 E

rr
or

<
=

x

CSR = 1.5*R
CSR = 2*R
CSR = 2.5*R
CSR = 3*R
No CS Info

Figure 10: Effects of carrier sense constraints (100 nodes).

Effects of map constraint Next we study the perfor-
mance gain from a layout map. In our evaluation, we ob-
tain a real neighborhood map, which contains the coordi-
nates of houses. We select 56 houses from the map over



a 1400m x 700m space. Since there is no house size in-
formation, we generate the regions occupied by the houses
as follows. Each house is a square and has the same size.
A house is centered at its coordinate, and its size,hsize,
is determined based on the minimum distance between any
pair of houses,dmin. In the localization process, each node
derives its region and probability distribution based on the
constraints imposed by the map (i.e., a node can only be in-
side a house), as well as the location constraints from other
nodes. We use transmission range of 150 meters, which
gives an average node degree of 6.39.
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Figure 11: Effects of a physical layout.

As shown in Figure 11, a layout map significantly im-
proves localization accuracy. In addition, the smaller house
size, the higher localization accuracy. This is what we
would expect. Because a node can only reside in a house,
the location constraints imposed by the map is tighter for
smaller houses. Nevertheless, even whenhsize = dmin,
localization accuracy is still significantly higher than with-
out the layout map.

Effects of powerful anchors Finally, we examine how
anchor nodes with angle measurement affect the accuracy
of localization. We use three levels of angle measurement
errors:[−20, 20] degrees,[−10, 10] degrees and[−5, 5] de-
grees. An estimated angle is then the true angle plus noise
uniformly distributed within the error intervals. Figures12
summarizes the results.
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Figure 12: Effects of angle information (100 nodes).

We make the following observations. First, angle infor-
mation helps to decrease the localization error significantly.

Second, even when the angle measurement contains errors
of [−20, 20] degrees, localization accuracy is still signifi-
cantly higher than the accuracy achieved without angle in-
formation. Compared with[−5, 5] degrees of angle mea-
surement error, its accuracy is slightly lower at the low end
of position errors, and comparable for the remaining posi-
tion errors.

Summary In this section, we study the effect of addi-
tional information, including using power control, carrier-
sense range-based constraints, a layout map, and angle
measurements from anchor nodes. Our results demonstrate
that the additional information is effective in significantly
improving localization accuracy.

V.C.2. Evaluation of Robustness En-
hancement

In this section, we evaluate the robustness of our extended
localization algorithms. First we consider the case where
the transmission range information is inaccurate. More
specifically, each node’s true communication range (R) is
R = Rest + Rerror, whereRerror is a positive or nega-
tive range estimation error, andRest is the communication
range that we have estimated.Rerror arises from the differ-
ence in transceivers’ properties and environmental effects.
While one may try to reduceRerror by individually cal-
ibrating each node (e.g., obtaining conservative minimum
and maximum communication ranges), such calibration is
costly. Moreover even with calibration, errors cannot be
completely eliminated due to changing environmental ef-
fects. As shown in Figure 13, with robustness enhance-
ment, the localization algorithm maintains high accuracy
when the communication ranges contain up to20% ∗R er-
rors. The accuracy is lower whenRerror increases up to
40% ∗ R, but still all nodes can be localized, with around
60% nodes achieving withinR/2 = 6.25 position error.
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Figure 13: Effects of inaccurate communication range
(N = 50, R = 12.5, A = 10%, PL = 1).

Next we consider errors arising from malicious nodes.
In our evaluation, we randomly select a few nodes as ma-
licious nodes. Such a node pretends to be at a randomly
generated location. It calculates a region of a circle cen-
tered at the false location with radiusR, and then transmits
this region as a false constraint to its neighbors. Figure 14



shows the effects of malicious nodes. There are two sets
of curves, corresponding to the results of position errors
within R/2 and withinR. “Grid-2” and “Robust Grid-2”
curves represent the results from using fixed 2x2 rectan-
gular cells with and without the additional robustness en-
hancement, respectively. After introducing such malicious
nodes, not all nodes can be localized due to potentially in-
consistent constraints. For the nodes that have inconsistent
constraints and cannot be localized, their localization er-
ror is considered larger thanR. As Figure 14 shows, even
when the fraction of malicious nodes is only 10%, the per-
centage of nodes with position errors≤ R/2 = 6.25 drops
as much as 30% under both Sextant and Grid-2. In com-
parison, with the additional robustness enhancement, the
accuracy reduction under the “Robust Grid-2” is small es-
pecially when the fraction of malicious nodes is within 10%
(only 10% reduction). Moreover, even when 30% nodes are
malicious, majority of nodes can still be localized within
errors ofR under “Robust Grid-2”. This demonstrates the
effectiveness of our robustness enhancement.

0 5 10 15 20 25 30
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Fraction of Malicious Nodes (%)

P
er

ce
nt

ag
e 

of
 N

od
es

 w
ith

 P
os

iti
on

 E
rr

or
 <

=
 5

0%
*R

 a
nd

 1
00

%
*R

N = 50, R = 12.5, A = 10%, PL = 1

Robust Grid−2: <=R/2
Gird−2: <=R/2
Sextant: <=R/2
Robust Grid−2: <=R
Gird−2: <=R
Sextant: <=R

Figure 14: Effects of malicious nodes (N = 50, R = 12.5,
A = 10%, PL = 1).

Summary Our evaluation results show that the robust-
ness enhancement is effective. The enhancement helps
maintain high localization accuracy even when there are
20% ∗ R range errors or10% malicious nodes.

VI. Conclusion

In this paper, we present probabilistic region-based local-
ization schemes. We use static grids, dynamic meshes, and
segments of grids as units for which probability is com-
puted. Our results show that these probabilistic-based lo-
calization schemes achieve high accuracy. We further ex-
tend our approach in two ways: we exploit new ways to ob-
tain and leverage additional information, and enhance ro-
bustness by tolerating inconsistency in location constraints
arising from measurement errors and/or malicious nodes.
Our evaluation demonstrates the effectiveness of these ex-
tensions.
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