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Abstract

We consider application-level quality of service (QoS) requirements in design of networks that

provide delay and loss guarantees. Using this approach, we have designed a novel network archi-

tecture that in many aspects is more efficient than ones motivated exclusively by packet QoS. An

overview of our work is presented in this paper. The centerpiece of our design is a traffic model that

enables delivery of application specific information to the network. Based on the traffic model, we

have developed (i) efficient network techniques for providing application-level delay guarantees,

(ii) an admission control algorithm for a statistical service that bounds application data losses be-

low a specified value, and (iii) network techniques for managing application data losses to achieve

fairness and protection of high priority data units marked by applications (e.g., I frames of MPEG

applications).

Keywords: application-level QoS, deterministic traffic model, burst scheduling, admission control,

selective early ADU discard



1 Introduction

Inside current networks, all data is encapsulated in packets. As every network has a maximum packet

length, often an application data unit (ADU) is too large to be carried in a single packet. In such a case,

the ADU must be segmented for network delivery. The advantage of this approach, evidenced by the

success of the Internet, is that a single network can be shared by a diverse range of applications.

Encapsulation and segmentation of application data, however, have drawbacks. In particular, they

cause the following tension between the network and an application: While the network has been

designed to optimize the performance of packets (throughput, end-to-end delays, delay jitters, etc.), an

application emphasizes on the performance of its data units rather than that of individual packets. For

example, consider an application that sends a sequence of video pictures over an IP network. Each

picture may be segmented into a sequence of IP packets. The loss rate of the pictures is much more

important to the application than the loss rate of the packets.

Mapping application-level QoS requirements to the network level, given the complexity of network

dynamics, is not trivial. There may even be cases where the network cannot provide what an application

needs. This problem has become more acute because (i) emerging multimedia applications require

stringent QoS from the network, and most of their data units (e.g., pictures) are large and must be

segmented, and (ii) small packets, such as cells in ATM networks, are being used as means for good

real-time performance.

There have been studies on how to bridge QoS at the network and application levels. However,

they focused mainly on techniques that can be used at the end hosts (i.e. sender and receiver) to predict

and/or enhance application-level QoS for a particular grade of network-level QoS. In [3], the idea

of application-level framing was proposed to avoid application layer throughput degradation at the

receiver; such degradation is caused by the transport layer suspending delivery of data when some

packets are lost or out of order. Specifically, it was proposed that the sender transmits, along with

data packets, application level framing (ADU boundary) information to the receiver. As a result, the

transport layer at the receiver can still deliver other ADUs to the application layer when it has to hold a

particular ADU because some packets of that ADU are lost or out of order. In [2], the relation between

application-level QoS and network-level QoS was investigated in the context of an ATM network. The

study concentrated on the impact of source peak transmission rate on message losses given a constant

level of network cell losses. It was observed that the message loss rate of a connection may differ greatly

with a different peak rate. A set of heuristics were developed, which can be used by an application to

determine the network QoS required to ensure an appropriate level of losses of its messages.

We have taken a different approach, focusing directly on the network. In particular, we consider

application-level requirements in design of networks that provide delay and loss guarantees [11, 12, 20,
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19]. Using this approach, we have designed a novel network architecture that in many aspects is more

efficient than ones motivated exclusively by packet QoS.

An overview of our work is presented in this paper. The centerpiece of our design is a traffic

model that enables delivery of application specific information to the network. Based on the model,

we have developed (i) efficient network techniques for providing application-level delay guarantees,

(ii) an admission control algorithm for a statistical service that bounds application data losses below a

specified value, and (iii) network techniques for managing application data losses to achieve fairness

and protection of high priority data units marked by applications (e.g., I frames of MPEG applications).

The balance of this paper is organized as follows. In Section 2, our traffic model is described.

In Section 3, network techniques for providing application-level delay guarantees are presented. In

Section 4, an admission control algorithm that guarantees statistical performance of ADUs is described.

In Section 5, network techniques for managing application data losses are presented.

2 Traffic Model

For clarity of exposition, we assume in the balance of this paper that packets are of fixed size (such as

ATM cells). The results and specifications to be presented can be modified in a straightforward manner

for networks where the packet size is variable, but bounded.

In designing networks that provide delay guarantees to delay sensitive variable bit rate (VBR)

flows, we introduced the concept of a burst [11], which models a sequence of packets that encapsulate

an application data unit. For video, for example, a burst models a sequence of packets that carry the

encoded bits of a picture. The first and last packets of each burst are marked and the first packet carries

information on the bit (or packet) rate of the burst. In summary, our traffic model is deterministic

because the boundary and the exact bandwidth requirement of each ADU are encoded and accessible

by the network.

The burst concept and traffic model are particularly applicable to network design in support of

application-level services [11, 20]. Specifically, they allow each ADU’s packets to be processed as

a whole and independently from other ADUs. Consequently much more predictable network perfor-

mance for ADUs can be rendered.

In what follows, we assume that each flow conforms to the deterministic traffic model defined

below, and we will use the terms ADU and burst interchangeably.
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Definition 1 (deterministic traffic model) A flow is modeled as a sequence of bursts, each of which is

a sequence of packets that carry the bits of an ADU. The first and last packets of each burst are marked,

and the first packet carries some information on the ADU (including its bandwidth requirement).1

There are costs associated with requiring flows to conform to the above traffic model, namely: the

extra bits for encoding ADU information in some packets, and the extra processing by a network node

to retrieve and act on the information. However, they are bearable with today’s network technologies

(especially hardware), and the benefits, as we will present in the remainder of this paper, outweigh the

costs. In fact, our approach is consistent with the technology trend, in which the network is required to

be more active, i.e. to perform more application specific computations [6], for better and more flexible

services.

Notation.
i integer; flow index

m positive integer; index of mth burst in a flow

�m� l� index of lth packet in burst m

bm size of burst m (in packets)

�m bandwidth requirement for burst m (in packets/second)

3 Burst Scheduling Techniques

The first version of our deterministic traffic model was constructed as a component of a network ar-

chitecture, called Burst Scheduling, that provides end-to-end delay and end-to-end jitter guarantees to

packets of an VBR flow [11]. Since then, the model has motivated the development of several tech-

niques [11, 12, 18], refereed to as burst scheduling techniques, that are useful in design of efficient

networks that provide application-level delay guarantees.

Burst scheduling techniques are particularly useful when network channels employ rate-based

packet service disciplines (e.g., [5, 14, 17, 21, 22]), which can be described generally as follows.

Consider a particular channel. A reserved rate is allocated to each flow that shares the channel. Each

packet in a flow is tagged, upon arrival, a priority (or deadline) computed using the rate allocated to

the flow. The channel schedules packets for service based upon their priority tags. Rate-based service

disciplines have the desirable firewall property; that is, the delay guarantee to a flow is unaffected by

other (even misbehaving) flows that share the same channel.

1This part of our model can have different implementations. For example in ATM networks, it may be desirable to use

RM cells to mark the boundary of a burst and carry rate information.
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In the remainder of this section, some of the burst scheduling techniques are briefly described.

3.1 Burst-based Rate Allocation

With our traffic model, burst-based rate allocation can be implemented at a channel. Specifically, a

reserved rate is not allocated to a flow until the first packet of a burst arrives, and the rate is subsequently

deallocated when the last packet of the burst departs [11]. (At any time at most one burst in each flow

is allocated its reserved rate.) As a result, the rate allocated to a VBR flow is variable, i.e. it changes

from one burst to the next.

Burst-based rate allocation has the advantages of allocating a rate that is exactly what a flow needs

at all time. Consequently, the channel has knowledge of the exact input load at all time. (In contrast,

estimation based on queue length measurements might not always be accurate.) The performance of

bursts (such as their delays) at the channel can also be predicted more accurately. These properties are

desirable for admission control (see Section 4), and overload control (see Section 5).

Rate-based packet service disciplines can be modified, in a straightforward manner, to support

burst-based rate allocation. Their packet delay guarantees can also be generalized to burst delay guar-

antees while retaining the firewall property. We have done both for the Virtual Clock [22] service

discipline [11].

3.2 Application-Level Delay Guarantee: an Example

As mentioned earlier, our traffic model enables burst scheduling techniques that are especially useful

in providing application-level delay guarantees. Next we will illustrate this point with an example

network architecture, which is described in detail in [11]. The network architecture consists of two

major components: a regulator at each source to enforce a burst-based flow specification, and a packet

scheduler at each channel to provide delay guarantees to bursts.

3.2.1 Flow Specification

In addition to conforming to the deterministic traffic model, each flow is enforced by a source regulator

to satisfy a burst-based flow specification defined below.

Definition 2 (Flow Specification) [11] A flow conforms to the following conditions when entering

the network

� Packets in burst m satisfy a jitter timing constraint, namely: for l � �� �� � � � � bm,

� � A�m� l��A�m� �� �
l � �

�m
(1)
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where A�m� l� is the arrival time of packet �m� l�.

� Bursts in the flow satisfy a separation timing constraint, namely: for m � �,

A�m� �� �� �A�m� �� �
bm
�m

� (2)

Timing constraint (1) specifies a jitter bound over the packets of each burst; e.g., this constraint is

satisfied if all packets of a burst arrive at the same time. Such a jitter bound is necessary if a network

is to provide a tight burst delay bound. Timing constraint (2) specifies a minimum separation between

two consecutive burst arrivals in a flow. This is a form of source control [11].

3.2.2 Packet Scheduler

The packet scheduler at each channel uses the Virtual Clock service discipline [22], modified slightly

to allow variable rate allocation. Specifically, it creates a new queue for each new flow, as well as a

flow regulator for the queue [11]. There are three state variables associated with each queue: P , Q,

and E, defined below. There are four variables associated with burst m: am, m, �m and um. The flow

regulator can read and write all of these variables.

P virtual clock value of head-of-line packet in queue; initially 0

Q time when burst is eligible for selection by scheduler; initially 0

E boolean flag, indicating that the flow has an eligible burst;

initially false

m burst number; initially 1

am arrival time of first packet of burst m

um time ahead (in seconds) of burst m; initialized to zero at source and carried by first

packet

The flow regulator performs two main actions: (i) reconstruction of a burst by delaying packets if

necessary2 to satisfy the jitter and separation timing constraints, and (ii) computation of virtual clock

values for packets. They are specified below. The specification uses a function, now��, and a procedure

update(P ,E). When called, now�� returns the current time from a local clock. The update procedure

is specified as follows:

procedure update�P�E� // execute once per burst

1 Q �� maxfam � um� Pg ;

2Therefore, the packet scheduler can be non-work-conserving.
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2 delay�Q� now��� ;

3 P �� Q� ���m ;

4 E �� true;

where the procedure delay(x) introduces a delay equal to x if x � �; else, it is a null operation with no

delay.

A flow regulator is specified by the following two actions:

� Enabling condition: arrival of a burst m packet to queue

1 if (packet is first in burst m)

2 then record arrival time in am and values of um and �m ;

3 if (queue was empty before arrival)

4 then update�P�E� ;

� Enabling condition: departure of a burst m packet from queue (selected for service by scheduler)

1 if (departed packet is not last in burst m)

2 then P �� P � ���m

3 else E �� false ;

4 m �� m� � ;

5 if (queue is not empty)

6 then update�P�E� ;

The above algorithm is highly efficient. Specifically, the flow regulator executes the procedure

update(P ,E) only once per burst, i.e. for the first packet in each burst. For any other packet in burst m,

it simply increments P by the value of ���m, instead of executing the original Virtual Clock algorithm

[22]. With the exception of the first packet of each burst, there is no need to store packet arrival times.

Furthermore, at any time, only one virtual clock value is stored per flow, rather than one per packet.

These improvements are made possible by considering application-level QoS, specifically by using the

burst-based flow specification [11].

3.2.3 Delay Bounds

Next we present a theorem that summarizes the delay guarantees provided by a network that uses

the example network architecture. Consider a flow that traverses a sequence of nodes, indexed by
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�� �� �� � � � �K � �, where node 0 denotes the source, node K � � the destination, and the other nodes

packet switches. We assume that no channel has been overbooked, i.e. each flow is admitted at con-

nection setup on the basis of its peak rate (i.e. the maximum bandwidth requirement of a burst). The

following delay guarantee theorem holds for the flow.

Theorem 1 [11] Let ek be the constant overhead, i.e. transmission delay plus propagation delay,

associated with the channel from node k to k � �. The end-to-end delay of the first packet of burst m,

denoted by D�m� ��, for m � �� �� � � �, has the following upper and lower bounds:

D�m� �� �
�

�m
� �K � �� max

��n�m
f
�

�n
g�

KX
k��

ek� (3)

D�m� �� � �K � ��
�

�m
�

KX
k��

ek� (4)

Consequently, the end-to-end delay of burst m, denoted by Dm, measured from the time when packet

�m� �� arrives at node 1 to the time when packet �m� bm� arrives at node K � �, has the following

upper and lower bounds:

Dm �
bm � �

�m
� �K � �� max

��n�m
f
�

�n
g�

KX
k��

ek� (5)

Dm � �K � ��
�

�m
�

KX
k��

ek� (6)

We have evaluated the network architecture by performing a set of simulation experiments using

MPEG video data [11]. In Figure 1, we show the end-to-end delay performance of a particular video

sequence named Energizer. The result agrees with the theoretical bounds in Theorem 1.

3.3 Group Priority

For a channel that employs a rate-based packet service discipline, the scheduler must repeatedly search

for the smallest element in a set of deadlines. For high speed networks of the future, it is likely that a

channel will be shared by hundreds, and perhaps, thousands of flows. Thus the search algorithm should

be highly efficient. Furthermore, each search must be carried out within a time bound, i.e. the search

must be finished by the end of the current packet transmission. Otherwise, the channel would be idled,

ready packets would incur additional delays, and delay guarantees would not hold.

We developed a search algorithm based upon a novel data structure, called adaptive heap, which

behaves like a heap most of the time, but adaptively changes its strategy when necessary to satisfy the
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Figure 1: End-to-end packet and picture delays of Energizer sequence
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Figure 2: Typical breakdown of heap search overhead

time bound [18]. The algorithm has optimal worst-case time performance and good average perfor-

mance.

We later discovered that, as illustrated in Figure 2, the cost for the adaptive heap search is dominated

by the work due to priority changes when the channel utilization is high [18]. This discovery has

motivated the idea of group priority [12, 18]. Specifically, consecutive packet arrivals in a flow are

partitioned into groups. The largest deadline among packets in a group is assigned to every packet

in the group. (Thus all packets except one in the group have relaxed deadlines.) As a result, a flow

changes its priority value less frequently, i.e. from group to group instead of from packet to packet.

Group priority, while causing larger delays for some packets, is quite feasible when considering

application-level QoS. In particular, we observed that large group sizes can be chosen for most bursts
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such that the worst-case end-to-end burst delay of a VBR flow is unaffected by the use of group priority

[12]. Specifically, the delay bounds in (5) and (6) can be generalized as follows

Dm �
bm � gm
�m

� �K � �� max
��n�m

f
gn
�n

g�
KX
k��

ek (7)

Dm � �K � ��
gm
�m

�
KX
k��

ek� (8)

where gm is the group size used for burst m. (Methods for choosing appropriate group sizes are

described in [12].)
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Figure 3: Reduction of search overhead with group priority

Group priority has two advantages. First, with group priority, the scheduler updates less often its

data structure for storing priority values (e.g., a heap). As a result, the amount of work for scheduler

search is reduced. The reduction can be very significant when the channel utilization is high, as we

have observed in experiments [18]. In Figure 3, the result from one of the experiments is shown. Note

that the average group size is one in the “individual priority” case.

Secondly, we have discovered empirically that the use of group priority results in much better

statistical performance (i.e. delay, queue size, and loss probability) for networks where some channels

are heavily utilized [12]. An example is given in Figure 4, which shows the picture delay performance

of the Energizer video sequence in a network where some channels are severely overbooked. (By 164%

overbooking, the sum of peak flow rates exceeds the channel’s capacity by 164%. g denotes the average

group size for all flows that share the channel.) The good performance is due to the fact that with group

priority, the delay bound of a burst is decoupled from its reserved rate. As a result, all bursts in a VBR
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Figure 4: Delay performance of Energizer sequence with 164% overbooking for some channels

flow move through the network at a similar pace. This smoothes out the traffic inside the network,

reducing the congestion at the channels that are severely overbooked [12].

4 Two Level Admission Control

The delay guarantee presented in the previous section is provided to every burst. Such a deterministic

guarantee has a cost of low channel utilization because it requires peak rate reservation. For many

applications, however, statistical guarantees are acceptable, such as: 99% of the pictures in a video

sequence are delivered with delays less than the upper bound.

We have developed an efficient admission control algorithm, which bounds the burst loss rate at

a network channel below a specified value while achieving high channel utilization [19, 20].3 The

algorithm is based on a novel approach, made possible by our traffic model, that combines admission

control at the flow level and admission control at the burst level.
3We have also investigated how to perform nodal allocation of an application’s end-to-end ADU loss requirement. See

[19].
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We assume that the path of each flow is fixed. For a particular flow, its path is a sequence of nodes,

each of which consists of an outgoing channel, and a set of buffers for the channel where packets of

different flows are queued. Consider a particular node. Let C (bits/second) be the channel capacity

dedicated to a statistical service with a target burst loss rate of p. (Note that it is straightforward to

extend our design to a channel that is hierarchically shared by different agencies, by multiple classes

of statistical services, etc. [1, 7, 20]).

4.1 Burst Level Admission Control

Our traffic model, as mentioned earlier, makes it possible for the packets of a burst to be processed as a

whole and independently from other bursts. Thus, separate admission control can be performed for each

burst. Specifically, a burst is accepted only if the burst’s reserved rate4 does not exceed the channel’s

unallocated capacity; otherwise, the entire burst will be discarded. (Note that a similar mechanism,

called the ATM Block Transfer (ABT) capability, is being standardized by ITU-T [9].)

With burst level admission control, packet losses are concentrated over a small number of bursts,

and channel capacity is not wasted on delivery of partial bursts.

Burst level admission control, as specified below, is an integral part of our admission control algo-

rithm.

Algorithm specification of burst level admission control

The variable A is used to store the aggregate rate allocated, and is initialized to 0. Recall that �m

denotes the bandwidth requirement (or reserved rate) of burst m.

� Enabling condition: arrival of first packet of burst m

Burst Admission Control ( m )

1 if (A� �m � C )

2 then discard burst m;

3 else admit burst m;

4 A �� A� �m;

� Enabling condition: departure of last packet of burst m

A �� A� �m;

4The exact value is carried in the first packet of the burst.

11



The above algorithm has extremely low processing cost. Furthermore, it is performed only once per

burst. Note that the average inter-burst arrival time is usually much larger than the average inter-packet

arrival time. (This is especially true in an ATM network.) Therefore, the algorithm is suitable for high

speed networks.

4.2 Flow Level Admission Control

Burst level admission control insures that channel capacity is not exceeded at any time by discarding

bursts if necessary. This ensures that delay guarantees can be provided to bursts that are accepted by

the node [11]. Since all burst losses are due to burst level admission control, the goal of our flow level

admission control becomes very specific: to allow as much overbooking as possible while bounding

the probability that the channel’s unallocated capacity is not sufficient for a newly arrived burst —

denoted as the overflow probability — by p. The overflow probability and statistical multiplexing gains

are closely related. In particular, if two channels have the same overflow probability, the utilization is

higher, because of statistical multiplexing gains, for the one that has a larger capacity and is shared by

more flows. Therefore, our flow level admission control exploits statistical multiplexing gains in an

explicit manner.

Flow level admission control condition

Assume that the statistical service of the node is currently shared by a set of M flows (indexed by

�� �� ����M ). Each flow, say i, supplies the following set of traffic (TSpec) parameters when making a

reservation with the node: sustained bit (or packet) rate SRi, peak rate PRi, and rate variance RVi. At

any time, with burst-based rate allocation, at most one burst in each flow has its reserved rate allocated.

Denote �i�t� the reserved rate for the burst of flow i that is either allocated a rate or being processed by

burst level admission control at time t. (�i�t� � � if there is no such burst for flow i at t.)

In [19], we derived, using a generalized venison of central limit theorem, the following sufficient

condition to bound the burst loss rate at the node below p:

Zp
Z

� �� (9)

where Zp is the ��� p� percentile of the standard normal distribution, and

Z �
C �
PM
i��E	�i�t�
qPM

i�� V ar	�i�t�

� (10)

We refer to the value of �Zp�Z� as the Statistical Multiplexing Intensity (SMI) of the channel. It should

never exceed the threshold of 1 to bound the burst loss rate at the channel below p. In practice, it is
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difficult to obtain the exact value of Z . However, Z can be estimated as follows:

�Z �
C �
PM
i�� SRiqPM

i��RVi

� (11)

In summary, our admission control algorithm accepts a new flow only if the following condition is

not violated:
Zp
�Z
� �� (12)

Note that the source of flow i may not have a good estimate of RVi at the time of connection setup.

In such a case, RVi is upper bounded by SRi � �PRi � SRi�, which can be used as a pessimistic

estimate.5

Algorithm specification of flow level admission control

The variables B and V are used to store respectively the unallocated channel capacity and the aggregate

rate variance of admitted flows. Initially B is set to C , and V is set to 0. We assume that if a source

does not have a good estimate of RV at the time of connection setup, it will let the network know by

setting RV to ��.

� Enable condition: receiving connection request from flow i

Flow Admission Control ( i )

1 if (B � SRi � �)

4 then reject the flow;

5 if (RVi � ��)

6 then RVi �� SRi � �PRi � SRi�;

7 SMI �� Zp � �sqrt�V �RVi���B � SRi��;

8 if (SMI � �)

9 then accept the flow;

10 B �� B � SRi;

11 V �� V �RVi;

12 else reject the flow;

5On-line measurement of SR and RV can be performed for admitted flows to improve the performance of flow level

admission control. We are currently investigating such techniques.
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4.3 Empirical Evaluation of Admission Control Algorithm

SW VDVS

VS

VS

L1

. . .
. . .

1−3

4−6

100−102

Figure 5: Simulated network for evaluation of admission control

We have evaluated our two level admission control algorithm by performing a set of simulation

experiments [19, 20]. The simulation configuration is shown in Figure 5. The nodes labeled by VS

denote video sources, and VD their destination. Each video source generates 53-byte packets from a

trace file obtained from a MPEG video sequence [19], and each MPEG frame (or picture) is considered

an ADU.

The two level admission control algorithm is implemented for channel L1 with a target burst loss

rate of p. Each video source makes a reservation with L1, and starts sending packets to the network

only after the reservation is successful. Packets are scheduled based on their virtual clock values [22].

The channel capacity of L1 as well as the value of p were varied in different experiments. We ran each

experiment for 10 seconds of simulated time.

Channel utilization

In Figure 6, we plot the channel utilization as a function of the target picture loss rate p. The result

shows that the channel is used much more efficiently with a statistical service than a deterministic

service (with zero loss rate). The price to pay is a small non-zero picture loss probability. The utilization

increase is more significant with a higher channel capacity, from below 30% to above 70% in the case

where the capacity of L1 is 56 Mbps. This is because the improvement is due to statistical multiplexing

gains, which are larger with more flows sharing the channel.

Actual picture loss rate

For the channel utilization gain to be meaningful, the actual burst (picture) loss rates in the experiments

cannot be much larger than their respective target values. In Figure 7, we compare the actual picture
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loss rate in each experiment, averaged over five simulation runs using different random seeds, with the

target value. From the figure, we conclude that our admission control algorithm predicts the actual loss

rate well when a large number of flows share the channel. (Around 30 flows were admitted when the

channel capacity of L1 was set to 56 Mbps.) This agrees with our analysis; the larger the number of

flows sharing the channel, the better approximation based on the central limit theorem. Note that the

solid 45 degree line represents perfect prediction by the central limit theorem.
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5 Loss Management Techniques

As discussed in the previous section, admission control can be used at a channel to bound the overall

ADU loss rate below a specified value. However, in order for such a statistical service to be viable,

considering the fact the service will be shared by many flows, the issue of loss distribution must be

addressed. In particular, the ADU losses should be distributed evenly among all flows subscribing to

the service and uniformly over the duration of each flow.

We have developed loss management techniques, specifically simple modifications to the admis-

sion control algorithm, to enable the channel to anticipate and distribute ADU losses [19].6 Beside

fair distribution of losses, such active loss management was also motivated by the fact that to many

applications, some of their ADUs are more important than others. For example, to an MPEG decoder,

I frames are more important than either P or B frames. With our traffic model, applications can easily

mark important ADUs and request that the network give priority to them. Therefore, it is desirable that

loss management within a node can facilitate protection of high priority ADUs marked by applications.

In the remainder of this section, we will present our loss management techniques, which are based

on selective early ADU discard (SEAD) [19]. Similar to early packet discard proposals [15, 16], SEAD

achieves the goals of fair loss distribution and protection of high priority ADUs by taking early control

actions. Specifically, a trigger point is set at �C , where � � � � �, and control actions are triggered

whenever the aggregate rate allocated by the channel exceeds �C .

5.1 SEAD-1

For the first technique (named SEAD-1), the flow level admission control algorithm remains the same as

the one described in Section 4.2. The burst level admission control algorithm is modified to implement

SEAD. In particular, there are two control actions. The first involves discarding unmarked ADUs to

protect high priority ADUs, and the second makes use of binary counters, one for each flow (ci for flow

i), to prevent a flow from losing consecutive ADUs. Below is a specification of the modified burst level

admission control algorithm. Initially the binary counter of each flow is set to zero. f�m� denotes the

index of the flow to which burst m belongs.

Burst Admission Control ( �, m )

1 if (A� �m � C )

2 then discard burst m;

6We do not consider losses due to link or transmission errors because the probability of their occurrence is extremely

small with today’s hardware, and they can be dealt with by link layer protocols.
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3 else if (A� �m � �C and burst m not marked with high priority)

4 then if (cf�m� � �)

5 then discard burst m;

6 cf�m� �� �;

7 else admit burst m;

8 A �� A� �m;

9 cf�m� �� �;

10 else admit burst m;

11 A �� A� �m;

Note that in SEAD-1, flow level admission control is not modified. The advantage is that high

utilization can be maintained at the same time that high priority ADUs have a loss rate much smaller

than p. However this advantage does come with a price. Namely, those unmarked ADUs can experience

more losses. In [19], we showed that the overall ADU loss rate is still bounded with SEAD-1, albeit by

a value a little larger than p.

We have evaluated the performance of SEAD-1 by simulation experiments. The simulation con-

figuration shown in Figure 5 was used. The channel capacity of L1 is 48 Mbps. For the experiments,

I frames are marked high priority, and all other frames are unmarked. A pair of experiments, labeled

BASE and SEAD-1, were performed for every simulation run, and in each run a different random seed

was used. The original admission control algorithm (i.e. without using SEAD) is used by L1 in BASE

experiments. Table 1 contains the result from a typical simulation run. The result shows that by using

SEAD-1, the amount of high priority ADU losses is reduced by more than 50%, and the losses are

distributed more evenly among flows (as indicated by the fact that the highest loss rate for one flow is

much smaller).

Channel ADU losses Highest Loss Rate

Util Total High Pri for One Flow

BASE 69 % 16 8 2.1%

SEAD-1 69 % 54 3 1.36%

Table 1: L1 capacity = 48 Mbps, p � ����, � � ���

SEAD does add some processing cost to the admission control algorithm. However, since the extra

processing is performed on a per ADU basis, the associated cost is not significant because the average

ADU size is quite large compared to the average packet size. Note that because of burst level admission

control, the units for statistical multiplexing become ADUs instead of packets. That explains why

17



simple binary counters are effective in spreading out ADU losses among flows as we have observed in

the experiments.

5.2 SEAD-2

The second technique (named SEAD-2) is almost the same as SEAD-1 except that it requires a small

but significant modification to the flow level admission control algorithm. Specifically, �C is used in

place of C in flow level admission control, i.e. B is initialized to �C instead of C in the algorithm

specification given in Section 4.2.

Compared to SEAD-1. the maximum channel utilization achievable with SEAD-2 is lower. How-

ever, the difference can be made insignificant by choosing a � value close to 1, say 0.95. Our experi-

mental results indicate that such a � value is sufficient for reaping all the benefits of SEAD-2, namely:

� loss rate of high priority ADUs significantly reduced,

� loss rate of all ADUs below target value, and

� losses distributed more evenly among flows.

We have evaluated SEAD-2 using simulation experiments. Table 2 contains the result of a typical

simulation run. The result shows that while the achieved channel utilization is a little lower, both the

amount of high priority ADU losses and the highest loss rate for a flow are significantly lower when

SEAD-2 is used.

Channel ADU losses Highest Loss Rate

Util Total High Pri for One Flow

BASE 71% 34 17 3.1%

SEAD-1 71% 86 10 2.7%

SEAD-2 67.6% 28 4 1.03%

Table 2: L1 capacity = 48 Mbps, p � ����, � � ���

6 Conclusions

Encapsulation and segmentation of application data cause the following tension between the network

and an application: While the network has been designed to optimize the performance of packets, an

application emphasizes on the performance of its data units rather than that of individual packets. To
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address this problem, we propose to consider application-level requirements in design of networks that

provide delay and loss guarantees. By doing so, we are able to develop a novel network architecture

that in many aspects is more efficient than ones motivated exclusively The centerpiece of our design is

a traffic model that enables delivery of application specific information to the network. The model has

made possible efficient network techniques for providing delay guarantees, guaranteeing the loss rate

of ADUs, and managing application data losses at a channel to achieve fairness.
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