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1. Introduction

A store-and-forward packet-switching network
consists of a set of switching nodes interconnected
by communication channels. Host computers and
terminals constitute sources and sinks of data mes-
sages to be transported by the network (see Fig. 1).
The basic unit of data transfer within the network
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Fig. 1. Store-and-forward packet switching network.

is a packet. ! Each packet traverses from its source
node to its destination node through a series of
nodes and communication channels along its path
(route). Queues are formed for the communication
channels inside the switching nodes. The progress
of packets in the network is governed by certain
communication protocols. The objective of this
paper is to review recent efforts on the application
of product-form open queuing networks [2-4] to
model store-and-forward packet communication
networks. The application of queuing networks
with closed chains and population size constraints
[2-5] is considered in a companion paper [1].

A store-and-forward network can be viewed as
a collection of resources shared by data sources
and sinks. There are three types of physical re-
sources in the network: communication channels,
packet buffers, and nodal processors. In modeling
such a network, the nodal processors are often
neglected because processor delays incurred by
packets are typically substantially less than com-
munication channel delays.

To transport a packet from one node to another
in a store-and-forward network, the resources
needed along the source—destination path are

! When a data message to be transported is longer than the size
of a packet, it is segmented into several packets which need
to be reassembled later to form the original message. The
segmentation and reassembly functions may be either per-
formed by the network nodes or by the data sources and
sinks.

communication channels and one buffer in each
node along the path. It is obvious that the set of
communication channels and /or the set of nodal
buffers can be preallocated. Preallocation is a ‘safe’
operational strategy. However, it is extremely
wasteful because data sources are typically very
bursty [6].

A store-and-forward protocol is a means for
dynamically allocating network resources and thus
sharing them statistically. In a store-and-forward
network, a packet can progress from one node to
the next along its route with the allocation of just
a communication channel and two buffers (one at
each side of the channel). If the packet is success-
fully received and accepted in the next node, a
positive acknowledgement message will be re-
turned to the previous node, either separately as a
short packet or piggybacked in the header of a
data packet traveling in the reverse direction. The
packet buffer in the previous node can then be
freed. If, however, no acknowledgement has been
received at the end of a timeout period, the packet
will be queued for retransmission.

Currently, there are two basic types of packet
communication services: datagram and virtual
channel [7]. We shall consider their differences
from the modeling viewpoint only. In a datagram
network, each data packet (datagram) traverses the
network as an independent entity. In a virtual
channel network, data packets belong to ‘virtual
channels’ connecting data sources and sinks. The
admittance of packets into a virtual channel is
controlled. Also, packets in the safne virtual chan-
nel are usually characterized by the same routing
behavior. 4

Given a set of external traffice demands, the
efficient utilization of a network’s channel and
buffer resources depends on the network’s routing
algorithm as well as its flow and congestion con-
trol techniques. Measurements of network perfor-
mance typically include its throughput (in packets
delivered per second) and some measure of the
network transit delay. These performance mea-
sures may need to be characterized for all packets
transported by the network or for individual classes
of packets (e.g., packets between specific source-
sink pairs).

Product-form queuing network models have
been successfully applied to the performance anal-
ysis of store-and-forward network with some or all
of the above features. To do so, several simplifying
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assumptions are necessary; they will be introduced
in Section 2. Queuing network models also have a
number of limitations. One such limitation is that
adaptive routing [6] cannot be modeled. Analysis
results are available for situations where a set of
paths is provided between each source—destination
node pair, and these paths may be either chosen
deterministically or randomly, but not adaptively
for packets.

The accuracy of queuing network models is
affected by the presence of various communication
protocols, which may impede the progress of
packets through the network but which cannot be
easily modeled (examples are segmentation and
reassembly of messages, some of the data link
control functions, etc.). Also, various network
measurement and control traffic are often not
accounted for in the models to be described below.
Therefore queuing network models results should
be viewed in most cases as a somewhat optimistic
prediction of network performance.

2. Assumptions and definitions

The key assumption necessary for the applica-
tion of queuing network models to analyze a store-
and-forward network was originally introduced by
Kleinrock [6,8].

The Independence Assumption. Each time a packet
joins a queue in the network, its length is de-
termined afresh from the probability density func-
tion :

b(x)=pexp(—px), x>0,

where 1/p is the mean packet length (in number
of bits).

The above assumption removes the statistical
dependence of the transmission times of a’packet
at the various channels of its route. Without this
assumption, the analysis of store-and-forward net-
works is not mathematically tractable.

In actual networks, packets usually have a max-
imum length. Also, measurement results indicate
that packet lengths are not really exponentially
distributed [6,9]. Therefore, analytic results pro-
vided by queuing network models are merely ap-
proximations. However, these approximate results
are generally deemed to be adequate and valuable

for the design and performance characterization of
store-and-forward packet-switching networks [6].

We next define the class of queuing networks
suitable for modeling store-and-forward networks.
(This class of network models is only a subset of
network models that have a product-form solution
[2-5]) The notation to be used throughout this
paper is also introduced.

Servers in the network model are indexed by
i=1, 2,..., M. We shall only consider first-come
first-served (FCFS) servers to model communica-
tion channels, and infinite-server (IS) servers to
model random delays. Customers (i.e., packets)
belong the different ‘routing chains’; these chains
are indexed by k=1, 2,..., K. Specifically, the
routing behavior of chain k is modeled by a first-
order Markov chain with transition probabilities

p} = Prob[to server j|currently at server i ]

i,j=1,2,...M. (2.1

We note that a first-order Markov chain is ade-
quate for modeling both the case of a single route
and the case of multiple routes between a given
source and destination. Retransmission and re-
routing due to random transmission errors can
also be modeled by an appropriate definition of
the transition probabilities [10].

Since the routing behavior of packets traveling
between different source-destination node pairs
are different, a queuing network model must
specify at least one routing chain for each source—
destination node pair. It is' sometimes desirable to
specify multiple chains between each source-
destination node pair to correspond to virtual
channels connecting several data sources in the
same source node to several data sinks in the same
destination node. For a datagram network, it is
sufficient to define just one chain for each source—
destination node pair.

It is assumed that chain k packets arrive to the
first server of the chain according to a Poisson
process with rate vy, packets per second, where
k=1,2,...,K. Define

Y= Tt ke

v is the total external arrival rate to the network.

Given v, and p{¥, the mean rate A, of chain k
packet arrivals to server / in the queuing network

model is determined from:

M
Ak =% 8y + 2 }\jkpj('ik)’ (2.2)
j=1
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where

1
‘Sik: {0

The arrival rate of packets from all chains to
server i is

if i is the first server of chain k, (2 3)
otherwise. ’

K
A= D N (24)
k=1

It is assumed that if server i is FCFS, it works at a
constant rate of C, bits per second. If server i is IS,
it works at a rate of C;, bits per second for chain k
packets. The traffic intensity of chain k packets at
server i is defined to be

A
ik s server i is FCFS,
e

Pik = }\; (2'5)
—= serveriislIS,
pCy

and the overall traffic intensity of server i is
K
P = 2 Pig- (2.6)
k=1
Let the state of the queuing network be denoted
by
S=(n;,ny,....ny),
where

’niK)’

where 7, is the total number of chain k packets at
server i. Define
n=ng bt Ty

n;=(ny,np,,...

and
n=(n,,n,,....,n,).

A chain is said to be opern if it allows both
external arrivals and departures to occur freely. As
a result, the number of packets in a chain can
range from 0 to oco. For a network with open
chains, the equilibrium probability of the network
state S has the following-product form solution

[3]:

M
Pi(”i)
i=1 i
where
K pf'ik
n,! H 'k’, server i is FCFS,
k=1 N

(2.8)

server i is IS,

and
_ /(A =p),
Gi_{eXP(p,»),

The equilibrium probability of » also has a prod-
uct form [3]:

server i if FCFS,

2.9
server i is IS. (2.9)

P(n)= ﬁ M, (2.10)
=1 G
where
Pl server { is FCFS,
pi(n)= fl'_ (2.11)

7, serveriisIS.
n;!

A routing chain is said to be closed if the
number of packets in the chain is fixed. Queuing
networks with closed chains as well as other forms
of chain population size constraints are useful for
modeling flow and congestion control in store-
and-forward networks. These models are discussed
in the companion paper [1].

Given a set of traffic demands modeled by the
rates {y,, k=1,2,...,K}, the basic performance
measures of interest are the network throughput
and mean end-to-end (or source-to-destination)
delay. Define
v* = network throughput in packets per second,
T = mean end-to-end delay over all packets

transported by the network.
These two measures may be adequate by them-
selves. In some cases, it may be necessary to
characterize the performance of individual routing
chains. We thus define
vF = throughput of chain k& in packets per sec-
ond,
T, = mean end-to-end delay of chain k packets
transported by the network.

If the network switching nodes have adequate
buffers and channel capacities so that packets are
never rejected (a situation modeled by queuing
networks with open chains), the chain throughput
is the same as the chain arrival rate, i.e.,

YE=v., k=12,....K. (2.12)
Otherwise, some external arrivals are rejected due
to buffer, flow or congestion control constraints
and the throughput is smaller than the corre-
sponding arrival rate, or

vE<v,, k=1,2,...K. (2.13)
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The difference between vy, and vy} is the rate at
which chain k arrivals are rejected. Since rejected
packets are retransmitted later, the ratio y, /vy can
be interpreted as the mean number of tries needed
for a packet to gain admittance to the network.
(See [1].)

The balance of this paper is organized as fol-
lows. An analytic formula for T, the mean end-to-
end delay over all packets, is derived in Section 3.
The application of this formula to channel capac-
ity assignment and optimal routing is next dis-
cussed. In Section 4, the mean and distribution of
the end-to-end delays of individual chains are
considered. Finally, the issue of fairness among
chains is discussed in Section 5.

3. Mean end-to-end delay over all chains

We consider in this section the efficient utiliza-
tion of communication channels in a packet net-
work via channel capacity assignment or routing
assignment.

Queuing network models with open chains are
employed. The number of buffers at each node is
assumed to be very large (infinite). The effect of
packet transmission errors is assumed to be negli-
gible.

3.1. A formula for the mean end-to-end delay

The mean end-to-end delay T for an arbitrary
packet transported by the network was first de-
rived by Kleinrock [6,8]. It can be obtained as
follows. By Little’s formula [11], the mean number
of packets in transit within the network is equal to
¥T. Let E[n,] be the mean number of packets at
channel i. We have

yT=3 E[n]. (3.1)

i=1

Since the communication channel delays typically
dominate most other delays, we shall assume that
the M servers are all communication channels
modeled by FCFS queues. The marginal queue
length distribution from (2.11) gives rise to the
following mean queue lengths:

E[nl]:li;p’ l:132”M (32)

Thus

o P
T=2 71—, (33)
i=1 i

Since p, = A, /(pC;) (see (2.4) to (2.6)), we have

A
T_l

M .
=— _, 34
Y,-gl pC — A, ( )

which is sometimes written as

f;
_CT, (3.5)

1 i i

T=

Mz

<=

i

where f, = A, /u (in bits per second) is called the
channel i flow [12].

Recall that under our present assumption, y* =
v. Using T, as given by (3.5), as our performance
measure, we shall consider next the problems of
channel capacity assignment and optimal routing.

In practice, it may be advisable to refine the
model considered above by including delays due
to channel propagation times, nodal processing
times, and any control message traffic. The reader
is referred to [6] for more details. However, (3.5) is
the basic formula used in the capacity assignment
and optimal routing problems.

3.2. Capacity assignment

Suppose we are given the traffic requirement
{ve, k=1,2,...,K}. The network topology is fixed
and routing has been specified in the form of (2.1).
A meaningful question to ask is as follows: given a
fixed budget for communication channels, how do
we select the set of channel capacities {C,, i=1,
2,...,M}? This problem was addressed by Klein-
rock [6,8] and to keep the problem simple, he
made the following assumptions:

(a) channel capacities can be selected from a
continuum of values;

(b) the channel cost is a linear function of the
channel capacity so that the network cost is

M
> d,C, + a fixed cost. (3.6)

i=1

Let D be the available budget for channels after
the fixed cost has been accounted for. One can
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then pose the following optimization problem:

138 )
minT=— -,
{C} Y igl Ci_ i
M
subjectto 3, d,C, <D. (3.7)

i=1
Note that T is a convex function and the set of
feasible channel capacities is a convex set. Hence,
a unique optimal solution exists. The above con-
strained optimization problem can be converted to
an unconstrained optimization problem by the
Lagrange multiplier method which yields the fol-
lowing solution for optimal capacity assignment
[6,8]:

cr =f+(D.Jf, (dzf‘) (3.8)
where
D, =D-— 2 fd, >0. (3.9)

If D, <0, a feasible capacity assignment does not
exist to achieve a finite 7. The minimum mean
delay corresponding to the above capacity assign-
ment is:

M 2
| 2 V54;
j=1

The dual of the optimization problem in (3.7)
can also be formulated to minimize the network
cost subject to a mean delay constraint as follows:

(3.10)

M
min Y, d,C,,
(C,} i=1
1 ¥
j — ——= . .
subject to » g C—J Tax (3.11)

Again, applying the Lagrange multiplier method,
the optimal capacity assignment is

EWTI

et =i+

The minimum network cost for channels is then

M 2
ax | j=1

(3.12)

M

D*= 3 fd, +

J=1

(3.13)

The optimal capacity assignment given by
(3.8) or (3.12) provides a network designer with
some initial guidance for selecting channel capaci-
ties. In reality, channel capacities are limited to a
set of discrete capacity values that are available
from common-carriers. Also, as a result of econ-
omy of scale, the cost-function 4,(C;) of a channel
with capacity C, should be a concave function in
C, instead of a linear function assumed above. To
incorporate the above considerations into the
capacity assignment problem, one must then resort
to numerical solution techniques [12]. Finally, we
also note that most communication links available
from the common-carriers are full-duplex with the
same capacity for each of the channels in opposite
directions. The usual assumption that enables us
to apply the above optimal capacity assignment
result is to consider a symmetric network traffic
pattern. If, however, the network traffic pattern is
highly asymmetric, then one must again resort to a
numerical solution technique to account for this
additional constraint.

3.3. Optimal routing

In the capacity assignment problem above, the
routing was assumed to be pre-specified. Suppose
the channel capacities have already been selected.
We now consider the problem of assigning routes
to satisfy a set of traffic requirements {y,, k=
1,2,...,K} so that some performance criterion is
optimized. This is known as the optimal routing
problem.

Operationally, optimal routmg is difficult to
achieve. Due to the geographical distribution of
network nodes, fresh information on the global
status of a network is generally not available. In
the ARPANET, for example, each node exchanges
status information with its neighbors periodically.
Considerable time delays, however, are needed for
such information to propagate throughout the net-
work [13].

With most performance objectives, optimal
routing can be formulated as a shortest path prob-
lem with an appropriate distance metric for the
communication channels within a path. In the
ARPANET, the distance metric is simply the
(estimated) mean delay of a communication chan-
nel. Each packet, regardless of its origin, is routed
to an outgoing channel along the path with the
shortest (estimated) mean delay to the packet’s
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destination node. Note that this particular routing
strategy minimizes the (estimated) mean delay of
each individual packet. It has been shown that
such an individual optimization strategy does not
necessarily lead to a globally optimized situation;
specifically, the mean transit delay T for all packets
transported by the network is not optimized. In
order to optimize T, the following result was ob-
tained {12,14]. .

Given the traffic requirements {v,} and a
specific routing assignment { p,(j’.‘)}, the channel
arrival rates {A,} can be determined using (2.2)
and (2.4). Recall that the flow in channel / is
fi=XA,/p in bits per second. Denote the set of
channel flows by the flow vector

f:(fl’f27""fM)'

A flow vector f is said to be feasible if
O0<f<C, fori=1,2,....M

and if it is the result of a routing assignment which
satisfies the traffic requirements.

Necessary and sufficient conditions for f (hence,
indirectly for the routing assignment) to minimize
T are obtained as follows. Let T( f) be the mean
network delay corresponding to the feasible flow
vector f. Let v be another flow vector. Given f, a
feasible flow vector f’ near f can be represented as
a convex combination of f and v, i.e.,

f=(0—¢)f+rev=f+e(v—f),

O<e<].

(3.14)

Note that the flow vector v can be chosen without
satisfying v, < C, for all i. In this case, a suffi-
ciently small ¢ should be used in order for f’ to be
feasible. Suppose ¢ <1 so that the change in the
flow vector (in the v direction) is small and is given
by:

Af=e(o—f). (3.15)
The resulting change in the mean network d):lay is
& 97(f)
i=1 i
M
=e X L(v,— /), (3.16)
i=1
where
aT
L, = (/) . (3.17)

i af;

Eq. (3.17) above requires that the function T( f)
be differentiable. If, moreover, the function 7( f)
is also convex, then we know that a unique mini-
mum exists among the set of feasible flow vectors
(which is a convex set [12,14]). Thus, a necessary
and sufficient condition for a feasible flow vector f
to be optimal is

AT(f)=0 foranywv, (3.18)
or

M

> L(v,—f)=0 foranywv, (3.19)
i=1

or

M M
min 3 Lo, = X L, f. (3.20)

voi=1 i=1

If the condition in (3.20) is not satisfied, then f
(and the corresponding routing assignment) is not
optimal. Moreover, (3.16) indicates that if a ‘small’
amount of source-destination traffic is to be re-
routed (or if some new traffic is to be added to the
network) then that traffic should follow a shortest
path from its source node to its destination node
using {L,} as the distance metric to minimize its
impact on the mean network delay. Recall that
with the open queuing network model, from (3.5),

1 ¥ f
T =— . 3.21
(f) Y igl Ci _fz ( )
Hence
_AT(f) 1 ¢
L, = of =3 (C,v—fi)z. (3.22)

Given the traffic requirements {v, }, the optimal
flow vector f (and hence, route assignments) can
be determined by a downhill search technique
using any feasible flow vector as a starting point.
The reader is referred to [12,14] for details.

Finally, we comment that in practice, instead of
doing capacity assignment and optimal routing as
separate problems, it is desirable to do both opti-
mizations together. The resulting problem is much
more difficult than each of the above, and one
must resort to heuristic search techniques for opti-
mal solutions. The reader should consult Gerla’s
thesis [12] for this and other network design prob-
lems.
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4. End-to-end delay for each routing chain

Our discussion so far has been based on the
mean end-to-end delay over all packets trans-
ported by the network. The key result, given by
(3.4), provides a gross characterization of network
delay. It is useful in the formulation of various
optimization problems for network design. For
various reasons, one might be interested in a more
detailed characterization of network delay than the
mean over all packets. For example, users sending
packets from node A4 to node B will be interested
in the end-to-end delay from 4 to B.

4.1. Mean end-to-end delay

We shall consider only networks which employ
path-oriented routing. When multiple paths exist
between a given source—destination node pair, the
source node selects the complete path for each
packet to follow in order to reach the destination.
A notable example of path-oriented routing is the
explicit path routing technique of Jueneman and
Kerr [15] proposed for IBM’s System Network
Architecture [16]. The ARPANET, on the other

hand, is a notable exception where routing deci-

sions are made by intermediate store-and-forward
nodes. Path-oriented routing has the advantages
that (a) routing decisions are decentralized, (b)
packets are guaranteed to arrive in FCFS order
along each path, (c) loops can be avoided, and (d)
the impact of bad decisions made by a source
node is limited. A simple example of path-oriented
routing is fixed routing where there is a unique
path for each source—destination node pair.
Another example is ‘random routing’ where one or
more paths are set up for each source—destination
node pair and the path of each packet is selected
independently by the source node according to a
probability distribution. In a virtual channel net-
work, several virtual channels may be present be-
tween each source—destination node pair; either
fixed or random routing may be employed for
each virtual channel.

For path-oriented routing, each path can con-
veniently be modeled by a routing chain. In this
section, we consider the mean end-to-end delay of
each routing chain in the network. The results can
then be used to obtain the mean end-to-end delay
for any given source—destination node pair (or any
virtual channel) which employs multiple paths. It

is also possible to get the probability density func-
tion of the end-to-end delay for a class of routing
algorithms. These results will be presented in Sec-
tion 4.2.

Let o, be the path (or ordered set of channels)
over which chain k packets are routed. The transi-
tion probabilities of chain k take on values of 0
and 1 only, i.e.,

*) 1 if / and j are successive channels in 7, ,
P =

0 otherwise.
(4.1)

With this definition for p,‘.j’.", it is easy to verify

that the solution to (2.2) is

}\ik:{yk 1f1€w,.(, (4.2)
0  otherwise.

Since each channel in the network model is a
FCFS server and all routing chains are assumed to
be open, the equilibrium states probability has the
following product form [3] (see (2.7)):

M K ol
P(s)=1I1 (1—p)n,t I1 5, (4.3)
i=1 k=1N;:

where p,, and p, are given by (2.5) and (2.6)
respectively. From (4.3), we get the following ex-
pression for the marginal queue length distribution
at channel i:

K 1
s
P(ni):(l_pi)ni!kl;ll ni:!- (4.4)

The mean number of chain k packets at channel i
can then be obtained from:

Elnd=37 3 P, (45)
where :
R, ={n;:n,=j}. (4.6)

Substituting (4.4) into (4.5) and after some simpli-
cations, we get:

P;

E[n,]=72% —kp,- : (4.7)
Applying Little’s formula [1 lj, the mean delay

of chain k packets at channel i is

b

pC(1=p;)"

It is of interest to note that the mean delay at

T,=E[n,] /v, = (4.8)
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channel i is determined by the total utilization of
channel /, and is the same for all chains that are
routed through this channel. Finally, the mean
end-to-end delay of chain k is:

1
Tk:E

—_ (4.9)
icm ‘U.Cl(l - p:)

As a remark, the mean end-to-end delay over all
packets can be obtained from:
K
7= % (4.10)
k=17
and it can be verified that (3.4) and (4.10) are
identical.

We now illustrate how the result in (4.9) can be
used to obtain the mean end-to-end delay for each
source—destination node pair. For convenience, we
refer to packets sent from source node s to destina-
tion node d as (s, d) packets. Let v, ; be the mean
arrival rate of (s,d) packets and 4, be the set of
routing chains for these packets. Also let af*) be
the probability that a (s,d) packet is sent along
the path corresponding to chain k. al*) is zero if
chain k € 4, ;; and for the case of fixed routing,
there is only one chain in each 4, , and the a'*) for
this chain is one. From the above definitions, it is
easy to see that the mean arrival rate of chain k is
given by:

Yk :Ys,dagf(} (4.11)

and the mean end-to-end delay of (s,d) packets
is:

_ (k
I, = 2 “s,(ng-
=

(4.12)

Similar results can also be obtained for a virtual
channel network (with no flow control) where
fixed or random routing is used for each virtual
channel.

4.2. Distribution of end-to-end delay

In this section, we consider the distribution of
end-to-end delay given path-oriented routing. This
is a detailed characterization of end-to-end delay
and the results are useful for calculating statistics
such as variance and 90-percentile.

Our discussion is based on the work reported in
[17,18]. Let 7,(x) be the probability density func-
tion (pdf) of the end-to-end delay of chain k and
Tk(§) be its Laplace transform, i.e.,

Te(§) = [ exp(=gx)n(x) dx. (4.13)
Let N,(z) be the generating function of the num-
ber of chain & packets in the network. As a result
of the product form solution, N,(z) can be written
as:

N(2) = I Ny(2), (4.14)
i€

where N, (z) is the generating function of the

number of chain k packets at channel i. N,,(z) is

by definition, given by:

N(:)=3 3 Pln)s

j=0n,ER;

(4.15)

where R, is given by (4.6). Substituting (4.4) into
(4.15), and after some simplifications, we get

1—op,
N,(z)= - . (4.16)
«(2) 1—p,+pu(1-2)
It then follows from (4.14) and (4.15) that
1—p;
N(z)=1I (4.17)

i€m, l_pi+pik(1_z)‘

Since the arrival process of chain k packets is
Poisson and the number of chain k packets in the
network changes by unit steps, we also have [19,20]:

N(z)=D,(z) (4.18)

where D,(z) is the generating function of the
number of chain k packets left behind in the
network by a chain k departure.

Consider an arbitrary ‘tagged’ chain k& packet.
Let its end-to-end delay be ¢, (Laplace transform
of pdf is T¥(£)). With path-oriented routing and
FCFS discipline at each channel, the number of
chain k packets left behind when the tagged packet
departs is equal to the number of chain k arrivals
during ¢,.

Suppose the tagged packet enters the network
at time 0. Let a,(7) be the number of chain &
arrivals in [0, 7]. D,(z) is then the generating func-
tion of a,(t,). For chain k arrivals following a
Poisson process, D,(z) is given by [19]:
D, (2) =T}y, —Y,z) (4.19)

provided that ¢, and a,(7) are independent for all
7. Substituting £ for v, — v, z, (4.19) is reduced to:

T:(g):Dk(l"g/'Yk)- (4.20)
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Finally, using (4.17) and (4.18) in (4.19), we get

ooy _ pC(1—p;)

THE fgm E+uC(l—p) (42)

Let |7, | be the number of channels in 7,. Eq.
(4.21) indicates that the end-to-end delay of chain
k is given by the sum of |7, | independent random
variables; the i-th random variable is exponentially
distributed with mean 1/[puC,(1 —p,;)]. This ob-
servation allows us to write the following expres-
sion for the variance of chain k end-to-end delay
[17]:

o= M — (4.22)

iem ‘[P'Ci(l - Pi)]2

To obtain statistics such as the 90-percentile of
end-to-end delay, one must first obtain £,(x) by
inverting T}(£). This can easily be done by the
technique of partial fraction expansion [19].

It should be noted that (4.19) (and therefore
(4.21)) is true only when ¢, and a,(7) are indepen-
dent for all 7. In an arbitrary network, these two
random variables are not independent in general,
as illustrated by the example shown in Fig.2
[18,24]. Suppose a tagged chain 1 packet arrives at
channel i at time 0, and is somewhere in the
network (except at channel ;) at time 7. If a,(7) is
large, then most packets leaving channel i (after
the tagged packet) are from chain 1 and the tagged

~ packet is expected to find a small number of chain
2 packets when it arrives at channel j. On the other
hand, if a,(7) is small, then most packets leaving
channel i are from chain 2 and the tagged packet is
expected to find a large number of chain 2 packets
at channel j. The delay experienced by the tagged
packet at channel j is therefore affected by a,(7).
Consequently, ¢, and a,(7) are not independent. A
similar argument also applies to ¢, and a,(7).

Path for Chain 1

Chain #
arrivals

Chgin 2
arrivals

Channel i
Path for Chain 2

Fig. 2. Dependency between ¢, and a,(7).

From the above discussion, we observed that ¢,
is dependent on a,(r) whenever it is possible for
packets (belonging to other chains) arriving after a
tagged chain k packet at one channel to overtake
this tagged packet at another channel. This de-
pendency would not be present if the paths in the
network were such that no such overtaking is
possible. We can therefore give the following suffi-
cient condition for ¢, and a,(7) to be independent
for all = [18].

Nonpassing Condition. For each pair of channels i,
j in @, packet arriving after any tagged chain k
packet at channel i never overtake this tagged
packet at channel j.

The Laplace transform of chain k& end-to-end
delay is given by (4.21) if the above condition is
satisfied.

Despite the fact that 7, and a,(7) are not
independent in general, (4.21) is very useful in
practice for characterizing in detail the end-to-end
delays of routing chains. For a given network
model, it is likely that the nonpassing condition is
satisfied for a large fraction of routing chains. The
result is then applicable to each of these chains.
For those chains where the nonpassing condition
is not satisfied, simulation experiments have shown
that (4.21) gives accurate approximations to the
variance as well as 90-percentiles of end-to-end
delay [18]. Furthermore, in some networks, the
network topology and path assignments are such
that the overtaking phenomenon shown in Fig. 2 is
not possible. Consequently, (4.21) is applicable to
all chains in the network. Obvious examples of
such networks are tree networks and ring net-
works. Another example is the class of networks
where the routing algorithm does not use any path
with more than three channels. One such network
is the example shown in Fig. 1 under shortest path
routing.

Chain 1
departures

Chain 2
departures

Channet |
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As a final remark, one can also obtain results
for the pdf of end-to-end delay for a given
source—destination node pair (or a given virtual
channel). Following the developments which lead
to T, ,in (4.12), the pdf of (s, d) end-to-end delay
can be obtained by inverting

rC(1—p,)
T* = alk) — 4.23
ma(f) kz;,u sd iem £+ pC(1—p,) (4.23)
and the corresponding variance is
Usz,d = 2 a(s,,(c}
ked,,
> S S— T2 — T2, (4.24)

iEm [Hci(l - pi)]z

where T, and T, , are given by (4.9) and (4.12)
respectively.

5. Fairness among chains

The analysis of end-to-end delay presented in
Section4 is based on a FCFS discipline at each
channel. One can easily observe from the result in
(4.9) that the mean end-to-end delay of chain k is
affected by the number of channels in 7, and the
utilization of these channels. As a result, there is a
disparity of end-to-end delays experienced by dif-
ferent chains. A natural question to ask is whether
a network with FCFS discipline at each channel is
fair or not.

One approach to study the fairness of a net-
work is to relate the mean end-to-end delay to
network tariffs [21]. Some networks, e.g., Datapac
[22], have an uneven tariff structure. For these
networks, one can argue that subscribers who are
paying more due to their physical locations should
not be penalized with a longer end-to-end delay. A
reasonable (or ‘fair’) strategy is then to make T,
the same for all k. In other networks, e.g., Telenet
[23], a fixed tariff is applied regardless of location;
and a reasonable strategy is to have T, propor-
tional to the number of channels in 7.

It is easy to observe that FCFS may not be
flexible enough to implement either one of the
strategies mentioned above. One needs a para-
meterized queuing discipline which enables the
chain delays to be adjustable by changing the
parameter values. An example of such a discipline

is Kleinrock’s time-dependent priority discipline
[6]. Under this discipline, a parameter 3, is associ-
ated with routing chain &k, k=1, 2,..., K. Suppose
a chain k packet arrives at channel i/ at time ¢, its
instantaneous priority at time ¢ (£ > ¢,) is given by
(t —ty,)B,- When the channel is ready for the next
packet, the instantaneous priorities of all packets
in queue are evaluated, and the one with the
highest value is served. This discipline thus favors
chains with large values of B,, and also those
packets that have been waiting in queue for a long
time.

The product-form solution for open queuing
network models does not apply when Kleinrock’s
time-dependent priority discipline is used. How-
ever, the following assumption may be employed
to get approximate results for the chain delays
[21].

Poisson Assumption. For all i and k, the arrival
process of chain k packets to channel i is Poisson
regardless of the channel queuing discipline used.

Suppose the routing chains are ordered such that:
OB B, <. <P

The mean delay of chain k packets at channel i
(denoted by T;,(td) for Kleinrock’s time-dependent
discipline) can be expressed as:

1
T (td) = W, +E (5.1)

1
where W,, is the mean waiting time in queue and
is given recursively by [6]

p; o ( Bf))
Pk A B e
wci—e A\ TR,

- S p,.j(l—%f-))~1 (5.2)

J=k+1

W=

X

where p,; and p, are given by (2.5) and (2.6)
respectively. The mean end-to-end delay under
Kleinrock’s time-dependent discipline can then be
obtained from:

T(td) = 3 T,(td). (5.3)
iem,

It is easy to see from (5.1) and (5.3) that the
chain delays can be adjusted by manipulating the
B,’s. Such manipulation, however, may affect the
mean end-to-end delay over all packets; and ad-



20 J.W. Wong, S.S. Lam / Queuing network models of packet switching networks

justing the chain delays may become undesirable if
the mean end-to-end delay is subtantially in-
creased. In what follows, we shall first present a
conservation theorem [21] which deals with the
effect of channel scheduling on mean end-to-end
delay, and then illustrate how this theorem and
Kleinrock’s time-dependent discipline can be used
to improve the fairness of a network.

5.1. Conservation Theorem

The effect of channel scheduling on mean end-
to-end delay can be characterized by the following
theorem [21].

Conservation Theorem. For our open network
model with the Poisson assumption, the mean
end-to-end delay is identical for all work-conserv-
ing, non-preemptive disciplines, and is given by
(3.4), ie,

1
T==3F ——i—,
.Yigl p‘Ci_}\i

This theorem indicates that the sensitivity of
mean end-to-end delay to channel scheduling is
determined by the accuracy of the Poisson as-
sumption. Simulation results reported in [21] have
shown that the Poisson assumption is accurate for
Kleinrock’s time-dependent discipline, and that
adjusting the chain delays by manipulating the
B.’s would not have a significant effect on the
mean end-to-end delay.

5.2. Improvement of fairness

We have mentioned earlier that a network can
be considered as being ‘fair’ if the 7}’s bear some
desired relationship with respect to each other
(e.g., T, is the same for all k, or T, is proportional
to the number of channels in 7). In general,
suppose the objective is to have T, proportional to
a,, where a, is a parameter indicating the impor-
tance of chain k (chain k is more important than
chain m if «, <a,). This objective implies that
ideally, we would like to have T, = a, - 4 for all k,
where A4 is a constant. Under this ideal condition,
the mean end-to-end delay over all chains is given
by:

T= § o, A (5.4)

Eq. (5.4) and the Conservation Theorem allow us
to obtain the following expression for A4:

A:(zﬁci}\—i;\:)/(kglnak)~ (5.5)

i=1

It follows that the ideal (or ‘target’) 7, can be
determined uniquely from:

T, (target) = ak( gl ﬁ ) / ( 2_ Y,,,am) .
(5.6)

The original objective of having T, proportional
to a, is thus equivalent to that of having the chain
delay equal to the target delay for all chains. Due
to the disparity in channel utilizations and in the
number of channels visited by the various chains,
this objective may not be achievable. As an exam-
ple, consider a routing chain (say chain k) which
visits only one channel. One might encounter a
situation where the utilization of this channel is so
low that 7,(td) is smaller than T, (target) even if
chain k is given the lowest priority (by setting 8,
to zero). Under such situations, one would be
interested in the deviation of the chain delays from
the target delays. This deviation is used in [21] to

«define the following measure of fairness:

1 K

=72 H(1,(d) — T, (arger))”. (5.7)

F has the same form as the squared coefficient of
variation. In general, a smaller F means a fairer
network, and a network is said to be ideally fair if
F=0.

We note from (5.1) and (5.3) that the chain
delays under Kleinrock’s time-dependent disci-
pline are functions of the 8,’s. Since the target
delays can be uniquely determined, F is also a
function of the 8,’s. One can therefore formulate
the following optimization problem to determine
the best setting of the 8,’s so that F is minimized:

Given: topology, {v,}, routing algorithm.
Minimize: F.
Constraints: 8, >0,k=1,2,..., K.

The solution to this optimization problem for some
example networks can be found in [21].
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6. Concluding remarks

In this paper, we have discussed in detail the
application of product-form open queuing net-
works to the performance analysis of store-and-
forward packet-switching networks. The topics
considered include channel capacity assignment,
optimal routing, distribution of end-to-end delay,
and fairness among routing chains. In a compa-
nion paper [1], the application of queuing net-
works with closed chains and other forms of popu-
lation size constraints to the performance analysis
of networks with window flow control, buffer
management schemes, and permit-oriented net-
work congestion control is discussed.
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