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Abstract

In most existing systems, authorization is specified using some low-level system-specific
mechanisms, e.g., protection bits, capabilities and access control lists. We argue that
authorization is an independent semantic concept that must be separated from imple-
mentation mechanisms and given a precise semantics. We propose a logical approach
to representing and evaluating authorization. Specifically, we introduce a language for
specifying policy bases. A policy base encodes a set of authorization requirements and
is given a precise semantics based upon a formal notion of authorization policy. The
semantics is computable, thus providing a basis for authorization evaluation.

1 Introduction

To guarantee the security of a distributed system, many concerns need to be
addressed. These include authentication, authorization, auditing, accounting
and availability, among others. In this paper, we propose a new foundation for
authorization, specifically, one that is appropriate for the design and implemen-
tation of distributed systems.

The problem of authorization can be divided into two related subproblems:
representation and evaluation. Representation refers to the specification of au-
thorization requirements, while evaluation refers to the actual determination of
the authorities of subjects given the authorization requirements. The authority
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of a subject is its rights to access objects. (Thus our view of authorization is
limited to access control; we do not consider issues of covert channels and secure
information flow [7, 13, 22].)

Conceptually, the rights of subjects to access objects can be stored in an
access matriz [14, 20, 21], with rows corresponding to subjects, columns corre-
sponding to objects, and matrix entries indicating various access rights. (See
examples in Section 3.) Practical implementations of an access matrix usually
take advantage of the sparseness of the matrix, and are based upon capabili-
ties (access rights stored by row), access control lists (access rights stored by
column), or some hybrid combination of these approaches [7, 9].

Distributed systems and the prevalent client-server style of computing give
rise to new problems in the specification of authorization requirements. For
examples:

e New kinds of attributes need to be considered. For instance, an autho-
rization requirement in a distributed system may include the location of
a subject as an attribute in addition to the identity of the subject. That
is, it 1s possible that a subject U is authorized to update a file F' from
node N but not from another node N’. Other attributes include: the role
a subject is assuming, the groups a subject belongs to, any delegations a
subject may have, and such.

e A large-scale distributed system is typically composed of multiple inde-
pendent domains, which are managed by possibly different administrative
authorities. In fact, even a single domain may have several security ad-
ministrators. In these situations, authorizations in one domain may affect
those in other domains in unexpected ways. For instance, let X,Y and 7
be three independent domains within a distributed system administered
respectively by authorities A, B and C. Suppose A authorizes requests
from Y to access resources in X but denies requests from Z. If B autho-
rizes requests from 7 to access resources in Y, such authorization would
indirectly contradict the one by A, because a user in Z might be able to
access resources in X by “going through” domain Y.

Existing models of authorization have not been designed to address these
problems [16, 23, 30]. Furthermore, existing approaches are unsatisfactory in
the following respect: authorization requirements can only be specified using
some low-level system-specific mechanisms. For example, in Unix, accesses to
the file system are specified by protection bits associated with each file, and
authorization is determined by how these protection bits are set. Such embed-
ding of authorization requirements into mechanisms presents serious drawbacks.
First, authorization requirements are limited to those that can be specified by
these low-level mechanisms. Second, the semantics of authorization is dependent
on the semantics of the low-level mechanisms, which is not formally defined and
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indeed may vary from one implementation to another.? This poses problems in
large-scale distributed systems with heterogeneous implementations.

For example, many people have recognized the limitations of protection bits
in Unix and have proposed various ad-hoc extensions to it. Each of these ex-
tensions addresses one type of authorization requirements or another without
solving the above problems as a whole. Furthermore, there can be subtle interac-
tions among these extensions, which may render a security administrator unable
to comprehend what actually has been authorized.? In fact, such confusion can
be a major source of security violations.

The separation of policies from mechanisms has long been recognized as a
fundamental tenet in system design [18, 33]. A policy specifies what is required,
while a mechanism provides the actual enforcement. In the context of autho-
rization, this means that a policy of authorization should have an independent
semantics that is separated from its implementation in system-specific mecha-
nisms. To this end, we advocate a language-based approach to authorization.
For representation, we need a language that is expressive enough for specify-
ing commonly encountered authorization requirements. The language must be
given a formal semantics so that the meaning of an authorization requirement
stated using the language can be precisely determined. This way, a security
administrator is able to reconcile easily between what he intends to authorize
with what he has actually authorized.

With this approach, authorization evaluation reduces to computation of
semantics. The complexity of such computation is highly dependent on the
particular language used. The computation mechanism can range from a trivial
table lookup (e.g., if the language is simply an access matrix) to a full-fledged
theorem proving procedure (e.g., if the language is first order logic). In gen-
eral, the more expressive the representation language, the more complex the
computation mechanism. Thus issues of representation and evaluation must be
examined hand in hand with careful consideration of various tradeoffs.

In this paper, we propose a new foundation for representing and evaluating
authorization. Our contributions are as follows. We first identify three types
of structural properties inherent in authorization requirements. We argue that
such structural properties can be effectively exploited to reduce the complexity
of representing and evaluating authorization in large-scale distributed systems.
We introduce a representation language in which the structural properties can
be represented in a straightforward manner. The language 1s designed to specify
policy bases. A policy base encodes a set of authorization requirements and 1is
given a precise semantics based upon a formal notion of authorization policy.
The semantics is computable via a translation to ertended logic programs (see

2A vivid example of this is the assortment of setuid/setgid function calls available in
different flavors of Unix.

3See for example [19] and the POSIX Security Draft Standard P1003.6 which discuss how
to supplement Unix protection bits with access control lists.
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Theorem B in Section 7.3), thus providing a evaluation mechanism based on the
interpretation of extended logic programs.

The balance of this paper is organized as follows. In Section 2, we compare
our work to related research. In Section 3, we identify three types of structural
properties in authorization requirements. In Section 4, we discuss language
requirements for representing authorization. In Section 5, we present our model
of authorization. In Section 6, we introduce authorization policy as a semantic
notion. In Section 7, we introduce our language for specifying policy bases and
describe its syntax and semantics as well as some guidelines for its usage. In
Section 8, we provide some examples of policy bases, including the Bell-LaPadula
model [3] and some inheritance rules. In Section 9, we discuss implementation
considerations. This section is necessarily brief, and is intended only to give a
general idea of how our framework can be put into practice. We are currently
building a prototype implementation based on the ideas presented in this paper.
The details of our implementation will be reported in a future paper. Lastly, in
Section 10, we provide some concluding remarks.

2 Relation to Other Work

Before relating this paper to other work, we would like to emphasize several
points. First, our work is concerned with access control, and does not address
information flow control [4, 13, 28]. Thus, the typical concerns in most security
modeling work [12, 13, 27, 29] are orthogonal to the ones in this paper. In
particular, these references focus on modeling the abstract security properties
of a system as a whole, while our work has a more narrow focus on authorization
only.

Second, the research reported in this paper is mainly concerned with repre-
sentation and evaluation issues of static authorization requirements, which are
to be satisfied in each individual state. In other words, we do not model the
dynamics of authorization. In this sense, the model we use and the issues we
investigate are very different from those studied in [16, 17, 25, 34, 35, 36]. For
example, we do not study the problem of access rights propagation, commonly
known as safety analysis [5, 6, 17]. Similarly, the creation and deletion of sub-
jects and objects are not modeled within our framework. We stress, however,
that this does not mean that our framework cannot be extended to handle these
issues. In this paper, we choose not to pursue these extensions because we are
interested in other issues.

In relating this paper to previous work, we observe that the work by Lunt
[26] is most relevant to us. She raised a similar question of ambiguity in the
interpretation of authorization policies. In particular, she examined different
interpretations of denial and several conflict resolution schemes. Her focus was
more in identifying and understanding the problems. In this paper, we put forth
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specific constructs that allow an administer to explicitly specify and differentiate
these interpretations and schemes.

The paper by Abadi, et al. [1] deals also with access control in a distributed
system setting. They also make use of a logic, specifically, a modal logic to-
gether with a calculus of principals. Their goal, however, is different from ours.
Their logic 1s used to explain the meaning of roles and delegation, and also the
operation of certain protocols. They do not study representation issues. In
particular, the concept of a statement (standing for a specific access request) in
their logic is fully abstract (i.e., uninterpreted) [1, p. 725]. In some sense, our
work is complementary to theirs in that we investigate the structure of these
statements and provide meanings to them.

Lastly, concrete models such as those proposed in [8, 15, 24] address the same
general concerns as ours, but for application-specific domains. Our framework
can be used as a general basis underlying their respective specific proposals.

3 Three Types of Structural Properties

Authorization requirements are highly structured because the set of subjects
and the set of objects in a system are usually highly structured. For example,
users belonging to the same working groups are likely to share similar autho-
rizations; while objects pertaining to a common task are usually given similar
authorizations.

To illustrate such structures, we look at some examples. Consider the au-
thorization specified by the following access matrix:

P.src | P.exe | P.doc
Al rw e,w r,w
B e r

Subject A, who is the developer of software P, can read/write the source file
P.src, execute and write the executable file P.exe, and read/write the documen-
tation file P.doc; while subject B, who is a user of P, is only allowed to execute
P.eze and read P.doc. Certain structures in the authorization are readily ap-
parent:

(1) A, being the developer of P, must be able to update all of the files related
to P, i.e.; A must have write access to all three files. Similarly, B should
be allowed to read the documentation P.doc if he is allowed to execute
P.exe.

(2) Denials of access rights are represented implicitly by their absence in an
entry. (Thus explicit denials are not possible and moreover, a denial is
indistinguishable from a lack of information about an authorization.)
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We call the structures exhibited in (1) closure properties among authoriza-
tions. In general, a closure property stipulates that a set of authorizations
should either be simultaneously authorized or denied, because a partial autho-
rization produces an “unusable” system. Closure properties can be used to
ensure the “consistency” of authorizations as in the above example or to derive
new authorizations from existing ones.

The structure exhibited in (2) is called a default property. A default property
can be used as a convention to represent implicit knowledge as in the example
above (i.e., absence implies denial) or as a deduction rule when information is
incomplete. In fact, most real systems employ default properties in one way
or another. For example, two kinds of policies are typically used: a restrictive
policy is one whereby a request is denied unless explicitly authorized and a
permissive policy is one whereby a request is always granted unless explicitly
denied. Both make use of default properties.

We now turn to another example. Consider the authorization specified by
the following access matrix (where, for an access right a, we use —a to denote
its explicit denial):

F1|F2| F | H
A e
G r w r
G| r | ~w | —e

Suppose A is a member of groups G; and (G5, and F.1 and F.2 are two compo-
nents of an object F' (e.g., two tables in a database). Several questions can be
asked about the authorization:

(1) Gy is authorized toread F.1. Is A, who is a member of GGy, also authorized
to do the same? This is easy to resolve as both groups to which A be-
longs are allowed to read F.1; hence, A should be authorized to read F.1.
Consider now file H for which only one of the two groups is authorized to
read. Is A authorized to read H? The answer is not obvious. So i1s F.2
for which G; and G2 have been given opposite authorizations.

(2) Consider object F. A is authorized to execute F'. However, G to which A
belongs is explicitly denied the same access. Does the denial of G5 revoke
the authorization of A? Or does A’s explicit authorization override the

denial of G157

All of the above questions can be answered by precisely defining another kind
of structural properties, called inheritance properties. Inheritance is especially
important in large-scale distributed systems where the granularity of authoriza-
tion ranges from an individual to an entire domain. Inheritance properties are
used to relate authorizations specified with these different granularities.
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In sum, it is important that the structural properties described in this sec-
tion be exploited to obtain succinct representation and efficient evaluation of
authorization requirements.

4 Language Requirements

From the above discussions, a language for representing authorization require-
ments should satisfy the following criteria:

e It should be declarative and have a semantics that is independent of im-
plementation mechanisms.

e The semantics should be efficiently computable, hence allowing efficient
authorization evaluation.

e It should allow easy expression of the closure, default and inheritance
properties discussed in Section 3.

In the following, we discuss four more requirements for such a language.

First, authorization is nonmonotonic. That is, if a set of authorization re-
quirements is augmented by a new requirement, a subject who was previously
allowed access to an object may no longer be allowed the same access. A good
example of such nonmonotonicity arises in the use of defaults. For example,
suppose the set of authorization requirements includes the following default:

if s 1s not explicitly denied read access to o
then by default s is allowed read access to o

If the set of requirements is later augmented with an explicit requirement deny-
ing s read access to o, the previous grant should be retracted. Thus, the
semantics of a language for authorization must allow such nonmonotonic be-
havior.

Second, authorization may be incomplete. That is, there may be authoriza-
tion requests such that insufficient information is available to determine if they
should be granted or denied. Such incompleteness should be allowed in the
semantics of a language for authorization. There are two reasons:

e An incompleteness may be the result of an oversight or error on the part of
security administrators. Thus when an incompleteness is detected, 1t can
serve as an alarm signalling potentially more serious problems. Therefore,
it i1s advantageous that such incompleteness not be masked out automat-
ically by the language semantics.
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Authorization
Requirements

——» grant(r, s, o)
req(r,s,0) ————»= Authorization Module ———— = fail(r, s, 0)
——» deny(r, s,0)

System State

Figure 1: Model of authorization

e An incompleteness may be intentional so that it can be “filled in” later
when composition is performed (see below). Thus, it is important that
such intentional incompleteness be allowed by the language semantics.

Note that this strictly generalizes the idea of a reference monitor [9], where no
incompleteness is allowed.

Third, authorization may be inconsistent. That is, it is possible for an au-
thorization request to be both granted and denied. The reasoning is similar
to that of incomplete authorization: An inconsistent authorization may signal
errors on the part of security administrators or they can arise from the com-
position of authorization requirements, especially in a large scale distributed
system. Therefore, the semantics of a language for authorization must be able
to handle inconsistencies.

Fourth, multiple authorities may coexist in a distributed system environ-
ment. These authorities can be peers who coadminister a system or they can
be hierarchically related in a supervisor-subordinate fashion. Each of them may
contribute authorization requirements pertinent to the part of the system he 1s
concerned with. The authorization of the entire system is a composition of these
individually contributed authorization requirements. Thus a language for au-
thorization should include operators for composing authorization requirements.

5 Our Model

Our model of authorization is shown in Figure 1. Before a subject s can perform
a particular access r on an object o0, s must first obtain the access right r for o.
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Subject s does so by submitting a request of the form req(r, s, 0) to the autho-
rization module, which responds with grant(r, s, o), deny(r, s, 0) or fail(r, s, o).
A grant(r, s, o) is returned if the authorization module can determine that s is
authorized to have r access to o, while a deny(r, s, 0) is returned if the autho-
rization module can determine that s is denied r access to o. A fail(r, s, 0) is
returned if the authorization module fails to establish either one of the previous
two cases.

To make an authorization decision, the authorization module consults the
authorization requirements and the system state. The system state is needed for
authorization requirements that contain system state variables as parameters.
Some examples of this kind of authorization requirements are “At most 5 copies
of a program P can be running concurrently in all nodes of the system” and
“User A is allowed to execute program P only if the current system load is less
than 27.

In our model, an authorization requirement is stated as a rule and a collection
of such rules constitutes a policy base (see Section T). The authorization
module is an interpreter which takes as input a policy base B, the current system
state, and a request req(r,s,0), and tries to verify that either grant(r,s,o)
or deny(r,s,o0) “follows” from the semantics of B given the current system
state. If grant(r, s, o) follows, the request is granted. If deny(r, s, o) follows, the
request is denied. If neither follows, a fail(r, s, 0) is returned. The pathological
case in which both grant(r,s,o) and deny(r, s, o) follow can be resolved by
enforcing certain priorities between grants and denials. A precise definition
of the “follows” relation is given by a formal semantics of policy bases to be
presented below.

Note that Figure 1 is actually a simplified picture of our model. In gen-
eral, the policy bases can be located in different parts of a distributed system,
and multiple instantiations of the authorization module can be running concur-
rently across the system. More discussions on implementation are provided in
Section 9.

6 Awuthorization Policy

Informally, an authorization policy is the set-theoretic equivalent of an access
matrix. Its precise meaning is defined in what follows.

Definition. An authorization policy (or policy in short) over a set of subjects
S, a set of objects O and a set of access rights R is a 4-tuple (PT, P, Nt N7)
where each component is a subset of {(r,s,0) | r € R,s € S,0 € O}. O

The intuitive meaning of a policy A = (P*, P~, Nt N7) is as follows: P*
records the rights that are explicitly granted, i.e., if (r,s,0) € P*, subject s is
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explicitly granted access right r to object o. Similarly, Nt records the rights
that are explicitly denied. P~ (N~ respectively) records those rights that should
not be explicitly granted (denied respectively) under this policy. P~ and N~
are useful for defining the semantics of policy composition.

A policy A = (P*,P~,N* N7) is sound if there does not exist a triple t =
(r,s,0) such thatt € PtNP~ort € N*NN~. A policy A= (P*,P~, Nt N7)
is strongly sound if it is sound and PT NNt = {.

A policy A = (P*,P~,N* N7) is complete if for all s € S, o € O and
r € R, (r,s,0)0€ PPrUP"UNtUN~. A policy A = (P*,P~,N* N7) is
strongly complete if it is complete and both P~ and N~ are empty. Thus it is
sufficient to represent a strongly complete policy with an ordered pair (P, N).

Given a strongly sound policy A = (PT, P~ Nt N7), we can define three
authorization relations between A and a triple (r, s, 0):

A grants (r,s,0) iff (r,s,0)€ PT
A denies (r,s,0) iff (r;s,0)€ NT
A fails (r,s,0) iff (r,s,0)¢g PtUNT

Authorization evaluation can proceed as follows: Given a request from a
subject s for access r to an object o, grant(r, s, 0) is returned if A grants (v, s, 0),
deny(r, s, 0) is returned if A denies (r, s, 0) and fail(r, s, 0) is returned if A fails
(r,s,0). Note that if A is also strongly complete, then fail(r, s, 0) would never
be returned.

7 Policy Base

In this section, we present a language for stating authorization requirements
in policy bases. The language is essentially a many-sorted first-order language
with a rule construct. The rule construct is similar to the default construct in
default logic [32]; however, we give it a different semantics. The rule construct
is useful for stating structural properties of authorization requirements.

From some domain-specific considerations, we impose several restrictions on
the kind of first-order formulas allowed. We briefly describe the restrictions and
their motivations:

e We desire to have a computable semantics. As validity in an infinitary
theory is typically semi-decidable, we restrict ourselves to finitary theories.
To achieve this, we do not allow function symbols in our language and
postulate only finite sets of access-right, subject and object constants.
This also allows us to eliminate quantifications.

We note that this finiteness assumption only requires that at any particular
time, the sets of subjects, objects and access rights are finite. It does not
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7.1

imply that the sets are fixed. In particular, subjects and objects can be
dynamically created and deleted. However, we have chosen not to model
such creation and deletion in our present framework. Instead, our focus
is on static authorization requirements.

Furthermore, the finiteness assumption allows us to effectively reduce open
policy bases into closed ones (see below). This is analogous to the so called
domain closure or closed world assumption typically used in database
research.

We allow the use of disjunction only in highly restricted ways. For ex-
ample, we cannot state in our language the authorization requirement
“Subject A is either allowed to read file F' or write file G”. Neither can
we state “There is a subject  who can read file 7 in our language. Our
view is that such disjunctive authorization requirements provide insuffi-
cient information for determining the exact extent of authorization.

On a closer look, this limitation is not as restrictive as it seems. In a realis-
tic authorization policy, disjunctive authorization requirements are stated
mostly for convenience and their disjunctive nature is usually immedi-
ately resolved when other requirements are taken into consideration. This
is analogous to the case in classical logic where the statement A V B when
combined with —A yields B, which is non-disjunctive. Purely disjunctive
authorization requirements are rare and counterintuitive.

Syntax

The alphabet of our language is derived from the system to be modeled. Con-
sider a system with S as its set of subjects, O its set of objects and R its set
of access rights. (Note that .S, O and R are all finite sets.) We postulate the
following alphabet for our language:

a set of ordinary variables V,

a set of propositional variables P,

two propositional constants T and F,

a finite set of subject constants S,

a finite set of object constants O,

a finite set of binary predicate symbols R = {r*, 7~ | r € R},

two special predicate symbols “=", and “€”.
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The set S (O) contains a constant symbol for each subject (object) in S (O).
In other words, each subject or object in the system is explicitly represented by
a constant symbol in the language.

A term is an ordinary variable, a subject constant or an object constant. An
atom is a propositional constant, a propositional variable or a predicate p(t,#)
where p is a predicate symbol and ¢,# are terms. We adopt the convention of
writing predicates involving = or € in the infix form, i.e., we write =(¢,%') as
t =t and €(t,t') as t € ¢’. An atom formed from a predicate symbol in R is
called a distinguished atom; and the rest ordinary atoms.

A literal is an atom or the negation of an atom. Negation is denoted by the
symbol —. A literal formed from a distinguished atom is called a distinguished
literal, while a literal formed from an ordinary atom is called an ordinary literal.
A literal is positive if it is an atom, and negative if it is the negation of an atom.
Let a be an atom, then the two literals a and —a are called complementary
literals. We define @ to be —a and =@ to be a. Thus, ¢ and ¢ are always
complementary for any literal £.

A formula is a literal, a conjunction of two formulas f and f’, denoted by
f A f', or adisjunction of two formulas f and f’, denoted by fV f'. A basic for-
mula is a formula that only contains propositional constants and distinguished
literals. A subclass of basic formulas that does not contain disjunctions is called
conjunctive formulas. Note that in our formulas, unlike those of first order logic,
negation occurs only at the level of literals. A formula is closed if it does not
contain ordinary variables, otherwise it is open.

A rule is written in the form f:g—fl where f is a formula, f’ a basic formula
and g a conjunctive formula. f, f’ and ¢ are respectively called the prerequisite,
assumption and consequent of the rule.

Notation. To simplify our presentation, we introduce a syntactic operator
neg for basic formulas. The definition of neg is as follows:

o neg(T) is F,

o neg(F) is

o neg(f) is T, if f is a literal,

o neg(fi A f2) is neg(f1) V neg(f2),
eg(fr V f2) is neg(f1) A neg(f2).

Thus the effect of the neg operator is similar to that of applying negation to
the entire basic formula and then pushing it inward using De Morgan’s law. O

Convention. To be succinct, we use several abbreviations. First, if any
component formula is missing from a rule, it is assumed to be T. Second, we
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use the notation f = g to represent a rule of the form £, Third, T = g is

g
further abbreviated to g. a

Example 1. Let V ={z,y,...}, P = {p,q}, S = {A,B,G}, O = {X)Y, 7},
and R = {read, write}. Then the following are rules:

read™ (G, z)

readt (A, X) = readt(A,Y)

z€G A read (G,Y) = read (z,Y)

—p V writet(z,Z) = —readt(z,y)

p A read™ (z,7):read™ (z,Y)

readt(z,Y)
z € G A write™ (G, y) :writet (z,y) A —write™ (z,y)
writet(z,y) O
Definition. A policy base (or base in short) is a finite set of rules. a

A rule £ s closed if f, f and g are all closed; otherwise it is open. A rule
is pure if f 1s also a basic formula. A base is closed if it contains only closed
rules. A base is pure if it contains only pure rules.

7.2 Semantics for Closed Policy Base

We present a semantics for closed bases here. The semantics for open bases is in
Section 7.4. Every mention of base in this subsection is taken to mean a closed
base unless explicitly stated otherwise.

The semantics of a base is given by its extensions. An extension is a set of
distinguished literals?. An extension provides a straightforward interpretation
for distinguished literals: such a literal i1s true if and only if it is contained in
the extension. An extension is similar in concept to a model in the standard
semantics for classical logic.

An extension naturally defines a policy. More precisely, let ¥ be an extension
and let

Pt = {(rs,0)|rt(s,0) €X}
P~ = {(r,s,0)| -rt(s,0) € X}
Nt = {(r,s,0)|r (s,0) € X}
N~ = {(r,s,0)| -1 (s,0) € X}

4An extension is similar to a Herbrand base except that it contains literals instead of just
atoms.
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Clearly, (P*, P~ , Nt N~) is a policy. We call it the policy defined by ¥, and
denote it by a(X). This establishes a one-one correspondence between an ex-
tension and a policy.

To provide meanings for ordinary literals, we use an assignment function
T : P+ {true,false} and a group relation G. An assignment function provides
interpretation for propositional variables, while a group relation provides inter-
pretation for the predicate “€”; they together model the system state. The
equality predicate “=" is interpreted as the identity relation. We also adopt the
unique names assumption, i.e., ¢ # ¢ for all ¢,¢’ in SUO.

Before we give our definition for extension, we first define a satisfaction
relation between a set X of distinguished literals and a closed formula f with
respect to an assignment Z and a group relation G. We denote the satisfaction
relation by X =7 ¢ f. The definition is by structural induction:

e f1s a propositional constant, then

Ykeref it fisT

e f is a propositional variable, then
Ykergf it Z(f) = true

e fist =1 then

% IZI,Q f iff t =+

fist et then

b IZI,Q foaff (t,t/) €eg

f 1s a distinguished literal L, then
% IZI,Q f iff LeX

f is = f" where f’ is an ordinary atom, then

Ykergf f XHzgf

fis fi A fs, then
Ykrgf ff YErgfiand X6 fo

fis f1 V fs, then
Ykzof ff YlkrgfiorXzg fo

It should be clear that for a basic formula f, the satisfaction relation is inde-
pendent of Z and G. More precisely, let f be a basic formula, Z,Z’ assignments,
G,G' group relations and X a set of distinguished literals. Then ¥ 7 g f iff
Y =7/ g+ f. We would abbreviate =7 g to = in this case.

Note that our semantics is different from the standard semantics for classical
logic in several ways. First, F' A —F represents a contradiction in classical logic
and hence does not admit any model. In our case, we have {F, = F} 7 g FA—F.
Second, in classical logic, if ¥ satisfies both ' V G and —F, then it must also
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satisfy G. This is not true in our semantics as {F,=F} EFz¢g F V G and

{F,~F} Ezg -F, but {F,=F} [F7¢ G. A semantics that exhibits such non-
classical behavior is often called paraconsistent.

Given a base, we are now ready to define its extensions. Let B be a base, 7
an assignment and G a group relation. We define an operator I'p 7 g that given
a set of distinguished literals, returns a new set of distinguished literals. The
formal definition of I'p 7 g is as follows: Let X be a set of distinguished literals.
Define

. {M

M is a set of distinguished literals and
for all f:Tfl €B,if M Ezg f and X £ neg(f') then M g

I'sz,6(X) = the intersection of all elements in Sé’gz

The intuitive meaning of a rule f:Tfl is as follows: If a set X of distinguished
literals satisfies f, and there is no evidence that the negation of f’ is satisfied
(hence it is consistent to assume that 3 satisfies f’), then ¥ must also satisfy
g. Note that both neg(f’) and g are basic formulas. Hence we write |= instead
of Ez ¢ in the condition for Sé’ygz.

In the case that B is a pure base, it should be clear from the above definitions
that SJIB’% and hence the operator I'p 7 g are independent of Z and G. That is,
Sé”% = Sg’gl I'pz,6(X) =Tpg7z g (X) for any set of distinguished of literals X.
In the following, we would denote them respectively by Sp x and I'p.

We also make the following observation: Let
. !
CON(B) = {g ‘ Fr B}
)

Then each element of Sé’y% is a subset of CON (B). Hence I'p 1 6(X) C CON(B).
Note that CON(B) is finite, as B is finite.

Definition. Let B be a base, Z an assignment, G a group relation and X a set
of distinguished literals. X is an extension of B under Z and Gif ¥ =T'g 7 ¢(X),
i.e., X is a fixed point of the operator I'p 7 g. a

In the case of a pure base, the fixpoints are independent of the assignment
and the group relation. Therefore, we can just refer to them as extensions of B.
From the above observation that I'g 7 g(X) is a subset of CON(B) and that
CON (B) is finite, a simple procedure for finding all extensions of a base B is
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to enumerate all subsets of CON (B) and check each one for satisfaction of the
fixed point equation.

Since each extension of a base defines a policy, in the case that B admits a
unique extension X under Z and G, the policy defined by ¥ can be taken to be
the semantics of B under Z and G. We formalize this in the following definition.

Definition. Let B be a base, 7 an assignment and G group relation. Suppose
B admits a unique extension ¥ under Z and G. Then «(X), the policy determined
by B under T and G, will be denoted by &z ¢(B). O

The authorization relations introduced in Section 6 can be naturally ex-
tended to a base as follows. (Note that this is well defined only when &7 g(B)
itself is well-defined and is a strongly sound policy.)

Definition. Let B be a base, Z an assignment and G group relation. Let
s€S,oe0andreR:

B grants (r,s,o0) under Z,G iff &z g(B) grants (r,s,o)
B denies (r,s,0) under Z,G iff &7 g(B) denies (r,s,0)
B fails (r,s,0) under Z,G iff &7 g(B) fails (r,s,0)

These three relations represent the authorization defined by a base B, and are
taken to be 1ts semantics. a

Clearly, the above semantics is well-defined only when B admits a unique
extension under Z and G. However, as shown in the examples below, this unique
extension property is not true in general.

Example 2. Consider the base

[ readt (A, X) A —readt(A,Y) : read™(A,Y) A —readt (A, Z)
e readt (A, X) ' readt(A,Y) ’

: readt(A,Z) A —readt (A, X)
readt (A, Z)

By does not admit any extension under all assignments and group relations.
This can be shown as follows. First,

CON(By) = {read+(A, X),read™(A,Y), readt (A, Z)}
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Any extension of By must be a subset of CON (B;). We check each such subset
to see if 1t satisfies the fixed point equation. We group these subsets into four
cases: (1) The empty set. We have T'g, (f) = CON(B;1) # 0. (2) The single-
ton sets: ¥, = {readt(A,X)}, B2 = {read™(A,Y)} or X3 = {readt(A,Z)}.
For 3;, we have I'p,(¥1) = X1 U Xy # X;. The calculations for Xy and
Y3 are similar. (3) The two-element sets: X4 = {readt (A, X),read*(A,Y)},
Y5 = {readt(A,Y),read¥ (A, Z)} or ¥g = {readt (A, Z),read™ (A, X)}. For X4,
we have T'p, (£4) = X3 # X4. The calculations for X5 and X are similar. (4)
The set CON(B;). We have I'g, (CON(B;)) =0 # CON(By).

Since Bj contains no ordinary literal, the assignment or group relation can-
not be the cause of its lack of an extension. a

Example 3. Consider the base

[ —writet (A, X)  : —writeT(A,Y)
27 writet (A)Y) 7 writet (A, X)

By admits two extensions {write?(A,Y)} and {writet(A,X)} under all assign-
ments and group relations. a

Example 4. Consider the base

+  write—
Bz = {read‘}'(A,X), p A read¥(A X) : —write (Aaz)}

write™ (A, Z)

If Z(p) = false then {read®™(A,X)} is an extension. However if Z(p) = true, B3
does not admit any extension. This can be easily explained by the fact that the
assumption and the consequent of the second rule are inconsistent. Thus Z and
G do affect the extensions (if any) of a base. a

Although these examples demonstrate that the unique extension property
is not true in general, they also serve to illustrate a common underlying cause
for failure. In the above examples, there is a kind of circularity in the rules
involving atoms that occur both positively and negatively. For instance, in Ex-
ample 3, each of the atoms writet (A, X) and write™ (A, Y) occurs positively in
the consequent of one rule but negatively in the assumption of the other rule.
The application of one rule would necessarily disable the application of the
other rule, thus resulting in two different extensions. However, if priorities are
enforced between the two rules (e.g., the derivation of write* (A, X) is more “im-
portant” than the derivation of writet (A, Y)), then only {write* (A, X)} would
be considered an extension of By. This idea can indeed be generalized and a
notion of stratification can be defined on the set of distinguished atoms, such
that a stratified base always possesses a unique extension. We omit the details
here and refer the readers to [2, 10, 31].
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The semantics of a base can also be given by first “factoring out” the effects
of assignments and group relations. We formalize this below.

Let f be a formula, Z an assignment and G a group relation. Suppose we
apply the following transformation to f:

e replace all occurrences of p in f by T if Z(p) = true and F otherwise
e replace all occurrences of ¢t € ¢/ in f by T if (¢,¢') € G and F otherwise

e replace all occurrences of t =¢' in f by T if t = t' and F otherwise

We denote the resulting formula by [Z,G](f). It should be clear that if f is a
basic formula, [Z,G](f) = f.
It

Next, we extend the transformation to a rule. Let d = - be a rule. We

define:

O LA EG)
LA =""Fam = 4

The last equality is due to the fact that f’ and g are basic formulas. Note that
[Z,G](d) is pure. Lastly, we define

[Z,6](B) = {[Z,4](d) | d € B}

Clearly, [Z,G](B) is a pure base.

Theorem A. Let B be a base, 7 an assignment and G a group relation. Let
Y be a set of distinguished literals. Then

Y is an extension of B under Z and G iff ¥ is an extension of [Z,G](B)

Proof. See Appendix A. a

7.3 Computation of & 4(B)

For our semantics, authorization evaluation reduces to the computation of £z g(B).
In this subsection, we present a semantics-preserving translation of a base B into
an extended logic program B, thus reducing the computation of £7 g(B) to the
computation of 7B [11].

We first introduce the concept of an extended logic program. An extended
program clause is a statement of the form:

L < Lyi,...,Ly,not Lpyq, ... not Ly,
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where I and the L;’s are literals. An extended logic program is a finite collection
of extended program clauses. Extended logic programs are a strict superset of
general logic programs, because literals rather than just atoms are allowed in
the program clauses.

For extended logic programs, we have developed a paraconsistent semantics
(expressed in terms of models) using ideas from stable model construction [10].
Our semantics is an extension to the one proposed in [11], and is similarly
computable via reduction to general logic programs. A review of this semantics
is given in Appendix B.

The essence of our approach is to translate a base into an extended logic

program as follows: Let B be a base and let d = f:Tfl be a rule in B. We
translate d into the extended program clause

g — f A not(neg(f'))
where not is an operator with a definition similar to neg:

e not(T) is F,

o not(F)is T,

e not(h) is not h, if h is a literal,

e not(hy A hg) is not(h1) V not(hs),

e not(hy V hg) is not(h1) A not(hs).

We denote by B the extended program obtained by applying the above trans-
lation to each rule in B.

Theorem B. Let B be a pure base and ¥ a set of distinguished literals. Then
Y is an extension of B iff ¥ is a model of 7B

Proof. See Appendix C. |

Corollary C. Let B be a base, Z an assignment and G a group relation. Let
Y be a set of distinguished literals. Then

Y is an extension of B under Z and G iff ¥ is a model of 7[Z, G](B)

Proof. Immediate from Theorem A and Theorem B. O
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7.4 Semantics for Open Policy Base

Let B be an open base. We view each open rule in B as standing for all its
ground instances. In other word, let d(Z) be a rule whose free variables are Z.
d(z) should actually be understood as representing the set of closed rules

{d(¢) | ¢ is a ground substitution for z}
For example, if § = {A, B} and O = {X, Y}, then the open rule

writet (z,X) : read™(z,y)
readt(z,y)

stands for the following set of closed rules:

writet (A, X) : read™ (A, X) writet (A, X) : readt(A,Y)
readt (A, X) ' readt(A,Y) '

writet (B, X) : read®™ (B, X) writet(B,X) : read*(B,Y)
read* (B, X) ' read*(B,Y)

Thus each open base B can be associated with an “equivalent” closed base B’.
The semantics of B is defined to be the same as that for B’.

7.5 Application Guidelines

Having defined the syntax and semantics of policy bases, we now turn to the
practical aspects of specifying policy bases. In particular, we provide some
guidelines for representing the three kinds of structural properties discussed in
Section 3.

Consider a rule £-£ Tts intuitive meaning is that the authorization specified
by g is allowed if the authorization specified by f is allowed and no authorization
contradicting f’ has been specified. Informally, f specifies some prerequisite
authorization required for g, while f’ specifies assumptions that can be used to
deduce the authorization specified by g. In the following, we discuss different
forms of our rule and show how they can be used.

Consider a rule of the form 5T or simply g. Such a rule expresses basic
authorization requirements that must be satisfied in a system. There is no
prerequisite nor assumption. For example, to say that a user A must be able to
read and write his home directory, we write:

readt (A, A.home) A writet (A, A.home)

where A.home denotes user A’s home directory. These basic authorization re-
quirements form the core upon which other authorizations can be deduced.
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A rule of the form %, or simply f = g, can be used for two purposes. First,
it can be used to express a closure property between authorization requirements.
For example, consider the rule:

execute (z, P.exe) = read™(z, P.doc)

which says that a user who is authorized to execute a program P.exe should also
be allowed to read its associated documentation P.doc.

Another use of the above rule is to define new authorization requirements in
terms of others. For example, in Unix, the right to delete a file is equivalent to
the right to write the directory containing the file. This can be made explicit
as:

writet(z,d) A f €d = deletet(z, f)

where f and d are variables standing for a file and a directory respectively.

Rules can also be used to represent implicit authorizations. There are several
reasons why an authorization is left implicit. First, it can be a convention.
For example, in general, the number of negative authorizations in a system far
exceeds the number of positive ones. Thus for efficiency, a security administrator
may specify only the positive ones and leave the negative ones implicit. In other
words, the convention is that if a right has not been explicitly authorized, then it
is denied. This convention can be formalized in a policy base with the following
schema:

2 r7(s,0)
r~(s,0)
where r € R.

An inheritance property is another example of implicit authorizations that
can be formalized as rules. An example is given in Section 8.

7.6 Specifying Exceptions

In the following, we explore several strategies to specify exceptions. We first
introduce the concept of virtual rights. Virtual rights are not access rights per
se, but are introduced for stating exceptions. We explain this with an example.
Suppose we have the following authorization requirements:

(1) User A is not allowed to write file X. (2) A user who is not
allowed to write file X 1s also not allowed to read X except for those
who belong to group G and those who can read file Y.

As a first attempt, we can express this as two rules:

write™ (A, X)
write™ (z,X) A =(z € G) A —readt(z,Y) = read™(z,X)
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Clearly, these rules correctly represent the requirements. However, they are
inflexible and error prone in the following sense: They require every exception
to be known and be included in the left hand side of the second rule. Thus for
a subject whose exception status is unknown (e.g., subject A above), it will not
be explicitly denied the right to read X.

A better way to represent this would be to introduce a virtual right except
to represent exceptions and a rule to limit exceptions to the ones explicitly
specified.

write™ (A, X)

write™ (z, X) A —exceptt(z,X) = read™ (z,X)
r € G = exceptt(z,X)

readt(z,Y) = exceptt(z,X)

. —exceptt (z, X

—except T (z, X)

Subject A is denied read access to X by the second rule in By. This is the case
because A is assumed to be not an exception by the last rule in B4. Thus this
specification errs on the safe side from a security viewpoint.

Another way of stating the same requirements without using the virtual right
except 1s the following.

write™ (A, X)
z €G = —read” (z,X)
Bs = { readt(z,Y) = -read™(z,X)
write™ (z, X) : read ™ (z, X)
read ™ (z, X)

The main difference between B4 and By is that in By, we only have sufficient
conditions for exceptions while in Bs, we can conclude that —read ™ (z, X) holds
for all excepted individuals.

Yet another way to specify the requirements, one that can be viewed as a
hybrid of B4 and Bs, is the following.

write™ (A, X)

r€G = exceptt(z,X)

readt(z,Y) = exceptt(z, X)

write™ (z, X) : mexcept* (z, X)
read ™ (z, X)

Bg

Bg 1s similar to B4 in that only sufficient conditions for exceptions are speci-
fied. However, for any subject, such as A, who is not explicitly specified as an
exception, its exception status remains unknown.

Although B4, Bs and Bg are different with respect to what can be concluded
about the excepted individuals, they all have the same semantics with respect
to write™ and read™. In particular, read™ (A, X) holds in each case.
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8 Examples of Policy Bases

In this section, we present two examples of using policy bases to specify autho-
rization requirements. The first example is the Bell-LaPadula model (BLP) [3].
We present a straightforward formulation of the basic BLP model in the policy
base notation and also an enhancement with need-to-know restrictions. The
second example shows how to formalize inheritance properties (as illustrated by
examples in Section 2).

The essence of the basic BLP model can be summarized by two rules, “no
read up and no write down”. To simplify our presentation, we consider only
two security levels low and high. We specify the BLP model as follows:

BLP =R UW-URtuw?
where
No Read Up) R~
No Write Down) W~

Can Read Down) R*
Can Write Up) wt

{s €Elow A o € high = read™(s,0)}
{s € high A o € low = write™(s,0)}

{o€low = read™(s,0)}

(
(
(
( {s € low = write*(s,0)}

In the above, denials are absolute in the sense that no exception is allowed.
Given a complete description of the group relation, the above policy base uniquely
defines a strongly sound and strongly complete authorization policy that satis-
fies the simple and %-security properties [3].

However, this basic model suffers from two drawbacks. First, the group
relation must be completely defined in order to give a strongly complete autho-
rization policy. Second, although positive authorizations that are granted do
satisfy the simple and *-security property, they violate the principle of minimal
privileges [33].

We remedy this by adding need-to-know restrictions and denials by default.
We modify RT and W+ to be (respectively)

R = {o€low A need-to-know™ (s,0) = read*(s,0)}
W' = {s€low A need-to-know™ (s,0) = writet(s,0)}
and BLP to be
BLP'=RTUWT-URUW'UD

where D is
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{ : read™ (5,0) : write7(s,0) —|need—to—know+(5,o)}
read™(s,0) = write7(s,0) ' —need-to-know™ (s, 0)

The virtual right need-to-know formalizes the need-to-know restrictions and can
be defined in terms of compartments of subjects and objects using other rules.

We now turn to our second example. Consider the following inheritance
properties:

(1) If a subject s has not been explicitly granted a right r to an object
o, then s will inherit a denial of r to o if it belongs to a group g that
has a denial of r to o. (2) If a subject s has not been ezxplicitly denied
a right r to an object o, then s will inherit a grant of r to o if all
groups to which s belongs have grants of r to o.

These can be expressed respectively by the following schemas:

seg Ar(g,0) : =rt(s,0) A r7(s,0)
r~(s,0)

dy =

and

Vgl-(s€g) V rt(g,0)] : r(s,0) A =r~(s,0)

dy =
2 rt(s,0)

where V g[f(s,g,0)] in d3 is a shorthand for the conjunction of all formulas of
the form f(s, G, 0) where G € S.

9 Implementation Considerations

Our model can be implemented as follows in a distributed system. Each policy
base 1s stored and managed by a node in the system. We call such a node
a policy server. These policy servers are organized in a hierarchical manner.
Policy servers at the same level are called peers. Clients submit their access
requests to appropriate policy servers for authorization decisions. The policy
servers communicate with each other in authorizing an access request.

The assignment function used in interpreting propositional variables is im-
plemented by a set of distributed monitors that keep track of the status of
propositional variables.

The group relation is implemented by a set of group servers that collectively
maintain group membership information for all subjects and objects in the sys-
tem. Thus all updates of group memberships (e.g., additions and deletions) in
the system are handled by the group servers.
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Both the distributed monitors and group servers are regularly queried by
the policy servers in making authorization decisions. The evaluation mechanism
used 1n each policy server is based on an interpreter for general logic programs.
In fact, a suitably modified Prolog interpreter is sufficient.

A preliminary design of a distributed authorization service based on the
ideas presented in this paper is given in [38].

10 Concluding Remarks

We have presented a new approach to representing and evaluating authorization.
In our approach, a set of authorization requirements is specified declaratively by
a policy base. Unlike most existing approaches, the semantics of authorization
is defined independently and is separate from implementation mechanisms.

Our approach is readily extensible. New predicate symbols can be added to
our representation language to increase its expressiveness without a significant
increase in computational requirements.

The existence of multiple authorities can be modeled in our approach by
the use of suitable composition operators. Our research suggests that there are
two notions of composition for policy bases that are important in a distributed
system environment.

First, a system may be administered by multiple security administrators,
each responsible for a distinct part of the system. Each security administrator
specifies a policy base for the part of the system he is responsible for. In this
case the different policy bases complement each other, in the sense that each
fills in a part that has not been specified by others. Thus a composition gives
the “sum” of all authorization requirements in the policy bases. We call this
type of composition peer or horizontal composition.

Second, a security administrator may delegate his responsibilities to a num-
ber of subordinate administrators. This gives rise to a root policy base cor-
responding to the delegating administrator and a number of leaf policy bases
corresponding to the subordinate administrators. The leaf policy bases are more
specific and detailed than the root policy base and typically contain refinements
of the root policy base. Composition in this case would combine all of the au-
thorizations present in the root policy base together with their refinements in
the leaf policy bases. We call this type of composition hierarchical or vertical
composition.

The key difference between horizontal and vertical compositions is in their
resolution of conflicts. A formal definition of these operators and their properties
are still under investigation. Some preliminary ideas have been given in [37].

We are building a prototype implementation of the ideas in this paper. As we
learn from our implementation experience, we may further refine our language
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for pragmatic or efficiency consideration. Specifically, we may restrict the lan-
guage’s expressive power. Such interplay between efficiency and expressiveness
is an important area for future research.

Lastly, there are some other general problems that deserve further investi-
gation. These include: (1) the use of disjunctive information in authorization,
and (2) the incorporation of structured subjects (e.g., one subject being a role
or delegate of another subject) and structured objects (e.g., one object being
an implementation of another object) into our representation language.
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A Proof of Theorem A

We first observe some simple lemmas.

Lemma 1. Let Z be an assignment, G a group relation, 3 a set of distin-
guished literals and f a formula. Then

S kg fiff S E[Z,6)(f)

Proof. Immediate from the definition of =7 g. Note that [Z,G](f) is a pure
formula. O

Lemma 2. Let Z be an assignment, G a group relation, 3 a set of distin-
guished literals and f a formula. Then

SES = Szeym) .

)

Proof. Note that [Z,G](B) is a pure base. Let M be a set of distinguished
literals.
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iff

iff

iff
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M e S5,

{ definition of S%%,

for all f:Tfl €B,if M Ezg f and X |~ neg(f') then M g

{ Lemma 1, f’ and g are basic formulas }

for all f:Tfl € B,if M E[Z,G](f) and X |~ [Z,G](neg(f')) then M = [Z,G](9)
{ replacing [Z,G](h) by h and definition of [Z,G](B) }

for all f:Tfl €[Z,G1(B),if M |= f and X }£ neg(f') then M g

{ definition of Siz g1(B),x }

M € Sz oym).=

Theorem A. Let B be a base, 7 an assignment and G a group relation. Let
Y be a set of distinguished literals. Then

Y is an extension of B under Z and G iff ¥ is an extension of [Z,G](B)

Proof.

B

In

¥ 1s an extension of B under Z and ¢
iff  { definition of extension }

Y =Tpzrc(X)
iff { definition of T'p 7 g(Z) }

Y. = the intersection of all elements in Sﬁ’ygz
iff { Lemma 2 }

¥ = the intersection of all elements in Siz gy(B) s
iff  { definition of I';z 1) (X) }

T =Tzam (@)
iff  { definition of extension }

¥ is an extension of [Z,G](B)

A Paraconsistent Semantics for Extended
Logic Programs

the following, a literal refers to a distinguished literal.
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B.1 Programs

A program formula (or formula in short) is:

e TorF
e a literal
e f A f' where f and f’ are formulas

e f V [/ where f and f’ are formulas

Note that negation occurs only at the literal level, and not at the formula level.
A conjunctive formula 1s a formula without disjunction.

A program clause (or clause in short) is f ¢ g where f is a conjunctive
formula and g a formula. g is called the premise while f the consequence of the
rule. A closed rule is a rule that does not have any free variables. A program 1is
a set of clauses. A closed program is a program containing only closed clauses.
We consider only closed clauses and closed programs in the sequel. Thus, all
mentions of clauses and programs are assumed to be closed.

We want to define the concept of a model for a program. To do this, we
first define a satisfaction relationship between a set of literals and a formula or
clause.

Let ¥ be a set of literals. We have:

SET
SEF

S E L iff L € where L is a literal
SEfAfIFSEfand S E
SEfV IS Efor Sk

e S Ef « giff S gimplies T | f

We observe that the above definition for |= when restricted to program
formulas is identical to the definition of =z g for formulas without ordinary
literals.

Definition. Let IT be a program. X is a model of IT iff for all clause r € II,
YEr O

Note that the set of all literals is always a model of any positive program II.
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Proposition. Let IT be a program. Then the intersection of all models of T1
is also a model of II. a

Corollary. For any program II, there exists a least model of II. a

We denote the least model of program Il by Mp. Thus, M = is the smallest
set ¥ such that for each clause r € TI, ¥ | r. Note that My is computable
by a “bottom up” evaluation. More precisely, let £g = (J, and let ;11 be the
smallest set such that (1) it includes X; and (2) for every clause f + g € TI,
if ¥; | g then T;4q = f. If there exists an ¢ such that ©; = X;, for all j > 4,
then MH = Ei.

B.2 Extended Programs

An extended literal 1s I or not I, where L i1s a literal. An extended program
clause (or ertended clause in short) is constructed exactly like a clause except
that extended literals are allowed in the premise of the rule in place of literals.
An extended program is a set of extended clauses.

We want to define an analogous notion of model for an extended program.
To do that, we first define a reduction from an extended program to a program.
Let X be a set of literals and r an extended clause. We define an operation Oy
that transforms r into a regular clause. The definition of Oy is as follows:

e replace all occurrences of not T in r with F,
e replace all occurrences of not F in r» with T,
e replace all occurrences of not L in r with Fif L € X,

e replace all occurrences of not L in r with T if L ¢ X.

The resulting clause is denoted by Og[r]. Note that since extended literals are
only allowed in the premise of a clause, so Oy can be viewed as an operation
on formulas instead of clauses. This view will be used later on.

Let TI¥ denote the program obtained from an extended program II by ap-
plying Oy to each clause in II. That is, [T¥ = {@g[r] | r € IT}.

Definition. X is a model of I1 iff ¥ = Mpz=. O

While an extended program may have zero, one or multiple models, there
are syntactic characterizations of extended programs that admit unique models.
For example, the existence of a stratification [2] is one such characterization.
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C Proof of Theorem B

In the following, a literal refers to a distinguished literal. Note also that a
program formula has the same syntax as a formula in a pure rule. Hence in the
following, a formula is interpreted according to its context.

Lemma 3. Let X be a set of literals and f be a formula. Then

S fiff Oglnot(f)] = T

where = denotes the usual logical equivalence.
Proof. By induction on the structure of formulas. a
Lemma 4. Let X be a set of literals and f be a formula. Then for any set

M of literals
M = Oslnot(f)] iff Ognot(f)] = T

Proof. By induction on the structure of formulas. a

Lemma 5. Let B be a pure base. Then for any set X of literals
[p(X) = M(zp)»
Proof. Before we begin the proof, we make the following observation: By def-

inition, all clauses in (ﬂ'B)E are obtained from the clauses in 7 B. In particular,
we have:

r € TBiff Oxg[r] € (rB)*

Now since mB is the extended program obtained by translation from base B,
all clauses in wB are of the following form

g — f A not(neg(f'))

Hence, all clauses in (7B)¥ are of the form

g  Ox[f A not(neg(f'))]

which simplifies to

g — f A Oxs[not(neg(f))]
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as both f and g do not contain extended literals.

To summarize, we have

LEeB iff g« f A not(neg(f')) € B

i g« f A Oulnot(neg(/)] € (B)° )

Now back to the proof, we prove the equality by showing subset inclusion in
both directions.

(a) FB(E) - M(ﬂ-B)E.

If we can prove M, p)= € Sp,x, then by the fact that I'p(X) is the least element
of Sp s, we obtain the desired inclusion. In the following, we prove M(,py= €
Sp,x by showing it satisfies the condition for being an element of Sp x.

First, from the fact that M p= is the least model of (7B)*, we have:

For all clause g « f A Os[not(neg(f'))] € (xB)*,

Mzpys | [ and M(zpy= | Ox[not(neg(f'))] implies M(rp)» g

By (%) and Lemma 4, we get:

For all rule f:g—f, € B,

Mpy= | f and Ox[not(neg(f'))] = T implies Mapy= Eyg

Then by Lemma 3, we get:

For all rule f:g—f, € B,

Miupy= | f and S | neg(f') implies Mizpy= = 9

which is exactly the condition for being an element of Sp 5.

(b)  Miemy CTn(S).

If we can prove that T'(X) is a model of (7B)¥, then by the fact that Mxpy=
is the least model of (ﬂ'B)E, we obtain the desired inclusion. In the following,
we show that T'g(X) satisfies the condition for a model of (7B)*.

First, since T'p(X) € Sp 5, we have:
For all rule f:g—fl € B,

(X)) E f and T}~ neg(f') implies Tp(X) E g
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By Lemma 3, we get:
For all rule 2L € B,
I'5(3) E f and Og[not(neg(f'))] = T implies Tp(S) E ¢
By (%) and Lemma 4, we get:
For all clause ¢ « f A Os[not(neg(f'))] € (7 B)*,
I'p(3) | f and I'p(3) | Os[not(neg(f'))] implies Tp(X) = g

which is the condition for I'(X) to be a model of (7B)*. m|

Theorem B. Let B be a pure base and X a set of literals. Then

¥ 1s an extension of B iff ¥ i1s a model of 7B

Proof.

3 is an extension of B
iff  { definition of extension }

T = Ip(x)
iff { Lemmab }
Y= M(WB)E

iff  { definition of model }
Y is a model of 7B



