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Abstract

In designing operating system support for distributed multimedia, we target three
areas for improvement: reduced copying, reduced reliance on explicit kernel-user inter-
actions, and provision of rate-based flow control. Towards these goals, we propose an
architecture that includes the concept of I/0 efficient buffers for reduced copying, the
concept of fast system calls for low latency network access, and the concept of kernel
threads for flow control. Also included is a concept called direct media streaming which
is suitable for applications that require limited user processing of media data. These
concepts have been implemented as an extension to SunOS 5.3 (the operating system
component of Solaris 2.3). We report some experimental results on the performance of
our current system.
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1 Introduction

The Unix network 1/O architecture is shown in Figure 1. Note that control is transferred
between kernel and user space through system calls and returns. Data are transferred
via intermediary kernel buffers using memory-to-memory data copies. These techniques
are inappropriate for distributed multimedia applications for several reasons, including:
excessive data copying and kernel-user interactions, and no support for enforcing user-
network flow specifications. We elaborate upon this observation below.

First, consider the read/write paths between a user process and the Ethernet interface
in SunOS 5.3, whose networking subsystem is implemented using streams [9]. When a
write() system call occurs, the user data are copied by a stream head into stream buffers;
if necessary, the data are segmented into multiple stream messages, e.g., to conform to
Ethernet’s packet size. The stream messages are then queued for processing by the Ethernet
driver. The driver copies the data of stream messages to another kernel buffer area already
mapped for DMA transfer, appends the buffer descriptors to a queue, and then writes to a
control register in the network interface to effect DMA transfer. Note that altogether two
memory-to-memory data copies are made.

The receive data path is similar, but in reverse. Data, already transferred from the
network interface into main memory, are copied from DMA buffers to stream buffers,! and
then from stream buffers to user buffers.
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Figure 1: Unix 1/O architecture.

"However, an optimization is made to remove this first copy if the number of free DMA buffers exceeds

a threshold.



Memory-to-memory copying incurs a per-byte overhead. Such overhead is substantial
for distributed multimedia applications which require bulk data transfer. For example,
an MPEG-2 source, targeted at 4-9 Mbps for broadcast TV quality video, would provide
about 1 Mbyte of data per second. And as network bandwidth increases, it is approaching
the same order of magnitude as memory bandwidth. Therefore, memory bandwidth may
become the communication bottleneck if memory copies are not carefully minimized [5].

Second, data flows generated by multimedia applications have characteristics that are
more predictable than conventional data traffic. In a server for video playback, for example,
pictures are made available for sending once every frame period. To transfer control between
kernel and user for such isochronous traffic, it would be unnecessary to use explicit system
calls.

There are two kinds of system calls in Unix: synchronous and asynchronous. A syn-
chronous call blocks until its operation can be performed. For example, a read that finds
an empty connection blocks until the connection has packets. An asynchronous call that
does not succeed immediately returns with an indication that the user process should try
again later. The retry may be facilitated by a signal delivered to the user process when the
blocking condition is lifted. In either case, an 1/O operation succeeds only when the system
call successfully returns.

To better understand the characteristics of multimedia applications, we studied a work-
ing video-conferencing tool called nv (for network video), which is widely used in mbone
multicasts. We found that nv sends each picture as a sequence of smaller buffers of about
1040 bytes. Each buffer corresponds to a packet of RTP, which is an application level pro-
tocol for multimedia transport over the Internet. Figure 2 profiles nv’s use of the send()
function call for sending to the network. This profile shows that nv makes fairly frequent
use of system calls for data transfer in a periodic manner.

Third, the delivery of media data generally requires real-time QoS (such as delay and
throughput) guarantees to ensure smooth playback. We therefore expect that future multi-
media applications will negotiate with networks for reserved-rate connections—such as those
considered in [2] and [8]. To obtain QoS guarantees, the packet arrivals to a reserved-rate
connection are required to satisfy certain flow specifications. Operating system support for
implementing rate-based flow control is essential.

The balance of this paper is organized as follows. In Section 2, we present an overview
of operating system techniques in our proposed architecture designed to support distributed
multimedia applications. In Section 3, we elaborate upon 1/0 efficient buffers for reducing
the need for memory-to-memory data copy. In Section 4, we introduce a fast system call for
low latency network access. In Section 5, we describe kernel threads intended for reducing
the use of system calls and for rate-based flow control. In Section 6, direct media stream-
ing is introduced for applications that are mainly concerned with transport—rather than
processing—of media data. In Section 7, we present performance measurements of primi-
tive operations in the architecture. In Section 8, we illustrate how to apply the primitive
operations for reducing the use of system calls and for implementing rate-based flow control
in a distributed multmedia system.
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Figure 2: Send profile of an nv session.

2 Architecture Overview

We propose several operating system techniques designed to support multimedia network-
ing. Our proposed architecture is illustrated in Figure 3.

Networking protocols may be implemented in kernel space or user space. In this pa-
per, we assume a user-level protocol implementation called the protocol server model [11],
which facilitates protocol development and customization. From a performance point of
view, application and performance-critical protocol code run in the same protection do-
main; communication between them does not need kernel intervention.

We have left device management in kernel space. There are two reasons. First, the
kernel can appropriately schedule use of a device among a set of active users. Second, a
user process is prevented from performing operations with global impact on the device (such
as resetting the device).

The kernel-user interface includes control queues and data buffers, which are shared
between kernel and user. The kernel enables this sharing by co-mapping? the shared areas
to both kernel space and the address space of the user process. The cost of establishing this
co-mapping is kept low by continually reusing a shared buffer for the same user process.

When a user process opens a network connection, the kernel automatically allocates a
set of control queues (one each for send, receive and status) to the connection. Data buffers
are also allocated for both send and receive. Receive data buffers are implicitly allocated as
packets arrive, while send data buffers are explicitly allocated using a system call interface
(see Section 3.1).

In our current system, receives from the network are driven by the network device’s
receive interrupts. The device driver informs the user process of data available for reading
by appending read notifications to the receive control queue. A read notification includes
a pointer to a receive buffer of the connection holding a packet to be received. The user

2We assume that a shared buffer is mapped for both reading and writing unless otherwise noted.
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process can access both the read notification and the packet by using ordinary memory
reads.

When a user process has data to send, it appends a send request to the send con-
trol queue. The send control queue is periodically checked by a kernel thread, which is a
schedulable thread of control created in kernel space. It runs in kernel space as an agent to
manage users’ sends to the network. In particular, it may perform flow control, specified
for reserved-rate network connections, on behalf of user processes.

There are two kinds of kernel threads: dedicated and lightweight. A kernel thread is
dedicated if it has the address space context of the user process (client) it serves. If a
dedicated kernel thread is used, the data to be sent by a user are found in buffers that can
be anywhere in the user’s address space.

A lightweight kernel thread is intended to serve a set of user processes (one or more),
and does not have the address space context of any of its client. If a lightweight kernel
thread is used, the data to be sent by a user are found in send buffers allocated to the user.

When a user process opens a network connection, the user communicates to its kernel
thread a flow schedule consisting of two parameter values: 1) a delay to the time when the
first check should be scheduled, and 2) the scheduling period (e.g., every 30 ms). The kernel
thread checks the user’s send control queue according to the flow schedule.

When a packet has been transmitted by the network interface, the kernel reports its
transmission status by appending a notification to the status queue of the user process that



is the packet’s source.

In our current system, kernel threads are used only for sending. They can also be used
for receiving if the network device is polled for packet arrivals (as opposed to generating
interrupts).

3 1/0 Efficient Buffers

The three different types of buffers in our architecture are classified as follows:

e User buffers are only mapped to a user domain.

o Kernel buffers (short for kernel mapped buffers) are co-mapped to user and kernel.
Kernel buffers can be used by a user process to efficiently communicate with the
kernel.

o Network buffers (short for network mapped buffers) are kernel buffers that are addi-
tionally mapped for DMA transfers. They can be used for efficient network /0.

Kernel and network buffers are collectively referred to as 1/O efficient buffers. In our
current system, kernel buffers are used for control queues, while network buffers are used
for data transfers.

3.1 User management of buffers

Our system allows a user process to manage 1/0 efficient data buffers. A user process explic-
itly requests an allocation of network buffers for sending by using a system call interface.?
On the receive side, network buffers used to hold network data destined for a particular
user process are implicitly* allocated to that user process.

The maximum number of buffers that can be allocated (implicitly or explicitly) is con-
figurable and is enforced by the kernel. The user process is then expected to manage the
allocated 1/0 efficient buffers itself. For example, it is responsible for distinguishing them
from ordinary data buffers, and reusing them as much as possible for efficient network /0.
When a user process no longer needs a network buffer, the buffer is returned to the system
with a system call.®

We believe that it is reasonable to let an application manage /O efficient buffers. The
belief is based upon two observations about multimedia applications: 1) code for network
access is typically centralized, and 2) buffers used for network 1/O are localized. For ex-
ample, there is only one place in nv that writes to the network, and all writes are from the
same buffer address.

In our current system, this is done through an ioctl() call to the network driver.
*In that the user process has not explicitly requested the allocation.
®Our implementation uses an ioctl() call to the network driver.



3.2 Protection issues

Giving user code direct access to kernel data structures naturally raises the question of data
integrity. Simply put, we would like to prevent a user process from reading and modifying
data that belong to another process.

First, we observe that send, receive and status control queues present no problem since
they are allocated and mapped on a per connection basis and are private to the user process
that owns the connection. Send data buffers are likewise safe, as long as they are allocated
in pages, and read/write permissions to the pages are properly granted.

Receive buffers are safe provided that the network controller supports link level demul-
tiplexing in hardware.® Link level demultiplexing means that the link level header identifies
a process level connection endpoint. This enables the network controller to inspect the
address information in a packet and decide which receive buffer to store the packet’s data.
For example, we expect future ATM interface controllers to have this capability, since the
VPI/VCI pair of signaling information is adequate to identify a communication endpoint
at the process (as opposed to host) level.

4 Fast System Call

We have defined a new system call based upon the use of 1/O efficient buffers,
fast_write(int fd);

where fd, a handle for the network connection for sending, is its only parameter. The actual
request containing send parameters is appended to the send control queue. The data being
sent are placed in the user’s allocated network buffers.

fast_write() is designed for low-latency sending. To illustrate, consider the latency” of a
conventional write() system call, which is made up of the following components: 1) executing
trap handling code for crossing the user/kernel boundary, 2) validating the send parameters,
and 3) copying the data being sent from user to kernel space. Note that the potentially
costly third component is eliminated in fast_write().

We expect that fast_write() will be useful for transaction-type data where low latency is
desired but the data volume is relatively small. In Section 8.1, we illustrate how fast_write()
can also be used in conjunction with kernel threads to reduce system call overheads without
incurring the delay penalty of a periodically scheduled kernel thread.

5 Kernel Threads

We elaborate on the concept of dedicated and lightweight kernel threads introduced in
Section 3 for send processing.

As its name suggests, a dedicated kernel thread serves only one user process (its client).
It is created in the context of the client and, therefore, has access to the client’s entire
address space. As a result, any user buffer (as opposed to just network buffers) can be used

®In addition, it is necessary to use explicit allocation of 1/O buffers for receiving, as well as for sending.
"This latency can be interpreted as a measure of service time, i.e., time when the CPU is occupied. As
such, it is also a measure of efficiency.



for sending. However, one memory-to-memory copy is needed from user buffers to network
buffers. The kernel thread ensures that only user data are sent by performing a simple
range check.® In our system, a dedicated kernel thread automatically prepends link level
headers® to user data and segments user data into multiple link level messages if needed.

We note that dedicated kernel threads allow closer cooperation with the user. In par-
ticular, upcalls (i.e. kernel directly giving control to user code without process context
switching) are simpler to perform.

A lightweight kernel thread does not assume a client’s address space context. Hence, it
can serve one or more clients. Although less flexible from a programming point of view, a
lightweight kernel thread is more efficient than dedicated kernel threads. In our system, we
assume that network buffers are used for sending, and the user directly supplies link level
packets. Hence there is no memory-to-memory copy.

Consider a lightweight kernel thread that maintains a set of “active” clients sharing a
network connection. While this set is not empty, the kernel thread is periodically scheduled
as a high priority system service. (We assume that the lightweight kernel thread runs at a
higher priority than any of its clients.) When the kernel thread runs at the beginning of
a period, its function is to schedule packets of its clients to be transmitted by the network
interface for the balance of the period. As a result, send side scheduling of packets is mostly
decoupled from CPU scheduling.

6 Direct Media Streaming

For special applications that are mainly concerned with the transport of media data over a
network, without processing the data, we propose direct media streaming. It satisfies the
efficiency goals of our architecture by taking advantage of specialized application needs.

In the streaming approach, the user opens a media device (such as an audio or a video
board) and a network connection, and links the two together with a system call. The
kernel then takes over for the subsequent continuous data transfer. In recording, the kernel
streamlines the captured media data directly to the network interface. In playback, it
directly writes data received over a specified network connection to the media device. The
data path is efficient because

e the streamline is constructed to avoid unnecessary data copies, and
e data transfers do not incur system call overhead.

Note also that the user process retains control over the data path. By using a set of system
calls, it can reconfigure the media device, reconfigure the network connection or close the
device-network streamline.

7 Performance of Primitives

We have an implementation of our proposed architecture on Sun SPARCstation 10’s equipped
with the LANCE Ethernet controller and the Dual Basic Rate ISDN (dbri) audio interface.

8Checking is needed since a user process could have submitted a kernel address for sending.
“Ethernet headers in our system.
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Figure 4: Read path packet latency.

Our current system has been implemented as an extension to SunOS 5.3. Most of the
modifications/additions are to the Ethernet driver and the kernel-user interface. Support
for direct media streaming has been added to the device independent part of the audio
driver. In this section, we report performance measurements of several primitive operations
in the architecture.

7.1 Read path packet latency

A set of experiments was performed to measure the per-packet latency of read paths. In
Figure 4, the fast read path is as described in Section 2 for our architecture. The unmodified
read path is as described in Section 1 for SunOS 5.3. In each experiment, a user process
blocks trying to read from an empty connection. A packet is then sent from a remote host
to the connection to wake up the user process performing the read. The per-packet latency
is measured from when the interrupt handler gets control to when the user process wakes
up and has access to the received packet. Averaged results over 50 trials are reported.
Individual results do not vary much.

The results in Figure 4 show that the latency of the fast read path stays more or less
constant at about 147 us. In contrast, the latency of the unmodified read path increases
with packet size.

7.2 Write path packet latency

In this set of experiments, we measured the per packet latency of send side processing. In
Figure 5, the unmodified write path is as described in Section 1 for SunOS 5.3. Fast system
call is as described in Section 4, and dedicated kernel thread in Section 5.
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Figure 5: Write path packet latency.

Path Context System | Copying
switch call
Unmodified none | per packet twice
Dedicated one per train once
Lightweight one per train none
Fast sys calls none | per packet none

Table 1: Overheads in write paths.

Latency is measured from when the user submits a packet for sending to when the kernel,
or kernel thread, appends the packet to the network interface queue.’® The latency results
are shown in Figure 5, which show that fast system call has the lowest latency of the three
approaches studied. From Table 1, we see why the latency of fast system call is lower than
the latency of unmodified write path (because two memory-to-memory copies are avoided)
and lower than the latency of dedicated kernel thread (because context switching and one
memory-to-memory copy are avoided).

7.3 Write path train latency

In this set of experiments, the write path latency for a train of packets was measured. We
chose a packet size of 1040 bytes from the observation made in Section 1 about nv’s packet
size. The number of packets in a train was varied over 20, 30, and 40. Note that if each
train represents a video frame, and the frame rate is 30 per second, then the train sizes
correspond to video bit rates of 5 Mbps, 7.5 Mbps and 10 Mbps, respectively. This range
roughly covers the target bit rates of MPEG-2 video. The reported packet-train latency

10 Actually, the queue is made up of buffer descriptors for packets.

10
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Figure 6: Write path packet train latency.

was measured from when the user process sent the first packet to when control was returned
to the user after the kernel, or kernel thread, had appended the last packet to the network
interface queue.

Figure 6 shows that both kernel thread write paths performed significantly better than
the unmodified write path. From Table 1, we can see two reasons: 1) reduced memory-to-
memory copies, and 2) reduced system call overhead (even though there is an additional
context switch).

Observe that lightweight kernel thread performs better than fast system call. Moreover,
the latency of lightweight kernel thread increases extremely slowly with the number of
packets, showing that lightweight kernel thread is particularly efficient for handling a long
sequence of sends (because the overhead of one context switch becomes negligible when
amortized over a large number of sends).

7.4 Direct media streaming

We have also evaluated the performance of an audio write path to the network. In our
implementation, audio data captured by the SS10 dbri audio device are directly sent by the
kernel to the Ethernet controller. Since both the audio device and the network interface
support DMA, the data path consists of two DMA transfers: 1) from audio device to main
memory, and 2) from main memory to network. No other intermediary data copies are
made.

We arranged the audio device to interrupt once every 33 ms. The streaming latency
was measured from when the audio interrupt handler gained control to when the kernel
appended the audio data to the network interface queue. It was found to be about 67 us.

11
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8 Applications

In this section, we discuss two specific applications of our architecture to support distributed
multimedia.

8.1 Reduced system calls

Multimedia applications may send packets in bursts. When a user process sends a burst of
packets to its network connection that has a prespecified reserved rate, the packets cannot be
transmitted on the network connection as fast as they arrive. Many of the packets (actually
their send requests) will be waiting in the send control queue of the user process.'' A kernel
thread can be used to move packets from the send control queue to the network interface
queue according to the prespecified reserved rate. Since the kernel thread is scheduled
periodically, some packets would incur an additional delay equal to the duration of the
kernel thread’s scheduling period in the worst case. If this additional delay is acceptable,
the overhead of a system call is eliminated for every packet.

We propose a design, illustrated in Figure 7, that allows a user process, if it chooses to,
to avoid the additional delay. Specifically, a user process can either send a packet directly
to the network interface, by first appending a request to the send control queue and then
calling fast_write(), or simply let the packet wait in the send control queue (without calling
fast_write()). The path chosen is determined by an eager flag. The eager flag is set by the
kernel, but a user process can map the flag read-only in a kernel buffer. Reading the flag
thus requires no kernel intervention.

We next present the specifications of two algorithms, one for each of the two paths in
Figure 7. When the kernel thread is scheduled, it executes Algorithm KT specified in Figure
8. When fast_write() is called by the user process, Algorithm FS specified in Figure 9 is
executed.

The algorithms work as follows. When enough packets have been put into the network
interface queue (by either KT or FS) to keep the reserved-rate network connection busy

"'The send control queue is made up of the user’s send requests rather than data packets, which are stored
in network buffers.

12



Algorithm KT

nextsched := curtime + period,
while (active(S) and vclock < nextsched)
velock := max (velock, curtime)+
l(head(S))/BW,;
netsend head(S);

end while;

if (velock < nextsched)
eager_flag = true;
else
eager_flag = false;

Figure 8: Specification of Algorithm KT.

until the kernel thread executes agains, the eager flag is cleared; otherwise, the eager flag
is set.

A set eager flag gives a user process the option to notify the kernel of a send request
by using a fast_write() system call instead of waiting for the kernel thread to handle its
request, which would incur some additional delay. A cleared eager flag informs the user
process that there is no advantage in using a fast_write() system call, compared to letting
the kernel thread handle its send request.

In the specifications, curtime (in ms) denotes the time when an algorithm begins exe-
cution, S denotes the media stream sent over a network connection with reserved rate BW
(in kbytes/s), period (in ms) denotes the scheduling period of the kernel thread, and [(p)
denotes the length of packet p in bytes. Define

e active(S) to be true iff S has a packet in the send control queue, and

o if active(S) is true, head(S) to be the packet at the head of the send control queue
of S.

The algorithms maintain two state variables: wvclock, initialized to 0, and neztsched,
initialized to the time when the kernel thread is first scheduled. veclock holds the expected
completion time (in ms) of the packet most recently moved from the send control queue to
the network interface queue; nextsched holds the time (in ms) when the kernel thread is
next scheduled to run. The operation, netsend head(S), moves the first packet in the send
control queue of S to the network interface queue.

We evaluated experimentally the above design using 10 seconds of video recorded in a
tele-conferencing setting. The video sequence is MPEG-1 encoded with a pattern of [PPP.!?
The average bit rate of the sequence is about 5 Mbps, and the largest picture is about four

2Al 1 (similarly P) pictures are roughly of the same size in the video sequence.

13



Algorithm FS

{precondition: (active(S) = true) A
(eager_flag = true) A (velock < nextsched)}

velock:= max(vclock, curtime)+
l(head(S))/BW,;
netsend head(S);
if (vclock >= nextsched)
eager_flag = false;

Figure 9: Specification of Algorithm FS.

Packets sent | No. of system calls | % reduction
6021 2071 66
6021 378 94
6021 381 94
6021 1857 69

Table 2: Reduction in system calls for sending.

times the size of the smallest picture. The user process sent a picture every 40 ms'? over
a network connection that had a reserved rate of 5 Mbps. The video sequence was sent
using a combination of fast_write() and kernel thread. The packet size was chosen to be
1040 bytes (as in Section 7.3). Table 2 shows the percentage reduction in system calls in
four trial runs. The kernel thread was scheduled with a period of 40 ms in all runs. The
relative starting times of the user process and the kernel thread were not controlled in the
experiments and this accounts for the performance variations in Table 2.

Lastly, note that for an application that is not time critical, such as video playback,
it can altogether ignore the eager flag. The resulting delay penalty is the duration of the
kernel thread’s scheduling period in the worst case, and half that duration on the average.

8.2 Rate-based flow control

In this section, we illustrate the use of a kernel thread to implement rate-based flow control
for a tele-conferencing scenario. The setup for illustration is shown in Figure 10, where
three media streams from participant site A to participant site B are indicated.

In what follows, the tele-conferencing scenario we assume is first described. We then
present results from a simulation experiment to illustrate how, in the absence of rate-based
flow control, media streams can interfere with one another. The KT algorithm in Figure
8 is then extended to include rate-based flow control. Some measurement results from
experimenting with the algorithm implementation are presented to show the performance
of this rate-based flow control algorithm.

'3 The frame rate of 25 per second was chosen for ease of experimentation. The video segment was recorded
at 30 frames per second.

14
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Tele-conferencing scenario

Video is captured at a frame rate of 25 per second. Every 40 ms, a video board digitizes a
picture captured from the video camera and MPEG encodes it using an IPPP pattern. A
video application scheduled at 40 ms intervals reads each encoded picture and sends it to
the network as a sequence of 1500 byte packets.

An audio application is invoked every 10 ms to read from an audio device which digitizes
incoming audio signal and PCM encodes it at 64 kbps. The application performs silence
detection on the encoded data, and a non-silent buffer of about 80 bytes is sent as a single
packet. Note that audio is sent with a lower delay (10 ms interval) than video (40 ms
interval) to facilitate real-time interactions between conference participants.

In addition to video and audio, conference participants use a “whiteboard” application
to retrieve pages from a postscript document. A retrieved page is sent over the network
by invoking a send function provided in the application. Postscript pages only need to be
loosely synchronized (say to about 1 second) with video and audio.

Consider site A in Figure 10 to be the sender. To benefit from statistical multiplexing,
video, audio and postscript pages together share a reserved-rate network connection; sharing
allows the reserved rate to be better utilized. We assume that video is sent at close to the
bit rate of I pictures for minimal delay. As a result, we know that postscript pages can be
transported with acceptable delay using the residual reserved rate not needed by P pictures.

Even though sharing a reserved-rate network connection achieves economy for the user,
it presents a problem when the different streams interfere with one another. For example, a
burst of packets from an I picture can block out audio packets for the entire picture duration
of 40 ms, defeating our intention that audio be sent with lower delay. Similarly, a burst of
packets from a postcript page can occupy the network connection for an extended period
of time, thereby disrupting the continuity requirements of video and audio.

For the experiments described below, we used a sample 4 second sequence of sends from
a participant site (such as A in Figure 10). The video stream is active throughout the

15
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sample sequence. Its I pictures have a rate of about 4.8 Mbps, while its P picures have a
rate of about 1.8 Mbps. For audio, a very short talkspurt is active from about 150 to 650
ms. Figure 11 profiles the sequence of sends made by the video and audio applications from
100 to 800 ms. In addition, roughly 2,175 ms into the sequence, a postscript page of about
60,000 bytes is sent by the whiteboard application. This profile is shown in Figure 12.

Simulation results

We first illustrate the problem of media flows interfering with one another when there is no
rate-based flow control.

The applications generating audio, video, and postscript pages were assigned fixed pri-
orities (audio has highest priority, and postscript pages lowest) in CPU scheduling. We
recorded traces of times when send requests were made by these applications. The traces
were then used to simulate packet arrivals to the network interface queue. Without rate-
based flow control, packets belonging to audio, video, and postscript pages were transmitted
by the network interface in FIFO order.

For the 4-second sequence of sends, we recorded their simulated arrival times at a des-
tination site at the other end of a network connection with a reserved rate of 5 Mbps. The
arrival times of audio and video packets at the destination site are shown in Figures 13 and
15. Figure 13 shows that the sequence of audio packets is no longer “smooth”. The distri-
bution of interarrival times between audio packets (in Figure 14) shows that some of the
audio packets are delayed by as much as 40 ms because of a preceding I picture. Similarly,
Figure 15 shows how the arrivals of video pictures can be interrupted by the burst of pack-
ets belonging to a postscript page. For simplicity, only the arrival time of the first packet
of each picture is shown in Figure 15; subsequent packets of a picture arrive back-to-back
afterwards.
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Figure 12: Packet send profile from 2-2.4 seconds.
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Figure 13: Disrupted sequence of audio packet arrivals (no rate control).
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Figure 14: Distribution of packet interarrival times for audio (no rate control).
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Figure 15: Disrupted sequence of video packet arrivals (no rate control).
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Algorithm KT_RC

for each S in inactset
if (active(S))
velock(S) :=max(velock(S), curtime)+
l(head(S))/rate(S);
delete S from inactset;

fi;

while (active and sent < budget)
choose S s.t. vclock(S) =
min{vclock(Y )|active(Y)};
sent := sent + [(head(S));
netsend head(S);
if (active(S))
velock(S) := velock(S)+
l(head(S))/rate(S);
else
add S to inactset;
fi;
end while;
sent := max(sent — budget, 0);

Figure 16: Specification of Algorithm KT_RC.

Algorithm implementation and measurements

We solved the problem by recognizing that each media stream should be assigned a reserved
rate based upon its throughput requirement. In the experiment described below, the video
stream was assigned a reserved rate of 4.8 Mbps, which is its I picture rate. The audio
stream has an inherent bit rate of 64 kbps. However, jitters from CPU scheduling may
result in two consecutive audio packets to arrive slightly less than 10 ms apart. Hence, the
audio stream was assigned a reserved rate of 80 kbps. Finally, since we expect postscript
pages to ultilize the slack bandwidth left by P pictures, it was assigned a nominal reserved
rate of 1 kbps.

Having assigned a reserved rate to each media stream, we rely on rate control by a
lightweight kernel thread to provide firewall protection between media streams. For this
purpose, Algorithm KT has been extended!* to Algorithm KT_RC specified in Figure 16.

In addition to the notation in Section 8.1, we use the following: active denotes Y, active(Y).
For each media stream, say S, sharing the network connection, define

e rate(S) to be the reserved rate (in kbytes/s) of S, and

e vclock(S) to be a priority value, initially 0, associated with S.

"For simplicity, we have presented an algorithm for the kernel thread only, without considering the use
of fast_write().

19



14 | _

12 + T —

# packets

0 1 1 1 1 1
0] 5 10 15 20 25 30 35

Time (ms)

Figure 17: Distribution of packet interarrival times for audio with rate control.

The aggregate reserved rate of the media streams sharing the network connection is less
than or equal to BW, the reserved rate of the network connection (which was 5 Mbps in
our experiment). budget is equal to the number of bytes that can be sent at BW kbytes/s
during a kernel thread period. sent denotes a counter which is initially zero. The kernel
thread maintains a set inactset of media streams. Initially, the set contains all of the media
streams sharing the network connection.

Algorithm KT_RC is specified such that the kernel thread attempts to send packets
in order of increasing ezpected finishing time. Informally, the expected finishing time of a
packet is the time (in ms) when the packet would be completely sent if its media stream were
served at precisely the assigned reserved rate. In practice, the kernel thread is a periodic,
rather than a continuous server. It is possible for a higher priority packet (a packet with
a smaller expected finishing time) to arrive after the kernel thread has moved some lower
priority packets to the network interface queue. However, because the kernel thread does
not attempt to schedule ahead by more than its scheduling period, a higher priority packet
cannot be blocked by lower priority packets for longer than the scheduling period.

We close this section by reporting some measurement results from experimenting with
an implementation of Algorithm KT_RC. In this experiment, the network interface sent
the sequence of packets from the previous tele-conferencing scenario (Figures 11 and 12)
over a dedicated Ethernet and the actual arrival times of packets at a destination host
were measured. The lightweight kernel thread was scheduled with the same period (10
ms) as the audio stream. Figure 17 shows the effects of rate control on the distribution of
interarrival times between audio packets. Compared with Figure 14, the values are much
more concentrated around the expected value of 10 ms. We also observed minimal impact
from the burst of postscript packets on the smoothness of video arrivals (Figure 18).
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Figure 18: Sequence of video packet arrivals with rate control (only first packet of each
picture is shown).

9 Conclusion

We have proposed an architecture, and investigated various concepts and techniques, de-
signed to support multimedia networking. The concept of 1/0O efficient buffers is similar to
various proposals for minimizing data copies, e.g., [4], [6], and [10].

Independent threads of control for network 1/0O have been used in several systems, such
as [7]. We have shown how a thread of control implemented in kernel space can 1) efficiently
support sends to the network by user processes, and 2) provide rate-based flow control to a
reserved-rate network connection.

The scheduling algorithms presented in Section 8 are extensions of rate-based proposals
for packet scheduling in a network switch [12, 13], and for metascheduling of continuous
media [1]. Our algorithms have been designed for send scheduling by a kernel thread that
is a periodic server (as opposed to a continuous server assumed in [12, 13]).

Elimination of system calls for sending has also been proposed in [3] where requests to
send are polled in the clock interrupt handler. Some issues considered herein, such as order
of interleaving of sends by different user processes as well as impact on end-to-end delay,
were not considered in [3].

An approach similar to direct media streaming was mentioned in [5]. We have investi-
gated the idea more carefully. In particular, we have implemented an audio write path in
SunOS 5.3 and studied its performance.

Lastly, we have described and evaluated two particular applications of our architecture
for supporting distributed multimedia.
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