
IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 24, NO. 2, APRIL 2016 887

Real-Time Verification of Network Properties Using
Atomic Predicates

Hongkun Yang, Student Member, IEEE, and Simon S. Lam, Fellow, IEEE, Fellow, ACM

Abstract—Network management will benefit from automated
tools based upon formal methods. Several such tools have been
published in the literature. We present a new formal method
for a new tool, Atomic Predicates (AP) Verifier, which is much
more time and space efficient than existing tools. Given a set of
predicates representing packet filters, AP Verifier computes a set
of atomic predicates, which is minimum and unique. The use of
atomic predicates dramatically speeds up computation of network
reachability. We evaluated the performance of AP Verifier using
forwarding tables and ACLs from three large real networks.
The atomic predicate sets of these networks were computed very
quickly and their sizes are surprisingly small. Real networks are
subject to dynamic state changes over time as a result of rule
insertion and deletion by protocols and operators, failure and
recovery of links and boxes, etc. In a software-defined network,
the network state can be observed in real time and thus may be
controlled in real time. AP Verifier includes algorithms to process
such events and check compliance with network policies and
properties in real time. We compare time and space costs of AP
Verifier with Header Space and NetPlumber using datasets from
the real networks.
Index Terms—Automated tools, formal methods, network man-

agement, network policies and properties, protocol verification,
reachability computation.

I. INTRODUCTION

M ANAGING a large packet network is a complex task.
The process of forwarding packets is prone to faults

from configuration errors and unexpected protocol interactions.
In large packet networks, forwarding tables in routers and
switches are updated by multiple protocols. Access control lists
(ACLs) in routers, switches, and firewalls are designed and
configured by different people over a long period of time. Links
may be physical or virtual, e.g., VLAN and MPLS. Some boxes
also modify packets, e.g., NAT. (We use “box” in this paper
as a generic name for networking devices, including routers,
switches and middle boxes.) In a study of large-scale Internet
services [16], operator error was found to be the largest single
cause of failures with configuration errors being the largest
category of operator errors.

Manuscript received January 31, 2014; revised July 07, 2014, November 12,
2014; accepted January 02, 2015; approved by IEEE/ACM TRANSACTIONS ON
NETWORKING Editor Y. Bejerano. Date of publication March 12, 2015; date
of current version April 14, 2016. This work was supported by the National
Science Foundation under Grant CNS-1214239. An abbreviated version of this
paper appeared in Proceedings of the IEEE International Conference on Net-
work Protocols, October 2013.
The authors are with the Department of Computer Science, The University

of Texas at Austin, Austin, TX 78712 USA (e-mail: yanghk@cs.utexas.edu;
lam@cs.utexas.edu).
Color versions of one or more of the figures in this paper are available online

at http://ieeexplore.ieee.org.
Digital Object Identifier 10.1109/TNET.2015.2398197

Towards more reliable networks, formal analysis methods
and automated tools have been proposed to check reachability
(e.g., “a packet with certain header values cannot reach host ”)
and to verify essential network properties (e.g., “the network has
no routing loop for all packets”). A model for static reachability
analysis of network state in the data plane was first presented
by Xie et al. [20]. They proposed a unified approach for rea-
soning about the effects of forwarding and filtering rules as well
as packet transformations on reachability. This approach mo-
tivated subsequent development of algorithms and automated
tools by other researchers [3], [13], [15], [12], [14], [11]. In
these tools, the algorithm for computing reachability is the core
algorithm for verifying essential network properties in the data
plane, such as, loop-freedom, nonexistence of black holes, net-
work slice isolation, and reachability via waypoints.
The network state in the data plane is determined by the for-

warding and ACL rules in the network's boxes. Forwarding ta-
bles and ACLs are packet filters. They can be parsed and repre-
sented by predicates that guard input and output ports of boxes.
The variables of such a predicate represent packet header bits.
Packets with identical values in their header fields are consid-
ered to be the same by packet filters. A predicate specifies the
set of packets for which evaluates to true. The set of packets
that can travel from port to port through a sequence of packet
filters can be obtained by computing the conjunction of predi-
cates in the sequence or by intersection of the corresponding
packet sets.
The intersection and union of packet sets are highly compu-

tation-intensive because they operate on multi-dimensional sets
which could have many allowed intervals in each dimension and
arbitrary overlaps in each dimension between two packet sets.
In the worst case, the computation time of set intersection/union
is , where is the number of bits in the packet header. Ef-
ficiency of these operations determines the efficiency of reach-
ability analysis irrespective of which formal method is used to
compute reachability.
In this paper, we propose a novel idea that enables very fast

computation of reachability. For a given set of predicates, we
present an algorithm to compute a set of atomic predicates,
which is proved to be minimum and unique. Atomic predicates
have the following property: Each given predicate is equal
to the disjunction of a subset of atomic predicates and can
be stored and represented as a set of integers that identify
the atomic predicates. The conjunction (disjunction) of two
predicates can be computed as the intersection (union) of two
sets of integers. Thus, intersection and union of packet sets can
be computed very quickly. Based upon this idea, we developed
a formal analysis method and prototyped an automated tool,

1063-6692 © 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

888 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 24, NO. 2, APRIL 2016

named Atomic Predicates (AP) Verifier, for computing reach-
ability and checking compliance with network policies and
properties in real time.
We evaluated the performance of AP Verifier using for-

warding tables and ACLs from three real networks downloaded
from Stanford University [1], Purdue University [17], and
Internet2 [2]. Since forwarding rules and ACL rules have
different characteristics and locality properties, AP Verifier
computes two different sets of atomic predicates, one for ACL
predicates and another for forwarding predicates. We found
that the atomic predicate sets of the three networks can be
computed very quickly and their sizes are surprisingly small.
For example, the Stanford network [12] has 71 ACLs with
1,584 rules but we found only 21 atomic predicates for these
ACLs and rules. This outcome is due to the existence of large
amounts of redundancy in the forwarding and ACL rules of real
networks. By encoding the network state in terms of atomic
predicates, such redundancy is eliminated. Therefore, AP
Verifier is also much more space efficient than other automated
tools for network verification published to date.
Real networks are subject to dynamic state changes over time

as a result of, for examples, rule insertion and deletion by proto-
cols and operators, failure and recovery of links and boxes, etc.
Recently, two research groups suggested that in a software-de-
fined network (SDN), the network state can be observed in real
time and thus may also be controlled in real time [14], [11].
More specifically, if a “verifier” is placed in the communica-
tion path between a SDN's central controller and its switches,
the verifier can intercept every network state change message
and verify compliance of the state change with pre-defined net-
work policies and properties. If a state change is detected in
real time to be noncompliant, the verifier may raise an alarm
or block the state change. We have designed algorithms for AP
Verifier to perform such real-time checks. APVerifier was found
to be especially fast in checking reachability compliance of a
link up/down event. Existing tools used several seconds of time
to verify compliance of a link up/down event [11]. AP Verifier's
compliance verification times were 4 to 5 orders of magnitude
smaller for a link up event (s,
1.5 ms) and a link down event (1 s,
27 s).
The balance of this paper is organized as follows. In

Section II, we present our models of a network and a box. We
describe how port predicates of each box are computed from
rules in its forwarding table and ACLs. In Section III, we show
that binary decision diagrams (BDDs) have the desirable prop-
erties for representing packet sets. Experimental results show
that BDD is a highly efficient data structure for reachability
verification, regardless of whether atomic predicates are used
for further optimization [see Table IV(a)–(d)]. In Section IV, we
define atomic predicates. Given a set of predicates, we present
an algorithm for computing the set of atomic predicates, which
is proved to be minimum and unique. We also present statistics
of three real networks [1], [17], [2] including the sizes and
computation times of their atomic predicate sets. In Section V,
we present algorithms for computing reachability and verifying
a number of network properties. We present computation times
and storage costs comparing AP Verifier with Hassel in C (the

Fig. 1. Example of a box. are ACL predicates and are
forwarding predicates.

fast version used in Header Space and NetPlumber [12], [11]).
In Section VI, we present algorithms for processing network
state changes due to link up/down and rule insertion/deletion
events as well as for checking reachability compliance in real
time. We present computation times comparing AP Verifier
with NetPlumber [11]. In Section VII, we discuss the impact of
ACLs. In Section VIII, we discuss related work and conclude
in Section IX.

II. NETWORK MODEL

We model a packet network as a directed graph of boxes
(which may be routers, switches, or firewalls). Each box has a
forwarding table as well as input and output ports guarded by
access control lists (ACLs). Our model of a box is shown in
Fig. 1. Observe that each input port is guarded by a predicate
specified by the port's ACL. Each output port is guarded by a
predicate specified by the forwarding table followed by a pred-
icate specified by the port's ACL.
Each packet has a header of bits. The header bits are parti-

tioned into multiple fields. The three networks analyzed in this
paper are all IP networks. Note that our model of packet headers
is general and not limited to IP headers; for example, it can be
used for any layer-2 or layer-3 protocol header.
A predicate is a Boolean formula where each variable repre-

sents one bit in the packet header. A predicate represents a set of
packets for which the predicate evaluates to true. Predicate false
specifies the empty set. All predicates in AP Verifier are repre-
sented by binary decision diagrams (BDDs) which are rooted,
directed acyclic graphs. Logical operations on BDDs can be per-
formed efficiently using graph-based algorithms [5], [18].
In what follows, we present algorithms for computing predi-

cates that guard the ports of a box from the box's ACLs and for-
warding table. We refer to these predicates as port predicates.
Access control lists. An ACL is a list of rules. Each ACL rule

is specified by a condition and an action. For each packet, the
rules are considered in sequential order. Whether the packet can
pass through the filter is determined by the action of the first rule
whose condition is satisfied by the packet's header.
To compute the predicate for an ACL that guards a port, the

condition in each rule in the ACL is first converted into a predi-
cate in bit variables (represented by a BDD). Let be the pred-
icate specifying the condition of the th rule. An ACL with
rules is represented by the following list:

YANG AND LAM: REAL-TIME VERIFICATION OF NETWORK PROPERTIES USING ATOMIC PREDICATES 889

where is either allow or deny. We use Algorithm 1 to
compute the port predicate that specifies the packet set allowed
by the ACL.

Algorithm 1 Converting an ACL to a port predicate

Input: An ACL (for)

Output: A predicate for the ACL

1:
2: for do
3: if then
4:
5: else
6:
7: end if
8: end for
9: return allowed

Forwarding table. The forwarding table in a box is also a
list of rules. Each rule has an IP prefix and a port name. The
port may be physical or virtual. There is also a special port for
packets to be intentionally dropped. We first convert each prefix
to a predicate represented by a BDD. The number of nodes in
the BDD is where is the number of bits in an IP
address.
If the allowed values of each header field in an ACL rule are

specified by a suffix, prefix or an interval, we proved that the
predicate of an ACL rule can be represented by a BDD with

nodes, where is the number of bits in the packet header
(see Section III). For an ACL rule in which the allowed values
of a header field are specified by multiple disjoint intervals, the
number of nodes in the rule's BDD may be larger than .
Algorithm 1 remains the same for such rules.
In IP forwarding, a packet may be matched by multiple rules

in the table; the packet is forwarded to the output port speci-
fied by the matched rule with the longest prefix. To compute
a single predicate for each port in the forwarding table, which
has ports indexed by , we first sort the rules in the
table in descending order of prefix length and represent the for-
warding table with rules as follows:

where , are prefix lengths such that
denotes the predicate representing a prefix

with length ; and . Then we use Algorithm
2 to convert the sorted forwarding table to a list of forwarding
predicates, one for each output port.

Algorithm 2 Converting a forwarding table to forwarding
predicates

Input: A sorted forwarding table
Input: A set of output ports

Output: A list of predicates
1: for do
2:
3: end for
4:
5: for do
6:
7:
8: end for
9: return

Virtual ports. A port in a box may be a virtual port (e.g., a
VLAN port) which has a set of physical ports corresponding to
it. We map the ACL and forwarding predicates of a virtual port
to its set of physical ports. As a result, a physical port can have
multiple ACLs; also, a physical output port can have multiple
predicates computed from the same forwarding table. For reach-
ability computation, the ACL predicate of a physical port is the
disjunction of its predicates computed from all of the ACLs. The
forwarding predicate of a physical output port is the disjunction
of all of its predicates computed from the forwarding table.

III. HOW TO REPRESENT A PACKET SET

The data structure for representing predicates specifying
packet sets is crucial to both the time and space efficiency of any
tool designed for reachability computation and verification. We
selected binary decision diagram (BDD) as the data structure
in AP Verifier after performing a comparative study of BDD
versus three data structures proposed by other researchers,
namely: Tuple representation (a set of tuples) [19], firewall
decision diagram (FDD) [8], [13], and wildcard expression (a
set of bit strings with wildcards) [12], [11]. No data structure
is described for representing packet sets in the other related
papers on reachability verification [20], [3], [15], [14].
In what follows, we explain why none of the other three data

structures has all of the desirable properties of BDD.
Unique representation: Consider a predicate that specifies

a set of packets. It has been proved that its representation
as a reduced-ordered BDD [5] or as a reduced FDD [8] is
unique. However, a predicate may have multiple Tuple rep-
resentations or multiple wildcard expressions. It is nontrivial
(time-consuming) to check that different Tuple representations,
or different wildcard expressions, are equivalent and thus
represent the same predicate.
Representation size for a rule: Consider an ACL rule in

which the allowed values of each header field are specified
by a prefix, suffix, or an interval. Both Tuple representation
and FDD use intervals to represent allowed values of each

890 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 24, NO. 2, APRIL 2016

field in a packet header. A prefix is a special type of interval.
However, a suffix is not. If a field has bits, then a single-bit
suffix is represented as a union of intervals, each of which
represents a single packet. In the worst case, each field is a
single-bit suffix. Let denote the number of bits in header
field . In both Tuple and FDD representations, the total number
of intervals is .
An interval can be represented by multiple wildcard expres-

sions each of which is a set of wildcard strings. In general, for
header field with bits, there exists an interval that requires at
least wildcard strings in each of its expressions. Therefore,
in the worst case, there exists a rule that requires
wildcard strings in its expression.
The size of the BDD graph representing a rule is measured

by the number of nodes in the graph. For an ACL rule, or-
dering variables differently may result in BDD graphs of dif-
ferent sizes. However, if the order of variables is the same as
the order of bits in the packet header, then the number of nodes
in the BDD graph for an ACL rule is in the worst case,
where is the number of header bits. A proof of the following
theorem is presented in Appendix A. Theorem 1 does not de-
pend on the number of packet fields. The packet header con-
straint stated in the theorem is satisfied by every ACL rule in
the datasets of real networks we have (datasets from Stanford,
Purdue, and Wisconsin), and is likely satisfied by the vast ma-
jority of ACL rules in practical use.
Theorem 1: If the length of a packet header is bits, and an

ACL rule specifies each header field by an interval, a prefix, or a
suffix, then the number of nodes in the BDD graph representing
an ACL rule is .
For forwarding rules specified by prefixes or suffixes, the

number of nodes in the BDD graph representing a forwarding
rule is , where is the number of bits in the destination
address field (cf. Fig. 9(a) and (b) in Appendix A for examples).
Logical operations: For all four data structures, conjunction

(also disjunction) requires time proportional to the product of
the operand sizes. Computing the negation of a BDD or FDD
is easy; it is done by swapping the two terminal nodes in the
BDD or FDD. However, computing the negation of a Tuple
representation or wildcard expression is nontrivial. The nega-
tion of a Tuple representation (or a wildcard representation)
might result in more tuples (or wildcard strings) than the orig-
inal representation.
Based on the above analysis, we chose BDD as the data struc-

ture since BDD representations of predicates are both unique
and efficient.
Representation size for ACL/table. When numerous rules

are grouped into an ACL or a forwarding table, we are interested
in the growth of the number of BDD nodes used to represent the
ACL/table as the number of rules increases. To evaluate such
growth, we computed BDDs for the datasets of three real net-
works with network statistics shown in Table I. All 16 boxes in
the Stanford dataset are routers. All nine boxes in the Internet2
dataset are routers. The 1646 boxes in the Purdue dataset consist
of routers and switches.
We computed the number of BDD nodes used to represent

an ACL versus the number of rules in the ACL. These results
are shown in Figs. 2(a)–(b). For each forwarding table, we com-

TABLE I
STATISTICS OF THREE REAL NETWORKS

puted the total number of nodes in the BDDs representing all for-
warding predicates guarding the output ports versus the number
of rules in the table. These results are shown in Figs. 3(a)–(b).
It is interesting to observe from these figures that increasing

the number of rules in an ACL or a forwarding table does not
always mean more BDD nodes. In three out of the four figures,
the largest number of rules does not produce the largest number
of BDD nodes. For example, in the Purdue dataset, an ACLwith
52 rules is represented by 515 BDD nodes (maximum); the ACL
with themost rules (693) is represented by only 187 BDD nodes.
In the Stanford dataset, a forwarding table with 1825 rules is
represented by 5325 BDD nodes (maximum); the forwarding
table with the most rules (184 908) is represented by only 1900
BDD nodes.
The computation times of the BDD for an ACL and all BDDs

for a forwarding table are shown in Fig. 4 for the Stanford
dataset.1 These computation overheads are low (i.e., millisec-
onds for each ACL/table). Note that the computation time for a
forwarding table includes the time to sort rules in the table in
descending order of prefix length. It does not, however, include
the preprocessing time used to reduce table size by the ORTC
algorithm [6] because such preprocessing is needed for any data
structure used to represent packet sets.

IV. ATOMIC PREDICATES

A. Basic Idea
Consider a set of elements. A predicate specifies a subset

of elements. Predicate true specifies . Predicate false specifies
the empty set.
Definition 1 (Atomic Predicates): Given a set of predi-

cates, its set of atomic predicates satisfies these
five properties:
1) .
2) true.
3) false, if .
4) Each predicate , is equal to the disjunc-

tion of a subset of atomic predicates:

where (1)

5) is the minimum number such that the set
satisfies the above four properties.

Note that if , then ; if
. Since are disjoint, the expression in (1)

is unique for each predicate .

1All results in this paper were computed using just one core of a six-core
Xeon processor with 12 MB of L3 cache and 16 GB of DRAM.

YANG AND LAM: REAL-TIME VERIFICATION OF NETWORK PROPERTIES USING ATOMIC PREDICATES 891

Fig. 2. Number of BDD nodes to represent an ACL. (a) Stanford dataset. (b) Purdue dataset.

Fig. 3. Number of BDD nodes to represent all forwarding predicates of a forwarding table. (a) Stanford dataset. (b) Internet2 dataset.

Fig. 4. Computation times of BDDs for the Stanford dataset. (a) Time to compute an ACL predicate. (b) Time to compute all forwarding predicates of a forwarding
table.

Given a set , there are numerous sets of predicates that sat-
isfy the first four properties of Definition 1. In the trivial case,
these four properties are satisfied by the set of predicates each
of which specifies a single element. We are interested in the
set with the smallest number of predicates. The meaning of
atomic predicates is provided by the following theorem (proof
in Appendix B).
Theorem 2: For a given set of predicates, the atomic pred-

icates for specifies the equivalence classes in the set with
respect to .

B. Computing Atomic Predicates

For a given set of predicates, we present an algorithm to
compute its set of atomic predicates, denoted by .

First, we compute the set of atomic predicates for each pred-
icate in using

true if false or true
otherwise. (2)

It is easy to see that satisfies Definition 1.
Second, let and be two sets of predicates. Let 's

set of atomic predicates be and 's set of atomic
predicates be . We compute a set of predicates

as follows:

(3)

892 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 24, NO. 2, APRIL 2016

Fig. 5. Number of atomic predicates versus number of forwarding/ACL predicates. (a) Number of atomic predicates for forwarding in Stanford network.
(b) Number of atomic predicates for ACLs in Stanford network. (c) Number of atomic predicates for forwarding in Internet2. (d) Number of atomic predicates for
ACLs in Purdue network.

In the worst case, the above set can have predicates.
However, in practice we found that most intersections in (3) are
false. The following theorem states that is the set
of atomic predicates for (proof in Appendix C).
Theorem 3: The set of atomic predicates for is

where, for is computed by for-
mula (3).
Given a set of predicates, , Algorithm 3

computes the set of atomic predicates for .

Algorithm 3 Computing atomic predicates

Input:
Output:
1: for do
2: compute using (2)
3: end for
4: for do
5: compute from

and using formula (3)
6: end for
7: return

Algorithm 3 uses formula (3) repeatedly. Theorem 2 ensures
that Algorithm 3 returns the correct set of atomic predicates.
Since the set of atomic predicates is unique, it is independent of
the predicates' order in the list given to Algorithm 3 as input.
The computation time however is affected by the predicates'
order (see next subsection). Algorithm 3 can be improved by
treating as leaf nodes of a binary tree
and using formula (3) to compute other tree nodes from their

children until the root node is computed. However, since the
computation times of Algorithm 3 are quite small even for large
networks (see next subsection), we have not tried to improve it.

C. Atomic Predicates in Real Networks
To enable fast computation of reachability in a network, AP

Verifier precomputes the set of atomic predicates for all port
predicates of the network. The set of atomic predicates together
with the network topology preserve all network reachability
information but without any redundant information in ACL
rules and forwarding rules. Thus, AP Verifier is space efficient.
More importantly, the conjunction of two predicates, and
in , can be computed by the intersection of two sets of in-

tegers, and . Similarly, the disjunction of and
can be computed by the union of two sets of integers,

and . Operations on predicates (or operations on packet
sets) are highly computation-intensive because they operate on
many packet header fields. Using atomic predicates, these com-
putation-intensive operations are replaced by operations on sets
of integers (i.e., identifiers of atomic predicates) with a dramatic
decrease in computation time. Thus, AP Verifier is also time
efficient.
We observed that forwarding and ACL rules have different

characteristics and locality properties. Therefore we consider
ACL and forwarding rules separately and compute separate sets
of atomic predicates for ACL and forwarding predicates.
To compute atomic predicates for ACLs using Algorithm

3, we experimented with two ways for ordering the ACL
predicates.
• Random selection: Select an ACL randomly.
• Smallest ACL first: Select an ACL with the smallest
number of rules.

YANG AND LAM: REAL-TIME VERIFICATION OF NETWORK PROPERTIES USING ATOMIC PREDICATES 893

TABLE II
NUMBER OF ATOMIC PREDICATES IN THREE REAL NETWORKS

TABLE III
TIME TO COMPUTE ATOMIC PREDICATES

To compute atomic predicates for forwarding, we also experi-
mented with two ways for ordering the forwarding predicates.
• Random selection: Select a forwarding predicate
randomly.

• Selection by box: Select a box randomly and then select its
forwarding predicates one by one randomly.

Fig. 5 shows growth of the number of atomic predicates in the
three networks as the number of forwarding/ACL predicates in-
creases. Fig. 5(a) and (c) shows that, for forwarding predicates,
the number of atomic predicates grows approximately linearly
with the number of forwarding predicates whichever selection
method is used. Fig. 5(b) and (d) shows that, when ACLs are se-
lected randomly, the number of atomic predicates grows approx-
imately linearly with the number of ACLs. But with smallest
ACL first, the number of atomic predicates remains low for a
long time until near the end of the computation (thus requiring
less computation time).
From Table II and Fig. 5, observe that the Stanford network

has 71 ACLs with 1584 rules but only 21 atomic predicates
for these ACLs—a surprisingly small number which indicates
large amounts of redundancy in the rules as well as similarity
between ACLs. The number of atomic predicates is 3917 for
Purdue's 519 ACLs with 3605 rules; we found that the Purdue
dataset contains many different rules and a sizable number of
extended ACL rules. The number of atomic predicates is 494
for Stanford's 757 170 forwarding rules. The number of atomic
predicates is 216 for Internet2's 126 017 forwarding rules.
Table III shows times used to compute atomic predicates

for the three networks. It shows that for ACLs smallest ACL
first uses about 50% less time than random selection. For
forwarding tables, the computation time of selection by box is
slightly smaller than the time of random selection.
We use smallest ACL first to compute atomic predicates for

ACLs. Table III shows that the computation times for ACL
atomic predicates in the Stanford and Purdue networks were
0.84 ms and 0.45 s, respectively.
We use selection by box to compute atomic predicates for

forwarding. Table III shows that the computation times for for-
warding atomic predicates in the Stanford network and Internet2
were 0.2 and 0.15 s, respectively.

D. Packet Set Specification
The set of packets that can pass through an output port is spec-

ified by the conjunction of its forwarding and ACL predicates.
For a particular port, let and denote the forwarding and
ACL predicates, respectively. Let denote the set of integer
identifiers of atomic predicates for forwarding. Let denote
the set of integer identifiers of atomic predicates for ACLs. Then
the set of packets that can pass through the output port is speci-
fied by the predicate

(4)

where and denote atomic predicates for forwarding and
ACLs, respectively.

V. COMPUTING REACHABILITY AND VERIFYING
NETWORK PROPERTIES

Consider a network represented by a directed graph of boxes.
Any full-duplex physical link connecting two boxes is repre-
sented as two unidirectional logical links; each logical link con-
nects the output port of one box to the input port of the other box.
Each input port is guarded by an ACL predicate. Each output
port is guarded by a forwarding predicate followed by an ACL
predicate. If a predicate is true, any packet can pass through. If
a predicate is false, no packet can pass through. (Notation: In
figures in this paper, if a port is not labeled by any predicate
identifier, its predicate is assumed to be true.)
In this section, we first present an algorithm for computing

the set of packets that can travel from a port to another port
in the network (more specifically, from the entrance of to the
exit of , i.e., the packets pass through both and). We next
describe how the algorithm is extended to compute the reach-
ability tree from . Such a reachability tree is labeled by sets
of integer identifiers of atomic predicates. Operations on sets
of integers are extremely fast. The reachability trees from ports
can be computed quickly and stored efficiently. AP Verifier can
be extended to check the network's compliance with most safety
and temporal properties, such as, properties specified using CTL
[7].
We will describe how to verify several specific network prop-

erties, namely: loop detection, black hole detection, network
slice isolation, and required waypoints. Using the datasets from
Stanford University and Internet2, we present computation re-
sults and compare the performance of AP Verifier versus Hassel
in C [1], a more efficient implementation of Header Space [12].
The results presented were computed on the same hardware (our
workstation).

A. Reachability Trees
We first consider a path from port to port . Let

be the forwarding predicates in the path represented by
. Let be the ACL predicates in

the path represented by .2 In steps 1–2 of
Algorithm 4, and represent the set of all packets that are
injected into port to test reachability. Algorithm 4 computes
the set of packets that can be forwarded along the path in step
3, and it computes the set of packets that are allowed by ACLs

2Any predicate equal to true is not represented.

894 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 24, NO. 2, APRIL 2016

TABLE IV
COMPUTATION TIMES OF REACHABILITY, LOOP DETECTION, AND BLACK HOLE DETECTION

along the path in step 7. If the Algorithm returns false in step 5
or in step 9, port is not reachable from port .
The reachability set from to is specified by the predicate

in (4) using and returned in step 11. If there are multiple
paths from to , then the reachability set is the union of the
reachability sets of the paths.
Note that reachability can be computed from any port to any

other port in the network. The source port does not have to be
an input port that accepts packets from an external host or box.
The destination port does not have to be an output port that
connects to an external host or box.

Algorithm 4 Computing reachability along a path

Input: , and
Output: packet set specification

1: //identifiers of atomic predicates
2: //identifiers of atomic predicates
3:
4: if then
5: return false
6: end if
7:
8: if then
9: return false
10: end if
11: return //packet set specification

We compare the computation times of AP Verifier versus
Hassel in C [1] for the Stanford network and Internet2.3 For
each network, we compute reachability sets for all port pairs and
measure the time used for each pair. The results are presented in
Table IV(a) and (b). On average, AP Verifier is 256 times faster
than Hassel in C for the Stanford network and it is 2,914 times
faster than Hassel in C for Internet2. We also present the com-
putation times of AP Verifier using BDDs without computing
atomic predicates, called AP Verifier (BDD). As expected, it is

3The C version of Hassel for Header Space is faster than the Python version
[12] by about two orders of magnitude.

slower than AP Verifier using atomic predicates, but it is still
2–3 orders of magnitude faster than Hassel in C.
The reachability tree from a port to all other ports in the

network is computed by performing a depth-first search which
begins with visiting port . The packet set injected into port
is the set of all packets (same as lines 1 and 2 in Algorithm 4).
When the search visits a port, and are intersected with
the sets representing the port's forwarding and ACL predicates,
respectively.
A search branch is terminated after visiting a port (say) if

one of the following conditions holds: 1) or becomes
empty after visiting port ; 2) port is an output port and there
is no link connecting to an input port; 3) port is an input
port of a box with no output port; and 4) port has been visited
before in the search (loop detected). In each case, the search
backtracks and depth-first search continues until no more port
can be reached.When search terminates, a reachability tree from
port to all reachable ports is created. Each node in the tree has
a port number and two sets of integers, and , specifying
the set of packets that can reach and pass through the port.
Fig. 6 shows a small network example. The network has six

atomic predicates, , for forwarding and two
atomic predicates, , for ACLs. Ports that filter packets are
labeled by integer identifiers of atomic predicates specifying
packets allowed to pass (ports without labels allow all packets
to pass). For examples, port 1 allows all packets to pass; port 3
labeled by forwards only packets in predi-
cate . The ACL of port 6 labeled by
allows only packets in predicate to pass.
The reachability tree from is shown in Fig. 7. Each

node in the tree is a port with two sets of integers separated
by a semicolon. Integers before the semicolon identify atomic
predicates for forwarding. Integers (in bold italics) after the
semicolon identify atomic predicates for ACLs. For example,
the expression “1, 2, 3, 4, 5, 6; 1,2” represents the set of all
packets. As another example, port 6 is labeled by “4, 5, 6; 2”
with the following meaning: packets that satisfy the predicate

can both reach and pass through port 6. Note
that a port can appear as nodes in different paths of the reacha-
bility tree, such as, ports 8, 9, and 10 in Fig. 7.
Optimization techniques. APVerifier uses several optimiza-

tion techniques to reduce time for checking various network

YANG AND LAM: REAL-TIME VERIFICATION OF NETWORK PROPERTIES USING ATOMIC PREDICATES 895

Fig. 6. Small network example.

Fig. 7. Reachability tree of .

TABLE V
STORAGE COSTS OF REACHABILITY TREES FROM PORTS. (A) STANFORD

NETWORK (58 PORTS). (B) INTERNET2 (56 PORTS)

properties. First, AP Verifier maintains a hash table,HT, of (key,
value) pairs. A key is a port number (or name). Given a key, say
port number , its value is the set of tree nodes each of which has
port number .HT can be used to query the reachability set from
a source port to some destination port without traversing the
reachability tree from . Function returns the set of port
nodes in 's reachability tree.
Second, when computing the reachability tree from a source

port , AP Verifier stores in each tree node (say port) the set
of ports along the path from to the tree node . Port set
information enables fast loop detection without traversing the
reachability tree.
Third, if a set of integer identifiers (such as, ,

or) is too large, the set's complement is stored and used
instead.

B. Storage Costs of Reachability Trees
We compare the memory requirements of Hassel in C and AP

Verifier for storing reachability trees computed for all ports of
the Stanford network and Internet2. The results are presented in
Table V. Hassel in C required 37 times more memory for the
Stanford network and 28 times more memory for Internet2 than
AP Verifier. Furthermore, we monitored the maximum memory
used to store intermediate data when reachability trees were
computed one at a time. The maximum memory was over 400
MB for Hassel in C and was less than 1 MB for AP Verifier.

C. Loop Detection
Loop detection is performed by computing the reachability

tree for every port, as described above.
We used AP Verifier and Hassel in C to detect loops in the

Stanford network and Internet2. For the Stanford network, we
computed reachability trees for 30 ports as was done previously
[12]. The same twelve infinite loop paths were detected by both

AP Verifier and Hassel in C. For Internet2, we computed reach-
ability trees for all ports. The same two infinite loop paths were
detected by both APVerifier and Hassel in C. Their computation
times are presented in Table IV(c) and (d). On average, AP Veri-
fier is 230 times faster than Hassel in C for the Stanford network
and 2793 times faster for Internet2. We also present the compu-
tation times of AP Verifier (BDD) for comparison.

D. Black Hole Detection
Ablack hole in the forwarding table of a box is a set of packets

that are dropped due to no forwarding entry (rather than inten-
tionally). Finding black holes in the forwarding table of a box is
very easy for AP Verifier. Let be sets
of identifiers of atomic predicates for output ports, of
the box (including the special port for intentional packet drop).
Let be the set of identifiers of all atomic predicates for
forwarding. The set of black holes is represented by the set

(5)

If the above set is empty, the forwarding table has no black hole.
We checked for black holes in each forwarding table in the

Stanford network and Internet2. The computation times for AP
Verifier are presented in Table IV(e) and (f). On average, AP
Verifier took 11 s for the Stanford network and 14 s for In-
ternet2. It found no black hole in forwarding tables of the Stan-
ford network. (This is because every router in the Stanford net-
work has the default route.) It found black holes in every for-
warding table of Internet2.

E. Slice Isolation
Network operators provide different network slices (virtual

networks, e.g., VLANs) to customers/applications and must en-
sure that the slices do not overlap; any overlap would allow
packets to leak from one slice to another. A slice can be de-
fined by a set of ports together with a set of packets allowed in
the slice.
In AP Verifier, a set of packets is represented by two sets

of identifiers of atomic predicates for forwarding and ACLs.
Consider two slices, and . has a set, , of
ports and a set of packets represented by and .
has a set, , of ports and a set of packets represented by and

896 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 24, NO. 2, APRIL 2016

TABLE VI
COMPUTATIONAL TIMES (IN MILLISECONDS) FOR DYNAMIC UPDATES. NETPLUMBER RESULTS ARE FROM [11]

. To check whether and overlap, AP Verifier
first computes . If the intersection is empty, then the
two slices are isolated; else, it computes . If

is empty, then the two slices are isolated; else, it computes
. If is empty, then the two slices are isolated;

else, overlaps at ports and the set of packets
shared by both slices is specified by and .

F. Required Waypoints
Many networks have one or more required waypoints (e.g.,

firewalls) through which all packets from a source port must
pass through before reaching a specified set of destination
ports. Consider a single box, with several input ports, which
is a required wayppoint for all packets from source port . To
verify compliance with the waypoint requirement, AP Verifier
traverses the reachability tree from to check that every path
in the tree passes through an input port of the waypoint before
reaching any destination port in the specified set. AP Verifier
returns true or a set of paths that avoid the waypoint.
Checking compliance with the waypoint requirement from a

set of source ports to a set of destination ports is performed by
traversing the reachability tree of every source port in the speci-
fied set. It is also straightforward to check the waypoint require-
ment that all packets from port pass through any member of a
set of waypoints or the requirement that all packets from port
pass through several waypoints in a specified sequence before
reaching specified destination ports.

VI. REAL-TIME COMPLIANCE CHECK FOR NETWORK
STATE CHANGES

In SDNs, a “verifier,” placed in the communication path be-
tween the central controller and its switches, can intercept every
network state changemessage and verify compliance of the state
change with pre-defined network policies and properties. In this
section, we describe how AP Verifier handles link up/down and
rule insertion/deletion events which change the network state.
For performance comparison, we performed the same bench-
mark experiments for link up and rule insertion events described
in the NetPlumber paper [11]. We also provide performance re-
sults for link down and rule delection events not reported in the

paper. In these benchmark experiments, the reachability tree of a
port is precomputed which satisfies a network property or reach-
ability policy.We investigate the time used by APVerifier to up-
date the reachability tree when a state change event is detected.
We performed one experiment for the reachability tree of each
of Stanford network's 58 ports and Internet2's 56 ports.

A. Link Status Change
The sets of atomic predicates are derived from a network's

forwarding predicates andACL predicates and, therefore, do not
depend on the status of any link in the network. The reachability
tree of a port, however, depends on network topology and thus
the status of each link. In each experiment, the reachability tree
from a port and its hash table, HT, are precomputed. For a link
up/down event, AP Verifier needs to update the reachability tree
and HT.
Consider a link down event for a bidirectional link with two

output ports. For each of the two ports, AP Verifier uses
to locate nodes in the reachability tree identified by the two
port numbers. It removes these nodes and all of their descen-
dant nodes from the reachability tree and from the hash table.
Consider a link up event for a bidirectional link with two

output ports. For each of the two ports, AP Verifier uses
to locate nodes in the reachability tree identified by the two
port numbers. From each node located, it performs a depth-first
search to extend the reachability tree. It also adds new nodes
from the subtrees to .
The benchmark performance results of AP Verifier are sum-

marized in Table VI(a), (b), (d), and (e) for the Stanford network
and Internet2. For each link in a reachability tree, we performed
two experiments for link down and link up. We measured the
time to update the reachability tree. AP Verifier's results are
compared with those reported for NetPlumber.4 On average, AP
Verifier is five to orders of magnitude faster than NetPlumber.

B. Rule Update
When a rule is inserted into, or deleted from, a forwarding

table, it may change a forwarding port predicate. (For an ACL

4NetPlumber results are from [11]. They were computed using 6-core Xeon
processors with 12 MB of L2-cache and 12 GB of DRAM.

YANG AND LAM: REAL-TIME VERIFICATION OF NETWORK PROPERTIES USING ATOMIC PREDICATES 897

TABLE VII
TIME TO COMPUTE INTERSECTIONS OF ACLS ALONG A PATH IN PURDUE DATASET

rule update, the following description is similar and will not be
repeated.) As a result the set of atomic predicates for forwarding
may change. To update a port's reachability tree being used for
reachability compliance check, AP Verifier running on one pro-
cessor core performs these steps: 1) it checks if a port predicate
is changed by the rule update; if so, it computes a new pred-
icate for the port; 2) it updates the reachability tree using the
new predicate, if any; and 3) it forks a process which runs on a
second core to update the set of atomic predicates. Steps 2) and
3) occur concurrently.
Steps 1) and 2) can be completed in hundreds of s on the

first core. The updated reachability tree is correct and can be
used for compliance check but is intended to be temporary. In a
temporary reachability tree, nodes of the port affected by a rule
update store a new predicate whose representation by atomic
predicates has not been resolved. Let and represent the
set of packets that can arrive at the port's entrance. Suppose the
port's ACL predicate is and the port's forwarding pred-
icate, , has been changed to which is unresolved.
After the rule update, the set of packets that can pass through
the port is represented by , and , which
together specify the following predicate:

The port's descendant nodes in the subtree are updated accord-
ingly (more details in our technical report [21]). If rule updates
arrive in rapid succession, AP Verifier can keep on updating
the temporary reachability tree correctly (however, computation
time increases as the number of unresolved predicates in the tree
increases).
The process running on the second core can compute the up-

dated set of atomic predicates in 10 ms on average for one rule
update. If the updated set of atomic predicates is unchanged and
there are three5 or fewer unresolved predicates, the process run-
ning on the first core replaces each unresolved predicate in the
temporary tree with its atomic predicate identifiers and converts
the temporary tree to a “normal” one. Otherwise, the process
deletes the temporary tree and computes a new reachability tree
directly from the updated set of atomic predicates. It can do so in
less than 1msmost of the time (see Table IV(c) and (d); note that
loop detection for a port is performed by computing its reacha-
bility tree).
We performed benchmark experiments [11] using AP Verifier

for the Stanford network and Internet2. For each network, the

5This is a configurable parameter value.

reachability tree of a port was first computed using 90% of rules
selected at random. (For the Stanford network, the rules include
ACL and forwarding rules.) The 10% of rules remaining were
inserted one by one and the time for updating the reachability
tree was measured. We also ran experiments for each network
with 100% of the rules initially. Ten percent of the rules were
then selected one by one for deletion; the time for updating the
reachability tree after each rule deletion was measured. Results
are presented in Table VI(g), (h), (j), and (k). For rule insertions,
the performance of AP Verifier is comparable to NetPlumber for
the Stanford network; it is better than NetPlumber for Internet2.

VII. PURDUE DATASET EXPERIMENTS

We performed experiments using AP Verifier and Hassel in C
to compute port-to-port reachability sets for the Purdue dataset
which has large ACLs but no forwarding tables.We started from
a network topology including just the core routers in the dataset,
and gradually increased the network size by including neigh-
bors of boxes already chosen. For each network, we selected
the shortest path in hop count that goes through core routers for
each pair of boxes. We measured the times to compute intersec-
tions of ACLs along each path. The results are summarized in
Table VII. On average, AP Verifier takes approximately 1–2 s
to compute intersections of ACLs along a path and is about two
to three orders of magnitude faster than Hassel in C. Comparing
with Table IV(a) and (b), it is noteworthy that the intersection
of ACL predicates takes two to three orders of magnitude less
time to compute than the intersection of forwarding predicates.
We performed experiments of real-time compliance check

for network state changes using the Purdue dataset with 1,646
boxes and 2,376 ports. Forwarding tables were generated using
shortest path routing. The results are shown in Table VI(c) and
(f) for link status change and in Table VI(i) and (l) for ACL rule
update.

VIII. RELATED WORK

Amodel for static reachability analysis of network state in the
data plane was first presented by Xie et al. [20]. Gouda and Liu
presented firewall decision diagram (FDD) for formal analysis
of firewalls [8] and distributed firewalls [9]. Quarnet uses FDDs
to represent ACLs in packet networks; it used tens to hundreds
of seconds to compute reachability along paths with ACLs only
[13].
There were two proposals to use general verification tools

from other application domains. First, in ConfigChecker [3]
(also FlowChecker [4] by the same first author), a BDD is used

898 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 24, NO. 2, APRIL 2016

to represent a set of state transitions. If header bits are used
for filtering, each BDD of ConfigChecker uses state vari-
ables: bit variables for packet header before state transition,
and bit variables for packet header after state transition. This
BDD definition is necessitated by the symbolic model checking
tool used by the authors. (In AP Verifier, each BDD represents
a set of packets and requires the use of bit variables only.
Therefore, our use of BDDs is new and much more efficient
than BDDs used in ConfigChecker/FlowChecker.) Second,
Anteater [15] uses boolean formulas to represent policies (con-
straints) for packets travelling over edges in a network graph;
it uses a SAT solver to check network properties. Both of these
general-purpose tools are slow and operate on time scales of
seconds to hours [14].
Custom-designed methods for reachability computation in-

clude Header Space/Hassel in C [12], NetPlumber [11], and Ver-
iflow [14]. We have compared the performance of AP Verifier
versus Hassel in C and NetPlumber and showed that AP Verifier
is much more time and space efficient.
Veriflow aggregates packets into equivalence classes (ECs)

by first storing all rules in a multi-dimensional prefix tree (trie)
[14]. An EC is defined by a particular choice of one of the dis-
joint intervals of allowed values for every header field in the
trie. After tens of thousands of rules are inserted in the trie, the
number of disjoint intervals for each header field is numerous.
For ACL rules which specify allowed values for many header
fields, the number of ECs is the product of the set sizes of dis-
joint intervals and is very large. Veriflow's experimental evalu-
ation of its performance when there are multiple header fields
was limited [14].
Of all these methods, only Header Space and AP Verifier

compute reachability trees using different data structures (wild-
card strings by Header Space, BDDs and atomic predicates by
AP Verifier). Both of their reachability algorithms are based
upon depth-first search. ConfigChecker and Anteater do not
compute reachability trees. Veriflow computes a forward graph
for each “equivalence class” of packets. To obtain port-to-port
reachability and reachability trees, additional work has to be
done to find relevant packet sets from different graphs and
combine the results.

IX. CONCLUSION

We present a new formal method for a new tool, Atomic Pred-
icates (AP) Verifier, which is much more time and space effi-
cient than existing tools. We evaluated the performance of AP
Verifier using forwarding tables and ACLs from three large real
networks. The sizes of atomic predicate sets of these networks
are surprisingly small. This outcome indicates that there exist
large amounts of redundancy in the forwarding andACL rules of
real networks. By encoding the network state in terms of atomic
predicates, such redundancy is eliminated.
The use of BDDs and atomic predicates to represent packet

sets dramatically speeds up computation of reachability trees
from ports. On average, AP Verifier is three orders of magnitude
faster than Hassel in C. It also uses two to three orders of mag-
nitude less memory than Hassel in C for computing and storing
reachability trees from ports.

Fig. 8. BDD representation of an ACL rule. (a) . (b)
.

Real networks are subject to dynamic state changes over time
as a result of rule insertion and deletion by protocols and opera-
tors, failure and recovery of links and boxes, etc. AP Verifier in-
cludes algorithms to process such events and check compliance
of network policies and properties in real time. In particular,
atomic predicates are not affected by link status (up or down).
Thus, while existing tools used several seconds of time to verify
reachability compliance of a link up/down event, AP Verifier's
compliance verification times are four to five orders of magni-
tude smaller.
Routers and switches in a packet network perform packet fil-

tering using one or more fields in the packet header. However,
some also perform packet transformation when it changes, in-
serts, or removes some header field(s) of interest in verifica-
tion, e.g., IP address and port number, MPLS label, or VLAN
tag. To handle packet transformers, AP Verifier requires ad-
ditional BDD operations and algorithms (omitted herein). Ex-
tending AP Verifier to networks with packet transformers is
work in progress and the subject of a technical report under
preparation.

APPENDIX A

Theorem 1: If the length of a packet header is bits, and an
ACL rule specifies each header field by an interval, a prefix or a
suffix, then the number of nodes in the BDD graph representing
an ACL rule is .

Proof: The header's bit sequence is partitioned into fields.
Let be the number of bits of the th field, .

. Each variable in the BDD represents one bit
in the packet header. In the BDD representation, each header
field in a rule is specified by a BDD subgraph. The BDD graph
of the rule is obtained by merging the subgraphs representing
its fields. A high level representation of the BDD graph for an
ACL rule is shown in Fig. 8(a) and (b). A circle labeled by
indicates a BDD subgraph representing the th field. An edge
exiting the circle is labeled true if the corresponding subgraph
is evaluated to true. An edge exiting the circle is labeled false if
the corresponding subgraph is evaluated to false. For a rule that
has allow action, its BDD graph evaluates to true if all subgraphs
evaluate to true. For a rule that has deny action, its BDD graph
evaluates to false if all subgraphs evaluate to true.
For the ACL rule that allows all packets, its BDD representa-

tion has only one node, the terminal node true. For the rule that

YANG AND LAM: REAL-TIME VERIFICATION OF NETWORK PROPERTIES USING ATOMIC PREDICATES 899

Fig. 9. BDD subgraphs representing a prefix, a suffix and an interval. The field
has 4 bits represented by variables . A dotted edge denotes an
assignment to false and a solid edge denotes an assignment to true. (a) BDD
subgraph for prefix . (b) BDD subgraph for suffix . (c) BDD subgraph
for the interval from 0001 to 1110.

denies all packets, its BDD representation has only one node,
the terminal node false.
For a nontrivial rule, there may be one or more nonterminal

nodes in each circle. Let be the number of nonterminal nodes
in the circle for the th field, . Then the total number
of nodes in the BDD representation is , where 2
counts the two terminal nodes.
We next derive upper bounds of . If the th field is specified

by a prefix or a suffix, it is straightforward to represent the field
using a BDD (see Fig. 9(a) and (b) for 4-bit examples). The
length of the longest possible prefix or suffix is for field .
Thus, we have for these two cases.
If the th field is specified by an interval, Gupta [10] shows

that it can be represented by at most prefixes. These
prefixes can be divided into at most two sets such that, in each
set, there is a longest prefix and all of the other prefixes can be
obtained by left-shifting the longest prefix. Therefore, we can
construct a BDD in which at most nodes are used to represent
all prefixes in each of the two sets. Thus, all prefixes of the
th field can be represented by a non-reduced binary decision
diagram of at most nodes (see Fig. 9(c) for a 4-bit example
which has 7 nodes). So we have .
Therefore, we have the worst-case bound,

.

APPENDIX B

Theorem 2: For a given set of predicates, the atomic pred-
icates for specifies the equivalence classes in the set with
respect to .
To prove Theorem 2, we first define equivalence classes of

elements with respect to (w.r.t.) a given set of predicates. We
then prove Lemmas 1 and 2. Theorem 2 follows directly from
Lemmas 1 and 2.
For a predicate and an element , the indicator function

is defined as follows:

the set specified by
otherwise.

Given a set of predicates, two elements, and are equiv-
alent w.r.t. if and only if .
The equivalence relation partitions the set of all elements

into equivalence classes, , that is, for every pair of
elements, and , they are in the same , for ,

if and only if they are equivalent. We can also define the indi-
cator function on equivalence classes:
, where , and .
Lemma 1: Given a set of predicates, the predicates that

specify satisfy the first four properties in Defini-
tion 1.

Proof: We prove the four properties one by one using set
notation. By the definition of equivalence classes,

; thus Property 1 is satisfied. The equivalence classes
partition the set of of all elements; thus, the disjunction of all
predicates is true and Property 2 is satisfied. An element cannot
belong to two equivalence classes; therefore, the conjunction of
two different predicates is false and Property 3 is satisfied.
To prove Property 4, consider an arbitrary predicate .

Let the set specified by be . We prove
Property 4 by proving that an element is in
if and only if element is in .
If part: Consider an element . Then, for

some and . Thus, .
Hence .
Only if part: Consider an element .

Then, . Since is a partition of the set
of all elements, there exists an such that .
Thus, . Hence, .
We have proved that ,

which means that is equal to the disjunction of a subset of
predicates specifying equivalent classes (Property 4).
Lemma 2 below states that given a set of predicates, the set

of predicates that specify equivalence classes is
minimum, thus satisfying Property 5 in Definition 1. Hence, the
predicates that specify are the atomic predicates
of .
Lemma 2: For a set of predicates, let de-

note the equivalence classes w.r.t. . Consider any set of predi-
cates that satisfies the first four properties of Def-
inition 1. Then for all , there exists a unique

such that the set specified by . This im-
plies that which is minimum.

Proof: For any predicate , from the assumption that
satisfies the fourth property of Definition 1, can

be represented by the disjunction of a subset of .
Consider some and choose any two elements,

and , from the set specified by .We will show that and
are equivalent. There are two possibilities in the disjunction

representation of . First, appears in the subset representing
, in which case, . Second, does not

appear in the subset representing , in which case,
. Therefore, . Thus,

and are equivalent w.r.t. , and for some
. Thus the set specified by .

APPENDIX C
Theorem 3: The set of atomic predicates for is

where, for is computed by for-
mula (3).

Proof: We prove the theorem by showing that
from formula (3) specify equivalence classes w.r.t. , that

900 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 24, NO. 2, APRIL 2016

is, for any two elements, and is equivalent to w.r.t.
if and only if there exists such that

and belong to the set specified by .
If part: Assume that there exists such that

belong to the set specified by . Then there exist
and such that . Thus

belong to the set specified by and to the set specified
by . From Theorem 2, and each specifies an equiv-
alence class w.r.t. and , respectively. Thus,

, and . There-
fore, . That is, and are
equivalent w.r.t. .
Only if part: Assume that and are equivalent w.r.t. to

. Then, we have , and
. Thus, are equivalent w.r.t.

, and the equivalence class specified by , for
some . Similarly, we can show that the
equivalence class specified by , for some .
Since the equivalence classes specified by and
respectively, and , there exists
such that , and the set specified by .
Consequently, the set specifies the set of

equivalence classes of w.r.t. . Thus
.

ACKNOWLEDGMENT

The authors would like to thank the anonymous reviewers of
ToN for their constructive comments.

REFERENCES

[1] Header Space Library and NetPlumber. [Online]. Available: https://bit-
bucket.org/peymank/hassel-public/

[2] The Internet2 Observatory Data Collections. [Online]. Available: http:/
/www.internet2.edu/observatory/archive/data-collections.html

[3] E. Al-Shaer, W. Marrero, A. El-Atawy, and K. ElBadawi, “Network
configuration in a box: Towards end-to-end verification of network
reachability and security,” in Proc. IEEE ICNP, Princeton, NJ, USA,
2009, pp. 123–132.

[4] E. Al-Shaer and S. Al-Haj, “FlowChecker: Configuration analysis and
verification of federated openflow infrastructures,” in Proc. ACM Safe-
Config, Chicago, IL, USA, 2010, pp. 37–44.

[5] R. E. Bryant, “Graph-based algorithms for boolean function manipu-
lation,” IEEE Trans. Comput., vol. 35, no. 8, pp. 677–691, Aug. 1986.

[6] R. Draves, C. King, V. Srinivasan, and B. Zill, “Constructing optimal
IP routing tables,” in Proc. IEEE INFOCOM, New York, NY, USA,
1999, pp. 88–97.

[7] E. A. Emerson, , J. van Leeuwen, Ed., “Temporal andModal Logic,” in
Handbook of Theoretical Computer Science. Cambridge, MA, USA:
MIT, 1990, vol. B.

[8] M. G. Gouda and A. X. Liu, “Firewall design: Consistency, complete-
ness, and compactness,” in Proc. IEEE ICDCS, Tokyo, Japan, 2004,
pp. 320–327.

[9] M. G. Gouda, A. X. Liu, and M. Jafry, “Verification of distributed fire-
walls,” in Proc. IEEE GLOBECOM, New Orleans, LA, USA, 2008,
pp. 1–5.

[10] P. Gupta, “Algorithms for routing lookups and packet classification,”
Ph.D. dissertation, Dept. Comput. Sci., Stanford Univ., Stanford, CA,
USA, 2000.

[11] P. Kazemian, M. Chang, H. Zeng, G. Varghese, N. McKeown, and S.
Whyte, “Real time network policy checking using header space anal-
ysis,” in Proc. USENIX NSDI, Lombard, IL, USA, 2013, pp. 99–112.

[12] P. Kazemian, G. Varghese, and N. McKeown, “Header space analysis:
Static checking for networks,” in Proc. USENIX NSDI, San Jose, Cal-
ifornia, 2012, pp. 113–126.

[13] A. R. Khakpour and A. X. Liu, “Quantifying and querying network
reachability,” in Proc. IEEE ICDCS, Genoa, Italy, 2010, pp. 817–826.

[14] A. Khurshid, X. Zou, W. Zhou, M. Caesar, and P. B. Godfrey,
“VeriFlow: Verifying network-wide invariants in real time,” in Proc.
USENIX NSDI, Lombard, IL, USA, 2013, pp. 15–27.

[15] H. Mai, A. Khurshid, R. Agarwal, M. Caesar, P. B. Godfrey, and S.
T. King, “Debugging the data plane with anteater,” in Proceedings of
ACM SIGCOMM, Toronto, Ontario, Canada, 2011, pp. 290–301.

[16] D. Oppenheimer, A. Ganapathi, and D. A. Patterson, “Why do internet
services fail, and what can be done about it?,” in Proc. 4th Conf.
USENIX Symp. Internet Technol. Syst., Seattle, WA, USA, 2003, pp.
1–16.

[17] Y.-W. E. Sung, S. G. Rao, G. G. Xie, and D. A. Maltz, “Towards
systematic design of enterprise networks,” in Proc. ACM CoNEXT,
Madrid, Spain, 2008, pp. 1–12.

[18] A. Vahidi, “JDD, a pure Java BDD and Z-BDD library,” [Online].
Available: http://javaddlib.sourceforge.net/jdd/

[19] E. Wong, “Validating network security policies via static analysis of
router ACL configuration,” M.S. thesis, Dept. Comput. Sci., Naval
Postgraduate School, Annapolis, MD, USA, 2006.

[20] G. G. Xie, J. Zhan, D. A. Maltz, H. Zhang, A. Greenberg, G. Hjalm-
tysson, and J. Rexford, “On static reachability analysis of IP networks,”
in Proc. IEEE INFOCOM, Miami, FL, USA, 2005, pp. 2170–2183.

[21] H. Yang and S. S. Lam, “Real-time verification of network proper-
ties using Atomic Predicates,” Comput. Sci. Dept., Univ. of Texas at
Austin, Austin, TX, USA, Tech. Rep. TR-13-15, Aug. 2013.

Hongkun Yang (S'12) received the B.S.E. (with dis-
tinction) and M.S.E. degrees from Tsinghua Univer-
sity, Beijing, China, in 2007 and 2010, respectively.
He is currently working toward the Ph.D. degree at
the Department of Computer Science, University of
Texas at Austin, Austin, TX, USA.
His research interests include computer networks,

protocol verification, network security, and formal
methods. He has authored and coauthored research
papers in a number of conferences and journals.
Mr. Yang was a recipient of the Microelectronics

and Computer Development (MCD) Fellowship.

Simon S. Lam (F'85) received the B.S.E.E. degree
(with distinction) from Washington State University,
Pullman, WA, USA, in 1969, and the M.S. and Ph.D.
degrees in engineering from the University of Cal-
ifornia, Los Angeles, CA, USA, in 1970 and 1974,
respectively.
From 1971 to 1974, he was a Postgraduate Re-

search Engineer with the ARPA Network Measure-
ment Center, University of California, Los Angeles,
CA, USA, where he worked on satellite and radio
packet switching networks. From 1974 to 1977, he

was a Research Staff Member with the IBMT. J.Watson Research Center, York-
town Heights, NY, USA. Since 1977, he has been on the faculty of the Univer-
sity of Texas at Austin, where he is a Professor and Regents Chair in computer
science and served as Department Chair from 1992 to 1994.
Prof. Lam is a Fellow of ACM and a member of the National Academy of

Engineering. He was the recipient of the 2004 ACM SIGCOMM Award for
lifetime contribution to the field of communication networks, the 2004 ACM
Software System Award for inventing secure sockets and prototyping the first
secure sockets layer (named Secure Network Programming), the 2004 W. Wal-
lace McDowell Award from the IEEE Computer Society, as well as the 1975
Leonard G. Abraham Prize and the 2001 William R. Bennett Prize from the
IEEE Communications Society. He served as Editor-in-Chief of the IEEE/ACM
TRANSACTIONS ON NETWORKING from 1995 to 1999. He served on the edi-
torial boards of the IEEE/ACM TRANSACTIONS ON NETWORKING, the IEEE
TRANSACTIONS ON SOFTWARE ENGINEERING, IEEE Transactions on Communi-
cations, the PROCEEDINGS OF THE IEEE, Computer Networks, and Performance
Evaluation. He cofounded the ACM SIGCOMM conference in 1983 and the
IEEE International Conference on Network Protocols in 1993.

