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Abstract— Packet transformers are widely used in ISPs, dat-
acenter infrastructures, and layer-2 networks. Existing network
verification tools do not scale to large networks with transform-
ers (e.g., MPLS, IP-in-IP, and NAT). Toward scalable verification,
we conceived a novel packet equivalence relation. For networks
with packet transformers, we first present a formal definition
of the packet equivalence relation. Our transformer model is
general, including most transformers used in real networks.
We also present a new definition of atomic predicates that
specify the coarsest equivalence classes of packets in the packet
space. We designed an algorithm for computing these atomic
predicates. We built a verifier, named Atomic Predicates for
Transformers, and evaluated its performance using four network
data sets with MPLS tunnels, IP-in-IP tunnels, and NATs. For
a provider cone data set with 11.6 million forwarding rules,
92 routers, 1920 duplex ports, and 40 MPLS tunnels which use
170 transformers, APT used only 0.065 s, on average, to compute
the reachability tree from a source port to all other ports
for all packets and perform loop detection as well. For the
Stanford and Internet2 data sets with NATs, APT is faster
than HSA (Hassel in C implementation) by two to three orders
of magnitude. By working with atomic predicates instead of
individual packets, APT achieves verification performance gains
by orders of magnitude.

Index Terms— Network verification, reachability analysis,
packet transformers, formal methods, algorithm design.

I. INTRODUCTION

THE process of forwarding packets in networks is prone to
faults from configuration errors and unexpected protocol

interactions. Active probes (pings and traceroutes) are widely
used to measure data plane reachability. These tools, however
suffer from major limitations and biases [8].

Automated tools based upon formal methods have been
developed in recent years for verifying reachability properties
in the data plane: such as, “a packet with certain header values
cannot reach host z,” “the network has no forwarding loop for
any packet,” “all packets from specified input ports must pass
through a given sequence of firewalls.” Substantial progress
has been made in developing formal methods with efficient
algorithms for verifying networks of packet filters, represent-
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ing forwarding tables and access control lists (ACLs), but not
much progress so far for networks with packet transformers.

We observe that tunnels and NATs are widely used in packet
networks. A measurement study shows that all tier-1 ISPs
and more than half of large ISPs used MPLS tunnels [20].
The Internet also has IP-in-IP tunnels used by IPsec and for
the co-existence of IPv4 and IPv6. Furthermore, researchers
continue to propose new applications of IP-in-IP tunnels [11].

The entry and exit routers of a tunnel perform header
encapsulation and de-encapsulation, respectively. Each transit
router in a MPLS tunnel performs label switching. All of
them perform packet transformations. NATs rewrite packets
and are packet transformers. Therefore, verifying reachability
properties using a network model with packet filters only
without including packet transformers would not be useful for
many networks in the real world.

An abstract framework for addressing the network verifica-
tion problem using static reachability analysis was proposed
by Xie et al. [25]. In this framework, a network consists of
packet filters and transformers. A packet filter is specified by
a predicate which represents a set of packets for which the
predicate evaluates to true and can pass through the filter.
A packet transformer maps a set of packets to another set
of packets in the set of all packets, namely: the packet space.

Designing and building an automated tool for verifying
reachability properties of a large network with packet trans-
formers as well as filters present major challenges. State-of-
the-art verification tools fail to meet these challenges for one
of two reasons: (i) they are computationally efficient but do
not model packet transformers; (ii) they can, in theory, model
packet transformers but are computationally inefficient and not
scalable. In this paper, we present a verification tool, APT,
based upon a novel packet equivalence relation, for verifying
networks with many different packet transformers as well as
filters; the tool is computationally efficient enough to scale to
networks with millions of forwarding rules and large numbers
of routers, ports, and packet transformers.

A. Related Work

In recent years, researchers have proposed network veri-
fication methods and tools by following one of two differ-
ent approaches: (i) custom design new data structures and
algorithms to compute reachability sets directly [12]–[14],
[26], [28]; (ii) reformulate the network verification problem
within the context of verification tools previously designed
for other problem domains [5], [6], [15], [16], [22].
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In the first approach, HSA [13] presents a new data
structure, wildcard expressions, for representing packet sets
together with methods for computing reachability trees to ver-
ify network properties. NetPlumber [12], based upon HSA, and
Veriflow [14] were designed for software defined networking
with a controller to perform incremental verification after a
network configuration change. The network model of Veriflow
has packet filters only. AP Verifier [26], [28], also designed
for packet filters only, uses atomic predicates computed from
the packet filters to substantially reduce both computation time
and space for network verification.

In the second approach, among methods that model
some packet transformations, ConfigChecker [5] uses sym-
bolic model checking; Anteater [16] uses a SAT solver;
Spinoso et al. [21] use a SMT solver; NoD [15] uses Datalog.
SymNet [22] uses symbolic execution. The general verifi-
cation tools employed have expressive modeling languages
which can be used to specify packet transformers; some were
also used to model and specify stateful NATs [21], [22].
However, since the data structures and algorithms of these
tools were originally designed for other problem domains, they
run very slowly for network verification.

The designers of NoD replaced the native data structure of
Datalog by a new data structure more suited to representing
packet sets. As a result, [15, Table 3] shows that NoD runs
much faster than model checkers and SAT/SMT solvers but it
is still 20 times slower than Hassel (the optimized version
of HSA written in C [3]). Symnet is reported to be 50%
slower than Hassel [22]. Lastly, AP Verifier was shown to
be 2-3 orders of magnitude faster than Hassel [26], [28].

For networks with packet filters only, packet equivalence
is intuitive and not hard to define. This is because when
a packet arrives at a filter, it either exits unchanged or is
filtered. Informally, two packets are equivalent if and only
if they are treated identically by every filter in the network.
This idea was applied to speed up network verification in
Veriflow [14] and in AP Verifier [26], albeit these tools use
very different data structures and algorithms. AP Verifier is
much more efficient than Veriflow because its algorithm com-
putes the coarsest equivalence classes of packets in the packet
space (i.e., the number of equivalence classes is smallest).
Recently, Plotkin et al. [18] presented a different approach
based upon bisimulation and modal logic to speed up network
verification and wrote: “A side effect of all this machinery
is the ability to formalize earlier concepts such as slicing
and a (generalized version of) Yang-Lam equivalence” where
“Yang-Lam equivalence” refers to atomic predicates defined
for a network of packet filters [26], [28].

B. Contributions of This Paper

Towards scalable verification of packet networks in the real
world, we set out to develop a general theory of packet equiv-
alence for networks with both transformers and filters. When a
packet arrives at a transformer, it may be filtered. If not filtered,
it may exit unchanged, exit as another packet (deterministic
transformation), or exit as any packet in a specified set of
packets (non-deterministic transformation). To handle most

packet transformations in real networks, the problem is sub-
stantially more challenging than the one we solved previously
for filters only [26], [28]. We needed a new definition of packet
equivalence together with a new algorithm for computing
the coarsest equivalence classes (i.e., atomic predicates). The
major contributions in this paper are summarized as follows:

1) A General Theory of Packet Equivalence: Every packet
injected into the network may possibly be transformed into
other packets by any sequence of transformers in the network.
Therefore, we need a new packet equivalence relation that
formalizes the following intuition: namely, two packets are
equivalent if and only if they are treated identically by every
filter and by every possible sequence of one or more transform-
ers in the network. After a number of attempts, we conceived
a formal definition of the intuition based upon the following
insight: For every sequence of transformations, consider the
sequence of inverse mappings instead of the sequence of
forward mappings. (See Definition 3 in Section IV.)

Subsequently, we solved two additional hard problems:
(i) formulating a new definition of atomic predicates for
transformers and filters with a proof that they specify the
coarsest equivalence classes of packets, and (ii) designing
a new algorithm for computing atomic predicates for trans-
formers and filters with a proof that the algorithm terminates
and, upon termination, it returns the set of atomic predicates.
The definition, algorithm, and theorems are presented in
Sections IV and V. Proofs of the theorems are presented in
the Appendix.

2) Formulas for Transformed Predicates: For a set of
packets specified by a predicate, P , we derived formulas for
computing the transformed predicate, T (P ), where T is one of
the following five different transformations: packet rewriting;
encapsulation and de-encapsulation of a new header; encapsu-
lation and de-encapsulation of a new instance of the outermost
header. These formulas are novel and necessary for computing
transformations of atomic predicates in implementation.

3) APT Implementation and Its Performance: The new
algorithm and formulas are implemented in a new verification
tool, APT, in which sets of equivalent packets are represented
by integer identifiers of atomic predicates. By working with
atomic predicates instead of individual packets, APT achieves
performance gains in computation time and space by orders
of magnitude.

The performance of APT was evaluated using the Stanford
and Internet2 datasets, as well as two large provider cone
datasets. (The provider cone of a network consists of all
of its direct and indirect Internet service providers including
tier-1 ISPs.) Various numbers of NATs, IP-in-IP tunnels, and
MPLS tunnels were added into each dataset for performance
evaluation of APT.

For each of the datasets with transformers, we measured
the times to compute reachability trees from source ports
which can be used to verify safety and progress properties
specified by a temporal logic (e.g., CTL [10]). For examples,
the reachability tree from a source port to all other ports in
the same network can be used to detect forwarding loops for
all packets injected into the source port, and for verifying that
all injected packets traverse a specified sequence of waypoints
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in the network. Performance results for the two large provider
cone datasets demonstrate that APT is scalable to very large
networks, such as, ISP networks and large-scale datacenter
infrastructures.

Since Hassel supports packet rewriting,1 we ran the Hassel
in C code on our computer for the Stanford dataset with
0 to 14 NATs added and the Internet2 dataset with 0 to 9 NATs
added and compare its results with those of APT. We found
that APT is faster than Hassel in C by 2 orders of magnitude
for the Stanford dataset and faster by 3 orders of magnitude
for the Internet2 dataset. For the Stanford dataset, APT also
found the same 12 infinite forwarding loops found by Hassel
in C. This direct comparison provides validation for APT.

Lastly we experimented and found that APT recovers
quickly from dynamic network changes including link/box
status change, addition/removal of a NAT or tunnel, and
insertion/deletion of rules.

The balance of this paper is as follows: Our network model
is presented in Section II. Formulas for transformed predicates
are presented in Section III. Our theory on packet equivalence
and atomic predicates is presented in Section IV. In Section V,
our theory is applied to the design of an algorithm for com-
puting atomic predicates. Performance evaluation of APT is
presented in Section VI. We conclude in Section VII. Proofs of
theorems are in the Appendix.

II. NETWORK MODEL

We use ‘box’ to refer to any network device that forwards
packets, including routers, switches, as well as middle boxes
such as firewalls, NATs, etc. A packet network is modeled as a
directed graph of boxes. We use predicates to represent packet
sets. A predicate is a Boolean formula where each variable
represents one packet header bit.2 A predicate represents a set
of packets for which the predicate evaluates to true. Predicate
false specifies the empty set, and predicate true specifies the
set of all packets.

ACLs in our model make filtering decisions for each packet
in isolation. In particular, our model and datasets do not
include stateful NATs. However, APT can be used to analyze
the dynamic behavior of a stateful NAT by modeling such
behavior as rule insertion and deletion. To illustrate, consider a
stateful NAT which tracks TCP connections between a private
network and the outside world. When a host in the private
network initiates a TCP connection to a server outside, a new
rule is added to the ACL guarding the NAT’s input port to
admit packets of the TCP connection from outside. When the
TCP connection is closed, the rule is deleted from the ACL.
In Section VI-F, we show that APT adapts quickly to dynamic
network changes, including rule insertion and deletion.

Research on the verification of stateful NATs and other
middle boxes is at an early stage. A comprehensive study of
the topic is beyond the scope of this paper.

1Hassel has no implementation for header encapsulation and
de-encapsulation because HSA’s data structure does not support these
transformations.

2In theory, a variable can also represent a bit in the payload of a packet.
In practice, we consider header bits only.

Fig. 1. An example of a box with packet transformers T1 and T4.
A1, . . . , A4 are predicates for ACLs, F3 and F4 are predicates for
forwarding.

A. Box Model

Each box has at least one input port and one output port.
(We use ‘port’ to refer to either an input or output port.
A duplex port is one endpoint of a full-duplex link consisting
of an input port and an output port.) A forwarding table is
used to forward each input packet to one or more output ports
(multicast is allowed). A special port for intentional drops is
allowed. The forwarding table may be obtained from multiple
protocols, such as IPv4, IPv6, MPLS, etc.

In the model, the forwarding table is converted to a set of
predicates such that each output port is guarded by a predicate
for forwarding. Each port, input or output, is also guarded by
a predicate specified by an ACL. (If a port is not guarded by
an ACL, the predicate of the port is true.)

Our model of a box is illustrated in Figure 1. A box may
have one or more packet transformers, or none.

B. Packet Transformer Model

In general, packet transformers are modeled as functions
that map an input packet set to an output packet set. For a
packet transformer T and a predicate P specifying its input
packet set, T (P ) denotes the transformed predicate specifying
the output packet set. This model includes both transformers
that are: (i) deterministic (one packet is mapped to another
packet), and (ii) nondeterministic (one packet is mapped to
any packet in a set of packets).

Three widely used types of packet transformations are
implemented in APT: (i) packet translation which rewrites
the bits of an existing header; (ii) packet encapsulation which
prepends a header to the existing packet header; (iii) packet
de-encapsulation which removes the outermost header from a
packet. For examples, packet translation is performed in NATs;
packet encapsulation and de-encapsulation are performed for
IP-in-IP tunnels; all three transformations are performed for
MPLS tunnels. Any transformer T , not in any of these three
types, can also be implemented by deriving a new formula for
T (P ) as illustrated in Section III.

Consider the box example in Figure 1. T1 and T4 denote two
packet transformers. Note that a packet may be transformed
after it enters an input port and before forwarding (e.g.,
encapsulation, de-encapsulation, and MPLS label switching).
After forwarding, the packet may be transformed before it is
sent to an output port (e.g., NAT).

Lastly, each transformer in our model may actually be
multiple transformers in sequence, e.g., one encapsulation
immediately following another. For example, if T1 is actually
Ta followed by Tb, then for input packet set P , the output
packet set of T1 is computed from T1(P ) = Tb(Ta(P )).
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Fig. 2. An example of a packet with a stack of headers. head1 is at top of
the stack, head3 is at bottom of the stack.

C. Packet Header Model

The header of a packet is modeled by a stack of protocol
headers (see example in Figure 2), also referred to as header
stack or just stack. Encapsulation pushes a new protocol header
into the stack. De-encapsulation removes a protocol header
from the top of the stack. Packet translation rewrites some
bits within the packet header.

There are multiple fields in each protocol header within
a header stack. Not all of them are used by packet filters
and transformers in a given network. APT uses only header
fields that are relevant for verifying the network’s reachability
properties, such as, IP addresses, port numbers, MPLS label,
etc. In the balance of this paper, all fields mentioned are
relevant fields.

Relevant fields in different protocol headers within a header
stack are represented by different bit variables. For example,
if IPv4 packets are encapsulated with a new IPv4 header,
the inside destination IPv4 address and the outside destination
IPv4 address are different fields.

Each possible header stack corresponds to a unique
sequence of relevant header fields, which is represented by a
sequence of bit variables in our model. The set of all possible
values of such bit strings represents the set of all packets in
our model, i.e., the packet space. In practice, packets have a
maximum size. Therefore, the set of all possible header stacks
is finite and the set of all packets is finite.

III. PREDICATE TRANSFORMATIONS

Consider a predicate P specifying the input packet set
of a packet transformer T , we present in this section five
formulas for computing T (P ) for the three basic types of
packet transformations. These formulas are used by APT for
computing transformations of atomic predicates.3

Auxiliary Variables: Extending the model of a packet header
to a header stack requires the use of auxiliary variables in each
predicate to identify the protocol headers in a stack. Auxiliary
variables do not represent any real header bits; they are not
implemented and are used for verification only.

Consider the example in Figure 3 which shows three binary
variables, v0, v1, v2, which are auxiliary variables. For exam-
ples, v2 = 1 indicates a MPLS encapsulation. v1v0 = 01
indicates one IP encapsulation, and v1v0 = 11 indicates two IP
encapsulations. For a packet without any encapsulation, these
variables are set to v0 = 0, v1 = 0, and v2 = 0.

Logical Operations: Logical operations used for computing
the output packet set of a packet transformer include conjunc-
tion (“∧”), disjunction (“∨”), negation (“¬”), substitution (“|”),

3These formulas are novel and necessary for implementation. However, for
readers not interested in predicate logic, they can skip ahead to Section IV
by considering T (P ) as the result returned by a function call, and still fully
understand the other key ideas and contributions of this paper.

Fig. 3. Auxiliary variables v0, v1, v2, are used in predicates to indicate
presence of protocol headers in a header stack.

and existential quantification (“∃”). The first three operations
are common logical operations. In the following, we briefly
introduce substitution and existential quantification.

We use notation P |x=b to denote the predicate computed by
the substitution operation that replaces variable x in predicate
P by expression b. In general, b can be a constant (either
true or false) or a predicate. When b is a constant (either
true or false), predicate P |x=b is called a restriction of P .
The existential quantification of variable x is defined using
substitution:

∃x.P = P |x=true ∨ P |x=false, (1)

which removes each occurrence of x (either x or ¬x) in
predicate P .

A. Packet Rewrite

Consider packets with variables x1, x2, . . . , xk representing
bits to be translated in their headers. Suppose the header bits
are changed to new values specified by predicate Q that has
variables x1, x2, . . . , xk. We use existential quantification and
conjunction to change the values of variables x1, x2, . . . , xk.
In predicate notation, incoming packets specified by P are
translated to output packets specified by

T (P ) = (∃xk. . . . ∃x2.∃x1.P ) ∧Q, (2)

For example, let xi, xj be the boolean variables representing
two header bits of packets in P . These two bits are set to
xi = 0, xj = 1 by a NAT. The set of packets exiting the NAT
is specified by the predicate, (∃xj .∃xi.P ) ∧ (¬xi ∧ xj).

Note that packet translation does not change the value of
any auxiliary variable because the header stack is not changed.

B. Encapsulation and De-Encapsulation

There are two cases of encapsulation and de-encapsulation:
(i) encapsulation of a protocol header different from the
protocol header on top of the header stack, and its subsequent
de-encapsulation, e.g., IPv4 in MPLS; (ii) encapsulation of a
new instance of the protocol header on top of the header stack,
and its subsequent de-encapsulation, e.g., IPv4 in IPv4.

(i) A Different Protocol Header: For encapsulation, let pred-
icate P specify a set of packets entering the transformer. Let
H be a predicate that specifies the new header encapsulating
the packets and v be the auxiliary variable for the new header.
H has variables y1, y2, . . . , yk representing bits in the new
header. y1, y2, . . . , yk do not exist in P .

We use conjunction (“∧”) and existential quantifica-
tion (“∃”) to add the new header and set the auxiliary variable
v to 1. The set of encapsulated packets leaving the transformer
is specified by predicate

T (P ) = (∃v.(H ∧ P )) ∧ v. (3)
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At a transformer that de-encapsulates packets specified by
T (P ), the following predicate is computed:

(∃v.∃yk. . . . ∃y2.∃y1.T (P )) ∧ (¬v) (4)

which specifies the set of de-encapsulated packets leaving
the transformer. Existential quantifications on y1, y2, . . . , yk

remove the encapsulated header, and auxiliary variable v is
set to 0 by the conjunction.

(ii) A New Instance of the Protocol Header on Top of
Stack: We use IPv4 in IPv4 as an example. The formulas are
the same for other protocols. For encapsulation, let P be a
predicate specifying a packet set entering the transformer. Let
H be a predicate that specifies the IPv4 header encapsulating
the packets. Prior to encapsulation, the outermost header of
packets specified by P is IPv4. Both H and P have variables
x1, . . . , xk because they are for the same protocol (IPv4).

There are two steps to perform this encapsulation:
(a) rename variables of the existing outermost IPv4 header;
(b) set the auxiliary variable v for the new IPv4 header to 1
and push the new IPv4 header specified by H into the header
stack.

To perform step (a), we use substitution operations and
compute predicate P |x1=y1,x2=y2...,xk=yk

, where each occur-
rence of x1, x2, . . . , xk in P is replaced by y1, y2, . . . , yk,
respectively. To perform step (b), we use existential quantifi-
cation (“∃”) and conjunction (“∧”) to set the auxiliary variable
and use conjunction to add the encapsulated header.

Therefore, the encapsulated packet set T (P ) is computed
by the following formula:

T (P ) = (∃v.(P |x1=y1,x2=y2,...,xk=yk
)) ∧ v ∧H. (5)

There are two steps to perform de-encapsulation:
(a) remove the outermost IPv4 header represented by
variables x1, x2, . . . , xk, and set auxiliary variable v to 0;
(b) rename variables y1, y2, . . . , yk of the IPv4 header that
becomes the outermost IPv4 header after de-encapsulation.
Thus, the de-encapsulated packet set is computed by the
following formula

((∃v.∃xk . . . .∃x1.T (P )) ∧ (¬v))|y1=x1,y2=x2,...,yk=xk
, (6)

where predicate ∃v.∃xk. . . . ∃x1.T (P ) does not have any
occurrence of v, xk, . . . , and x1.

IV. THEORY

Let U denote the set of all elements.4 Without qualification,
an element x is always in set U , and a set of elements is
always a subset of U . A predicate specifies a set of elements
in U . Predicate true specifies U . Predicate false specifies the
empty set.

The indicator function for a set D of elements and an
element x is defined as follows:

ID(x) =

{
1 x ∈ D,

0 x /∈ D.

4In the context of a packet network, U is the packet space. Definition 4 in
this section is the foundation of Algorithm 1 for computing atomic predicates
in Section V.

A. Atomic and Representative Predicates for a Set of Filters

We first consider a network with a set, P , of predicates (rep-
resenting filters) only. Two elements, x1 and x2 are equivalent
w.r.t. P if and only if IP (x1) = IP (x2), ∀P ∈ P , where P is
interpreted as a set of elements.

Definition 1 (Atomic Predicates for P): Given a set P of
predicates, its set of atomic predicates {b1, . . . , bn} satisfies
these five properties:

1) bi �= false,∀i ∈ {1, . . . , n}.
2) ∨n

i=1bi = true.
3) bi ∧ bj = false, if i �= j.
4) Each predicate P ∈ P , P �= false, is equal to the

disjunction of a subset of atomic predicates:

P =
∨

i∈S(P )

bi, where S(P ) ⊆ {1, . . . , n}. (7)

5) n is the minimum number such that the set {b1, . . . , bn}
satisfies the above four properties.

Definition 1 is from [26] and [28]. By satisfying prop-
erty 5 in the above definition, atomic predicates specify the
coarsest equivalence classes w.r.t P (i.e., smallest number
of equivalence classes). They can be used to provide the
best computation time and space performance in network
verification.

For a given set P of predicates, we will use {C1, . . . , Cn}
to denote the set of equivalence classes specified by the atomic
predicates for P , where n is the number of atomic predicates.

We will refer to a set of predicates that satisfies the first
four properties of the above definition as representative. Rep-
resentative predicates also specify equivalence classes w.r.t.
P and may be used in lieu of atomic predicates in network
verification, albeit less efficiently than atomic predicates.

Definition 2 (Representative Predicates for P): A set, B =
{b1, b2, . . . , bl}, of predicates is representative of P if and only
if B satisfies the first four properties of Definition 1.

B. Transformers

Let T denote a set of transformers. A transformer T ∈ T
maps an element from its domain to a set of elements in its
range. Both the domain and the range of T are subsets of U .

For a transformer T , and an element x in the domain of T ,
T (x) denotes the set of elements after transformation. For a
set D of elements, we define

T (D) =
⋃

x∈D

T (x) (8)

Assumption: For each transformer T , its inverse T−1 is a
function from the range of T to the domain of T .

For an element x ∈ U , T−1(x) is undefined if x is not in
the range of T .

C. Equivalence Relation for Sets of Transformers and Filters

Consider a network with a set, T , of transformers as well
as a set, P , of predicates. We define a new packet equivalence
relation for a network with both transformers and filters, which
formalizes the intuition that two packets are equivalent if and
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only if they are treated identically by every filter and by every
possible sequence of one or more transformers in the network.

Definition 3 (Equivalence w.r.t. P and T ): Given a set
P of predicates and a set T of transformers. Let
{C1, C2, . . . , Cn} denote equivalence classes specified
by the atomic predicates for P .

Two elements x1, x2 in set U are equivalent w.r.t. P and T
if and only if the following two conditions hold:

1) ICi(x1) = ICi(x2) for each i ∈ {1, . . . , n}.
2) Either both T−1

αk
· · ·T−1

α1
(x1) and T−1

αk
· · ·T−1

α1
(x2) are

undefined, or

ICi(T
−1
αk
· · ·T−1

α1
(x1)) = ICi(T

−1
αk
· · ·T−1

α1
(x2)) (9)

for each i ∈ {1, . . . , n}, any positive integer k and any
possible sequence Tαk

. . . Tα1 of transformers, Tαj ∈
T , j ∈ {1, . . . , k}.

Let {B1, . . . , Bl} denote equivalence classes defined by the
above equivalence relation (Definition 3). Note that elements
x1 and x2 are equivalent w.r.t. P and T if and only if x1, x2 ∈
Bj , for some j ∈ {1, . . . , l}.

Note: It is possible to define a less coarse equivalence
relation w.r.t. P and T by replacing {C1, C2, . . . , Cn} in
Definition 3 with a set of equivalence classes specified by
representative predicates, instead of atomic predicates, for P .

D. Atomic and Representative Predicates for
Transformers and Filters

Definition 4 (Representative Predicates for P and T ):
Given P and T , the set, B = {b1, b2, . . . , bl}, of predicates
is representative of P and T if and only if B satisfies the
following properties:

1) B is representative of P .
2) For each T ∈ T and for each bi ∈ B that is transformed

by T , the following holds:

T (bi) =
∨

j∈S(bi)

bj , where S(bi) ⊆ {1, . . . , l}. (10)

Note that Property 2 in Definition 4 requires that, for each
transform T in T and each predicate bi in B, if packets in
bi can be transformed by T , then the transformed predicate
of bi must be the disjunction of a subset of predicates in B.
This means that all packets specified by each predicate in B are
treated identically by each transformer, i.e., they are equivalent
w.r.t. all transformers and can be represented as a single entity.
We can now define atomic predicates for sets of predicates and
transformers.

Definition 5 (Atomic Predicates for P and T ): Given P
and T , the set of atomic predicates for them,
B = {b1, b2, . . . , bl}, satisfies the following properties:

1) B is representative of P and T .
2) l is the minimum number such that the set {b1, . . . , bl}

satisfies the above property.
In the Appendix, we proved the following: (i) Definition 3

defines the coarsest equivalence relation w.r.t. P and T .
(ii) The equivalence classes in Definition 3 are specified by
atomic predicates in Definition 5. These results constitute
Theorem 1.

Theorem 1: Given a set P of predicates and a set T of
transformers, the atomic predicates for P and T (defined in
Definition 5) specify the coarsest equivalence classes in the
set U w.r.t. P and T (defined in Definition 3).

Advantages of Atomic Predicates: For real networks, each
atomic predicate represents a very large number of equiva-
lent packets in many disjoint fragments of the packet space.
A predicate is equal to the disjunction of a subset of atomic
predicates and is represented in APT by the integer identifiers
of the atomic predicates; a packet transformer is represented
by a set of mappings, each of which maps an integer to a set
of integers (that is, from one atomic predicate to a subset of
atomic predicates).

APT computes reachability trees for atomic predicates, each
of which represents a very large number of packets with
equivalent behavior, rather than for individual packets. Thus
the use of atomic predicates reduces the time and space
required for computing and storing these trees, as well as for
verifying reachability properties, by orders of magnitude.

V. ALGORITHM DESIGN

Consider a network with a set, T , of transformers and a
set, P , of predicates (representing filters). Each transformer
T ∈ T is modeled as a function that maps a predicate
specifying its input packet set to another predicate specifying
its output packet set. The input packet set is the domain, D,
of T and the output packet set is the range, T (D), of T in
Equation (8). The predicate specifying the input packet set of
T is added to P if it is not already included.

To design an algorithm for computing the network’s atomic
predicates, we make use of the following observations:

(i) For T ∈ T , its input packet set, specified by P ∈ P , P �=
false, is equal to the disjunction of a subset of representative
predicates for T by Equation (7):

P =
∨

i∈S(P )

bi, where S(P ) ⊆ {1, . . . , l}. (11)

Thus the transformed predicate T (P ) is the following:

T (P ) =
∨

i∈S(P )

T (bi), where S(P ) ⊆ {1, . . . , l}. (12)

(ii) We can use the formulas in Section III to compute the
transformed predicate T (bi) where T is one of five different
packet transformations.

(iii) For T ∈ T , its input packet set consists of all packets
that can pass through the transformer. However, not all packets
in the input packet set are transformed by T . For examples:
the entrance of an IP-in-IP tunnel only encapsulates packets
with certain destination IP addresses; a MPLS router only
switches labels for packets with MPLS headers. Therefore, for
each transformer, the algorithm only needs to compute T (bi)
for those representative predicates specifying packets that are
changed by the packet transformer.

Notation: Given any set, Q, of predicates, we use A(Q)
to denote the set of atomic predicates for Q, which can be
computed using one of the algorithms in [26] and [28].

Algorithm 1 below computes the set of atomic predicates
for P and T .
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Algorithm 1 for Computing Atomic Predicates After Adding
Transformers
Input: a set P of predicates, a set T of transformers
Output: a set B = {b1, b2, . . . , bl} of predicates
1: P ′ ← P ,B ← A(P ′)
2: Compute the following set:

R = {T (bi)| for each T ∈ T , and

for each bi ∈ B that is transformed by T }

3: if B = A(P ′ ∪R) then
4: return B.
5: else
6: P ′ ← P ′ ∪R, B ← A(P ′)
7: goto line 2
8: end if

In line 1 of Algorithm 1, B is set to A(P). It is represen-
tative of P but not representative of P and T unless T is
empty.

Line 2 computes the transformed predicate of each predicate
in B if it can be transformed by T , for each T in T .

In line 3, if the condition B = A(P ′ ∪R) is satisfied,
it means that each transformed predicate in R is equal to
the disjunction of a subset of predicates in B, which is
Property 2 in Definition 4. Property 1 of Definition 4 also
holds because B is the set of atomic predicates for P ′ and
P ′ ⊇ P is an invariant of Algorithm 1. Therefore, the set
B returned by Algorithm 1 is representative of P and T by
Definition 4.

Additionally, we proved that the predicates returned
by Algorithm 1 specify equivalence classes defined in
Definition 3. Thus they are the atomic predicates for P and T .
These results are stated in Theorem 2 with proof in the
Appendix.

Theorem 2: If the set U of all elements is finite, then Algo-
rithm 1 will terminate and return the set of atomic predicates
for the set P of predicates and set T of transformers.

Observations: (i) Transformers in the set T in Algorithm 1
can be of different types. (ii) Changing the ordering of
transformers in T does not change the set of atomic predicates
returned by Algorithm 1 but the computation time varies.
(iii) Algorithm 1 can be used for adding more transformers
to a network with existing predicates and transformers; in this
case, the input set P must be the set of atomic predicates for
the existing predicates and transformers.

Number of Iterations: Algorithm 1 requires different num-
bers of iterations for different types of packet transformers.
A simple case such as “NATs only” requires two iterations.
In the first iteration, the set R is computed. Each predicate in
R is found to be atomic in line 3 and thus not transformed by
any transformer in T in the second iteration. As a result, the set
R computed in the second iteration is the same as that in the
first iteration. Thus the termination condition B = A(P ′ ∪R)
in line 3 is satisfied.

IP-in-IP tunnels (all variations) belong to the general
case. However, Algorithm 1 only needs three iterations to

TABLE I

STATISTICS OF THE THREE DATASETS

compute the new set of atomic predicates after adding a
set of IP-in-IP tunnels. The first iteration computes atomic
predicates specifying packets allowed to enter each tunnel and
the corresponding encapsulated packets. The second iteration
computes atomic predicate(s) specifying packets not allowed
to enter each tunnel. In the third iteration, the termination
condition is satisfied and Algorithm 1 terminates.

A more general case, such as MPLS, may require more than
3 iterations (see experimental results in Section VI).

Sets of Predicates: For networks with two very different
types of packet filters (e.g. derived from ACLs and forwarding
tables), it is more efficient to represent them by two different
sets of predicates [26], [28]. In this case, Algorithm 1 is
run twice (once for each set of predicates with the set of
transformers) to obtain two sets of atomic predicates.

VI. PERFORMANCE EVALUATION

We implemented Algorithm 1 in APT for the three types
of widely used packet transformations with the formulas
presented in Section III. In APT, predicates are represented by
binary decision diagrams (BDDs) which are rooted, directed
acyclic graphs, with logical operations for packet transforma-
tions implemented by BDD operations [24]. For each packet
transformer, the BDD specifying the set of transformed pack-
ets can be computed from the BDD specifying the set of input
packets using highly efficient, optimized graph algorithms [7].
All results in this paper were computed using one core of a
six-core Xeon E5-1650 processor with 12 MB of L3 cache
and 16 GB of DRAM.

We evaluated the performance and scalability of APT
using four datasets, namely: the Stanford dataset [3] and
Internet2 dataset [4] from real networks, and two very large
provider cone datasets we constructed from Internet open
sources. Transformers used by NATs, IP-in-IP tunnels, and
MPLS tunnels were added to these datasets. We performed
two sets of experiments. The Stanford, Internet2, and the first
provider cone datasets were used in the first set of experiments
presented in subsections VI-A to VI-D. The second provider
cone data set, presented in subsection VI-E, was used for a
scalability analysis.

A. Datasets Used in the First Set of Experiments

Statistics of the three datasets used in the first set of
experiments are shown in Table I. Topologies of the three
datasets are shown in Figure 4. We downloaded the Stanford
dataset [3] and the Internet2 dataset [4].
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Fig. 4. Network topologies of three datasets. (The Stanford topology is from [13]. The middle row consists of switches that are not modeled [3]). (a) Stanford
dataset. (b) Internet2 dataset. (c) Provider cone 1 dataset.

The Stanford dataset has 16 routers (in Figure 4(a), 2 back-
bone routers at the top connected to 14 zone routers at the bot-
tom via 10 switches that are not modeled [3]). The 16 routers
have a total of 58 duplex ports, 757,170 IPv4 forwarding rules,
1,584 ACL rules. Each router has an average of 3.6 duplex
ports (neighbors).

The Internet2 dataset has 9 routers with a total of 55 duplex
ports, 126,017 IPv4 forwarding rules, and 318 MPLS rules.
Each router has an average of 6.1 duplex ports (neighbors).

To evaluate scalability, we constructed a large net-
work dataset as follows: From the Internet topology for
October 2013 created by CAIDA [1], we isolated the provider
cone of a monitored tier-4 AS (37684) consisting of the direct
and indirect Internet service providers of the tier-4 AS. In the
dataset, each AS is represented by a router; two routers are
connected by a link if the ASes they represent have a provider-
customer or peer relationship. Routing tables were computed
using control plane data for October 2013 from several
open sources [2], [17], [19], [23]. Its topology in Figure 4(c)
has 51 routers, representing 51 providers including all
15 tier-1 ISPs. The dataset has a total of 1,048 duplex ports
and 6,958,862 IPv4 forwarding rules.5 Each router has an
average of 20.5 duplex ports (neighbors), i.e., the topology
is very dense.

B. Transformers Added to the Datasets

NATs: In the experiments, NATs are added to each dataset
connecting edge routers of the network to private subnets.
Since we will compute reachability trees rooted at ports with
public addresses only, we added to the datasets only NATs for
translating public addresses to private subnet addresses. For
each NAT added for a subnet, we use a different public IP
address for the newly created port of the edge router and a
different private prefix for the subnet.

IP-in-IP Tunnels: An IP-in-IP tunnel consists of an entry
router and an exit router. At the entry router, packets allowed
to enter the tunnel are encapsulated with a new IP header; at
the exit router, the new IP header is de-encapsulated and the
original packets are recovered. The exit router also filters out
packets not allowed to enter the tunnel. The entry and exit
routers of an IP-in-IP tunnel have packet transformers. (Thus
two packet transformers are added for each tunnel added.)
To create a tunnel for the Internet2 dataset, we randomly select

5For each router, duplex ports connecting to routers outside of the graph
are merged as one additional duplex port.

three different routers. The first two routers are the entry and
exit routers. The IP prefix of the third router is the destination
address of packets encapsulated and de-encapsulated by the
entry and exit routers, respectively. For the provider cone
1 data set, the entry router of each tunnel is the router
representing the customer network (AS 37684). Each exit
router is a router representing a non tier-1 AS. Each tunnel
carries packets destined to a router representing a tier-1 AS.

MPLS Tunnels: When a packet travels along a MPLS tunnel,
it is encapsulated by a MPLS header at the entry router,
its MPLS label is changed at each transit router, and the
MPLS header is de-encapsulated at the exit router. Thus
every router along the tunnel has a packet transformer. The
Internet2 dataset includes incomplete MPLS tunnel config-
urations. Each tunnel is missing the entry router and the
exit router, which we added. The set of packets allowed to
enter the tunnel is specified by the prefix of a router not
in the MPLS path. We found a total of 28 distinct MPLS
tunnels which use 109 transformers. The longest tunnel has
five hops. On average, a MPLS tunnel in the Internet2 dataset
has 2.9 hops.

To create MPLS tunnels for the provider cone 1 dataset,
we use the same entry and exit routers as the ones created for
the IP-in-IP tunnels. For each pair of entry and exit routers,
we compute a random path for the tunnel, and specify the
set of packets allowed to enter the tunnel by the prefix of a
router not in the MPLS path. We created 40 MPLS tunnels
which use 176 transformers. The longest tunnel has five hops.
On average, a MPLS tunnel in the dataset has 3.4 hops. (We
used parameter values similar to Internet measurements [20]).

Header Stack and Auxiliary Variables: For all experiments
presented in this paper, it was sufficient to use a header stack
consisting of a MPLS header, followed by an IPv4 header,
followed by the IPv4 header of the original packet. Each
IP header has five relevant fields: source and destination IP
addresses, source and destination port numbers, and protocol
number. In the MPLS header, the MPLS label is the only rel-
evant field. A predicate specifying a packet set is represented
by a BDD with a total of 230 bit variables, including two
auxiliary variables, one for the MPLS header, and the other
for the outer IP header.

C. Computing Atomic Predicates

Number of Algorithm 1 Iterations: We have proved that
after adding a set of NATs, Algorithm 1 requires two
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Fig. 5. Number of Algorithm 1 iterations for networks with MPLS tunnels.
(a) Internet2 dataset. (b) Provider cone 1 dataset.

iterations. Also, after adding a set of IP-in-IP tunnels, Algo-
rithm 1 requires three iterations. We do not have an analytic
bound for adding MPLS tunnels.

Figures 5(a) and (b) show the number of iterations used
by Algorithm 1 versus the number of MPLS tunnels, for
the Internet2 and provider cone 1 datasets, respectively. For
each dataset, Algorithm 1 requires up to nine iterations in the
experiments.

Number of Atomic Predicates: To illustrate, consider an
IPv4 network. Allowing packets in the network to be encap-
sulated by just one IPv4 header increases the packet space
size from 2n to 22n, where n = 32 if only the destination
IP address is used for filtering, or n = 104 if bits in the 5-tuple
are used for filtering. Instead of individual packets, APT
works with atomic predicates each of which represents a large
equivalence class of packets. In this subsection, we studied
how the number of atomic predicates increases when packet
transformers are added to existing networks with filters only.

We make two empirical observations from the atomic
predicates computed for our datasets: (i) After adding a set
of transformers to an existing set of filters, the increase in
the number of atomic predicates is dependent mainly on the
number of packet transformers added, and not on the number
of existing filters. (ii) For the three types of transformers
added (described in subsection VI-B), the increase in the
number of atomic predicates is ≤ 2 per transformer on the
average.

To illustrate, consider the Internet2 dataset with 126,017 for-
warding rules. The number of atomic predicates for fil-
ters only is 217. Consider the provider cone 1 dataset
with 6,958,862 forwarding rules (including forwarding rules
obtained from all 15 tier-1 ISPs), the number of atomic
predicates for filters only is 19,636. Each MPLS tunnel of
h hops has h + 1 transformers. Figures 6(a) and (b) show the
number of atomic predicates for both filters and transformers
versus the total number, k, of hops in MPLS tunnels, for the
Internet2 and provider cone 1 datasets, respectively. In each
figure, the reference line has a slope of 2. The number of
atomic predicates grows at a rate of less than 2 per hop (or
per transformer).

As another example, we computed atomic predicates for
the Internet2 dataset with 2 NATs, 2 IPv4-in-IPv4 tun-
nels, and 2 MPLS tunnels. In particular, the dataset has
an IP-in-IP tunnel nested inside a MPLS tunnel. Figure 7
shows the number of atomic predicates versus the sequence
of transformers added. The increase in the number of atomic

Fig. 6. Number of atomic predicates for networks with MPLS tunnels.
(a) Internet2 dataset. (b) Provider cone 1 dataset.

Fig. 7. Number of atomic predicates for a network with multiple transformer
types (MPLS1 has two hops, MPLS2 has four hops).

predicates is 2 for each NAT (1 transformer each), 3 for
IP-in-IP1 and 4 for IP-in-IP2 (two transformers per tunnel),
5 for MPLS1 (3 transformers), and 7 for MPLS2 (5 trans-
formers).

Time to Compute Atomic Predicates: We show the time
used by Algorithm 1 to compute atomic predicates for all
packet filters and transformers in each of the three datasets.
The computation time results are presented in Figure 8 for
NAT, Figure 9 for IPv4-in-IPv4, and Figure 10 for MPLS.
The black portion of each bar in these figures represents the
computation time for the initial set of atomic predicates for
packet filters only. (These times are slightly higher than the
corresponding times in [26] and [28] due to new packet filters
added to guard the input ports of transformers.) The grey
portion of each bar represents the additional computation time
used by Algorithm 1 to process packet transformers to obtain
the atomic predicates for both transformers and filters.

We found that Algorithm 1 is very fast. In Figures 8-10,
observe that the vertical axis is in milliseconds for the Stanford
and Internet2 datasets, and in seconds for the large ISP-scale
provider cone 1 dataset. In almost all cases, the time for
computing atomic predicates for packet filters only (line 1 of
Algorithm 1) is much greater than the time for computing
atomic predicates for the set of packet transformers. For a
given network, once the atomic predicates have been com-
puted for its initial topology, filtering rules, and transformers,
the set of atomic predicates can be updated very quickly after
dynamic network changes (see subsection VI-F).

Baseline Preprocessing Time: The network verification
problem has a baseline preprocessing overhead that is nec-
essary, irrespective of which verification tool is used, namely:
the overhead to parse and convert forwarding tables and ACLs
in network devices into data structures that represent them in
the verification tool. Such baseline preprocessing overheads
for other verification tools are rarely shown in prior papers on
network verification.
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Fig. 8. Time to compute atomic predicates for networks with NATs. (a) Stanford dataset. (b) Internet2 dataset. (c) Provider cone 1 dataset.

Fig. 9. Time to compute atomic predicates for networks with IP-in-IP tunnels.
(a) Internet2 dataset. (b) Provider cone 1 dataset.

Fig. 10. Time to compute atomic predicates for networks with MPLS tunnels.
(a) Internet2 dataset. (b) Provider cone 1 dataset.

Fig. 11. Preprocessing time.

The preprocessing times of Hassel in C and APT are shown
in Figure 11. Note that the vertical axis is in log scale. APT
computes faster than Hassel by 8 and 5 times for the Stanford
and Internet2 datasets, respectively. The forwarding tables
in the provider cone 1 dataset are too large for the Hassel
program. Therefore, only the preprocessing time of APT is
shown for this dataset.

Observe that these preprocessing times are much larger than
the times used by APT to compute atomic predicates in the
previous subsection for the same networks. The comparison
demonstrates that the computation of atomic predicates incurs
negligible preprocessing overhead.

D. Verifying Network Properties

APT computes reachability trees for verifying network prop-
erties. Such a tree is rooted at a port in the network. Computing
the reachability tree from a source port detects forwarding
loops for all packets injected into the source port, if any.
More generally, reachability trees can be used to verify safety
and progress properties specified in a temporal logic (such
as, CTL [10]): for example, verifying that all packets injected
into the source port traverse a specified sequence of required
waypoints in the network. Some optimization techniques for
verifying properties are presented in [26] and [28].

How to Compute Reachability Trees: Consider a network of
boxes interconnected by links. Each box with input ports and
output ports is modeled as shown in Figure 1. A reachability
tree is rooted at a port which is the source of packets to the
tree.6 The reachability tree consists of every path along which
a set of packets can travel from the source port to another port
in the network. Each node in the tree stores a port identifier and
the set of packets that can reach the port from the source. The
set of packets is represented by integer identifiers of atomic
predicates. The same port may appear in multiple paths of the
tree.

APT computes reachability trees in a graph whose nodes
are ports. Within each box, all input ports are connected to
all output ports. An output port of a box sends packets to
the input port of another box connected by a data link. (It is
possible that an input port receives packets from a box outside
of the network and an output port sends packets to a box
outside of the network.) Every packet set (also packet filter) is
represented by a set of integers that identify atomic predicates.
A packet transformer maps an atomic predicate to a subset of
atomic predicates, i.e., an integer to a set of integers. As a
result, reachability tree computation by APT is very fast.

Consider input port, port1, of the box in Figure 1. Suppose
a packet set P is injected into the port. The set of packets that
can reach port1 is P ∧A1. The sets of packets that can reach
output ports, port3 and port4, are sets T1(P ∧A1) ∧ F3 and
T4(T1(P ∧ A1) ∧ F4), respectively. The sets of packets that
are transmitted out of port3 and port4 are sets, T1(P ∧A1)∧
F3 ∧A3 and T4(T1(P ∧A1) ∧ F4) ∧A4, respectively.

The reachability tree from a port s to all other ports in the
network is computed by performing a depth-first search which

6A port is an input or output port. We consider only forward reachability
trees in this paper. The same model and data can be used to compute reverse
reachability trees rooted at a destination port, which have other useful network
management applications [27].
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Fig. 12. Ave. time to compute reachability tree from one port (also for loop detection) for datasets with NATs. (a) Stanford dataset. (b) Internet2 dataset.
(c) Provider cone 1 dataset.

begins by visiting port s. A search branch is terminated after
visiting a port (say x) if one of the following conditions holds:
(i) the set of packets that can reach x is empty; (ii) port x
is an output port that is not connected to an input port of
a box in the network; (iii) port x is an input port of a box
with no output port (unexpected); (iv) port x has been visited
before in the search (loop detected). In each of these cases,
the search backtracks and depth-first search continues until no
more port in the network can be reached. When depth-first
search terminates, a reachability tree from port s to all other
ports in the network is created.

We use the time to compute the reachability tree from a
source port, averaged over all source ports, as the benchmark
for performance evaluation and comparison. For the Stanford
and Internet2 datasets, all ports are source ports. For the
provider cone 1 dataset, only ports used by the customer AS
to reach its direct providers are source ports.

NATs: Figures 12(a)-(c) show average tree computation
times of Hassel in C and APT for the three datasets versus
the number of NAT transformers. Forwarding tables of the
provider cone 1 dataset are too big for Hassel in C. Therefore,
the average tree computation time is shown only for APT
in Figure 12(c).

Note that the vertical axes in Figures 12(a)-(b) are in
log scale. Average time is measured in milliseconds for all
3 datasets (including provider cone 1) showing that network
verification by APT is extremely fast. Also the verification
time is not very sensitive to the number of NAT transformers.
APT is faster than Hassel by 2 orders of magnitude for
the Stanford dataset and by 3 orders of magnitude for the
Internet2 dataset. For the Stanford dataset, APT found the
same 12 infinite forwarding loops found by Hassel in C. This
direct comparison provides validation for APT.

Hassel performs better for the Stanford dataset because after
compression [9], its 757,170 forwarding rules are reduced to
3,840 forwarding rules. In comparison, the Internet2 dataset
still has 77,451 forwarding rules after compression. We
note that, for APT, the number of atomic predicates is the
same, irrespective of whether forwarding tables are com-
pressed or not.

Tunnels: Figures 13(a) and (b) show the average tree com-
putation times of APT for the Internet2 and provider cone
1 datasets versus the number of tunnels for IP-in-IP and MPLS,
respectively.

The vertical axes in Figures 13(a) and (b) are in log
scale. Also average time is measured in milliseconds for both

Fig. 13. Ave. time used by APT to compute reachability tree from one
port (also for loop detection) for datasets with IP tunnels and MPLS tunnels.
(a) IP tunnels. (b) MPLS tunnels.

datasets (including provider cone 1) showing that network
verification by APT is extremely fast. Also the verification
time is not very sensitive to the number of tunnels.

Memory Space Required: The memory requirement of APT
is very low. For the Internet2 dataset with 28 MPLS tunnels,
APT uses 11.44 MB to store predicates for filters, atomic
predicates, and transformer mappings, and uses 10.94 MB
to store all 55 trees. For the provider cone 1 dataset with
40 MPLS tunnels, APT uses 355.57 MB to store predicates
for filters, atomic predicates, and transformer mappings, and
uses 4.14 MB to store two trees.

E. A Scalability Analysis

To evaluate the performance of APT as the network size
increases, we constructed a larger dataset for the provider cone
of another customer AS (52941) from the same Internet topol-
ogy and data collected during October 2013 used previously
for AS 37684. For the two provider cones, we present their
statistics in Table II, number of atomic predicates in Table III,
time to compute atomic predicates in Table IV, average time
to compute the reachability tree from one port in Table V, and
memory space usage in Table VI. In the last column of each
table, we show the ratio of the number for provider cone 2 to
the number for provider cone 1 for each row.

Table II shows statistics of the two provider cones. The
average number of neighbors per router is the number of
duplex ports divided by the number of routers, which is
20.5 and 20.9 for provider cones 1 and 2, respectively. Thus
the topology of each network is a dense mesh, which requires
much more time and space for reachability analysis than sparse
topologies.

Table III shows that, for packet filters only, the ratio of
the numbers of atomic predicates is 1.42 indicating that the
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TABLE II

STATISTICS OF THE TWO PROVIDER CONE DATASETS

TABLE III

NUMBER OF ATOMIC PREDICATES

TABLE IV

TIME TO COMPUTE ATOMIC PREDICATES (SECONDS)

TABLE V

AVE. TIME TO COMPUTE REACHABILITY TREE
FROM ONE PORT (SECONDS)

TABLE VI

MEMORY SPACE USAGE (MBYTES)

percentage increase in the number of atomic predicates from
provider cone 1 to provider cone 2 is less than the percentage
increase of the number of ports (also predicates).

Tables IV and V, however, show that some of the ratios
of the times to compute atomic predicates and the times to
compute reachability trees exceed the ratio of the numbers
of ports. It is because these computation times depend on the
number of rules as well as the number of ports. From Table II,
the ratio of the numbers of rules is 1.68.

Table VI shows that provider cone 2 used 739.42 MB to
store all its predicates, atomic predicates, and 40 MPLS. Each
reachability tree occupied 4.45 MB on the average. The ratios
are 2.08 and 2.15, respectively. Space requirements depend on
both the number of ports and number of rules.

Thus, the number of rules and number of ports are the
important factors that determine the scalability of network
verification tools. Suppose the impacts of ports and rules are
multiplicative. The product of the two ratios in Table II is
1.83 × 1.68 = 3.07, which is substantially larger than all of
the other ratios in Table III - VI (the worst ratio is 2.79 in

TABLE VII

AVERAGE TIME USED BY APT TO UPDATE A REACHABILITY
TREE FOR INTERNET2

Table V which is still well below 3.07). This observation
indicates that the computation time and space requirements of
APT increase much more slowly than the increase in network
size (i.e., product of the two ratios for ports and rules).

The largest network in these datasets is provider cone 2 with
40 MPLS tunnels (170 transformers), 1920 duplex ports, and
11,691,232 rules. For this network dataset, the average time
used to compute a reachability tree is 65.42 ms using only one
core of a 6-core Xeon processor. Thus we can expect APT to
be scalable to networks much larger than provider cone 2.

Furthermore, the computation of atomic predicates and
reachability trees can be easily parallelized to make use
of multiple cores. This is because each reachability tree is
computed independently. As for the computation of atomic
predicates, our current implementation uses an algorithm that
adds predicates one at a time; however, atomic predicates can
be computed in parallel by placing the initial predicates at
leaf nodes of a binary tree and then computing tree nodes
from their children in parallel as suggested in [26] and [28].

F. Handling Dynamic Changes

We next describe how APT handles events that change the
network state.

Link/Box Status Change: The set of predicates and the set
of atomic predicates are not changed by link up/down status
change. However, reachability trees from source ports may be
affected by a link status change. APT checks each reachability
tree and updates it if needed. A box up event can be handled
by processing link up events for all links connected to the box,
and a box down event can be handled by processing link down
events for all links connected to the box.

For evaluation, we used the 3 Internet2 datasets with
one type of added transformers (9 NATs, 20 IP-in-IP tun-
nels, or 28 MPLS tunnels). Table VII shows the average time
used by APT to update a reachability tree for a link up/down
event and a box up/down event. For link up/down events, the
average time to update a reachability tree is very small; it
is smaller than the average time to compute a reachability
tree (see Figures 12-13) by 1-2 orders of magnitude.

Addition/Deletion of Transformers: When a NAT or a tunnel
is removed from the network, the existing set B of predicates
is still a representative set and can be used for reachability
verification (the number of predicates in the set may not be
smallest). APT recomputes all reachability trees but not the
atomic predicates.

When a NAT or a tunnel is added to the network, APT first
updates the set of atomic predicates and then recomputes all
reachability trees.
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TABLE VIII

AVERGE TIME USED BY APT TO UPDATE ATOMIC PREDICATES
AFTER ADDING A NAT OR A TUNNEL

TABLE IX

AVERGE TIME USED BY APT TO UPDATE ATOMIC PREDICATES

AFTER A PREDICATE CHANGE

For evaluation, we used the 3 Internet2 datasets described
above and also 3 provider cone 1 datasets (with 51 NATs,
40 IP-in-IP tunnels, or 40 MPLS tunnels). Algorithm 1 is first
used to compute atomic predicates for all NATs (or all tunnels)
except one. The last one is then added and we measured the
average time for Algorithm 1 to update the atomic predicates
after adding the last NAT or tunnel. Table VIII shows the
average time to update the set of atomic predicates for the
Internet2 and provider cone 1 datasets.

Rule Updates: When a rule is inserted into, or deleted from,
a forwarding table (or ACL), it may change one or more
predicates for some filters. We did some experiments using
the Internet2 dataset and found that 44% of rule insertions and
deletions do not change any predicate. However, if a predicate
is changed by rule updates, APT first updates the set of atomic
predicates and then recomputes all reachability trees.

We evaluated the time to update the set of atomic predicates
after a predicate change for the 6 Internet2 and provider cone
1 datasets. A predicate change is represented by deleting an
existing predicate and adding a new predicate. The average
time to update the set of atomic predicates after one predicate
change is shown in Table IX for the six datasets.

Observation: Updating the set of atomic predicates after
an incremental change (adding a NAT/tunnel or a predicate
change) is very fast, much faster than computing the atomic
predicates from scratch (see Figures 8-10 for comparison).

VII. CONCLUSIONS

Towards scalable verification of packet networks with trans-
formers and filters, we conceived and formally defined a
novel packet equivalence relation. Our transformer model is
general, including most transformers used in real networks.
We also define atomic predicates which specify the coarsest
equivalence classes of packets in the packet space. We built
a verification tool, APT, based upon a new algorithm for
computing atomic predicates for networks with both packet
transformers and filters.

For real networks, an atomic predicate typically represents
equivalent packets in a large number of disjoint fragments of
the packet space. In APT, each packet filter is represented
by a set of integers (identifiers of atomic predicates). Each
transformer is represented by a set of mappings, each of which
maps an integer to a set of integers. By representing a very

large set of equivalent packets by a single integer, the use
of atomic predicates reduces the computation time and space
required for network verification by orders of magnitude.

Our experimental results for the two provide cone datasets
with very large numbers of routers, ports, rules, and tunnels
demonstrate that APT is scalable to large networks, such as,
ISP networks and large-scale datacenter infrastructures. We
also experimented and found that APT recovers quickly from
network changes including link/box status change, addition/re-
moval of a NAT or tunnel, and rule updates.

We make two more observations: (1) The performance
evaluation results were computed using only one core of a
6-core processor. The computation of atomic predicates and
reachability trees can be easily parallelized to make use of
multiple cores. (2) We consider only forward reachability trees
in this paper. The same model and data can be used to compute
reverse reachability trees rooted at destination ports, which
have other useful network management applications [27].

APPENDIX

PROOFS OF THEOREMS

We prove two theorems. Given a set U of elements, a set
P of predicates, and a set T of transformers, Theorem 1
states that the atomic predicates for P and T (defined in
Definition 5) specify the coarsest equivalence classes in the
set of all elements w.r.t. P and T (defined in Definition 3).

Theorem 2 states that, if the set U of all elements is finite,
then Algorithm 1 will terminate and return the set of atomic
predicates for P and T .

A. Lemmas

The following three lemmas are useful in proofs to follow.
Lemma 1: Consider a transformer T ∈ T , an element

x ∈ U , and a set D of elements. If T−1(x) is defined, we have

IT (D)(x) = ID(T−1(x)) (13)
Proof: Let y = T−1(x).

If y ∈ D, then x ∈ T (y) ⊆ T (D). As a result, IT (D)(x) =
ID(T−1(x)) = 1.

If y /∈ D, then x ∈ T (y) and T (y)∩T (D) = ∅. As a result,
IT (D)(x) = ID(T−1(x)) = 0. �

Lemma 2: Consider any set of predicates {q1, . . . , qm} that
is representative of the set P of predicates. Let {D1, . . . , Dm}
be the collection of sets such that qi specifies Di, i ∈
{1, . . . , m}. Let x1 and x2 be two elements in U , and T be
any transformer in T .

Then the following two properties are equivalent:

P1. For each i ∈ {1, . . . , m, }, IT (Di)(x1) = IT (Di)(x2).
P2. For each i ∈ {1, . . . , m, }, either both T−1(x1)

and T−1(x2) are undefined, or IDi(T−1(x1)) =
IDi(T

−1(x2)).
Proof (P2 implies P1): We first show it is not possible

that only one of T−1(x1) and T−1(x2) is defined. Without
loss of generality, assume that T−1(x1) = y1 and T−1(x2)
is not defined. There exists j ∈ {1, . . . , m} such that y1 ∈
Dj . Therefore, x1 ∈ T (y1) ⊆ T (Dj) and x2 /∈ T (Dj).
So IT (Dj)(x1) = 1 and IT (Dj)(x2) = 0, which is a con-
tradiction.
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If both T−1(x1) and T−1(x2) are undefined, then property
P2 holds.

If both T−1(x1) and T−1(x2) are defined, IDi(T−1(x1)) =
IDi(T−1(x2)) by Lemma 1 and property P2 also holds.

Proof (P2 implies P1):
If both T−1(x1) and T−1(x2) are undefined, IT (Di)(x1) =

IT (Di)(x2) = 0.
If both T−1(x1) and T−1(x2) are defined, IT (Di)(x1) =

IT (Di)(x2) by Lemma 1. �
Lemma 3: If x1 and x2 are equivalent w.r.t. P and T ,

then for any T ∈ T , either both T−1(x1) and T−1(x2) are
undefined, or T−1(x1) and T−1(x2) are also equivalent w.r.t.
P and T .

Lemma 3 follows directly from Definition 3.

B. Atomic Predicates Specify the Coarsest Equivalence
Classes With Respect to P and T

Theorem 1: Given a set P of predicates and a set T of
transformers, the atomic predicates for P and T (defined in
Definition 5) specify the coarsest equivalence classes in the
set U w.r.t. P and T (defined in Definition 3).

Proof Outline: Theorem 1 follows from Lemmas 4 and 5.
Lemma 4 proves that the predicates that specify the equiv-
alence classes in Definition 3 are representative predicates
for P and T in Definition 4. Lemma 5 proves that the
equivalence classes in Definition 3 are the coarsest equivalence
classes. Therefore, they are specified by the smallest set of
representative predicates for P and T which, by Definition 5,
is the set of atomic predicates for P and T .

Lemma 4: Given a set P of predicates and a set T of
transformers, the predicates that specify equivalence classes
{B1, . . . , Bl} w.r.t. P and T in Definition 3 satisfy the two
properties in Definition 4 for representative predicates.

Proof: Condition 1 in Definition 3 guarantees that the set
of predicates specifying equivalence classes {B1, . . . , Bl} is
representative of P . Hence the first property in Definition 4 is
satisfied.

To prove the second property in Definition 4, consider two
elements, x1 and x2 that are equivalent w.r.t. P and T (that is,
x1, x2 ∈ Bj for some j ∈ {1, . . . , l}). For any i ∈ {1, . . . , l}
and any transformer T ∈ T , if both T−1(x1) and T−1(x2)
are not defined, then IT (Bi)(x1) = IT (Bi)(x2) = 0.

If both T−1(x1) and T−1(x2) are defined, then by
Lemma 1, we have

IT (Bi)(x1) = IBi(T
−1(x1))

IT (Bi)(x2) = IBi(T
−1(x2)) (14)

In this case, equivalence of x1 and x2 implies equivalence
of T−1(x1) and T−1(x2) by Lemma 3. Hence, we have
IBi(T−1(x1)) = IBi(T−1(x2)) which together with equation
(14) prove that IT (Bi)(x1) = IT (Bi)(x2). Therefore, for any
i, j ∈ {1, . . . , l}, and for any T ∈ T , we have, for the
indicator function, IT (Bi)(Bj) = IT (Bi)(x), x ∈ Bj . As a
result, we have, for any i ∈ {1, . . . , l} and for any T ∈ T

T (Bi) =
⋃

IT (Bi)(Bj)=1

j∈{1,...,l}

Bj (15)

Thus the second property in Definition 4 is also satisfied by
predicates that specify {B1, . . . , Bl}. �

The following lemma proves that the equivalence classes
w.r.t. P and T in Definition 3 are the coarsest equivalence
classes.

Lemma 5: For a set P of predicates and a set T of trans-
formers, let {B1, . . . , Bl} denote equivalence classes w.r.t. P
and T , and {C1, . . . , Cn} denote equivalence classes w.r.t. P
in Definition 3. Consider any set of predicates {q1, . . . , qm}
that satisfy the properties in Definition 4 for representative
predicates. Let {D1, . . . , Dm} be the collection of sets such
that qi specifies Di, i ∈ {1, . . . , m}. Then for all i ∈
{1, . . . , m}, there exists a unique j ∈ {1, . . . , l} such that
Bj ⊇ Di. This implies that m ≥ l which is minimum.

Proof: To prove this lemma, it is sufficient to prove the
following statement:

S1: For any x1, x2 ∈ U , if x1, x2 ∈ Di for some i ∈
{1, . . . , m}, then x1 and x2 are equivalent w.r.t. P and T .

If S1 is true, then there exists a unique j ∈ {1, . . . , l} such
that x1, x2 ∈ Bj . As a result, Bj ⊇ Di implying that m ≥ l
which is minimum. We proceed to prove that S1 holds by
showing that for any x1, x2 ∈ Di, for some i ∈ {1, . . . , m},
x1 and x2 satisfy both conditions of Definition 3. Thus x1 and
x2 are equivalent w.r.t. P and T by definition.

To prove condition 1 in Definition 3, we use [26, Lemma 2]
or [28, Lemma 2], which shows that for each g ∈ {1, . . . , m},
there exists a unique j ∈ {1, . . . , n}, such that Dg ⊆ Cj .
We also have, IDg (x1) = IDg (x2) for x1, x2 ∈ Dg, for each
g ∈ {1, . . . , m} because x1 and x2 are equivalent w.r.t. P .
This property implies that ICh

(x1) = ICh
(x2) for each h ∈

{1, . . . , n}. Thus condition 1 in Definition 3 is satisfied.
To prove that condition 2 in Definition 3 is satisfied, it is

sufficient to prove the following statement:
S2: Either both T−1

αk
· · ·T−1

α1
(x1) and T−1

αk
· · ·T−1

α1
(x2) are

undefined, or

IDg (T−1
αk
· · ·T−1

α1
(x1)) = IDg (T−1

αk
· · ·T−1

α1
(x2)) (16)

for each g ∈ {1, . . . , m}, any integer k and any possible
sequence Tαk

. . . Tα1 of transformers.
Observe that if both T−1

αk
· · ·T−1

α1
(x1) and T−1

αk
· · ·T−1

α1
(x2)

are undefined, then condition 2 in Definition 3 is satis-
fied. If equation (16) holds, then both T−1

αk
· · ·T−1

α1
(x1) and

T−1
αk
· · ·T−1

α1
(x2) are in Dr, for some r ∈ {1, . . . , m}. Since

Dr ⊆ Cj for some j ∈ {1, . . . , n}, both T−1
αk
· · ·T−1

α1
(x1) and

T−1
αk
· · ·T−1

α1
(x2) are in Cj . Therefore, we have

ICh
(T−1

αk
· · ·T−1

α1
(x1)) = ICh

(T−1
αk
· · ·T−1

α1
(x2)) (17)

for each h ∈ {1, . . . , n}, any integer k and any possible
sequence Tαk

. . . Tα1 of transformers. Thus condition 2 in
Definition 3 is satisfied.

We next prove S2 by induction on k, the length of the
sequence of transformers. Note that we assume x1, x2 ∈ Di,
for some i ∈ {1, . . . , m}.

Base Case (k = 1): For each Dg ∈ {D1, . . . , Dm} and
T ∈ T , T (Dg) can be represented by the union of a subset
of {D1, . . . , Dm}. There are two possibilities in the union
representation of T (Dg). First, Di containing x1 and x2

appears in the subset representing T (Dg), in which case,
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IT (Dg)(x1) = IT (Dg)(x2) = 1. Second, Di does not appear in
the subset representing T (Dg), in which case, IT (Dg)(x1) =
IT (Dg)(x2) = 0.

Therefore, IT (Dg)(x1) = IT (Dg)(x2), for each g ∈
{1, . . . , m} and each T ∈ T . The base case follows from
Lemma 2.

Induction Case: Assume that for k = h, either both
T−1

αh
· · ·T−1

α1
(x1) and T−1

αh
· · ·T−1

α1
(x2) are undefined, or

IDg (T−1
αh
· · ·T−1

α1
(x1)) = IDg (T−1

αh
· · ·T−1

α1
(x2)) (18)

for each g ∈ {1, . . . , m}, and any possible sequence
Tαh

. . . Tα1 of transformers.
For k = h + 1, consider any sequence of length h + 1 :

T−1
αh+1

, . . . , T−1
α1

. From the induction assumption, we know
that either (i) both T−1

αh
· · ·T−1

α1
(x1) and T−1

αh
· · ·T−1

α1
(x2)

are undefined, or (ii) y1 = T−1
αh
· · ·T−1

α1
(x1) and y2 =

T−1
αh
· · ·T−1

α1
(x2).

In case (i), both T−1
αh+1

T−1
αh
· · ·T−1

α1
(x1) and

T−1
αh+1

T−1
αh
· · ·T−1

α1
(x2) are undefined. Thus this case

holds for k = h + 1.
In case (ii), we have IDg (y1) = IDg (y2) for each g ∈

{1, . . . , m}. Tαh+1(Dg) can be represented by the union of a
subset of {D1, . . . , Dm}. Using the same argument as the one
for the base case, we have

ITαh+1 (Dg)(y1) = ITαh+1 (Dg)(y2),

for each g ∈ {1, . . . , m}. From Lemma 2, we have either
T−1

αh+1
(y1) and T−1

αh+1
(y2) are undefined, or IDg (T−1

αh+1
(y1)) =

IDg (T−1
αh+1

(y2)). Thus this case holds for k = h + 1.
We have proved by induction on k that S2 is true. Therefore,

for any x1, x2 ∈ Di, for some i ∈ {1, . . . , m}, condition 2 of
Definition 3 is satisfied. Thus we have proved that S1 is true
and the lemma is proved. �

C. Correctness and Termination of Algorithm 1

Proof Outline: Consider a network where h is the maximum
number of transformations that can be applied to any packet
injected into the network. By induction on h, we prove
Lemma 6, which states that the set of predicates computed
by the hth iteration of Algorithm 1 satisfies the equivalence
relation, Rh, stated in Lemma 6, for h ≥ 1. Lemma 7 states
that Algorithm 1 returns the set of atomic predicates for P
and T . Termination follows from the assumption that set U is
finite. Theorem 2 is thus proved.

Lemma 6: Given a set P of predicates and a set T of trans-
formers. Let {C1, C2, . . . , Cn} denote equivalence classes
specified by the atomic predicates for P . At the hth iteration,
Algorithm 1 computes a set of predicates that satisfies the
following equivalence relation, Rh:

Two elements x1 and x2 are equivalent w.r.t. Rh if and only
if the following two conditions hold

1) ICi(x1) = ICi(x2) for each i ∈ {1, . . . , n}.
2) Either both T−1

αg
· · ·T−1

α1
(x1) and T−1

αg
· · ·T−1

α1
(x2) are

undefined, or

ICi(T
−1
αg
· · ·T−1

α1
(x1)) = ICi(T

−1
αg
· · ·T−1

α1
(x2)) (19)

for each i ∈ {1, . . . , n}, any integer g ≤ h and any
possible sequence Tαg . . . Tα1 of transformers, Tαj ∈ T ,
j ∈ {1, . . . , g}.

(Note: The above definition is the same as Definition 3 but
with the number of transformations bounded by h.)

Proof: We prove this lemma by induction on h.
Base Case (h = 1): According to the algorithm, the set

of predicates computed specifies the following equivalence
relation.

Elements x1 and x2 are equivalent if and only if

1) ICi(x1) = ICi(x2) for each i ∈ {1, . . . , n}.
2) IT (Ci)(x1) = IT (Ci)(x2) for each i ∈ {1, . . . , n}, and

each T ∈ T .

From Lemma 2, the second condition is equivalent to: for each
i ∈ {1, . . . , n} and each T ∈ T , either both T−1(x1) and
T−1(x2) are undefined, or ICi(T−1(x1)) = ICi(T−1(x2)).
Thus the above two conditions satisfy R1 and the base case
is proved.

Induction Case: Assume that the lemma is true for h = f .
The f th iteration computes predicates that satisfy the
equivalence relation, Rf , and specify equivalence classes,
E1, . . . , Er. The following properties are equivalent.

• Elements x1 and x2 are equivalent w.r.t. Rf .
• IEi(x1) = IEi(x2) for each i ∈ {1, . . . , r}.
Consider the (f +1)st iteration of Algorithm 1. In line 2 of

the algorithm, set R is computed to be

R = {T (Ei)| for each T ∈ T , and

for each i ∈ {1, . . . , r} that is transformed by T }.

{E1, E2, . . . , Er} is the set of atomic predicates for P ′ in
line 3. Therefore, the set of atomic predicates computed in line
3 is A(P ′ ∪R) = A(A(P ′) ∪R) = A({E1, . . . , Er} ∪ R).

By [28, Th. 2] (or [26, Th. 1]), A({E1, . . . , Er} ∪ R)
satisfies the following equivalence relation: two elements x1

and x2 are equivalent if and only if

1) IEi(x1) = IEi(x2) for each i ∈ {1, . . . , r}.
2) IT (Ei)(x1) = IT (Ei)(x2) for each i ∈ {1, . . . , r}, and

each T ∈ T .

From Lemma 2, the above equivalence relation is the same
as: two elements x1 and x2 are equivalent if and only if

1) IEi(x1) = IEi(x2) for each i ∈ {1, . . . , r}.
2) Either both T−1(x1) and T−1(x2) are

undefined, or IEi(T−1(x1)) = IEi(T−1(x2)), for
each i ∈ {1, . . . , r} and each T ∈ T .

The first condition means that x1 and x2 are equivalent
w.r.t. Rf ; the second condition means that either both T−1(x1)
and T−1(x2) are undefined, or T−1(x1) and T−1(x2) are
equivalent w.r.t. Rf . Since the second condition holds for
h = f +1, x1 and x2 are equivalent w.r.t. Rf+1, for g ≤ f +1
in Equation (19).

The case for h = f +1 is proved. Thus the lemma is proved
by induction. �

Lemma 7: If Algorithm 1 terminates, it returns the set of
predicates that specify the equivalence classes of Definition 3.
Therefore, Algorithm 1 computes the set of atomic predicates
for set P of predicates and set T of transformers.
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Proof: If Algorithm 1 terminates at the first iteration,
transformers in T do not transform any elements. The set
of predicates returned by the algorithm is the set of atomic
predicates for P .

Assume that Algorithm 1 terminates at the hth iteration,
h > 1. The set of predicates computed in the (h−1)th iteration
is the same as the set computed in the hth iteration, which
is the set of predicates returned. Therefore, the equivalence
relation Rh−1 of the (h − 1)th iteration is the same as the
equivalence relation Rh of the hth iteration. Suppose we
keep running the algorithm, we have Rh−1 = Rk, where
k ≥ h is an arbitrary integer. Therefore, by Lemma 6, the set
of predicates returned specifies the equivalence classes of
Definition 3. �

Theorem 2: If the set U of all elements is finite, then Algo-
rithm 1 will terminate and return the set of atomic predicates
for the set P of predicates and set T of transformers.

Proof: In each iteration, the size of the set B of predicates
computed strictly increases (except for the last iteration). The
largest possible set for B is the set of all single elements.
Therefore, Algorithm 1 will terminate and the theorem follows
from Lemma 7. �
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