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Abstract

In a system proposed by Plaxton, Rajaraman and Richa (PRR), the expected cost of ac-
cessing a replicated object was proved to be asymptotically optimal for a static set of
nodes and pre-existence of consistent and optimal neighbor tables in nodes [8]. To im-
plement PRR’s hypercube routing scheme in a dynamic, distributed environment, such as
the Internet, various protocols are needed (for node joining, leaving, table optimization,
and failure recovery). In this paper, we first present a conceptual foundation, calledC-set
trees, for protocol design and reasoning about consistency. We then present the detailed
specification of a join protocol. In our protocol, only nodes that are joining need to keep
extra state information about the join process. We present a rigorous proof that the join
protocol generates consistent neighbor tables for an arbitrary number of concurrent joins.
The crux of our proof is based upon induction on a C-set tree. Our join protocol can also
be used for building consistent neighbor tables for a set of nodes at network initialization
time. Lastly, we present both analytic and simulation results on the communication cost of
a join in our protocol.
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1. Introduction
The main goal of popular peer-to-peer systems, such as
Napster [7], Gnutella [4], and Freenet [3], is object (file)
sharing. Objects are stored in user machines and transferred
from one machine to another upon requests. In this paper,
we view such a system conceptually as a network ofnodes.
Each node, representing a user machine, can send messages
to every other node in the system using the Internet.

In these systems, objects are generally replicated, with
multiple copies of the same object stored in different nodes.
Objects are addressed by location-independent names, with
location-independent routingused to forward one node’s
query for an object to some node storing a copy of the ob-
ject. Four desirable properties of a location-independent
routing infrastructure for these systems, presented by Hil-
drum, Kubiatowicz, Rao, and Zhao in [5], are the following
(slightly rephrased):

P1 Deterministic Location: If an object exists anywhere
in the network, it should be located.

P2 Routing Locality: If multiple copies of an object exist
in the network, a query for the object should be for-
warded to a nearby copy. Also, routes should have low
stretch.1

P3 Load Balance: The load of storing objects (or object
locations) and routing information should be evenly
distributed over network nodes.

P4 Dynamic Membership: The network should adapt to
joining and leaving nodes while maintaining the above
properties.

Napster employs a centralized directory of object loca-
tions and clearly does not satisfy P3. The system is also
not fault-tolerant since the directory server is a single point
of failure. Gnutella and Freenet were designed to have dis-
tributed directory information. However, neither of them
satisfies P1.

In two recent research proposals, Chord [11] and
CAN [9], the main operation is name resolution, i.e., map-
ping a name (object ID) to a node that stores a copy of the
object (or the location of the object). Each system was de-
signed to satisfy P1, P3, and P4. However, these systems do
not satisfy P2 because they are not concerned with forward-
ing a query directly to a nearby object. Furthermore, while a
name can be resolved within a small number of application-
level hops,2 the actual distance of each hop through the In-
ternet, from one node to another, may be very large.

Of interest in this paper is the hypercube routing scheme
used in PRR [8], Pastry [10], Tapestry [12], and SPRR [6].
Each node maintains a neighbor table storing pointers (IP

1Stretch is the ratio between the distance traveled by a query to an ob-
ject to the minimum distance between query origin and the object.

2The number isO(log n) for Chord andO(dn1=d) for CAN, wheren
is the number of nodes in the system andd is the number of dimensions
chosen for CAN.

addresses) toO(logn) nodes in the network. These tables
constitute the network’s routing infrastructure. With addi-
tional distributed directory information, PRR tends to sat-
isfy each object request with a nearby copy. Givenconsis-
tent(definition in Section 3) andoptimal(that is, they store
nearest neighbors) neighbor tables, PRR guarantees to lo-
cate an object if it exists, and the expected cost of accessing
a replicated object is asymptotically optimal [8].

To implement the hypercube routing scheme in a dy-
namic, distributed environment, we need to address the fol-
lowing problems:

1. Given a set of nodes, a join protocol is needed for the
nodes to initialize their neighbor tables such that the
tables areconsistent. (In what follows, a “consistent
network” means a set of nodes with consistent neigh-
bor tables.)

2. Protocols are needed for nodes to join and leave a con-
sistent network such that the neighbor tables are still
consistent after a set of joins and leaves. When a node
fails, a recovery protocol is needed to re-establish con-
sistency of neighbor tables.

3. A protocol is needed for nodes to optimize their neigh-
bor tables.

Solving all of these problems is beyond the scope of a
single paper. In this paper, we focus on designing a join
protocol for the hypercube routing scheme. Given a con-
sistent network, and a set of new nodes joining the network
using our protocol, we prove that the join process will termi-
nate and the resulting neighbor tables of both existing and
new nodes are consistent (assuming reliable message deliv-
ery and no node deletion). In particular, our proof holds for
an arbitrary number of concurrent joins.

Contributions of this paper are the following:

� We analyze the goal of the join protocol and present a
conceptual foundation, calledC-set trees, for protocol
design and reasoning about consistency.

� We design a join protocol for the hypercube routing
scheme, and present a detailed protocol specification.
In our protocol, only nodes that are still in the join pro-
cess need to keep extra state information about the join
process. The join protocol can also be used for network
initialization, where initially the network has only one
node. Other nodes then join the network by executing
the join protocol.

� We present a rigorous proof that the join protocol pro-
duces consistent neighbor tables for an arbitrary num-
ber of concurrent joins. The crux of our proof is based
upon induction on a C-set tree.

� We present both analytic and simulation results on the
communication cost of a join in our join protocol.

The join protocol presented in this paper provides a so-
lution to problem 1, and part of the solution to problem 2,
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discussed above. Moreover, the conceptual foundation pre-
sented in this paper can be used for designing protocols for
leaving, failure recovery, and neighbor table optimization.3

Note that since we are only concerned with consistency in
this paper, the assumption of optimal neighbor tables is re-
laxed when we design our join protocol. Interested readers
can refer to [5, 2] for methods of exploiting node proximity
and optimizing neighbor tables.

PRR includes algorithms for dynamically maintaining
directory information when objects are inserted, deleted,
and accessed [8]. However it does not have node join and
leave protocols. Pastry, Tapestry, and SPRR all have join
and leave protocols. The issue of neighbor table consis-
tency after concurrent joins and leaves was raised but not
addressed in SPRR [6]. Pastry uses an optimistic approach
to control concurrent node joins and leaves because the au-
thors believe “contention” to be rare [10]. A join protocol
was presented for Tapestry with a correctness proof [5]. The
join protocol is based upon the use of multicast. The exis-
tence of a joining node is announced by a multicast mes-
sage. Each intermediate node in the multicast tree keeps
the joining node in a list (one list per entry updated by a
joining node) until it has received acknowledgments from
all downstream nodes. This approach has the disadvantage
of requiring many existing nodes to store and process ex-
tra states as well as send and receive messages on behalf of
joining nodes. We take a very different approach in our join
protocol design. We put the burden of the join process on
joining nodes only.

The balance of this paper is organized as follows: In Sec-
tion 2, we briefly describe the hypercube routing scheme. In
Section 3, our conceptual foundation for protocol design is
illustrated. In Section 4, a detailed specification of our join
protocol is presented. In Section 5, we present a consistency
proof of the join protocol as well as an analysis of the pro-
tocol’s communication cost. In Section 6, we discuss how
to use the join protocol for network initialization, as well as
several protocol enhancements. We conclude in Section 7.

2. Background: Hypercube Routing Scheme
Consider a set of nodes and a set of objects. Each node or
object has an identifier (ID), which is a fixed-length random
binary string. (These IDs are typically generated using a
hash function, such as MD5 or SHA-1.) Node and object
IDs are drawn from the same ID space which can be thought
of as a ring.

To present the hypercube routing scheme, we will follow
notation and terminology used for PRR [8]. Each node’s ID
is represented byd digits of baseb. For example, a 32-bit
ID can be represented by 8 Hex digits (b = 16). Hereafter,
we usex:ID to denote the ID of nodex and usex[i], 0 �

3This paper is the first in a series of papers we write to address these
problems.

i � d� 1, to denote theith digit in x:ID, with the 0th digit
referred to as therightmostdigit.

The routing schemes of PRR [8], Pastry [10],
Tapestry [12], and SPRR [6] can all be viewed as exten-
sions of the hypercube routing scheme in this paper. For
these schemes, a query of an object is routed to a node that
matches the object in the largest number of suffix (or prefix)
digits.4 The schemes differ in the technique each uses to re-
solve the final routing hop when there are multiple nodes
that match an object in the largest number of suffix (or pre-
fix) digits. These schemes also differ in how they replicate
objects and how they provide fault-tolerant routing.

2.1. Neighbor table

The neighbor table of each node consists ofd levels with
b entries at each level. (In what follows, we useneigh-
bor tableandtable interchangeably.) The entryj at leveli,
0 � j � b� 1, 0 � i � d� 1, referred to as the (i; j)-entry,
in the table of nodex contains link information to nodes
whose IDs andx:ID share a common suffix withi digits,
and whoseith digit is j. 5 These nodes are said to beneigh-
borsof x.6 If multiple nodes exist with the desired suffix of
the (i; j)-entry, then a subset of these nodes, chosen accord-
ing to some criterion,7 may be stored in the entry with the
nearest one designated as theprimary(i; j)-neighbor. Each
node also keeps track of itsreverse-neighbors. Nodex is
a reverse(i; j)-neighbor of nodey if y is the primary(i; j)-
neighbor ofx. Figure 1 shows an example neighbor table,
in which only primary-neighbors are shown. (Also, IP ad-
dresses of neighbors are omitted.) The number to the right
of each entry is the desired suffix for that entry. An empty
entry indicates that there does not exist a node in the net-
work whose ID has the desired suffix.

0

1

2

3

033

133

233

333

03

13

23

33

01100

33121

12232

21233

22303

13113

00123

21233

31033

21233

0233

1233

2233

3233

10233

21233

03233

01233

11233

31233

21233

11233

21233

level 4 level 3 level 2 level 1 level 0

03133

Neighbor table of node 21233  ( b=4, d=5)

Figure 1. An example neighbor table

2.2. Routing scheme

When nodex sends a message to nodey, it first forwards
the message tou1, a primary-neighbor ofx at level-0 that

4PRR routing uses suffix matching, while the other schemes use prefix
matching.

5We count digits in an ID from right to left, with the 0th digit being the
rightmostdigit.

6The link information for each neighbor consists of the neighbor’s ID
and its IP address. For simplicity, we will use “neighbor” or “node” instead
of “node’s ID and IP address” whenever the meaning is clear from context.

7In PRR, for example, nodes with minimum communication costs are
chosen. Extra neighbors in an entry are used to facilitate object location [8]
or for fault tolerant routing [12].
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shares the rightmost digit withy. u1 then forwards the
message to its primary-neighbor at level-1 that shares the
rightmost two digits withy. This process continues until
the message reachesy. For example, a message sent from
node 21233 to destination node 03231 is first forwarded
to the primary(0; 1)-neighbor of 21233, which is 33121 in
Figure 1, then to the primary(1; 3)-neighbor of 33121, say,
13331, and so on, until it reaches 03231. In this paper, the
primary(i; x[i])-neighbor ofx is chosen to bex itself. As a
result, whenx sends a message toy following the primary-
neighbor pointers, instead of starting at level-0, it starts at
level-k, wherek is the length of the longest common suffix
of x:ID andy:ID.

3 Conceptual Foundation

In this section, we analyze the goals and tasks for a join
protocol to produce consistent neighbor tables. We first an-
alyze the case of a single join, which is straightforward and
presents intuition of the protocol design. Then we discuss
multiple joins and present the concept ofC-set trees.

Since in this paper, we are only concerned with consis-
tency, we relax the assumption ofoptimalneighbor tables in
the hypercube routing scheme. In what follows, we use the
termneighborto meanprimary neighbor. Thus, to simplify
our presentation, we assume that there is only one neighbor
in each table entry. Table 1 presents notation used through-
out this paper.

Notation Definition
[`] the setf0, ...,`� 1g, ` is a positive integer
d the number of digits in a node’s ID
b the base of each digit
x:table the neighbor table of nodex
j � ! digit j concatenated with suffix!
Nx(i; j) the node in the(i; j)-entry ofx:table, also referred

to as the(i; j)-neighborof nodex, i 2 [b], j 2 [d]
j!j the number of digits in suffix!
csuf(!1; !2) the longest common suffix of!1 and!2
hV;N (V )i a hypercube network:V is the set of nodes in the

network,N (V ) is the set of neighbor tables
Vli:::l0 asuffix setof V , which is the set of nodes inV ,

each of which has an ID with the suffixli:::l0
jV j the number of nodes in setV

Table 1. Notation

3.1 Definitions and assumptions

Definition 3.1 Let tbx be the time when nodex begins join-
ing a network, andtex be the time whenx becomes an S-
node (to be defined in Section 4). The period fromtbx to tex,
denoted by[tbx; t

e
x], is thejoining period of x.

Definition 3.2 Suppose a set of nodes,W = fx1,...,xmg,
m � 2, join a network. If the joining period of each node
does not overlap with that of any other, then the joins are
sequential.

Definition 3.3 Suppose a set of nodes,W = fx1,...,xmg,
m � 2, join a network. Lettb = min(tbx1 ; :::; t

b
xm

) and
te = max(tex1 ; :::; t

e
xm

). If for each nodex, x 2 W , there
exists a nodey, y 2 W andy 6= x, such that their joining
periods overlap, and there does not exist a sub-interval of
[tb,te] that does not overlap with the joining period of any
node inW , then the joins areconcurrent.

Definition 3.4 Suppose a set of nodes,W = fx1,...,xmg,
m � 1, join a networkhV;N (V )i. For any nodex, x 2W ,
if Vx[k�1]:::x[0] 6= ; andVx[k]:::x[0] = ;, 1 � k � d � 1,
thenV x[k�1]:::x[0] is thenotification set of x regardingV ,
denoted byV Notify

x . If Vx[0] = ;, thenV Notify
x is V .

Definition 3.5 Suppose a set of nodes,W = fx1,...,xmg,
m � 2, join a networkhV;N (V )i. The joins areindepen-
dent if for any pair of nodesx and y, x 2 W , y 2 W ,
x 6= y, V Notify

x \ V Notify
y = ;.

Definition 3.6 Suppose a set of nodes,W = fx1,...,xmg,
m � 2, join a networkhV;N (V )i. The joins aredepen-
dent if for any pair of nodesx and y, x 2 W , y 2 W ,
x 6= y, one of the following is true:

� V Notify
x \ V Notify

y 6= ;.

� 9u, u 2 W , u 6= x ^ u 6= y, such thatV Notify
x �

V Notify
u andV Notify

y � V Notify
u .

Definition 3.7 Consider two nodes,x and y, in network
hV;N (V )i. If there exists a neighbor sequence(u0; :::; uk),
k � d, such thatu0 is x, uk is y, andui+1 is Nui(i; y[i]),
i 2 [k], theny is reachable from x (within k hops), orx
canreachy, to be denoted byhx! yik.

Definition 3.8 Consider a networkhV;N (V )i. The net-
work, orN (V ), is consistent if for any nodex, x 2 V ,
each entry in its table satisfies the following conditions:

(a) If Vj�x[i�1]:::x[0] 6= ;, then Nx(i; j) = y, y 2
Vj�x[i�1]:::x[0], 1 � i � d � 1, j 2 [b]; if Vj 6= ;,
thenNx(0; j) = y, y 2 Vj , j 2 [b].

(b) If Vj�x[i�1]:::x[0] = ;, thenNx(i; j) = null, 1 � i �
d� 1, j 2 [b]; if Vj = ;, thenNx(0; j) = null, j 2 [b].

If condition(a) in Definition 3.8 is satisfied, thenN (V )
is false negative free, i.e., if a node exists in the network, it
is reachable from any other node. If condition(b) in Defini-
tion 3.8 is satisfied, thenN (V ) is false positive free, i.e., if
a node does not exist in the network, then there should not
exist a path that tends to lead to it.

Lemma 3.1 In a networkhV;N (V )i, any node is reach-
able from any other node iff condition (a) of Definition 3.8
is satisfied by the network.

In designing our protocol for nodes to join a network
hV;N (V )i, we assume that (i)V is not empty andN (V )
is consistent, (ii) each joining node, by some means, knows
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a node inV initially, (iii) messages between nodes are de-
livered reliably, and (iv) there is no node deletion (leave or
failure) during the joining period of any node.

Under the assumption that there is no node deletion dur-
ing joins, condition(b) in Definition 3.8 can be satisfied
easily, since once a node has joined, it always exists in the
network. Hence, the goal of the join protocol is to construct
neighbor tables for new nodes and update tables of existing
nodes such that condition(a) in Definition 3.8 is satisfied.
In a distributed peer-to-peer network, global knowledge is
difficult (if not impossible) to get. Therefore, a node should
utilize local information to construct or update neighbor ta-
bles. Our join protocol is designed to expand the network
monotonically and preserve reachability of existing nodes
so that once a set of nodes can reach each other, they al-
ways can thereafter. Hence, starting with a consistent net-
work, hV;N (V )i, and a setW of joining nodes, the goals
of the protocol are the following:

� Goal 1: 8x, 8y, x 2 W , y 2 V , eventuallyx andy
can reach each other.

� Goal 2: 8x1, 8x2, x1 2 W , x2 2 W , eventuallyx1
andx2 can reach each other.

3.2 Operations of single join

Whenx joins, it is given a nodeg0, g0 2 V . First,x con-
structs its own table by copying neighbors from nodes inV

level by level. It starts with copying level-0 neighbors ofg0
and filling them into level-0 of its own table. Among these
level-0 neighbors,x finds nodeg1, g1[0] = x[0]. Then,x
copies level-1 neighbors ofg1 to construct its own table at
level-1, and searches for a nodeg2, g2[1]g2[0] = x[1]x[0].
This process is repeated untilx could not find a nodegk+1

that shares the rightmostk + 1 digits with it (k must exist
and is at mostd � 1 sincex:ID is unique in the network).
x then adds itself into its table. At this point,x is already
able to reach any node inV .

Next, the table entries inN (V ) that should no longer
be empty because of the join ofx need to be updated.
Hence the nodes that have such entries need to be notified.
Since there exist nodes inV that share the rightmostk dig-
its with x but no node shares the rightmostk + 1 digits
with x, Vx[k�1]:::x[0] is not empty, however,Vx[k]:::x[0] is.
Hence nodes inVx[k�1]:::x[0] need to be notified and their
(k,x[k])-entries need to be updated. Conceptually, nodes
in Vx[k�1]:::x[0] form a forest whose roots are the level-k

neighbors ofx. By following neighbor pointers,x traverses
the forest and notifies all nodes inVx[k�1]:::x[0] eventually.
After x receives all of the replies from these nodes, it stops
its join process.

Duringx’s join, the consistency of the original network
hV;N (V )i is preserved because nodes inV will fill x into
a table entry only if that entry is empty.

3.3 Operations of multiple joins

If multiple nodes join a network sequentially (i.e., only
when the join of one node ends will another node start
joining), then when a node joins, any node that joins ear-
lier has already been integrated into the network. Hence,
the joins do not interfere with each other. Also, if multi-
ple nodes join a network concurrently and the views these
nodes have about the network do not “conflict” with each
other (namely, independent joins), then intuitively the joins
also do not interfere with each other, because the sets of
nodes these joining nodes need to notify do not intersect and
none of the joining nodes needs to store any other joining
node in its table. The most difficult case isconcurrent and
dependent joins, where the views different joining nodes
have about the current network may conflict. For exam-
ple, if node 10261 and node 00261 join concurrently, then
before they know each other, each of them may think of it-
self as the only node with suffix 261. If handled incorrectly,
the views of the joining nodes may not converge eventually,
which would result in inconsistent neighbor tables.

10261

13141       31701

C261

C47051C00261 C10261

C61

C051

C7051C0261

C61 C51

C261 C051

C0261 C7051

C00261 C10261 C47051

C61

C261

C0261

C10261

13141       31701

(b)

1

(a)

VV

 4705100261

10261

47051

47051

10261 47051

10261

V

(c)

C51

1V 1V

Figure 2. C-set tree

We first analyze the desirable results of multiple joins by
using an example (d = 5, b = 8). Suppose a set of nodes,
W = f10261, 47051, 00261g, join a consistent network
hV;N (V )i, V = f72430,10353,62332,13141,31701g.
Then, at the end of joins, for anyy, y 2 V , to reach 10261,
there should exist a neighbor sequence (u0; u1; :::; u5), such
thatu0 is y, u5 is 10261, and the IDs ofu1 tou4 have suffix
1, 61, 261, and 0261 respectively. SinceN (V ) is consis-
tent,y must have stored a neighbor with suffix 1, which can
be any node inV1 (the set of nodes inV with suffix 1). Let
the set of (1; 6)-neighbors of nodes inV1 beC61, the set of
(2; 2)-neighbors of nodes inC61 beC261 and so on. We call
these setsC-setsand the sequence of sets fromV1 toC10261

a C-set path. As shown in Figure 2(a), for nodes inV to
reach 10261, each C-set in the path should be filled with
nodes inW with the desired suffix. Similarly, for anyy,
y 2 V , to reach 00261, none of the setsC61, C261, C0261

andC00261 should be empty. Generally, from any node in
V to each node inW , there is an associated C-set path, and
all the paths form a tree rooted atV1, called aC-set tree,
as shown in Figure 2(c). Note that C-set trees are concep-
tual structures used for protocol design and reasoning about
consistency. They arenot implementedin any node.

The above example is a special case of multiple joins,
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where the notification sets regardingV (noti-sets, in short)
of all nodes inW are the same (namely,V1 in the exam-
ple). Generally, the noti-sets of all nodes inW may not be
the same. Then, nodes inW with the same noti-set belong
to the same C-set tree and the C-set trees for all nodes in
W form a forest. In the above example, ifW = f10261,
00261, 67320, 11445g, then 10261 and 00261 belong to a
C-set tree rooted atV1, 67320 belongs to a C-set tree rooted
at V0 and 11445 belongs to a C-set tree rooted atV . Each
C-set tree can be treated separately. In the balance of this
subsection, our discussion is focused on a single C-set tree.

Definition 3.9 Suppose a set of nodes,W = fx1; :::; xmg,
m � 1, join a consistent networkhV;N (V )i, and for any
nodex, x 2 W , V Notify

x = V!, wherej!j = k. Then the
C-settree templateassociated withV andW , denoted by
C(V;W ), is defined as follows:

� V! is the root of the tree (the root is not a C-set);
� If Wl1�! 6= ;, l1 2 [b], then setCl1�! is a child ofV!,

andl1 � ! is the associated suffix ofCl1�!;
� If Wlj :::l1�! 6= ;, 2 � j � d� k, l1,...,lj 2 [b], then set
Clj :::l1�! is a child of setClj�1:::l1�!.

GivenV andW , the tree template is determined. Fig-
ure 2(b) shows the tree template for the above example. The
task of the join protocol is to construct and update neighbor
tables such that paths are established between nodes;con-
ceptuallynodes are filled into each C-set inC(V;W ). For
different sequences of protocol message exchange, different
nodes could be filled into each C-set, which would result in
different realizations of the tree template. Figure 2(c) shows
one realization of the tree template in Figure 2(b). Observe
that since for any nodex, Nx(i; x[i]) = x, i 2 [b], once
x is filled into a C-set, it is automatically filled into those
descendants of the C-set in the tree, whose suffix is also a
suffix of x:ID. For instance, if both 13141 and 31701 store
10261 in (1; 6)-entry, then conceptually 10261 is filled in
C61 and consequently, 102612 C261, C0261 andC10261.
C61 is calledthe first C-set 10261 belongs to.

Given a setW of nodes joining a consistent network
hV;N (V )i and nodes inW belong to the same C-set tree,
we denote the C-set tree realized at the end of all joins
ascset(V;W ) (formal definition ofcset(V;W ) is in Sec-
tion 5.1). By the end of joins, the following conditions
should be satisfied by neighbor tables of nodes inV [W

for them to be consistent:

(1) cset(V;W ) has the same structure withC(V;W ) and
none of the C-sets incset(V;W ) is empty.

(2) For each nodey, y 2 V! (root of the C-set tree), for
each child C-set ofV! in cset(V;W ), y stores a node
with the suffix of that C-set into its neighbor table.

(3) For each nodex, x 2 W , the C-set whose suffix is
x:ID is a leaf node in the tree. For any C-set along
the path from this leaf node to the root, if it has any

sibling C-set, thenx stores a node with the suffix of
that sibling C-set in its table.8

If condition (1) is satisfied, then incset(V;W ), each leaf
node whose suffix corresponds to a node’s ID must include
that node. Therefore, the union of all C-sets incset(V;W )
is W . If condition (2) is satisfied, then all entries inN (V )
that need to be updated are updated. If condition (3) is satis-
fied, then for any node inW , it can reach every other node
in W . Hence, these three conditions, together with each
joining node’s copying neighbors from nodes inV , ensure
that the network is consistent after the joins.

4 Specification of Join Protocol
In our protocol, each node keeps its own status, which could
becopying, waiting, notifying, andin system. When a node
starts joining, its status is set tocopying. Each node also
stores the state of each neighbor asT orS in its table, where
S indicates that the neighbor is in statusin system, whileT
means it is not yet.

A node with statusin systemis called anS-node; oth-
erwise, it is aT-node. The phase in which a node,x, is
in statuscopying, waiting or notifying is called c-phase, w-
phase or n-phase, respectively. In c-phase,x copies neigh-
bors and constructs most part of its table. In w-phase,x

waits until it is filled in the table of an S-node, which in-
dicates that conceptually,x is filled into a C-set of a C-
set tree. In n-phase,x seeks and notifies nodes that are
in the subtree rooted at the parent C-set of the onex is
filled into. Whenx finds no more node to notify, it changes
status toin systemand becomes an S-node. Figure 3 de-
scribes the state variables of a joining node. Variables in
the first part are also used by nodes inV , where for each
nodey, y 2 V , y:status = in system, y:table is popu-
lated in a way that satisfies the conditions in Definition 3.8,
andNy(i; j):state = S if Ny(i; j) 6= null for all i andj.
Figure 4 presents the join protocol messages. Figure 5 to
Figure 14 present the pseudo-code of the protocol, in which
x, y, u andv denote nodes, andi, j andk denote integers.

When any node,x, setsNx(i; j) = y, y 6= x, x needs
to sends aRvNghNotiMsg(y;Nx(i; j):state) to y, and y
should reply tox if Nx(i; j):state is not consistent with
y:status. For clarity of presentation, we have omitted the
sending and reception of these messages in the pseudo-
code.

4.1 Action in statuscopying

In c-phase,x constructs its table level by level until it stops
at level-k, k 2 [b], where after copying level-k neighbors
of nodegk, x could not find a nodegk+1 that shares the

8For instance, in Figure 2(c), fromC00261 to V1, there are two
branches with suffix 10261 and 51 respectively. Hence, by the end of joins,
00261 should have stored a node with suffix 10261 and a node with suffix
51 in its table.
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State variables of a joining nodex:

x:status 2 fcopying, waiting, notifying, in systemg,
initially copying.

Nx(i; j): the (i; j)-neighbor ofx, initially null.
Nx(i; j).state2 fT , Sg.
Rx(i; j): the set of reverse(i; j)-neighbors ofx, initially empty.

x:noti level: an integer, initially 0.
Qr : a set of nodes from whichx waits for replies, initiallyempty.
Qn: a set of nodesx has sent notifications to, initiallyempty.
Qj : a set of nodes that have sentx aJoinWaitMsg, initially empty.
Qsr ,Qsn: a set of nodes, initiallyempty.

Figure 3. State variables

Messages exchanged by nodes:

CpRstMsg, sent byx to request a copy of receiver’s neighbor table.
CpRlyMsg(x:table), sent byx in response to aCpRstMsg.
JoinWaitMsg, sent byx to notify receiver of the existence ofx,

whenx:status is waiting.
JoinWaitRlyMsg(r; u; x:table), sent byx in response to

aJoinWaitMsg, r 2 fnegative, positiveg, u: a node.
JoinNotiMsg(x:table), sent byx to notify receiver of the

existence ofx, whenx:status is notifying.
JoinNotiRlyMsg(r; x:table; f ), sent byx in response to

aJoinNotiMsg, r 2 fnegative, positiveg, f 2 ftrue, falseg.
InSysNotiMsg, sent byx whenx:status changes toin system.
SpeNotiMsg(x; y), sent or forwarded by a node to inform receiver

of the existence ofy, wherex is the initial sender.
SpeNotiRlyMsg(x; y), response to aSpeNotiMsg.
RvNghNotiMsg(y; s), sent byx to notify y thatx is a reverse

neighbor ofy, s 2 fT;Sg.
RvNghNotiRlyMsg(s), sent byx in response to aRvNghNotiMsg,

s = S if x:status is in system; otherwises = T .

Figure 4. Protocol messages

rightmostk+1 digits with it, orx finds such agk+1 butgk+1

is still a T-node. In the former case,x sends aJoinWaitMsg
to gk, while in the latter case,x sends aJoinWaitMsgto
gk+1. Meanwhile,x sets its status towaiting. Figure 5
depicts the action in c-phase. (For clarity of presentation,
we have omitted the sending of aCpRstMsgfrom x to g,
and the reception of aCpRlyMsgfrom g to x.)

4.2 Action in statuswaiting

The JoinWaitMsgx sends togk (or gk+1) serves as a no-
tification to gk (or gk+1) thatx is waiting to be stored in
its table. Ifgk (or gk+1) has already stored nodeu1 in the
table entryx can be filled into by the time it receives the
message, it sends a negative reply tox with u1 and its own
table. x then sends anotherJoinWaitMsgto u1. This pro-
cess may be repeated (for at mostd times) until some node
fills x into its table and sendsx a positive reply. Note that
a node can only reply tox when it is an S-node; otherwise,
it has to delay its reply. On receiving a positive reply,x

changes status tonotifying. Meanwhile,x setsx:noti level
to jcsuf(x:ID; y:ID)j, wherey is the node that sends the
positive reply tox. Figure 6 and Figure 7 present actions

Action ofx on joininghV;N (V )i, given nodeg0, g0 2 V :

i: an integer, initially 0.p, g: a node, initiallyg0.
s 2 fT , Sg, initially S. // s records the status of nodeg

x:status = copying;
while (g 6= null ands == S) f // copy level-i neighbors ofg
for (j = 0; j < b; j++) f
Nx(i; j) = Ng(i; j); Nx(i; j):state = Ng(i; j):state;
g
p = g; g = Np(i; x[i]); s = Np(i; x[i]):state; i++;
g
for (i = 0; i < d; i++) fNx(i; x[i]) = x; Nx(i; x[i]):state = T ;g
x:status = waiting;
if (g == null) f
SendJoinWaitMsgto p; Qn = Qn [ fpg; Qr = Qr [ fpg;
gelsef // g 6=null ands == T
SendJoinWaitMsgto g; Qn = Qn [ fgg; Qr = Qr [ fgg;
g

Figure 5. Action in status copying

upon receivingJoinWaitMsgandJoinWaitRlyMsg, respec-
tively.

Action ofy on receiving JoinWaitMsg fromx:

k = jcsuf(x:ID;y:ID)j;
if (y:status == in system) f
if (Ny(k; x[k]) 6= null ^ Ny(k; x[k]) 6= x ) f
SendJoinWaitRlyMsg(negative,Ny(k; x[k]), y:table) to x;
g elsef // it must be thatNy(k; x[k]) is null
Ny(k; x[k]) = x; Ny(k; x[k]):state = T ;
SendJoinWaitRlyMsg(positive,x, y:table) to x;
g
gelseQj = Qj [ fxg;

Figure 6. Action on receiving JoinWaitMsg

Action ofx on receiving JoinWaitRlyMsg(r; u; y:table) from y:

Qr = Qr � fyg; k = jcsuf(x:ID;y:ID)j;
if (Nx(k; y[k]) == y) Nx(k; y[k]):state = S;
if (r == positive) f
x:status = notifying; x:noti level = k;
Rx(k; x[k]) = Rx(k; x[k]) [ fyg;
gelsef // a negative reply, needs to send aJoinWaitMsgto u
SendJoinWaitMsgto u; Qn = Qn [ fug; Qr = Qr [ fug;
g
CheckNgh Table(y:table);
if (x:status == notifying^Qr == � ^ Qsr == �)
Switch To S Node();

Figure 7. Action on receiving JoinWaitRlyMsg

4.3 Action in statusnotifying

As shown in Figure 8, in n-phase, ifx finds a nodey such
that jcsuf(x:ID; y:ID)j � x:noti level, x sends aJoin-
NotiMsgto y if it has not done so. Note that whenx sends
out aJoinNotiMsg, it needs to includex:table in the mes-
sage. On receiving theJoinNotiMsgfrom x, y fills x into
its table if the corresponding entry is empty and sends a
JoinNotiRlyMsgthat includesy:table to x. x then checks
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y:table level by level to send moreJoinNotiMsgif neces-
sary. Also, ifx finds a nodeu in y:table that can be filled
into an empty entry, it storesu in that entry. Figure 9 and
Figure 10 present the actions on receivingJoinNotiMsgand
JoinNotiRlyMsg, respectively.

CheckNgh Table(y:table) at x:

for (i = 0; i < d, i++) f
for (j = 0; j < b; j++) f
if (Ny(i; j) 6= null^ Ny(i; j) 6= x)f
u = Ny(i; j); k = jcsuf(x:ID;u:ID)j;
if (Nx(k; u[k])==null) f
Nx(k; u[k]) = u; Nx(k; u[k]):state = Ny(i; j):state;
g
if (x:status == notifying^ k � x:noti level ^ u 62Qn)f
SendJoinNotiMsg(x:table) to u;
Qn = Qn [ fug; Qr = Qr [ fug;
g
g
g
g

Figure 8. Subroutine: Check Ngh Table

Action ofy on receiving JoinNotiMsg(x:table) fromx:

k = jcsuf(x:ID;y:ID)j; f = false;
if (Ny(k; x[k]) == null) f
Ny(k; x[k]) = x; Ny(k; x[k]):state = T ;
g
if (Nx(k; y[k]) 6= y ^ y:status == in system) f = true;
if (Ny(k; x[k]) == x)
SendJoinNotiRlyMsg(positive,y:table, f ) to x;

elseSendJoinNotiRlyMsg(negative,y:table, f ) to x;
CheckNgh Table(x:table);

Figure 9. Action on receiving JoinNotiMsg

Action ofx on receiving JoinNotiRlyMsg(r; y:table; f ) fromy:

Qr = Qr � fyg; k = jcsuf(x:ID;y:ID)j;
if (r == positive) Rx(k; x[k]) = Rx(k; x[k]) [ fyg;
if (f == true^ k > x:noti level ^ y 62 Qsn)f
SendSpeNotiMsg(x,y) toNx(k; y[k]);
Qsn = Qsn [ fyg; Qsr = Qsr [ fyg;
g
CheckNgh Table(y:table);
if (Qr == � ^Qsr == �) Switch To S Node();

Figure 10. Action on receiving JoinNotiRlyMsg

In what follows, we use “notification” to refer to either
a JoinWaitMsgor a JoinNotiMsg. So far, three cases for
a nodex to know any other node,y, have been presented:
(i) x copiesy during c-phase, (ii)x receives a notification
from y, and (iii) x receives a message fromz, which in-
cludesz:table, andy is in z:table. There is one more case,
as shown in Figures 9 and 10: Suppose in statusnotifying,
x sends aJoinNotiMsgto y. Wheny receives the message,
if y is an S-node and finds thatNx(k; y[k]) = u1, where
k = jcsuf(x:ID; y:ID)j andu1 6= y, theny sets a flag

in its reply. Seeing the flag in the reply,x sends aSpeNo-
tiMsg to u1 to inform it abouty if x has not done so and
k > x:noti level. If u1 has setu2 instead ofy as the cor-
responding neighbor, it forwards the message tou2. This
process stops when an informed node stores or has stored
y in its table and sends a reply tox. (This process can be
repeated at mostd times.) Figure 11 and Figure 12 depict
the actions on receivingSpeNotiMsgandSpeNotiRlyMsg,
respectively.

Action ofu on receiving SpeNotiMsg(x; y) fromv:

k = jcsuf(y:ID;u:ID)j;
if (Nu(k; y[k])==null) f
Nu(k; y[k]) = y; Nu(k; y[k]):state = S;
g
if (Nu(k; y[k]) 6= y) SendSpeNotiMsg(x; y) toNu(k; y[k]);
elseSendSpeNotiRlyMsg(x, y) to x;

Figure 11. Action on receiving SpeNotiMsg

Action ofx on receiving SpeNotiRlyMsg(x, y) fromu:

Qsr = Qsr� fyg; if (Qr==� ^ Qsr==�) Switch To S Node();

Figure 12. Action on receiving SpeNotiRlyMsg

4.4 Action in statusin system

Whenx has received replies from all of the nodes it has
notified and finds no more node to notify, it changes status
to in system. Next, x informs all of its reverse-neighbors
and nodes inQj , which have sent it aJoinWaitMsg, that it
has become anS-node. Figure 13 and Figure 14 present the
pseudo-code for this part.

SwitchTo S Node() atx:

x:status = in system;
for (i = 0; i < d; i++) f Nx(i; x[i]):state = S; g
for eachv of x’s reverse neighbors, SendInSysNotiMsgto v;
for eachu, u 2 Qjf
k = jcsuf(x:ID;u:ID)j;
if (Nx(k; u[k])==null) f
Nx(k; u[k]) = u; Nx(k; u[k]):state = T ;
SendJoinWaitRlyMsg(positive,u, x:table) to u;
gelseSendJoinWaitRlyMsg(negative,Nx (k; u[k]),x:table) to u;
g

Figure 13. Subroutine: Switch To S Node

5 Protocol Analysis

In this section, we present a consistency proof of the join
protocol, and analyze the communication cost of each join.
Here we only present important lemmas and proof outlines.
Proof details can be found in Appendix A.
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Action ofy on receiving a InSysNotiMsg fromx:

k = jcsuf(y:ID;x:ID)j; Ny(k; x[k]):state = S;

Figure 14. Action on receiving InSysNotiMsg

5.1 Correctness of join protocol

We present two theorems. Theorem 1 states that when a set
of nodes use the join protocol to join a consistent network,
then at the end of the joins, the resulting network is also con-
sistent. Theorem 2 states that each joining node eventually
becomes an S-node. We begin by presenting Lemmas 5.1
to 5.5. Recall thattex denotes the time when a joining node
x becomes an S-node. In what follows, we usete to denote
max(tex1 ; :::; t

e
xm

).

Lemma 5.1 Suppose nodex joins a consistent network
hV;N (V )i. Then, at timetex, hV [ fxg;N (V [ fxg)i is
consistent.

Lemma 5.2 Suppose a set of nodes,W = fx1,...,xmg,
m � 2, join a consistent networkhV;N (V )i sequentially.
Then, at timete, hV [W;N (V [W )i is consistent.

Lemma 5.3 Suppose a set of nodes,W = fx1,...,xmg,
m � 2, join a consistent networkhV;N (V )i concurrently.
If the joins are independent, then at timete, hV [W;N (V [
W )i is consistent.

Lemma 5.4 Suppose a set of nodes,W = fx1,...,xmg,
m � 2, join a consistent networkhV;N (V )i concurrently.
If the joins are dependent, then at timete, hV [W;N (V [
W )i is consistent.

To prove Lemma 5.4, first consider any two nodes inW ,
x andy. If V Notify

x = V Notify
y , thenx andy belong to the

same C-set tree rooted atV Notify
x , otherwise they belong to

different C-set trees. We consider nodes in the same C-set
tree first. We next present the definition ofcset(V;W ), the
C-set tree realized at timete. The definition is based on a
snapshot of neighbor tables at timete. Then we prove that
the three conditions stated in Section 3.3 are satisfied by
cset(V;W ) and neighbor tables of nodes inV [W .

Definition 5.1 Suppose a set of nodes,W = fx1; :::; xmg,
m � 1, join a consistent networkhV;N (V )i, and for any
nodex, x 2 W , V Notify

x = V! , j!j = k. Then the C-set
tree realized at timete, denoted ascset(V;W ), is defined
as follows:

� V! is the root of the tree.

� Cl1�! is a child ofV! , whereCl1�! = fx; x 2 Wl1�! ^
(9u; u 2 V! ^Nu(k; l1) = x)g, l1 2 [b].

� Clj :::l1�! is a child ofClj�1:::l1�!, whereClj :::l1�! =
fx; x 2 Wlj :::l1�! ^ (9u; u 2 Clj�1 :::l1�! ^ Nu(k +
j � 1; lj) = x)g, 2 � j < d� k, l1,...,lj 2 [b].

Intuitively, in cset(V;W ), Cl1�! is the set of nodes in
Wl1�!, each of which is stored as a (k; l1)-neighbor by at
least one node inV! by time te; Cl2l1�! is the set of nodes
in Wl2l1�!, each of which is stored as a (k+1; l2)-neighbor
by at least one node inCl1�! by timete, and so on. Next, we
prove a few propositions aboutcset(V;W ) andN (V [W ),
given that nodes inW belong to the same C-set tree. Propo-
sitions 5.1, 5.2 and 5.3 state that condition (1), (2) and (3),
stated in Section 3.3, are satisfied at timete, respectively,
while Proposition 5.4 concludes that by timete, nodes in the
same C-set tree as well as nodes inV can reach each other.
Then, Proposition 5.5 extends the result to nodes in differ-
ent C-set trees. Our proofs of these propositions are based
upon induction on C-set trees. With these propositions, we
can prove Lemma 5.4, Lemma 5.5 and finally prove Theo-
rem 1. Note that Propositions 5.1 to 5.4 make the following
assumption:

Assumption 5.1 (for Propositions 5.1 to 5.4)
A set of nodes,W = fx1; :::; xmg,m � 2, join a consistent
networkhV;N (V )i concurrently and for anyx, x 2 W ,
V Notify
x = V! , j!j = k.

Proposition 5.1 If Wlj :::l1�! 6= ;, 1 � j � d�k, l1,...,lj 2
[b], thenClj :::l1�! 6= ;.

Proposition 5.2 Let u be a node inV! . If Wl1�! 6= ;,
l1 2 [b], then there exists a nodex, x 2 Wl1�!, such that
Nu(k; l1) = x by timete.

Proposition 5.3 For any nodex, x 2 W , if Wl�li:::l1�! 6= ;,
wherel 2 [b] andli:::l1 �! is a suffix ofx:ID, 1 � i < d�k,
thenNx(i+ k; l) = y by timete, y 2Wl�li:::l1�!; if Wl�! 6=
;, l 2 [b], thenNx(k; l) = y, y 2Wl�! .

Proposition 5.4 For any two nodesx andy, x 2 V [W ,
y 2 V [W; hx! yid by timete.

Proposition 5.5 Suppose a set of nodes,W = fx1,...,xmg,
m � 2, join a consistent networkhV;N (V )i concurrently.
Let G(V!1) = fx; x 2 W;V Notify

x = V!1g, G(V!2) =
fy; y 2W;V Notify

y = V!2g, !1 6= !2. Then by timete,

� 8x, 8y, x 2 G(V!1), y 2 G(V!2), hx! yid.

Proof of Lemma 5.4: First, separate nodes inW into
groupsfG(V!i), 1 � i � hg, where!i 6= !j if i 6= j, such
that for any nodex in W , x 2 G(V!i) iff V Notify

x = V!i ,
1 � i � h. Then, by Propositions 5.4, 5.5, and Lemma 3.1,
the lemma follows.

Lemma 5.5 Suppose a set of nodes,W = fx1,...,xmg,
m � 2, join a consistent networkhV;N (V )i concurrently.
Then at timete, hV [W;N (V [W )i is consistent.

Proof of Lemma 5.5: First, separate nodes inW into
groups, such that joins of nodes in the same group are de-
pendent and joins of nodes in different groups are mutually
independent, as follows (initially, leti = 1 and put an arbi-
trary nodex, x 2 W , in G1):
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� For each nodey, y 2 W�
Si

j=1Gj , if there exists a
nodex, x 2 Gi, such that(V Notify

y \ V Notify
x 6= ;)

or (9u; u 2 W�
Si�1
j=1Gj , (V Notify

y � V Notify
u ) ^

(V Notify
x � V Notify

u )), puty in Gi;
� Pick any nodex0, x0 2 W�

Si

j=1Gj , putx0 in Gi+1,
incrementi and repeat these two steps until there is no
node left.

Then, by Lemmas 5.4 and 5.3, the lemma holds.

Theorem 1 Suppose a set of nodes,W = fx1,...,xmg,m �
1, join a consistent networkhV;N (V )i. Then, at timete,
hV [W;N (V [W )i is consistent.

Proof of Theorem 1: According to their joining peri-
ods, nodes inW can be separated into several groups,fGi,
1 � i � lg, such that nodes in the same group join concur-
rently and nodes in different groups join sequentially. Let
the joining period ofGi be [tbGi

; teGi
], 1 � i � l, where

tbGi
= min(tbx; x 2 Gi) andteGi

= max(tex; x 2 Gi). We
number the groups in such a way thatteGi

� tbGi+1
. Then,

by Lemma 5.1 and Lemma 5.5, we conclude that at timete,
hV [W;N (V [W )i is consistent.

Theorem 2 Suppose a set of nodes,W = fx1,...,xmg,m �
1, join a consistent networkhV;N (V )i. Then, each nodex,
x 2W , eventually becomes an S-node.

We present a proof outline here. Our proof is based upon
the assumption of reliable message delivery and no node
deletion during joins. First, consider a joining node,x, in c-
phase.x eventually enters w-phase because it sends at most
d CpRstMsg. Each receiver of aCpRstMsgreplies tox with
no waiting.

Second, consider a joining node,x, in w-phase. In this
phase,x sendsJoinWaitMsgto at mostd nodes. We next
show that after sending aJoinWaitMsg, x eventually re-
ceives a reply. If the receiver of aJoinWaitMsg, y, is an
S-node, theny replies with no waiting. Ify is not yet an
S-node, then it is a joining node in n-phase and will wait
until it becomes an S-node before replying tox. Thus, to
complete the proof of this theorem, it suffices to show that
any joining node in n-phase eventually becomes an S-node.

Last, consider a joining node,z, in n-phase. There are
two types of messages sent byz in this phase,JoinNotiMsg
andSpeNotiMsg. z only sendsJoinNotiMsgto a subset of
nodes inV [ W that share the rightmosti digits with it-
self, i = z:noti level, and each receiver of aJoinNotiMsg
replies toz with no waiting. Also,z only sendsSpeNotiMsg
to a subset of nodes inW that share the rightmosti+1 dig-
its with it.9 EachSpeNotiMsgis forwarded at mostd times
before a reply is sent toz, and each receiver of the message
can reply toz or forward the message to another node with
no waiting. Therefore,z eventually becomes an S-node.

9In simulations, we observed that a joining node rarely sends aSpeNo-
tiMsg.

5.2. Communication cost

Among the messages exchanged during a node’s join,
CpRstMsg, JoinWaitMsg, JoinNotiMsg, and their corre-
sponding replies could be big in size since a copy of a neigh-
bor table may be included, while messages of other types
(InSysNotiMsg, SpeNotiMsg, SpeNotiRlyMsg, RvNghNo-
tiMsg, andRvNghNotiRlyMsg) are small in size. We ana-
lyze the number of big messages in this section. The anal-
yses for numbers of small messages are presented in Ap-
pendix A.2.

For each message of typeCpRstMsg, JoinWaitMsg, or
JoinNotiMsg, there is one and only one corresponding reply.
Hence, it is sufficient to analyze the number of messages for
these three types. Theorem 3 presents an upper bound of
the total number ofCpRstMsgandJoinWaitMsgsent by a
joining node,x. Next, letJ be the number ofJoinNotiMsg
sent byx. The expectation ofJ when onlyx joins is given
by Theorem 4, and an upper bound of the expectation of
J whenx joins concurrently with other nodes is given by
Theorem 5.

Theorem 3 Suppose a set of nodes,W = fx1,...,xmg,m �
1, join a consistent networkhV;N (V )i. Then, for anyx,
x 2W , the number ofCpRstMsgandJoinWaitMsgsent by
x is at mostd+ 1.

Theorem 4 Suppose nodex joins a consistent network
hV;N (V )i, jV j = n. Then, the expected number of Join-
NotiMsg sent byx is

Pd�1
i=0

n
bi
Pi(n) � 1, wherePi(n)

is
Pmin(n;B)

k=1
C(B;k)C(bd�bd�i;n�k)

C(bd�1;n)
for 1 � i < d � 1,

whereB = (b� 1)bd�1�i andC(B; k) denotes number of

k-combinations ofB objects,P0(n) is C(bd�bd�1;n)
C(bd�1;n) , and

Pd�1(n) is 1�
Pd�2

j=0 Pj(n).

Theorem 5 Suppose a set of nodes,W = fx1,...,xmg,
m � 2, join a consistent networkhV;N (V )i. Then for
any nodex, x 2 W , an upper bound of the expected num-
ber of JoinNotiMsg sent byx is

Pd�1
i=0 (

n+m
bi

)Pi(n), where
n = jV j, andPi(n) is defined in Theorem 4.

Proofs of the above theorems are presented in Ap-
pendix A.2. Here we only present the intuition for proving
Theorem 4. SupposeV Notify

x = V! . Since onlyx joins,
x needs to sendJoinNotiMsgto all nodes inV! , except the
one it sendsJoinWaitMsgto. LetZ = jV!j andY = j!j.
Hence,E(J) = E(Z � 1), whereE(Z) = E(E(ZjY )) =Pd�1

i=0 (E(ZjY = i))PY (Y = i). It can then be proved that
E(ZjY = i) = n

bi
andPY (Y = i) = Pi(n).

Figure 15(a) plots the upper bound ofE(J) when a set of
nodes join concurrently, wheren = jV j andm = jW j. We
have implemented our join protocol in detail in an event-
driven simulator. Figure 15(b) shows simulation results of
the number ofJoinNotiMsgsent by each joining node. We
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Figure 15. Number of JoinNotiMsg sent by a joining node

use the GT-ITM package [1] to generate network topolo-
gies. The topology used in Figure 15(b) has 8320 routers.
There are two simulation setups. In one setup, 4096 nodes
(end-hosts) are attached to the routers randomly, 3096 of
which form a consistent network initially and the remain-
ing 1000 nodes join concurrently. In the other setup, 8192
nodes are attached, and 1000 nodes join a consistent net-
work formed by the other 7192 nodes. (In the simulations,
all joins start at the same time.) For the simulations shown
in Figure 15(b), average number ofJoinNotiMsgsent by
joining nodes are 6.117, 6.051, 5.026, and 5.399, respec-
tively, while the upper bounds by Theorem 5 are 8.001,
8.001, 6.986, and 6.986, respectively. Also, results in Fig-
ure 15(b) indicate that the majority of joining nodes send
a small number ofJoinNotiMsg. Other simulation results
show the same trend.

6 Discussions

6.1 Network initialization

The join protocol can be used for network initialization. To
initialize a network withn nodes, put one node,x, in V ,
and constructx:table as follows:

� Nx(i; x[i]) = x, Nx(i; x[i]):state = S, i 2 [d].
� Nx(i; j) = null, i 2 [d], j 2 [b] andj 6= x[i].

Next, the othern � 1 nodes join the network by executing
the join protocol, each is givenx to begin with. Eventually,
a consistent network is constructed.

6.2 Message size reduction

In the join protocol, some types of messages need to include
a copy of the sender’s neighbor table. Several enhancements
can be made to reduce the size of such a message:

� When nodex sends aJoinNotiMsgto nodey, it does
not need to include its whole table in the message.
Only including level-i, i = x:noti level, to level-k,
k = jcsuf(x:ID; y:ID)j, is enough.

� Moreover,x can include abit vector in the JoinNo-
tiMsg it sends to nodey, as suggested in [5]. Each bit
corresponds to an entry inx:table, with ‘1’ meaning
that the entry is already filled and ‘0’ meaning the op-
posite. Then, in its reply tox, y only needs to include
neighbors in level-i entries that correspond to a ‘0’ in
the bit vector,0 � i < x:noti level, as well as all
level-i0 neighbors,x:noti level � i0 � d� 1.

6.3 Neighbor table optimization

There are several ways to optimize a node’s neighbor ta-
ble. One is to copy neighbors from nearby nodes. For ex-
ample, instead of copying level-0 neighbors ofg0, nodex
can choose a node that is closest to it from amongg0 and
neighbors ofg0 (or even neighbors of neighbors ofg0), and
copy level-0 neighbors of that node to construct its own ta-
ble at level-0. As suggested by [2], copying neighbors from
nearby nodes help exploit node proximity in the underlying
network.x can also optimize its table after its join process
by running some algorithm (for example, the nearest neigh-
bor algorithm presented in [5]) to locate nearest neighbors.
In presenting our join protocol, we previously assumed that
once a table entry is filled, it will not be modified there-
after. This assumption was made to ensure that reachability
of each node is preserved. If neighbor tables can be opti-
mized without sacrificing the reachability of any node, then
consistency of neighbor tables will not be affected by neigh-
bor replacements.

7. Conclusions
For the hypercube routing scheme used in several proposed
peer-to-peer systems [8, 12, 10, 6], we present a new join
protocol that constructs neighbor tables for new nodes and
updates neighbor tables in existing nodes. We present a
rigorous proof that the join protocol produces consistent
neighbor tables after an arbitrary number of concurrent
joins. Furthermore, we present a conceptual foundation, C-
set trees, for reasoning about consistency. We plan to use
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this conceptual foundation to design protocols for leaving,
failure recovery, and neighbor table optimization. The ex-
pected communication cost of integrating a new node into
the network is shown to be small by both theoretical analy-
sis and simulations.
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A Proofs of Propositions, Lemmas and The-
orems

A.1 Correctness of Join Protocol

In this section, we present our proofs of propositions, lem-
mas and theorems stated in Section 5. The notation used in
our proofs is shown in Table 2. Also, in what follows, when
we mention thatnodey stops at level-j at the end of c-
phase, j 2 [b], we mean that (i) after copying level-j neigh-
bors ofuj , y could not find a node that shares the rightmost
j +1 digits with it, or (ii) after copying level-(j� 1) neigh-
bors fromuj�1, y finds thatuj shares the rightmostj digits
with it, but uj is still a T-node. Thirdly, recall that notation
hx! yid, introduced in Section 3, denotes thatx can reach
y within d hops. By the definition,hx ! yid indicates that
there exists a neighbor sequence(u0; :::; ud) such thatu0 is
x, ud is y, andui+1 is Nui(i; y[i]), i 2 [d]. Observe that
uj = x, 0 � j � k, k = jcsuf(x:ID; y:ID)j. Hence,
it is sufficient to say that ifhx ! yid, then there exists a
neighbor sequence(uk; :::; ud), k = jcsuf(x:ID; y:ID)j,
such thatuk = x, ud = y, andui+1 is Nui(i; y[i]) for
k � i � d� 1.

Again, we use “notification” to refer to aJoinWaitMsgor
aJoinNotiMsg. We also use the following abbreviations for
protocol messages:

CP for CpRstMsg
CPRly for CpRlyMsg
JW for JoinWaitMsg
JWRly for JoinWaitRlyMsg
JN for JoinNotiMsg
JNRly for JoinNotiRlyMsg
SN for SpeNotiMsg
SNRly for SpeNotiRlyMsg
RN for RvNghNotiMsg
RNRly for RvNghNotiRlyMsg

Notation Definition

x
j
! y the action thatx sends aJN or aJW to y

x
jn
! y the action thatx sends aJN to y

x
jw
! y the action thatx sends aJW to y

x
c
! y the action thatx sends aCP to y

x[k � 1]:::x[0] the rightmostk digits ofx:ID; if k = 0, then it
denotes the empty string

A(x) theattaching-nodeof x, which is the node that
sends a positiveJWRlyto x

tex the timex changes status toin system, i.e., the end
of x’s join process,

te max(tex1 ; :::; t
e
xm)

Table 2. Notation in proofs

In our proofs, we assume reliable message delivery and
no node deletion during the joins. We also assume that the
actions specified by Figures 6, 7, 9, 10, 11, 12 and 14 are
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atomic. The following facts, which are easily observed from
the join protocol, are used frequently in the proofs.

Fact 1 Messages of typeCP, JW, andJN are only sent by
T-nodes.

Fact 2 If nodex sends out aJWRly at time t, thenx is
already an S-node at timet.

Fact 3 If A(x) = u, then x:noti level = h and
Nu(h; x[h]) = x, whereh = jcsuf(x:ID; u:ID)j. Also,
x changes status from waiting to notifying immediately af-
ter it receives aJWRly fromu.

Fact 4 A joining node,x, only sends aJN to y if x is in
status notifying andjcsuf(x:ID; y:ID)j � x:noti level.

Fact 5 If x
jn
! y happens,y will send a reply that includes

y:table to x immediately. Moreover, eachJN sent byx in-
cludesx:table.

Fact 6 x sends a message of typeJW or JN to y at most
once (x does not send both types of messages toy).

Fact 7 By timetex, x has received all of the replies for mes-
sages of typeCP, JW, JN, andSN it has sent out.

Proposition A.1 Suppose a set of nodes,W =
fx1; :::; xmg,m � 1, join a consistent networkhV;N (V )i.
Consider nodex, x 2 W . Letu = A(x) and lett be the
timeu sends its positive reply,JWRly, tox. Suppose one of
the following is true, wherey 2 V [W andy 6= x:

� x
jn
! y happens;

� y = u.

Then if at time t, hy ! zid, z 2 V [ W , and

jcsuf(x:ID; z:ID)j � x:noti level, thenx
j
! z even-

tually happens.

Proof: Since timet, y can reachz, there must exist a neigh-
bor sequence, (uh, uh+1, ...,ud), h = jcsuf(y:ID; z:ID)j,
such thatuh is y, ud is z, and ui+1 is Nui(i; z[i]) for
h � i � d � 1. Note that the ID of each node in the se-
quence has suffixy[h � 1]:::y[0] (which is the same with
z[h� 1]:::z[0]).

Next, we prove the following claim:If x
j
! ui happens,

h � i � d� 1, thenx
j
! ui+1 eventually happens.

Let k = x:noti level. To prove the claim, we first
need to show thatjcsuf(x:ID; ui:ID)j � k, h � i �
d � 1. Thus, bothy:ID and z:ID have suffixx[k �
1]:::x[0] (which is equal toy[k � 1]:::y[0] and z[k �
1]:::z[0]). Let hxy = jcsuf(x:ID; y:ID)j and hxz =
jcsuf(x:ID; z:ID)j. Thenhxy � k (by Facts 3 and 4) and
hxz � k (by Fact 4). Consequently,h � min(hxy; hxz) �
k. Since all the IDs ofui, h � i � d � 1, have suffix
y[h� 1]:::y[0], they all have suffixy[k � 1]:::y[0], which is
the same withx[k � 1]:::x[0] according the the above anal-
ysis. Hence,jcsuf(x:ID; ui:ID)j � k, h � i � d.

We then can prove the claim. Supposex
j
! ui happens.

If ui+1 = ui, then the claim holds trivially. Ifui+1 6= ui,
then letti be the timeui sends its reply tox. If ui = u, then
ti = t; If ui 6= u, however, the notificationx sends toui is
JN, thenti > t, becausex can not send out aJNbefore time
t (by Fact 4). Thus,ti � t. Since the neighbor sequence
betweeny andz already exists at timet, at ti, Nui(i; z[i])
is already filled withui+1. Thus, fromui’s reply,x knows
ui+1 and will send aJN to ui+1 if it has not done so (see
code in Figures 7 and 10). Hence, the claim holds for any
i, h � i � d� 1.

Then, given thatx
j
! uh (uh = y) happens, and by

induction oni, h � i � d � 1q, we conclude thatx
j
! z

eventually happens. Moreover,x will not change status to
in systemif it has not received the reply fromz. Hence, the
timex sends a notification toz is beforetex.

A.1.1 Single Join

Lemma 5.1 Suppose nodex joins a consistent network
hV;N (V )i. Then, at timetex, hV [ fxg;N (V [ fxg)i is
consistent.

Proof: SupposeVx[k�1]:::x[0] 6= ; andVx[k]:::x[0] = ;, 1 �
k � d� 1. (Such ak must exist sincex:ID is unique, thus
at leastVx[d�1]:::x[0] = ; is true.) SinceVx[k�1]:::x[0] 6= ;,
Vx[i�1]:::x[0] 6= ; for all i, 1 � i � k.

Initially, x knowsg0, g0 2 V . x then requests to copy
level-0 neighbors ofg0. If k > 0, thenVx[0] 6= ;, thus
Ng0(0; x[0]) 6= null. Let g1 = Ng0(0; x[0]). Next, x re-
quests to copy level-1 neighbors ofg1. Similar to the above
argument, ifk > 1, x will find g2, g2 = Ng1(1; x[1]).
The process is then repeated for level-2, level-3, and so on,
and eventually stops at level-k, whereNgk (k; x[k]) = null
sinceVx[k]:::x[0] = ;. At this time,x’s c-phase ends. Con-
sider an (i; j)-entry in x:table, 0 � i � k, j 2 [b] and
j 6= x[i]. If Vj�x[k�1]:::x[0] 6= ;, then givenhV;N (V )i
is consistent, we know thatNgi(i; j) 6= null, wheregi is
the nodex has requested for its level-i neighbors. By set-
ting Nx(i; j) = Ngi(i; j), it follows thatNx(i; j) 6= null.
Also, beforex turns into an S-node, it setsNx(i; x[i]) = x.
Hence, by timetex, table entries inx:table satisfy condition
(a) in Definition 3.8.

Next, considerx’s w-phase and n-phase. In w-phase,x

sends aJW to gk. Since onlyx is joining, by the timegk
receives the message,gk knows no other nodes that have
suffix x[k]:::x[0]. gk then storesx in its table and sends
back a positiveJWRly, which enablesx to proceed to n-
phase. Let the timegk sends its reply tox be timet. Given
thatN (V ) is consistent, at timet, gk can reach any nodev,
v 2 Vx[k�1]:::x[0] andv 6= gk. Then by Proposition A.1,

x
j
! v eventually happens. Therefore, by timetex, all

nodes inVx[k�1]:::x[0] have been notified byx and will set
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Nx(k; x[k]) = x. Now consider any (i; j)-entry inv:table,
v 2 V , i 2 [d], j 2 [b]. If (V [ fxg)j�v[i�1]:::v[0] 6= ;,
0 � i < k (or i = k, j 6= x[i]), thenVv[i�1]:::v[0] 6= ;, thus
Nv(i; j) = y, y 2 Vv[i�1]:::v[0]. If (V [fxg)j�v[i�1]:::v[0] 6=
;, i = k andj = x[i], thenNv(i; j) = x by time tex, as
proved above. If(V [ fxg)j�v[i�1]:::v[0] 6= ;, i > k, then
Vj�v[i�1]:::v[0] 6= ; (j � v[i � 1]:::v[0] can not be a suffix of
x:ID), thus,Nv(i; j) = y, y 2 Vv[i�1]:::v[0]. Altogether,
Table entries inv:table also satisfy condition (a) in Defini-
tion 3.8 at timete. Therefore,hV [ fxg;N (V [ fxg)i is
consistent at timete.

Corollary A.1 Suppose a set of nodes,W = fx1,...,xmg,
m � 2, join a consistent networkhV;N (V )i. Then for any
nodex, x 2 W , if Vj�x[i�1]:::x[0] 6= ;, i 2 [d], j 2 [b] and
j 6= x[i], then there exists a nodey, y 2 Vj�x[i�1]:::x[0], such
thatNx(i; j) = y at timetex.

A.1.2 Multiple Joins

In this section, we prove Theorems 1 and 2. To prove The-
orem 1, we first prove the lemmas and propositions stated in
Section 5.1, as well as some auxiliary lemmas and proposi-
tions. To simplify our presentation, we define a suffixli:::l0
to be empty ifi = 0.

Lemma 5.2 Suppose a set of nodes,W = fx1,...,xmg,
m � 2, join a consistent networkhV;N (V )i sequentially.
Then, at timete, hV [W;N (V [W )i is consistent.

Proof: Proof by induction. SincehV;N (V )i is consistent,
by Lemma 5.1, the corollary holds whenj = 1. Assume
the corollary holds forj, 1 � j < n, i.e., by timetexj , hV [
fx1; :::; xjg;N (V [fx1; :::; xjg)i is consistent. Thenxj+1

joins at timetbxj+1 , wheretbxj+1 > texj . Thus, whenxj+1

joins, hV [ fx1; :::; xjg;N (V [ fx1; :::; xjg)i is already
consistent and there is no other joins duringxj+1’s joining
period. By Lemma 5.1, by the end ofxj+1’s joining period,
hV [ fx1; :::; xi+1g;N (V [ fx1; :::; xi+1g)i is consistent.
Therefore, the lemma holds.

Lemma A.1 Suppose two nodes,x andy, join a consistent
networkhV;N (V )i, V Notify

x = V!1 andV Notify
y = V!2 .

Then the joins ofx andy are independent iff neither!1 nor
!2 is a suffix of the other.

Proof: V!1 is the set of nodes inV with suffix !1. Like-
wise, V!2 is the set of nodes inV with suffix !2. Let
! = csuf(!1; !2). If neither!1 nor !2 is a suffix of the
other, then! 6= !1 and! 6= !2. Thus,V!1 \ V!2 = ;. By
the definition, the joins ofx andy are independent.

Lemma A.2 Suppose a set of nodes,W = fx1; :::; xmg,
join a consistent networkhV;N (V )i. For any two nodesxi
andxj , xi 2W , xj 2 W , xi 6= xj , if V Notify

xi
\ V Notify

xj
=

;, then(V [W 0)Notify
xi

\ (V [W 0)Notify
xj

= ;, whereW 0 �
W , xi 62W 0 andxj 62W 0.

Proof: Proof by contradiction. Assume that(V [
W 0)Notify

xi
\ (V [W 0)Notify

xj
6= ;.

SupposeV Notify
xi

= V!i , (V [ W 0)Notify
xi

= V!0
i
,

V Notify
xj

= V!j , and (V [ W 0)Notify
xj

= V!0
j
. Then!i

is a suffix of !0

i and !j is a suffix of !0

j . (Suppose!i
is xi[k � 1]:::x1[0], k � d, then inV [ fxig, xi is the
only node with suffixxi[k]:::x[0]. Also, suppose!0

i is
xi[k

0 � 1]:::x1[0], k0 � d, then inV [ W 0 [ fxig, xi is
the only node with suffixxi[k0]:::x[0]. Hence,k0 is no less
thank.)

Then, by Lemma A.1, either!0

i or !0

j is a suffix of the
other, since it is assumed that(V [ W 0)Notify

xi
\ (V [

W 0)Notify
xi

6= ;. Without loss of generality, suppose!0

i is
a suffix of!0

j . It then follows that!i is a suffix of!0

j . Since
!j is also a suffix of!0

j , either!i or !j must be a suffix of
the other, which contradicts with Lemma A.1.

Corollary A.2 Suppose a set of nodes,W = fx1; :::; xmg,
join a consistent networkhV;N (V )i. For any two nodesxi
andxj , xi 2W , xj 2W , xi 6= xj , if V Notify

xi
\ V Notify

xj
=

;, then(V [W 0[fxjg)Notify
xi

\ (V [W 0[fxig)Notify
xj

= ;,
whereW 0 �W , xi 62 W 0 andxj 62W 0.

Lemma A.3 Suppose a set of nodes,W = fx1; :::; xmg,
join a consistent networkhV;N (V )i independently. For
any nodex, x 2 W , if Vj�x[i�1]:::x[0] = ;, 0 � i < d � 1,
j 2 [b] andj 6= x[i], then(V [W 0)j�x[i�1]:::x[0] = ;, where
W 0 �W .

Proof: Proof by contradiction. Suppose there exists one
nodex, x 2 W , such thatVj�x[i�1]:::x[0] = ;, however,
(V [W 0)j�x[i�1]:::x[0] 6= ;, j 6= x[i]. Then there exists a
nodey, y 2 W 0 such thaty:ID has suffixj �x[i� 1]:::x[0].
Thus,x[i� 1]:::x[0] = y[i� 1]:::y[0] andj = y[i].

Next, supposeV Notify
x = x[k1�1]:::x[0] andV Notify

y =
y[k2�1]:::y[0]. (Recall that this indicatesVx[k1�1]:::x[0] 6= ;
andVy[k2�1]:::y[0] 6= ;.) By Lemma A.1, neitherx[k1 �
1]:::x[0] nory[k2 � 1]:::y[0] is a suffix of the other.

If k2 � k1, thenx[k1 � 1]:::x[0] 6= y[k1 � 1]:::y[0]
(otherwise,x[k1 � 1]:::x[0] is a suffix ofy[k2 � 1]:::y[0]).
On the other hand,x[i � 1]:::x[0] = y[i � 1]:::y[0]. Thus,
k1 > i. GivenVx[k1�1]:::x[0] 6= ; andk1 > i, it follows
that Vx[i�1]:::x[0] 6= ;. However,Vx[i�1]:::x[0] 6= ; and
Vj�x[i�1]:::x[0] = ; (i.e.Vy[i�1]:::y[0] 6= ;,Vj�y[i�1]:::y[0] 6= ;

andj = y[i]) indicates thatV Notify
y = Vx[i�1]:::x[0]. Hence,

k2 = i. However, givenk2 � k1 andk1 > i, we have
k2 > i, which contradicts withk2 = i.

Similarly, if k1 � k2, thenx[k2 � 1]:::x[0] 6= y[k2 �
1]:::y[0]. Again, it must bek2 > i sincex[i � 1]:::x[0] =
y[i � 1]:::y[0]. Given Vy[k2�1]:::y[0] 6= ; and k2 > i,
it follows that Vy[i�1]:::y[0] 6= ;. Therefore,V Notify

y =
Vy[i�1]:::y[0], since Vj�y[i�1]:::y[0] = ;, j = y[i], but
Vy[i�1]:::y[0] 6= ;. Thus,k2 = i, which contradicts with
k2 > i.
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Corollary A.3 Suppose a set of nodes,W = fx1; :::; xmg,
join a consistent networkhV;N (V )i. Let G(V!1) =
fx; x 2 W;V Notify

x = V!1g, G(V!2 ) = fy; y 2
W;V Notify

y = V!2g. If V!1 \ V!2 = ;, then for any
nodex, x 2 G(V!1), if Vj�x[i�1]:::x[0] = ;, j 6= x[i], then
(V [G(V!2 ))j�x[i�1]:::x[0] = ;.

Lemma 5.3 Suppose a set of nodes,W = fx1,...,xmg,
m � 2, join a consistent networkhV;N (V )i concurrently.
If the joins are independent, then at timete, hV [W;N (V [
W )i is consistent.

Proof: Consider any nodex, x 2W . If Vj�x[i�1]:::x[0] 6= ;
(hence(V [ W )j�x[i�1]:::x[0] 6= ;), i 2 [d], j 2 [b] and
j 6= x[i], then by Corollary A.1, at timete, Nx(i; j) = y,
wherey 2 Vj�x[i�1]:::x[0]. If Vj�x[i�1]:::x[0] = ;, j 2 [b] and
j 6= x[i], then by Lemma A.3,(V [W )j�x[i�1]:::x[0] = ;,
henceNx(i; j) remains empty. Lastly,Nx(i; j) = x, i 2
[b] andj = x[i]. Therefore, entries inx:table satisfy the
consistency condition.10

SupposeV Notify
x = V!x , j!xj = k. Then, similar to the

argument in proving Lemma 5.1, it can be shown that by
time te, x has notified all of the nodes inV!x , which in turn
have updated the corresponding entries in their table.

The above results are true for anyx, x 2 W . Hence, for
any node inv, v 2 V , if (V [W )j�v[i�1]:::v[0] 6= ;, i 2 [d],
j 2 [b], thenNv(i; j) = y, y 2 (V [W )j�v[i�1]:::v[0] by
time te. Therefore, by timete, for any node in the network,
the consistency condition holds. We conclude thathV [
W;N (V [W )i is consistent at timete.

Proposition A.2 Suppose a set of nodes,W =
fx1; :::; xmg,m � 2, join a consistent networkhV;N (V )i.
For any two nodesx and y, x 2 W and y 2 V [ W , if

x
j
! y happens, then at timetex, hy ! xid.

Proof: Initially, let i = 0 andu0 = y. Let the timeui
sends its reply tox be ti (if x

jn
! ui, thenti is the same

with the timeui receives the message fromx; if x
jw
! ui,

then ti is the same with the timeui receives the message
from x if y is an S-node atti, or time tuie ). Also, leth =
jcsuf(x:ID; y:ID)j.
(1) If at time ti, Nui(hi; x[hi]) = null, hi =

jcsuf(x:ID; ui:ID)j, thenui will setNui(h; x[h]) =
x. Hence,hy ! xid, since a neighbor sequence from
y to x, (u0 (y), u1, ...,ui, x), exists.

(2) If at time ti, Nui(hi; x[hi]) = v, v 6= x, then from
ui’s reply, x finds v in ui:table. Let ui+1 = v and
jcsuf(x:ID; ui+1:ID)j = hi+1. Let the timex re-

ceives the reply fromy bet0i. If x
jn
! ui, thenx is in n-

phase at timeti’ and sincehi+1 � hi � x:noti level,

10By saying that entries inx:table satisfy the consistency condition, or
the consistency condition holds atx, we mean that condition (a) in Defini-
tion 3.8 is satisfied by each entry inx:table.

x needs to send aJN to ui+1; If x
jw
! ui, thenx is in

w-phase at timet0i and needs to sendui+1 a JW. In ei-

ther case,x
j
! ui+1 happens. Incrementi and repeat

steps (1) and (2).

We claim that steps (1) and (2) be repeated at mostd times,
because
� At roundi, hi > hi�1.
� At each roundi, hi � d � 1. The reason is thatx:ID

is unique in the system, therefore, any other node can
share at mostd� 1 digits (rightmost) withx.

Hence, there exists a node,uj , 1 � i < d � h, such
Nuj (hi; x[hj ]) = x, hj = jcsuf(x:ID; uj :ID)j. There-
fore, eventually, there exists a neighbor sequence fromy to
x, which is (u0 (y), u1, ...,uj , x). Moreover, at timetex, x
must have received all replies it expects, which include the
reply fromuj . Hence, at timetex, y can already reachx.

Proposition A.3 Suppose a set of nodes,W =
fx1; :::; xmg,m � 2, join a consistent networkhV;N (V )i.
Let x and y be two nodes inW . Suppose there exists

a nodeu, u 2 V [ W , such that by timete, x
j
! u

has happened, andy
j
! u or y

c
! u has happened. If

jcsuf(x:ID; y:ID)j = h and x:noti level � h, then
by time txy, txy = max(tex; t

e
y), there exists a nodez,

z 2 (V [W )x[h]:::x[0], such thatNy(h; x[h]) = z.

Proof: To prove there exists a nodez, z 2 Wx[h]:::x[0],
such thatNy(h; x[h]) = z by time txy, it is sufficient to
show that by timetxy, y gets to know at least one node in
Wx[h]:::x[0]. (y stores the first node it knows and ignores the
others.) Observe thath > k andx[h] 6= y[h].

� Case 1: jcsuf(u:ID; x:ID)j > h. (For example,
u =30251,x =20251,y =10151.)

In this case,u 2 (V [ W )x[h]:::x[0]. By the timey
sends a notification tou or sends aCP to u, y already
knowsu. Thus, either there already exists a ndoez,
such thatz = Ny(h; x[h]), orNy(h; x[h]) = u.

� Case 2: jcsuf(u:ID; x:ID)j = h. (For example,
u =30151,x =20251,y =10151.)

Consider what happens afteru receives the message,
either aCP or a notification, fromy. We analyze the

casey
j
! u first. Letu0 = u, and leti = 0 initially,

then the following process may be repeated:
– Supposejcsuf(ui:ID; y:ID)j = hi, i � 0.

If at the timeui receives the message fromy,
it sets or has setNui(hi; y[hi]) = y, then let
f = i and the process ends; Ifui has already
setNui(hi; y[hi]) = v, v 6= y, thenui replies to
y with v. Next,y needs to send a notification tov

if it has not done so, i.e.,y
j
! v will happen (or

has happened). Then, incrementi and letui = v.
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Similar to the argument in the proof of Proposi-
tion A.2, it can be shown that the above process will
terminate, i.e., eventuallyy is stored by a nodeuf ,
0 � f � d� h0. Hence, we get a chain of nodes, (u0,
u1, ...,uf ), whereu0 = u andui+1 = Nui(hi; y[hi])
for 0 � i � f � 1, hi = jcsuf(ui:ID; y:ID)j.

Similarly, if y
c
! u, then there also exists a chain of

nodes, (u0, u1, ..., um), whereu0 = u, such thaty
requests neighbor tables fromu0 to uj , 0 � j � m,
whereui+1 = Nui(i; y[i]) for 0 � i � j � 1, and
then notifies (by sendingJW) uj , uj+1, and so on until
it is stored byuf , whereui+1 = Nui(hi; y[hi]) for
j � i � f � 1, hi = jcsuf(ui:ID; y:ID)j. Note that
in this case, it is possible thatui = ui+1 for 0 � i < j.

In summary, there exists a chain of nodes, (u0, u1, ...,
uf ), 0 � m � d� h0, such thatu0 = u andui+1 is a
neighbor ofui, as described above, and eithery

c
! ui

or y
j
! ui happens,0 � i � f . Note thatui needs

to replyy with ui:table no mattery
c
! ui or y

j
! ui

happens. Moreover,ui:ID, 1 � i � f , also has suffix
y[h]:::y[0], wherey[h� 1]:::y[0] = x[h� 1]:::x[0] and
y[h] 6= x[h], thus, jcsuf(x:ID; ui:ID)j = h. Let
uf+1 = y. We call such a chain of nodes, (u0, u1,
...,uf , uf+1), contact-chain(y; u0) (actually, once the
chain is established, it is the same with the neighbor
sequence fromu0 to y). We then prove the following
claim:

Claim A.1 (Property of contact-chain(y; u0))
Consider contact-chain(y; u0), which is (u0, u1, ...,uf ,
uf+1). If after y receives all of the replies fromu0 to
ui and copies nodes from neighbor tables included in

the replies,11Ny(h; x[h]) is still empty, thenx
j
! ui+1

happens eventually,0 � i � f + 1.

Proof: ( of Claim A.1) We prove the above claim
by induction oni. In what follows, we say that link
(ui; ui+1) exists at timet, if ui has storedui+1 in its
table by timet.

Base step: If after y receives the reply fromu0 and
copies nodes fromu0:table,Ny(h; x[h]) is still empty,
then it indicates thatNu0(h; x[h]) = null at the time
u0 sends out the reply toy. Thus, it must be thatu0
does not copy a nodez with suffix x[h]:::x[0] during
its c-phase (otherwise,y would copyz from u0, since
whenu0 replies toy, u0 must have already finished its
c-phase). Lett1 be the timeu0 sends its reply toy, and
t2 be the timeu0 receives the notification fromx.

Then it must bet1 < t2, as shown in Figure 16.
Otherwise, at timet2, u0 knows x and at timet1,

11See the code in Figures 5 and 8.

t 1

time axis

a message
t 2

y

u

x

t

Figure 16. Message sequence chart for Proposition. A.3

Nu0(h; x[h]) could not be empty, hence,Ny(h; x[h])
could not be empty aftery receivesu0’s reply. More-
over, link (u0; u1) already exists at timet1, other-
wise,u0 will set y instead ofu1 as the corresponding
neighbor. Consequently, link(u0; u1) exists at timet2.
Hence, fromu0’s reply that includesu0:table,x knows
u1. On receiving the reply fromu0, if x is in n-phase
at this point,x will notify u1 if it has not done so, since
jcsuf(x:ID; u1:ID)j = h andh � x:noti level; If x
is in w-phase, then the reply fromu0 must be a posi-
tive JWRly(otherwise,x needs to continue sendingJW
to a node that shares more thanh digits with it, which
indicatesx:noti level > h), andx then proceeds to

n-phase and sends aJN to u1. In either case,x
j
! u1

eventually happens.

Inductive step: Assume the claim holds for allj, 0 �
j � i, where0 � i � m�1. We next prove that if after
receiving replies fromu0 to ui+1, 0 � i � f � 1, and
copying nodes from their neighbor tables,Ny[h; x[h]

is still empty, thenx
j
! ui+2 eventually happens.

By assuming that the claim holds for allj, 0 � j � i,

we know thatx
j
! ui+1 happens. Also, according to

the construction of contact-chain(y; u0), we know that

y
j
! ui+1 (or y

c
! ui+1) happens.

Similar to the base case, lett1 be the timeui+1 sends
its reply to y, and t2 be the timeui+1 sends its re-
ply to x. Then it must be thatt1 < t2. Also, we
know that link(ui+1; ui+2) already exists at timet1 as
well as at timet2. Hence, whenui+1 replies tox with
ui+1:table, x knowsui+2 and will notifyui+2 if it has

not done so. Thus,x
j
! ui+2 eventually happens.

Having proved the claim, it is trivial to show that if af-
ter receiving all the replies fromu0 to uf ,Ny(h; x[h])

is still empty, then eventuallyx
j
! y happens (which

is before timetex and thus before timetxy). In
other words, either thaty knows a node inWx[h]:::x[0]

throughui, 0 � i � f , or thaty receives a notifica-
tion from x eventually. Therefore, by timetex, there
exists a nodez, z 2 (V [ W )x[h]:::x[0], such that
Ny(h; x[h]) = z.

� Case 3: jcsuf(u:ID; x:ID)j < h (for example,
u =30161,x =20251,y =10151).

Let jcsuf(u:ID; x:ID)j = h0, thenx[h0] = y[h0],
sincex[h � 1]:::x[0] = y[h � 1]:::y[0] andh0 < h.
In this case, the notificationx sends tou must be aJW,
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sinceh0 < x:noti level indicatesx can not send aJN
to u. Moreover,h0 < x:noti level also indicates that
u sends a negative reply tox, otherwise,x:noti level
would be set toh0 (see the code in Figure 7). Then it
could be thatNu(h

0; x[h0]) = y orNu(h
0; x[h0]) = v,

wherev 6= x andv 6= y.

If Nu(h
0; x[h0]) = y, then fromu’s reply,x findsy and

sends anotherJW to y. Thus,y knowsx and will set
Ny(h; x[h]) = x if it has not filled that entry.

If Nu(h
0; x[h0]) = v, however,v 6= x andv 6= y,

then letv1 = v (jcsuf(v1:ID; x:ID)j > h0). Let
i = 1 initially and repeat the following process until
jcsuf(vi:ID; x:ID)j � h:

– Let hi = jcsuf(vi:ID; x:ID)j. If hi � h,
then according to Case 1 or Case 2, the propo-
sition holds (substituteu with vi in the proof in
Case 1 or Case 2). Ifhi < h, then, similarly,
it can not beNvi(hi; x[hi]) = x. Hence, either
Nvi(hi; x[hi]) = y or thatNvi(hi; x[hi]) is set to
a node other thany. If Nvi(hi; x[hi]) = y, then

x
j
! y eventually happens; otherwise, letvi+1 =

Nvi(hi; x[hi]) ( jcsuf(vi+1:ID; x:ID)j >

jcsuf(vi:ID; x:ID)j), incrementi and repeat
this step.

As mentioned in Section 5.1, to prove Lemma 5.4, a case
in which a set of nodes join a consistent network concur-
rently and the joins are dependent, we first consider nodes
in the same C-set tree and prove that nodes in the same C-set
tree and nodes inV can eventually reach each other (stated
in Proposition 5.4). Then, we prove Proposition 5.5, which
states that nodes in different C-set trees can eventually reach
each other. Based on Proposition 5.4 and Proposition 5.5,
we present our proof of Lemma 5.4.

Proofs of the following propositions and corollaries are
based on induction uponcset(V;W ) (the C-set tree realized
at timete given that nodes inW all have the same noti-set),
as defined in Section 3. Propositions 5.1 to 5.4, as well
as Propositions A.4 to A.8 make the same assumption as
Definition 5.1, namely:

Assumption 5.1 (for Propositions 5.1 to 5.4 and Propo-
sitions A.4 to A.8)
A set of nodes,W = fx1; :::; xmg,m � 2, join a consistent
networkhV;N (V )i concurrently and for anyx, x 2 W ,
V Notify
x = V! , j!j = k.

For clarity of presentation, we do not repeat the above
assumption in the propositions and corollaries that use it.
Note that propositions and corollaries after Proposition 5.4
do not make the above assumption any more.

Proposition A.4 For each nodex, x 2 W , there exists a
C-setClj :::l1�!, 1 � j � d � k, such that by timete, x 2
Clj :::l1�!, wherelj :::l1 � ! is a suffix ofx:ID.

Proof: Consider an arbitrary nodex, x 2 W . Suppose
at the end of c-phase, the nodesx has sentCP to areg0,
g1, ..., andgk0 , k � k0 < d � 1, where at each step,x
requests level-i neighbors ofgi, 0 � i � k0. Moreover,
gi = Ngi�1(i � 1; x[i � 1]) for 1 � i � k0. Note that
gi 2 V for 0 � i � k, while gi 2 W for k < i � k0.
Also, gk 2 V! sincegk shares rightmostk digits (!) with
x. If k0 > k, by the definition of C-set,gk+1 2 Cx[k]�!,
gk+2 2 Cx[k+1]x[k]�!, ..., andgk0 2 Cx[k0�1]:::x[k]�!.

Let gk0+1 = Ngk0
(k0; x[k0]). According to the algo-

rithm, x stops sendingCP either because thatgk0+1 is an
empty pointer, or thatgk0+1 is a T-node. First, consider the
case thatgk0+1 is an empty pointer. Hence, fromgk0 ’s re-
ply, aCPRly, x findsNgk0

(k0; x[k0]) = null and then sends
a JW to gk0 . We have shown thatgk0 2 Cx[k0�1]:::x[k]�!.
Let u1 = gk0 , k1 = k0, and leti = 1 initially. Repeat the
following process untilui setsNui(ki; x[ki]) = x.

� If ui setsNui(ki; x[ki]) = x, thenx 2 Cx[ki]:::x[k]�!

sinceui 2 Cx[ki�1]:::x[k]�! andNui(ki; x[ki]) = x.
The process terminates. Ifui setsNui(ki; x[ki]) = v,
v 6= x, thenv 2 Cx[ki]:::x[k]�!. ui then sends a neg-
ative JWRlyto x andx needs to send anotherJW to
v. Letui+1 = v andki+1 = jcsuf(x:ID; ui+1:ID)j,
thenNui+1(h; x[h]) = ui+1 for 0 � h < ki+1 (be-
causeui+1:ID has suffixx[ki+1�1]:::x[0]), therefore,
ui+1 2 Cx[ki+1�1]:::x[k]�!. Incrementi and repeat the
process.

As argued in Proposition A.2, the process will terminate
sincek0 � ki < ki+1 � d � 1. Eventually, there exists a
nodeui, 1 � i < d�k0, such thatui setsNui(ki; x[ki]) = x

and therefore,x 2 Cx[ki]:::x[k]�!

By replacingu1 = gk0 with u1 = gk0+1 in the above
arguments, we can get the proof for the case thatx stops
sendingCP becausegk0+1, gk0+1 = Ngk0

(k0; x[k0]), is a
T-node.

Proposition 5.1 If Wlj :::l1�! 6= ;, 1 � j � d � k,
lj ; :::; l1 2 [b], thenClj :::l1�! 6= ;.

Proof: Prove by contradiction. AssumeWlj :::l1�! 6= ;,
however,Clj :::l1�! = ;. Consider a nodex, x 2 Wlj :::l1�!.
By Proposition A.4, by timete, there exists a C-set that
includesx. Suppose the C-set isCli:::l1�!, then it can not
be i � j. Otherwise, by the definition,x also belongs to
setClj :::l1�!, sinceli:::l1 � ! is a suffix of lj :::l1 � ! (both
of them are suffixes ofx:ID). Thusi > j. Again, by the
definition,x 2 Cli:::l1�! implies there exists a nodeui�1

such thatui�1 2 Cli�1:::l1�! andNui�1(i � 1 + k; li) =
x. Consequently, there must exist a nodeui�2 such that
ui�2 2 Cli�2:::l1�! andNui�2(i � 2 + k; li�1) = ui�1,
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and so on. Eventually, we get that there must exist a node
uj such thatuj 2 Clj :::l1�! andNuj (j + k; lj+1) = uj+1,
whereuj+1 2 Clj+1:::l1�!. Hence,Clj :::l1�! 6= ;, which
contradicts with the assumption.

Proposition A.5 Consider any nodex, x 2 W . If x 2
Clj+1:::l1�! andx 62 Clj :::l1�!, 1 � j � d� k � 1, then

(a) there exists a nodeu, u 2 Clj :::l1�!, such thatNu(j +
k; lj+1) = x andu is the node that sends a positive
JWRly to x (i.e.A(x) = u);

(b) x:noti level = j + k.

If x 2 Cl1�!, then

(a) there exists a nodeu, u 2 V!, such thatNu(k; l1) = x

andA(x) = u;
(b) x:noti level = k.

Proof: Following the same argument as in the proof of
Proposition A.4, at the end of w-phase ofx, we can find a
chain of nodes, (g0, ..., gk, ..., gk0(u1), u2, ..., uf ), where
k � k0 � d � 1, such thatx requests level-i neighbors
from gi, 0 � i � k0, sendsJW to uj , 1 � j � f , and
finally receives a positiveJWRlyfrom uf , 1 � f � d� k0.
Note thatuf will not reply tox before its status changes to
in system. 12

Then, by the definition ofcset(V;W ), uf belongs to
a C-set, since each node in the chain, exceptg0, is a
neighbor of the node proceeds it in the chain. Suppose
jcsuf(uf :ID; x:ID)j = h+ k, 0 � h � d� 1� k. Hence,
x 2 Clh+k+1:::l1�!, wherelh+1:::l1 � ! = x[h + k]:::x[0],
lh:::l1 � ! = uf [h + k � 1]:::uf [0], andlh+1 6= uf [h + k].
After x receives the positiveJWRlyfrom uf , it knows that
uf has setNuf (h + k; lh+1) = x, hencex 2 Clh+1:::l1�!.
Thus,x setsx:noti level = h+ k and proceeds to n-phase
to sendJN to nodes with suffixx[h+k�1]:::x[0] (see code
in Figure 7).

First, observe thath � j. Otherwise, sincex 2
Clh+1:::l1�!, it is also true thatx 2 Clh0 :::l1�!

, h0 � h + 1.
It then impliesx 2 Clj :::l1�!, which contradicts withx 62
Clj :::l1�!.

Next, we show thath � j, i.e., jcsuf(uf :ID; x:ID)j �
j+k. We prove this claim by contradiction. Assumeh > j.
Sincex only sendsJNto nodes with suffixx[h+k�1]:::x[0]
(i.e. suffixlh:::l1 �!), other nodes can only knowx through
these nodes. (Note thatx would not be a neighbor at any
level lower than level-(h+ k � 1) in tables of these nodes,
since these nodes will fill themselves into the correspond-
ing entries.) Given thatx 2 Clj+1:::l1�! andx 62 Clj :::l1�!

, there must exist one nodey, y 2 Clj :::l1�! andy 6= x,
such thatNy(j + k; lj+1) = x by time te (by definition of
cset(V;W )). Hence,x andy share suffixlj :::l1 � !. Since

12The chain of nodes could also be (g0, ...,gk, ...,gk0 , gk0+1(u1), u2,
..., um), 1 � m � d � k0 � 1, wheregk0+1 is still a T-node whenx
copies and constructs its table at level-k0 . The proof in this case is quite
similar, so we omit it here.

x only notifies nodes with suffixlh:::l1 � ! andh > j, it
follows that x will not notify y. Then it must be thaty
knowsx through another node,z, wherez resides the sub-
tree rooted atClh:::l1�!. There are three possible cases: (i)
y copiesx from z during c-phase; (ii)y knowsx through
a reply (aJWRlyor a JNRly) from z or a JN from z; (iii)
y receives aSN informing it aboutx, which is sent or for-
warded byz. Case (i) is impossible, sinceNz(j + k; lj+1)
must bez itself (z:ID also has the suffixlj+1:::l1 �!) andy
will setNy(j + k; lj+1) = z. Case (ii) is impossible either,
because it indicates thaty knows z earlier than it knows
x andy would setNy(j + k; lj+1) = z, not x. (See the
code in Figures 7, 9 and 10.) Now consider case (iii). Ifz

sends or forwards aSN to y, thenjcsuf(x:ID; y:ID)j >
jcsuf(x:ID; z:ID)j, since bothx:ID andy:ID have the
same desired suffix of an entry inz:table. However, we
know thatjcsuf(x:ID; y:ID)j < jcsuf(x:ID; z:ID)j, be-
causejcsuf(x:ID; y:ID)j = j+k, jcsuf(x:ID; z:ID)j =
h + k andh > j. Therefore, case (iii) is also impossible.
Thus, we conclude thath � j.

Combining the two results,h � j andh � j, we get
h = j. Hence,uf 2 Clj :::l1�! andx:noti level = j + k.

Proposition 5.2 Let u be a node inV!. If Wl1�! 6= ;,
l1 2 [b], then there exists a nodex, x 2 Wl1�!, such that
Nu(k; l1) = x by timete.

Proof: By Proposition 5.1, ifWl�! 6= ;,Cl�! 6= ;. Letx be
a node inCl�! (thusx is also inWl�!). By Proposition A.5,
there exists a nodey, y = A(x) andy 2 V! . Thus, if
u = y, Nu(k; l) = x. Next, consider the caseu 6= y.
Proposition A.5,x:noti level = k. Hence,x would notify
nodes with suffixx[k � 1]:::x[0], wherex[k � 1]:::x[0] =
!. SinceN (V ) is consistent beforex joins, there exists
a neighbor sequence betweeny and any other node inV!.

By Proposition A.1, for anyv, v 2 V! , v 6= y, x
j
! v

eventually happens. Therefore,x
j
! u eventually happens.

Whenu receives the notification fromx, if Nu(k; l) = null,
thenu setsNu(k; l) = x if it has not filled that entry.

Corollary A.4 Letu be a node inV! . If Wl�! 6= ;, l 2 [b],
then there exists a nodex, x 2 Wl�!, such that by timete,

x
j
! u has happened.

Proposition A.6 For any C-set,Clj :::l1�!, in cset(V;W ),
1 � j � d� k, l1,...,lj 2 [b], the following assertions hold:

(a) If jClj :::l1�!j > 1, then for any two nodes,x and y,
x 2 Clj :::l1�!, y 2 Clj :::l1�!, x 6= y, by timetxy,

txy = max(tex; t
e
y), at least one ofx

j
! y andy

j
! x

has happened. Moreover, at timetxy, hx ! yid and
hy ! xid.

(b) For eachx, x 2 Clj lj�1:::l1�!, if Wl�lj�1:::l1�! 6= ;,
l 2 [b] and l 6= lj , then there exists a nodey, y 2
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Wl�lj�1:::l1�!, such thatNx(k + j � 1; l) = y by time
te.

Proof: Part(a) of claims that ifx 2 Clj :::l1�!, then it can
reach another node in the same C-set by the time both of
them are S-nodes. Part(b) claims that ifx 2 Clj :::l1�!, then
for any sibling C-set ofCl�lj�1 :::l1�!, x eventually stores a
node with the suffix of that sibling C-set. We prove the
proposition by induction onj.
Base step: j = 1. Consider nodesx andy, x 2 Cl1�!

and y 2 Cl�! , l1 2 [b], l 2 [b] (l may or may not
be the same withl1), andx 6= y. By the definition of
cset(V;W ), by time te, there exists a nodeux, ux 2 V!,
such thatNux(k; l1) = x. Likewise there exists a nodeuy,
uy 2 V!, such thatNuy (k; l) = y. By Proposition A.5,
x:noti level = y:noti level = k. Also, by Corollary A.4,

x
j
! uy happens. Likewise,y

j
! ux happens.

(i) Supposel = l1, i.e., x and y belong to the same
C-set. Then at the timeuy receives the notification from
x, Nuy (k; l1) is set toy already (otherwise,uy would set
Nuy (k; l1) = x, sincex:ID also has the suffixl1 � !).
Then, fromuy’s reply, x knowsy and will notify y, since

jcsuf(x:ID; y:ID)j � jl1 �!j > k. Hence,x
j
! y happens.

Then, by Proposition A.2, by timetex, hy ! xid. Similarly,

y
j
! x eventually happens and by timetey, hx! yid. Thus,

part(a) holds whenj = 1.
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Figure 17. Message sequence chart for base case

(ii) Supposel 6= l1. Let t1 be the timeux receives the
notification fromy, andt2 be the timeux receives the no-
tification from x. If t1 < t2, as shown in Figure 17(a),
then at timet1, eitherux setsNux(k; l) = y or ux has set
Nux(k; l) = v, v 2 Wl�! andv 6= y. In either case, at time
t2, Nux(k; l) 6= null and fromux’s reply, x knows node
Nux(k; l) and setsNx(k; l) = Nux(k; l). If t1 > t2, as
shown in Figure 17(b), theny knowsx from ux’s reply and
will notify x if it has not done so.x then setsNx(k; l) = y

if it has not filled that entry. Hence, part (b) also holds when
j = 1.
Inductive step: In this step, we prove that if the proposition
holds atj, then it also holds atj + 1, 1 � j � d� k � 1.

Consider nodex, x 2 Clj+1:::l1�!. Thenx may or may
not belong toClj :::l1�!. We call the casex 62 Clj :::l1�! Case
1, and call the casex 2 Clj :::l1�! Case 2. We consider the
two cases separately.

� Case 1:x 2 Clj+1:::l1�! andx 62 Clj :::l1�!.

– 1.a In this case, we need to prove part(a) of the
proposition holds. IfjClj+1:::l1�!j > 1, then con-
sider any nodey, y 2 Clj+1:::l1�! andy 6= x:

� 1.a.1y 62 Clj :::l1�!;

� 1.a.2y 2 Clj :::l1�!.

– 1.b In this case, we need to prove part(b) of the
proposition holds. Consider the following two
cases:

� 1.b.19y, y 2 Cl�lj :::l1�! ^ y 62 Clj :::l1�!;

� 1.b.28y, y 2 Cl�lj :::l1�! ) y 2 Clj :::l1�!.

� Case 2:x 2 Clj+1 :::l1�! andx 2 Clj :::l1�!.

– 2.a To prove part(a) of the proposition holds,
consider any nodey, y 2 Clj+1:::l1�! andy 6= x:

� 2.a.1y 62 Clj :::l1�!;

� 2.a.2y 2 Clj :::l1�!.

– 2.b To prove part(b) of the proposition holds,
consider the following cases:

� 2.b.19y, y 2 Cl�lj :::l1�! ^ y 2 Clj :::l1�!;

� 2.b.28y, y 2 Cl�lj :::l1�! ) y 62 Clj :::l1�!.

First, we prove the following claim:

Claim A.2 Suppose Proposition A.6 holds atj, 1 � j �
d � k � 1. If x 2 Clj+1:::l1�!, y 2 Cl�lj :::l1�!, l 2 [b],
however,x 62 Clj :::l1�! andy 62 Clj :::l1�!. Then at least one

of x
j
! y andy

j
! x eventually happens.

Proof: By Proposition A.5, there exists a nodeux, ux 2
Clj :::l1�!, such thatux = A(x). Likewise, there exists a
nodeuy, uy 2 Clj :::l1�!, such thatuy = A(y). Figure 18(a)
and (b) illustrate the relationship of the four nodes, where
in Figure 18(a),l = lj+1, and in Figure 18(b),l 6= lj+1.
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Figure 18. C-sets and message sequences, case 1.a.1

and case 1.b.1

Let the timeux sends the positiveJWRlyto x betx, and
the timeuy sends the positiveJWRly to y be ty. With-
out loss of generality, supposetx < ty, as shown in Fig-
ure 18(c). Then at timety, bothux anduy are already S-
nodes (by Fact 2). Since it is assumed that the proposition
holds atj, by part(a) of the proposition, by timety, ux and
uy already can reach each other. Hence, by the timey re-
ceives the reply fromuy, ux anduy can reach each other.

By Proposition A.1,y
j
! ux eventually happens. Sup-

poseux receives the notification fromy at timeta, clearly,
ta > ty, hence,ta > tx. Then, fromux’s reply, y knows

x and will notify x if it has not done so. Thus,y
j
! x
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eventually happens. Likewise, ifty < tx, thenx
j
! y even-

tually happens. Hence, at least one ofy
j
! x andx

j
! y

eventually happens.
Based on the claim, we next prove that in case 1.a.1,

part(a) of the proposition holds atj + 1, and in case 1.b.1,
part(b) holds atj + 1. We use the same notation ofux, uy,
tx andty as above in proving the proposition in these two
cases.

� Case 1.a.1. Without loss of generality, supposetx <

ty. By the proof of Claim A.2,y
j
! x eventually hap-

pens. By Proposition A.2,hx! yid by timetey. Next,
we need to showhy ! xid by timetxy, which we will

prove by first showing thatx
j
! uy happens duringx’s

n-phase.
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Figure 19. Message sequence chart for case 1.a.1

By assuming that the proposition holds atj, we know

that at least one ofux
j
! uy anduy

j
! ux happens.

(i) First, supposeuy
j
! ux happens. Lettb be the time

ux sends its reply touy. Then, it must be thattb < ty
(by Facts 1 and 2). Also, it must betb > tx, as shown
by Figure 19(a). Otherwise,x would be included in
ux’s reply touy anduy would setNuy (j + k; lj+1) =
x, which contradicts withNuy (j+k; lj+1) = y. Then,
consider thecontact-chain(ux; uy) (as defined in the
proof of Proposition 5.2, Case 2), (u0, u1, ..., uf ,
uf+1), whereu0 = ux, uf+1 = uy, and ui+1 is
a neighbor ofui for all i. (Actually, this chain of
nodes is also the neighbor sequence fromux to uy.)
Then after receiving replies from allui, 0 � i � f ,
Nui(j + k; lj+1) must still be empty (no node except
uy knowsy before timety, hence,uy can not copy
y from any other node). By Claim A.1, eventually,

x
j
! uy happens.

(ii) Second, supposeux
j
! uy happens. Lettc be the

timeuy receives the notification fromux, andtd be the
time ux receives the reply fromuy. Clearly,tc < td.
Moreover, by Facts 1 and 2,td < tx. Figure 19(b)
depicts the order of the events. If at timetx, uy is
already an S-node, then by Proposition A.1, eventually

x
j
! uy happens. If attx, uy is not an S-node yet, then

consider timetc again. Sinceux has already known
uy at tc, eitherux stores (or has stored)uy in its table
at tc, or thatux has set another node,v, v 6= uy, at
the corresponding table entry. In the first case,x will
knowuy from ux’s reply and notifyuy. In the second

case,uy knowsv from ux’s notification that includes
ux:table. Sinceuy is still a T-node on receivingux’s
notification, it needs to notifyv if it has not done so.
Also, x knowsv from ux’s reply and needs to notifyv
too. Now consider the contact-chain(uy; v). Similarly
to the argument in case (i),Nuy (j + k; lj+1) must still
be empty after it receives replies from all other nodes

in the chain. Hence, by Claim A.1, eventuallyx
j
! uy

happens. Therefore, ifux
j
! uy happens,x

j
! uy will

happen.

Hence, no matter whetheruy
j
! ux or ux

j
! uy hap-

pens,x
j
! uy will happen. Then, by the timeuy

receives the notification fromx, it must already set
Nuy (j + k; lj+1) = y (otherwise, it would fillx into
that entry). Hence,x knowsy fromuy ’s reply and will
notify y if it has not done so. By Proposition A.2, it
then follows thathy ! xid by timetex.

If tx > ty, by reversing the role ofx andy in the above
arguments, we can get the same conclusion. Therefore,
part(a) holds atj + 1 in case 1.a.1.

� Cases 1.b.1 Consider a nodey, y 2 Cl�lj :::l1�! and

y 62 Clj :::l1�!. By Claim A.2, at least one ofy
j
! x

andx
j
! y eventually happens. Hence, by the time

x receives the notification fromy (or the timex sends
a notification fromy), x knowsy. Then, by timete,
Nx(j+k; l) can not be empty. Therefore, part(b) holds
at j + 1 in case 1.b.1.

Next, we consider cases 1.a.2 and 1.b.2, wherex 2
Clj+1:::l1�! butx 62 Clj :::l1�!, however,y 2 Cl�lj :::l1�! and
y 2 Clj :::l1�!, l 2 [b]. (In case 1.b.2, we consider an ar-
bitrary nodey, y 2 Cl�lj :::l1�!.) Let ux = A(x), thus
ux 2 Clj :::l1�! (by Corollary A.5).

Sinceux andy both belong toClj :::l1�!, at least one of

ux
j
! y andy

j
! ux eventually happens (by assuming that

the proposition holds atj). Let t1 be the timeux sends
the positiveJWRlyto x, andt2 be the timeux receives the

notification fromy if y
j
! ux happens, otherwise, lett2 be

the timeux sends a notification toy.

� Case 1.a.2. In this case,l = lj+1, as shown in Fig-

ure 20(a). Then,ux
j
! y can not happen, because if

it happens, the timeux sends a notification toy is ear-
lier thant1 andux would setNux(j + k; lj+1) to be

y instead ofx. Hence,y
j
! ux happens, which in-

dicatest1 < t2, otherwise, at timet2, ux would set
Nux(j + k; lj+1) = y. Figure 20(b) depicts the order
of events. Hence, whenux replies toy with ux:table,
x is included inux:table. Then,y knowsx from ux’s

reply andy
j
! x will happen. By Proposition A.2,

hx ! yid holds by timetey (and hence by timetxy,
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wheretxy = max(tex; t
e
y)). Next, we need to show that

by timetxy, hy ! xid.

ux y

x y

t 2

(b)(a)

x

xu

y

1t

t 3

Figure 20. C-sets and message sequences, case 1.a.2

Sincey
j
! x, y knowsx.

– If y storesx in its table, then it follows trivially
hy ! xid by timetey.

– If y has already setz as the corresponding
neighbor (i.e.,Ny(hxy; x[hxy]) = z, hxy =
jcsuf(x:ID; y:ID)j), then fromy’s notification
that includesy:table, x knowsz. Let the timex
receives the notification fromy be t3. Note that
z share more digits withx thany does.
(i) If at time t3, x is still a T-node, thenx will
notify z if it has not done so. By Proposi-
tion A.2, by timetex, z can reachx. Then, by
time tex, there exists a neighbor sequence from
z to x, say, (uh, uh+1, uh+2, ..., x), where
h = jcsuf(z:ID; x:ID)j, uh = z, anduh0+1 =
Nuh0

(h0; x[h0]) for h � h0 � d. Therefore, by
time tex, there exists a neighbor sequence fromy
to x, which is (y, uh, uh+1, ...,x).
(ii) If at time t3, x is already an S-node, then
by the algorithm, after receivingx’s reply,y will
send aSN(y; x) to z to inform z (see the code in
Figures 9 and 10). Ifz already setsz1 as the cor-
responding neighbor,z1 6= x, it would then for-
ward SN(y; x) to z1. The message is forwarded
until eventually some node stores or has already
storedx and sends aSNRlyto y. Note that each
receiver of the message shares at least one more
digits with x than the sender (or forwarder) of
that message does. Hence, by timetey (by Fact 7,
y has received theSNRlyby tey), a neighbor se-
quence (z, z1, ..., x) exists, thus a neighbor se-
quence exists fromy to x, which is (y, z, z1, ...,
x).
Therefore, in either case,hy ! xid by timetxy.
Hence, part(a) of the proposition holds in case
1.a.2.

� Case 1.b.2. In this case,l 6= lj+1, as shown in Fig-
ure 21(a). Consider any nodey, y 2 Cl�lj :::l1�!. We
use the same notation ofux, t1 andt2 as in the proof
of case 1.a.2.

If t1 < t2, thent2 is the time thatux receives the noti-
fication fromy, as shown in Figure 21(b). (By Facts 1
and 2, ift2 is the time thatux sends a notification to
y, thent2 < t1.)
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Figure 21. C-sets and message sequences, case 1.b.2

Then,y knowsx from ux’s reply and will notify x.
Hence, by timetxy, bothx andy has known each other.
Hence,Nx(j+ k; l) can not be empty by timetxy, and
neither canNy(j + k; lj+1) be empty.

If t1 > t2 andy
j
! ux happens, then Proposition A.3

can be utilized Recall thatx 2 Clj+1lj :::l1�!, y 2
Cl�lj :::l1�!, l 6= lj+1. Hence,jcsuf(x:ID; y:ID)j =
j + k. Moreover, by Corollary A.5,x:noti level =
j + k and y:noti level � j + k � 1. Also, we
know ux 2 Clj :::l1�! and ux[j + k] 6= lj+1 (oth-
erwise, Nux(k + j; lj+1) is ux itself, not x), thus
jcsuf(x:ID; ux:ID)j = j + k. Given the above

facts and thatx
j
! ux happens (x sends aJW to

ux), by Proposition A.3, there exists a nodex0, x0 2
Wlj+1:::l1�!, such thatNy(j + k; lj+1) = x0 by time
txy. Likewise, there exists a nodey0, y0 2 Wl�lj :::l1�!,
such thatNx(j + k; l) = y0 by timetxy.

If t1 > t2 andux
j
! y happens, as shown in Fig-

ure 21(c), then, at timet2, ux is still a T-node (by
Fact 1).

– If at time t2, ux setsNux(j + k; l) = y, then at
time t1, y is already inux:table. Hence, from
ux’s reply,x copiesy and will also notifyy (see
the code in Figure 7). Hence, by timetxy, neither
Nx(j + k; l) norNy(j + k; lj+1) is empty.

– If at timet2,Nux(j+k; l) = z, z 6= y, andy is al-
ready an S-node at timet1, then fromux’s reply,
x copiesz. Thus, by timetxy, Nx(j + k; l) = z.
Next, we prove that there exists a nodev, v 2
Wlj+1:::l1�!, such thatNy(j + k; lj+1) = v by
time txy. Observe that at timet1, bothux and
y are S-nodes, and by assuming the proposition
holds atj, we know that by timet1, ux andy
can already reach each other. Then, by Proposi-

tion A.1,x
j
! y eventually happens, which guar-

antees that bytxy,Ny(j + k; lj+1) is not empty.
– If at time t2, Nux(j + k; l) = z, z 6=
y, however, y is still a T-node at timet1,
then similar to the above case,x copies
z from ux’s reply. Thus, by time txy,
Nx(j + k; l) = z. Next, considerNy(j +
k; lj+1). Fromux’s notification, which includes
ux:table that already includesz, y knows z.
Since y is still a T-node andy:noti level �
jcsuf(y:ID; z:ID)j (jcsuf(y:ID; z:ID)j � j+
k and y:noti level � j � 1 + k), y will no-
tify z if it has not done so. Similarly,x will
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notify z (jcsuf(x:ID; z:ID)j = j + k and

x:noti level = j + k). Hence, bothy
j
! z

andx
j
! z will happen. By Proposition A.3,

there exists a nodex0, x0 2 Wlj+1:::l1�!, such
thatNy(j + k; lj+1) = x0 by timetxy.

Therefore, part(b) holds in case 1.b.2.

Finally, we consider cases 2.a.1, 2.a.2, 2.b.1 and 2.b.2.

� Case 2.a.1. This case is symmetric to case 1.a.2, hence
by reversing roles ofx andy in the proof of case 1.a.2,
we can prove that part(a) holds in case 2.a.1.

� Case 2.a.2. In this case, bothx andy also belong to
Clj :::l1�!. By assuming the proposition holds atj, we
know that at least one ofx andy will send a notifica-
tion to the other and by timetxy, they can reach each
other. Hence part(a) holds trivially in case 2.a.2.

� Case 2.b.1. Consider a nodey, y 2 Cl�lj :::l1�! and
y 2 Clj :::l1�!. Thenx andy can reach each other by
txy, txy = max(tex; t

e
y), by assuming that the proposi-

tion holds atj. Consequently, neitherNx(j + k; l) nor
Ny(j+k; lj+1) could be empty at timetxy. Therefore,
part(b) holds in case 2.b.1.

� Case 2.b.2. Consider an arbitraryy, y 2 Cl�lj :::l1�!.
Then, by reversing roles ofx andy in the proof of case
1.b.2, we can prove that part(b) holds in case 2.b.2. (In
the proof of case 1.b.2, we have proved that by time
txy, neitherNx(l+ k; l) norNy(l+ k; lj+1) is empty.)

Corollary A.5 If x 2 Clj :::l1�! andCl�lj�1:::l1�! 6= ;, 1 �
j � d � k, l 2 [b] and l 6= lj , then at least one of the
following assertions is true:

1. There exists a nodey, y 2 Cl�lj�1:::l1�!, such thaty
j
!

x has happened byte.
2. Lety = Nx(j � 1 + k; l). Thenx storesy in x:table

before timetex.

Proof: Proof of the corollary is implied by the proof of
Proposition A.6. To prove that the second assertion is true,
it is sufficient to show thatx knows a node inWl�lj�1:::l1�!

before timetex.
First, consider the base case,x 2 Cl1�!. Let y be a node

in Cl�!, l 2 [b] andl 6= l1. In the proof of Proposition A.6,

we have shown that in this case bothy
j
! x andx

j
! y will

happen. Hence, the corollary holds in the base case.
Next, consider nodex, x 2 Clj :::l1�!, 2 � j � d� k.

� Supposex 62 Clj�1:::l1�!. Letux be the attaching-node
of x, ux 2 Clj�1:::l1�!. Then, considerCl�lj�1:::l1�!,
l 2 [b] andl 6= l1.

If there exists a nodey, such thaty 2 Cl�lj�1:::l1�! and
y 62 Clj�1:::l1�!, then letuy be the attaching-node of

y. Moreover, lettx be the timeux sends its positive
reply (JWRlyto x, andty be the timeuy send its posi-
tive reply (JWRlyto y. Then, according to the proof of
Proposition A.6 (in the part of considering cases 1.a.1

and 1.b.1 together), iftx < ty, theny
j
! x will hap-

pen; if tx > ty, thenx
j
! y will happen. Ify

j
! x

happens, the corollary holds; Ifx
j
! y happens, then

x knowsy, y 2 Wl�lj�1:::l1�!, before timetex. Thus, in
either case, the corollary holds.

If for each node inCl�lj�1:::l1�!, it also belongs to
Clj�1:::l1�!, then pick any nodey, y 2 Cl�lj�1:::l1�!

(the corresponding case in the proof of Proposition A.6
is case 1.b.2). By part(a) of Proposition A.6, either

ux
j
! y or y

j
! ux happens.

– If y
j
! ux happens, let the timeux receives

the notification fromy be t1. If tx < t1, then

y knows x from ux’s reply andy
j
! x will

happen. Iftx > t1, then sinceux knowsy at
time t1, Nux(j � 1 + k; l) 6= null at t1, hence
Nux(j � 1 + k; l) 6= null at tx. Then, fromux’s
reply,x knows a nodez, z = Nux(j � 1 + k; l)
andz 2Wl�lj�1 :::l1�!. Thus,Nx(j � 1 + k; l) 6=
null by timetex.

– If ux
j
! y happens, then whenux replies tox,

Nux(j � 1 + k; l) 6= null and hence,x is able to
store a node in its (j � 1+ k; l)-entry by timetex.

� Supposex 2 Clj�1:::l1�!. Consider any non-empty C-
set,Cl�lj�1:::l1�!, l 2 [b] andl 6= l1.

If there exists a nodey, y 2 Cl�lj�1:::l1�! and y 2
Clj�1:::l1�!, then by part(a) of Proposition A.6, either

y
j
! x or x

j
! y happens. Hence, the corollary holds.

If every node inCl�lj�1:::l1�! does not belong to
Clj�1:::l1�!, then pick a nodey, y 2 Cl�lj�1:::l1�!. (The
corresponding case in the proof of Proposition A.6 is
case 2.b.1.) Letuy be the attaching-node ofy. By

part(b) of Proposition A.6, eitheruy
j
! x or x

j
! uy

happens. Letty be the timeuy replies toy, and tx

be the timeuy sends its notification tox if uy
j
! x

happens, otherwise, lettx be the timeuy receivesx’s
notification.

– If uy
j
! x happens, thentx < ty. (i) If at timety,

x is already an S-node, then by part(a) of Propo-
sition A.6,uy can reachx at timety. By Propo-

sition A.1,y
j
! x will happen. (ii) If at timety,

x is still a T-node andNuy (j � 1 + k; lj) = x,

theny knowsx from uy’s reply andy
j
! x will

happen. (iii) If at timety, x is still a T-node
anduy Nuy (j � 1 + k; lj) = x0, x0 6= x, then
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from uy ’s notification, which includesuy:table,
x knowsx0 and will notify x0 if it has not done

so, i.e.,x
j
! x0 eventually happens. Likewise,

from uy ’s reply, y knowsx0 and will notify x0

too, i.e., y
j
! x0 eventually happens. Con-

sider thecontact-chain(x0; x), as defined in the
proof of Proposition A.3, then by Claim A.1, ei-
ther that by the timex receives replies from all
other nodes in the chain,x has stored a node in

(j � 1 + k; l)-entry, or that eventuallyy
j
! x

happens.

– If x
j
! uy happens, and ifty < tx, thenx knows

y from uy ’s reply (which is before timetex). If
ty > tx, then similar to the above argument (in

the case thatuy
j
! x happens), if at timety, x

is already an S-node, theny
j
! x will happen; if

tx > ty, eithery
j
! x happens, orx has stored a

node in (j�1+k; l)-entry by the time it receives
all the replies from node in contact-chain(x0; x),
wherex0 = Nuy (j � 1 + k; lj) andx0 6= x.

Proposition A.7 Supposex 2 Clj+1:::l1�! and x 62
Clj :::l1�!, 1 � j � d � k � 1, l1,...,lj+1 2 [b] (or sup-
posex 2 Cl1�!). If Wl�li:::l1�! 6= ;, 1 � i � j, l 2 [b] and
l 6= li+1 (or if Wl�! 6= ;, l 2 [b] and l 6= l1) then there
exists a nodey, y 2 Wl�li:::l1�!, such thatNx(k + i; l) = y

by timete (or there exists a nodey, y 2 Wl�!, such that
Nx(k; l) = y by timete).

Proof: By Proposition 5.1, ifWl�li:::l1�! 6= ;, then
Cl�li:::l1�! 6= ;. Observe that sincex 62 Clj�1:::l1�!, x can
not be in any C-setClj0 :::l1�!

, j0 < j � 1, either. (Recall
that we have definedli:::l1 to be empty ifi = 0.)

We know that x initially is given node g0, g0 2
V , to start joining. Considercontact-chain(x; g0),
(g0; g1; :::; gk; :::; gk+f ; u1; :::; uh; x), where x requests
level-i0 neighbors fromgi0 , 0 � i0 � k + f (or 0 � i0 �
k+f�1, in the case where after requesting level-k+f�1
neighbors fromgk+f�1, x finds thatgk+f is still a T-node),
sends aJW to gk+f , finds thatu1 is stored bygk+f in the
corresponding entry, and sends anotherJWto u1 and so on,
until it is stored byuh and receives a positive reply from
uh. Note that nodesg0 to gk are inV , and in particular,
gk 2 V!.

With nodesgk tox, we can create asuffix-chain(gk; x) as
follows (intuitively, if uh0+1, 1 � h0 � h� 1, shares more
than one digits withx thanuh0 does, then we insert several
uh0 between them, so that at the end, we getj + 1 nodes in
suffix � chain(gk; x), wherej = 1 is the same number
with that of C-sets from root toClj+1:::l1�!):

� Put nodesgk to gk+f to suffix-chain(gk; x) and pre-
serve the order of the nodes.

� Initially, let h0 = 1 and f 0 = 1, then re-
peat the following process untilf 0 = j: If
jcsuf(uh0 :ID; gk+f 0 :ID)j = k + f 0, then let
gk+f 0+1 = uh0 and increment bothf 0 andh0; Oth-
erwise, letgk+f 0+1 = gk+f 0 and only incrementf 0.

Then, we getsuffix-chain(gk; x)=(gk; gk+1; :::; gk+j).13

Moreover, for eachgk+j0 in the chain, eitherx
c
! gk+j0

or x
j
! gk+j0 happens. Sincegk 2 V! , by the definition

of cset(V;W ), gk+1 2 Cl1�!, gk+2 2 Cl2l1�! and so on.
In general,gk+j0 2 Clj0 :::l1�!

, 1 � j0 � j � 1. Hence,
gk+i 2 Cli:::l1�!.

By Proposition A.6, there exists a nodey, y 2
Cl�li�1:::l1�!, such thatNgk+i(k + i; l) = y by time te.
By Corollary A.5, either thatgk+i setsNgk+i(k + i; l) =
y before timetegk+i , or that there exists a nodez, z 2

Cl�li�1:::l1�!, such thatz
j
! gk+i eventually happens. If

gk+i setsNgk+i(k + i; l) = y beforetegk+i , then no matter

x
c
! gk+i or x

j
! gk+i happens, the timegk+i replies tox

is no earlier thantegk+i . Hence,x knowsy fromgk+i’s reply
and will setNx(i+ k � 1; l) = y if it has not filled that en-
try. In the second case, by Proposition A.3, there must exist
a nodev, v 2Wl�li�1:::l1�!, such thatNx(i+k�1; l) = v at

timete (becausez
j
! gk+i happens,x

j
! gk+i orx

c
! gk+i

happens, andz:noti level � k + i).
Similarly, we can prove that ifx 2 Cl1�! andWl�! 6= ;,

l 2 [b] and l 6= l1, then there exists a nodey, y 2 Wl�!,
such thatNx(k; l) = y by timete.

Proposition 5.3 For any nodex, x 2 W , if Wl�li:::l1�! 6= ;,
wherel 2 [b] andli:::l1 �! is a suffix ofx:ID, 1 � i < d�k,
thenNx(i+ k; l) = y by timete, y 2Wl�li:::l1�!; if Wl�! 6=
;, l 2 [b], thenNx(k; l) = y, y 2Wl�! .

Proof: SupposeClj :::l1�! is the first C-setx belongs to,
thenx also belongs toClj0 :::l1�!

, j � j0 � d � k. If 1 �
i < j, by Proposition A.7, ifWl�li:::l1�! 6= ;, then there
exists a nodey, such thatNx(i + k; l) = y by time te. If
j � i � d� k� 1, then by part(b) of Proposition A.6, there
exists a nodey, such thatNx(i + k; l) = y by time te. If
Wl�! 6= ;, l 2 [b], then by

Proposition A.8 For each nodex, x 2 V [ W , if (V [
W )j�x[i�1]:::x[0] 6= ;, i 2 [d], j 2 [b], then there exists a
nodey, y 2 (V [ W )j�x[i�1]:::x[0], such that by timete,
Nx(i; j) = y.

Proof: If j = x[i], thenNx(i; j) = x for all i. In what
follows, we assumej 6= x[i], i 2 [b]. First, pick any node
x, x 2W .

13For example, if node 00261 has requested level-0 neighbors from
30701, level-1 from 30701, level-2 from 10261, and then notifies 10261
and is stored by 10261 asN10261(4; 2), thensuffix-chain(30701,00261)is
as follows:( 30701, 30701, 10261, 10261, 00261).
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� If 0 � i < k, then by Corollary A.1, if
Vj�x[i�1]:::x[0] 6= ;, then by timete there exists a node
y, y 2 (V [W )j�x[i�1]:::x[0], such thatNx(i; j) = y.

� If i = k and Vj�x[i�1]:::x[0] 6= ;, then again by
Corollary A.1, there exists a nodey, y 2 (V [
W )j�x[i�1]:::x[0], such thatNx(i; j) = y by time
te. If i = k, (V [ W )j�x[i�1]:::x[0] 6= ;, how-
ever, Vj�x[i�1]:::x[0] = ;, then Wj�x[i�1]:::x[0] 6=
;. By Proposition 5.3, there exists a nodey, y 2
Wj�x[i�1]:::x[0], such thatNx(i; j) = y by timete.

� If k < i � d � 1, then (V [ W )j�x[i�1]:::x[0] =
Wj�x[i�1]:::x[0]. By Proposition 5.3, if
Wj�x[i�1]:::x[0] 6= ;, then there exists a nodey,
y 2 Wj�x[i�1]:::x[0], such thatNx(i; j) = y by timete.

Second, consider nodes inV . Pick x, x 2 V . If (V [
W )j�x[i�1]:::x[0] 6= ; andVj�x[i�1]:::x[0] 6= ;, then given that
N (V ) is consistent, there exists a nodey, y 2 Vj�x[i�1]:::x[0]

such thatNx(i; j) = y. If (V [W )j�x[i�1]:::x[0] 6= ; and
Vj�x[i�1]:::x[0] = ;, then it must be thatx 2 V! andx[i �
1]:::x[0] = !. By Proposition 5.2, there exists a nodey,
y 2Wj�x[i�1]:::x[0] such thatNx(i; j) = y.

Proposition 5.4 For any two nodesx andy, x 2 V [W ,
y 2 V [W , hx! yid by timete.

Proof: By Lemma 3.1 and Proposition A.8, the proposition
holds.

So far, the propositions we have proved are all about a set
of joining nodes that belong to the same C-set tree. Next,
we consider the case where the joining nodes belong to dif-
ferent C-set trees.

Proposition A.9 Suppose a set of nodes,W = fx1,...,xmg,
m � 2, join a consistent networkhV;N (V )i concur-
rently. Let G(V!1 ) = fx; x 2 W;V Notify

x = V!1g,
G(V!2) = fy; y 2 W;V Notify

y = V!2g, whereV!1 \V!2 =
;. For any nodex, x 2 G(V!1), if (V [ G(V!1) [
G(V!2))j�x[i�1]:::x[0] 6= ;, then there exists a nodey, y 2
V [G(V!1) [G(V!2), such thatNx(i; j) = y by timete.

Proof: If j = x[i], thenNx(i; j) = x for all i. In what
follows, we assumej 6= x[i], i 2 [b]. SinceV!1 \ V!2 = ;,
neither!1 nor!2 is a suffix of the other. Consider any node
x, x 2 G(V!1).
� For 0 � i < k1, if (V [ G(V!1 ) [
G(V!2))j�x[i�1]:::x[0] 6= ;, then it must
be Vj�x[i�1]:::x[0] 6= ;. Otherwise, since
G(V!1)j�x[i�1]:::x[0] = ; (j 6= x[i], hence
j � x[i � 1]:::x[0] is not a suffix of!1), it has to be
G(V!2)j�x[i�1]:::x[0] 6= ;. However,Vj�x[i�1]:::x[0] = ;
andG(V!2)j�x[i�1]:::x[0] 6= ; indicates!2 is a suffix
of x[i� 1]:::x[0], thus a suffix of!1. A contradiction.
Hence,Vj�x[i�1]:::x[0] 6= ;. Then, by Corollary A.1, by
time te, Nx(i; j) = z, z 2 Vj�x[i�1]:::x[0].

� If i = k1 and Vj�x[i�1]:::x[0] 6= ;, then by Corol-
lary A.1, by timete,Nx(i; j) = z, z 2 Vj�x[i�1]:::x[0].

� If k1 � i � d � 1 and (V [ G(V!1) [
G(V!2 ))j�x[i�1]:::x[0] 6= ;, however,Vj�x[i�1]:::x[0] =
;, then (V [ G(V!2 ))j�x[i�1]:::x[0] = ;
(by Corollary A.3), hence, it could only be
G(V!1 )j�x[i�1]:::x[0] 6= ;. Then, by Proposition 5.3,
by timete, Nx(i; j) = z, z 2 G(V!1 )j�x[i�1]:::x[0].

Proposition 5.5 Suppose a set of nodes,W = fx1,...,xmg,
m � 2, join a consistent networkhV;N (V )i concurrently.
Let G(V!1) = fx; x 2 W;V Notify

x = V!1g, G(V!2) =
fy; y 2W;V Notify

y = V!2g, !1 6= !2.14 Then by timete,

� 8x, 8y, x 2 G(V!1), y 2 G(V!2), hx! yid.

Proof: If neither!1 nor !2 is a suffix of the other, then
V!1 \ V!2 = ; (by Lemma A.1). Hence, for anyx,
x 2 G(V!1), and anyy, y 2 G(V!2), hx ! yid (by
Lemma 5.3).15

Next, suppose one of!1 and!2 is a suffix of the other.
By Lemma 3.1, to provehx ! yid, it is sufficient to prove
thatN (V [G(V!1 )[G(V!2 )) is consistent by timete. First,
consider nodes inV . Clearly, to maintain the consistency of
the network, only nodes inV!1 and nodes inV!2 needs to
update some of their table entries. By Proposition 5.2, for
eachu, u 2 V!1 , if G(V!1)j�!1 6= ;, then there exists a node
v, v 2 G(V!1)j�!1 , such thatNu(k1; j) = v. Similarly, for
eachu, u 2 V!2 , if G(V!2 )j�!2 6= ;, then there exists a
nodev, v 2 G(V!2)j�!2 , such thatNu(k2; j) = v.

Without loss of generality, suppose!2 is a proper suffix
of !1. Let k1 = j!1j andk2 = j!2j. Then it follows that
k2 < k1 andV!1 � V!2 .

For any nodex, x 2 G(V!1), if j = x[i], i 2 [b], then
Nx(i; j) = x; if j 6= x[i]:

� If 0 � i � k2 andVj�x[i�1]:::x[0] 6= ;, then by Corol-
lary A.1, by timete, Nx(i; j) = z, z 2 Vj�x[i�1]:::x[0].
(Note that for0 � i < k2, if Vj�x[i�1]:::x[0] = ;, then
(V [G(V!1) [G(V!2))j�x[i�1]:::x[0] = ;.)

� If i = k2 and Vj�x[i�1]:::x[0] = ;, however,(V [
G(V!1 ) [ G(V!2))j�x[i�1]:::x[0] 6= ;, then it must be
thatG(V!1)j�x[i�1]:::x[0] = ; (becausej 6= x[i]), how-
ever,G(V!2 )j�x[i�1]:::x[0] 6= ;. Supposeg0 is the node

14For example, if V = f30701; 11361g and W =
f00261; 30451; 74261g, then G(V61) = f00261; 74261g and
G(V1) = f30451g, where!1 = 61 and!2 = 1. Intuitively, this means
that if only 00261 (or 74261) joins the network, then it needs to notify all
the nodes inV61, and if only 30451 joins the network, then it needs to
notify all the nodes inV1.

15Even if nodes inW join dependently, it is possible that there exist two
nodesx andy, x 2W , y 2W , such thatV Notify

x \V Notify
y = ;. In such

a case, there exists a nodez, z 2 W , such thatV Notify
x \ V

Notify
z 6= ;

andV Notify
y \ V

Notify
z 6= ;, By Definition 3.6 the joins ofx, y andz are

dependent.
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x is given to start joining. Then consider the nodesx

sendsCP to, the firstk1+1 nodes areg0, g1, ...,gk2 , ...,
gk1 , wheregk2 2 V!2 andgk1 2 V!1 (gk, 0 � k � k1,
sharesk rightmost digits withx, andx[k1]:::x[0] is !2
according to our assumption). Hence,x

c
! gk2 hap-

pens. Moreover, by Proposition 5.2, there exists a node

z, z 2 G(V!2)j�x[k2�1]:::x[0], such thatz
j
! gk2 hap-

pens. Hence, by Proposition A.3, there exists a node
z0, z0 2 G(V!2 )j�x[k2�1]:::x[0], such thatNx(k2; j) =
z0 by timete.

� If k2 < i � d � 1 and (V [ G(V!1) [
G(V!2)j�x[i�1]:::x[0] 6= ;, then it must be that
G(V!1)j�x[i�1]:::x[0] 6= ;. By Proposition 5.3, by time
te,Nx(i; j) = z, z 2 G(V!1)j�x[i�1]:::x[0].

For any nodey, y 2 G(V!2), if j = y[i], i 2 [b], then
Ny(i; j) = y; if j 6= y[i]:
� If 0 � i � k2 andVj�y[i�1]:::y[0] 6= ;, then by Corol-

lary A.1, by timete, Ny(i; j) = z, z 2 Vj�y[i�1]:::y[0].
(Again, for 0 � i < k2, if Vj�y[i�1]:::y[0] 6= ;, then
(V [G(V!1 ) [G(V!2 ))j�y[i�1]:::y[0] = ;.)

� If i = k2, (V [ G(V!1) [ G(V!2))j�y[i�1]:::y[0] 6=
;, however, Vj�y[i�1]:::y[0] = ;, then it must be
G(V!1)j�y[i�1]:::y[0] = ; andG(V!2)j�y[i�1]:::y[0] 6=
;. Otherwise, if G(V!1)j�y[i�1]:::y[0] 6= ;, then
there existsx, x 2 G(V!1 ), such thatx[k2] =
j. By assuming!2 is a proper suffix of!1, we
havex[k2]:::x[0] = j � y[k2 � 1]:::y[0]. However,
V Notify
x = Vx[k1�1]:::x[0], k1 > k2 by the assumption,

indicates thatVx[k2]:::x[0] 6= ;, i.e., Vj�y[i�1]:::y[0] 6=
;. A contradiction. Having proved that in this
case,G(V!2)j�y[i�1]:::y[0] 6= ;, by Proposition 5.3,
we conclude that by timete, Ny(i; j) = z, z 2
G(V!2)j�y[i�1]:::y[0].

� If k2 < i � d � 1 and (V [ G(V!1) [
G(V!2))j�y[i�1]:::y[0] 6= ;, then it must be
G(V!1)j�y[i�1]:::y[0] = ; andG(V!2)j�y[i�1]:::y[0] 6= ;.
By Proposition 5.3, by timete, Ny(i; j) = z, z 2
G(V!2)j�y[i�1]:::y[0].

Lemma 5.4 Suppose a set of nodes,W = fx1,...,xmg,
m � 2, join a consistent networkhV;N (V )i concurrently.
If the joins are dependent, then at timete, hV [W;N (V [
W )i is consistent.

Proof: First, separate nodes inW into groupsfG(V!i),
1 � i � hg, where!i 6= !j if i 6= j, such that for any
nodex in W , x 2 G(V!i) if and only if V Notify

x = V!i ,
1 � i � h. Consider any two nodesx andy. Then, by time
te,
� If x andy are both inV , or x 2 V andy 2 G(V!i ),

1 � i � h, or bothx andy belong toG(V!i), then by
Proposition 5.4,x andy can reach each other.

� If x 2 G(V!i ), y 2 G(V!j ), 1 � i � h, 1 � j � h,
i 6= j, then by Proposition 5.5,x andy can reach each
other.

Therefore, any two nodes inV [W can reach each other by
time te. By Lemma 3.1,hV [W;N (V [W )i is consistent
at timete.

Lemma 5.5 Suppose a set of nodes,W = fx1,...,xmg,
m � 2, join a consistent networkhV;N (V )i concurrently.
Then at timete, hV [W;N (V [W )i is consistent.

Proof: First, separate nodes inW into groups, such that
joins of nodes in the same group are dependent and joins
of nodes in different groups are mutually independent, as
follows (initially, let i = 1):
� For each nodey, y 2 W�

Si
j=1Gj , if there exists a

nodex, x 2 Gi, such that(V Notify
y \ V Notify

x 6= ;)

or (9u; u 2 W�
Si�1
j=1Gj , (V Notify

y � V Notify
u ) ^

(V Notify
x � V Notify

u )), puty in Gi;

� Pick any nodex0, x0 2 W�
Si

j=1Gj , putx0 in Gi+1,
incrementi and repeat these two steps until there is no
node left.16

Then, we get groupsfGi, 1 � i � lg. It can be checked that
for any nodex, x 2 Gi, 1 � i � l, V Notify

x \ V Notify
y = ;,

y 2 Gj , 1 � j � l andi 6= j.
Consider any two nodesx andy.
� If both x andy are inV , or x 2 V , y 2 Gi, or bothx

andy are inGi, then by Lemma 5.4,x andy can reach
each other by timete.

� If x 2 Gi, y 2 Gj , i 6= j, thenV Notify
x \V Notify

y = ;.
By Proposition A.9,x andy can reach each other by
time te.

Therefore, any two nodes inV [W can reach each other by
time te. By Lemma 3.1,hV [W;N (V [W )i is consistent
at timete.

Theorem 1Suppose a set of nodes,W = fx1,...,xmg,m �
1, join a consistent networkhV;N (V )i. Then, at timete,
hV [W;N (V [W )i is consistent.

Proof of Theorem 1: If m = 1, then by Lemma 5.1, the
theorem holds.

16For example, supposeV = f72430, 10353, 62332, 13141, 31701g
andW = f23241, 00701, 47051, 47320g. First, letG1 = f23241g.
Nodes inW � G1 are then checked one by one. Lety be the node that
is being checked. (i)G1 = f23241g, y = 00701. Then there exists a
nodex, x = 23241 (x 2 G1), and a nodeu, u = 47051 (u 2 W ),
such thatV Notify

y 2 V
Notify
u andV Notify

x 2 V
Notify
u (V Notify

y = V01,

V
Notify
x = V41 , V Notify

u = V1). Hence, 00701 is included inG1. (ii)
G1 = f23241, 00701g, y = 47051. Then there exists a nodex, x =

23241 (x 2 G1), such thatV Notify
y \V Notify

x 6= ;. 47051 is also included
in G1. (iii) G1 = f23241, 00701, 47051g, y = 47230. Neither of the
condition mentioned above is satisfied. Thus,y is not included inG1. (iv)
Put 47230 inG2, and there is no more node left. Eventually, nodes inW

are separated into two groups,G1 andG2.
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If m � 2, then according to their joining periods, nodes
in W can be separated into several groups,fGi, 1 � i � lg,
such that nodes in the same group join concurrently and
nodes in different groups join sequentially. Let the join-
ing period ofGi be [tbGi

; teGi
], 1 � i � l, wheretbGi

=

min(tbx; x 2 Gi) andteGi
= max(tex; x 2 Gi). We num-

ber the groups in such a way thatteGi
< tbGi+1

. Then, if
jG1j � 2, by Lemma 5.5, at timeteG1

, hV [G1;N (V [G1)i
is consistent; ifjG1j = 1, then by Lemma 5.1,hV [
G1;N (V [ G1)i is consistent at timeteG1

. Similarly, by
applying Lemma 5.5 (or Lemma 5.1) toG2, ...,Gl, we con-
clude that evetually, at timete, hV [ W;N (V [ W )i is
consistent.

Theorem 2Suppose a set of nodes,W = fx1,...,xmg,m �
1, join a consistent networkhV;N (V )i. Then, each nodex,
x 2W , eventually becomes an S-node.

Proof: For each nodex, x 2 W , there are three phases be-
fore it becomes an S-node: c-phase, w-phase and n-phase.
We then prove thatx will proceed from c-phase to w-phase,
from w-phase to n-phase, and evetually n-phase will end.
Our proof is based upon the assumption of reliable message
delivery and no node deletion during joins. Observe that
among all the messages a joining node may send,CP, JW,
JN, andSNneed to be replied. The other types of messages
do not require replies and thus do not preventx from enter-
ing a new phase.

� First, consider a joining node,x, in c-phase. In
this phase,x copies neighbors from other nodes to
construct its own table by sendingCP and receiving
CPRly. The process of sending a request and receiv-
ing a reply can at most bed rounds, since there are
only d levels in a table and at each round,i is incre-
mented, wherei indicates which level of neighbors are
requested. Moreover, once a node receives a copy-
request, it replies tox with no waiting. Therefore,x
eventually proceeds to w-phase.

� Second, consider a joining node,x, in w-phase. In this
phase,x sends outJW. Supposex stops at level-k at the
end of c-phase, thenx can at most send outd � k JW
before it receives a positiveJWRly, because each time
it sends one moreJW, the receiver shares at least one
more digit withx than the previous receiver. (When it
sends anotherJW, it has received the reply to its pre-
vious JW.) We next show that after sending aJW, x
eventually receives a reply. If the receiver of aJW, y,
is an S-node, theny replies with no waiting. Ify is not
yet an S-node, then it is a joining node in n-phase (or is
about to enter n-phase)17 and will wait until it becomes

17This is because that sincex copiesy from another node’s neighbor
table,y is already stored by that node, which can only happen at the end

an S-node before replying tox. Thus, to complete the
proof of this theorem, it suffices to show that any join-
ing node in n-phase eventually becomes an S-node.

� Last, consider a joining node,z, in n-phase. There are
two types of messages sent byz in this phase,JN and
SNthat need to be replied.z only sendsJN to a subset
of nodes inV [ W that share the rightmosti digits
with itself, i = z:noti level, and each receiver of a
JN replies toz with no waiting. Also,z only sends
SNto a subset of nodes inW that share the rightmost
i + 1 digits with it. EachSN is forwarded at mostd
time before a reply is sent toz, and each receiver of
the message can reply toz or forward the message to
another node with no waiting. Therefore,z eventually
becomes an S-node.

A.2 Communication cost

The messages exchanged during a node’s join can be cate-
gorized into the following sets:

1. CP andCPRly,
2. JWandJWRly,
3. JNandJNRly,
4. SNandSNRly,
5. InSysNotiMsg,
6. RNandRNRly

where messages in sets 1, 2 and 3 could be big in size, since
they may include a copy of a neighbor table, while messages
in sets 4, 5 and 6 are small in size. In Section 5.2, we have
presented the number (or expected number) for messages in
sets 1, 2 and 3 sent in a node’s join process. In this section,
we present proofs of Theorems 3, 4 and 5, and analyses of
numbers of messages in sets 4, 5 and 6.

Theorem 3Suppose a set of nodes,W = fx1,...,xmg,m �
1, join a consistent networkhV;N (V )i. Then, for anyx,
x 2 W , the number of CpRstMsg and JoinWaitMsg sent by
x is at mostd+ 1.

Proof: Suppose at the end of c-phase,x has built its table
up to level-i. Then, the number ofCPsent byx in c-phase is
at mosti+1 (recall that we number the levels from 0 tod�
1). In w-phase,x sendsJWto u1, u2, and so on until a node
uj sends a positive reply tox. For eachuj0 , 2 � j0 � j, d�
1 � jcsuf(x:ID; uj0 :ID)j � jcsuf(x:ID; uj0�1:ID) �
i. Hence,x can at most sendd � i JW during w-phase.
Therefore, the total number ofCP andJW sent byx is at
mostd+ 1.

Theorem 4 Suppose nodex joins a consistent network
hV;N (V )i, jV j = n. Then, the expected number of Join-
NotiMsg sent byx is

Pd�1
i=0

n
bi
Pi(n) � 1, wherePi(n)

of y’s w-phase or iny’s n-phase.
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is
Pmin(n;B)

k=1
C(B;k)C(bd�bd�i;n�k)

C(bd�1;n)
for 1 � i < d � 1,

whereB = (b� 1)bd�1�i andC(B; k) denotes number of

k-combinations ofB objects,P0(n) is C(bd�bd�1;n)
C(bd�1;n)

, and

Pd�1(n) is 1�
Pd�2

j=0 Pj(n).

Proof: SupposeV Notify
x = V!. Thenx needs to notify all

the nodes inV! . By Proposition A.5, there exists a nodeux,
ux 2 V!, such thatux is the attaching-node ofx (A(x) =
ux). Then,x sends aJW to ux, however,x sendsJN to any
other node inV! (by Proposition A.1, for any node inV!
other thanux, x will send aJN). Hence, the number ofJN
x sends isjV! j � 1. LetY = j!j andZ = jV! j. We denote
the probability thatY equalsj given jV j = n asPj(n),
j 2 [d]. Then,Pj(n) = P (V! 6= ; ^ Vx[j]�! = ;), i.e.,
Pj(n) = P (Vx[j�1]:::x[0] 6= ; ^ Vx[j]:::x[0] = ;). Then,

E(Z) = E(E(ZjY )) =

d�1X
i=0

(E(ZjY = i))Pi(n) (1)

We deriveE(ZjY = i)) first, givenY = i, V! =
Vx[i�1]:::x[0]. Since in a hypercube network, the node IDs
are distributed randomly in the ID space[bd], the expect
number of nodes inV whose IDs have suffixx[i� 1]:::x[0]
is n

bi
. Hence,E(ZjY = i) = n

bi
.

Next, we computePi(n), i 2 [d� 1]. In general, IDs of
nodes inV can be drawn frombd � 1 possible values. That
is, for anyy, y 2 V , y:ID could be any value from 0 to
bd � 1 exceptx:ID. If i = 0, thenVx[0] = ;, i.e., there is
no node inV whose ID has suffixx[0]. Then, IDs of nodes
in V are drawn from(b � 1)bd�1 possible values (for any
nodey, y 2 V , y[0] could be any value in[b] other than
x[0], andy[j] could be any value in[b], 1 � j � d � 1).
Hence,

P0(n) =

�
bd � bd�1

n

�
�

bd � 1
n

�

If 1 � i < d� 1, thenVx[i�1]:::x[0] 6= ; andVx[i]:::x[0] =
;. That is, at least there is one node inV with suffix x[j �
1]:::x[0] but there is no node inV with suffix x[i]:::x[0].
Then, for then IDs of nodes inV k out of them are drawn
from (b � 1)bd�1�i possible values (for any nodey, y 2
Vx[i�1]:::x[0], y[i] could be any value in[b] exceptx[i], and
digits y[d � 1] to y[i + 1] could be any value in[b]) , 1 �
k � min(n; (b � 1)bd�1�i), and the othern � k IDs are
drawn frombd � bd�i possible values. Hence,

Pi(n) =

min(n;B)X
k=1

�
B

k

��
bd � bd�i

n� k

�
�

bd � 1
n

�

whereB = (b� 1)bd�1�i.
Finally, for i = d � 1, since each ID is unique,x:ID

is different than the ID of any node inV . Therefore,

Vx[d�1]:::x[0] = ; is always true, independent of whether
Vx[d�2]:::x[0] is empty or not.

Pd�1(n) = P (Vx[d�1]:::x[0] = ; ^ Vx[d�2]:::x[0] 6= ;)

= P (Vx[d�1]:::x[0] = ;)P (Vx[d�2]:::x[0] 6= ;)

= P (Vx[d�2]:::x[0] 6= ;)

= 1� P (Vx[d�2]:::x[0] = ;)

= 1� P (Vx[0] = ;

_(Vx[0] 6= ; ^ Vx[1]x[0] = ;) _ :::

_(Vx[d�3]:::x[0] 6= ; ^ Vx[d�2]:::x[0] = ;))

= 1�
d�2X
i=0

Pi(n)

PlugPi(n) into Equation 1, we getE(Z). The expected
number ofJNx sends during its join isE(Z)� 1.

Theorem 5 Suppose a set of nodes,W = fx1,...,xmg,
m � 2, join a consistent networkhV;N (V )i. Then for
any nodex, x 2 W , an upper bound of the expected num-
ber of JoinNotiMsg sent byx is

Pd�1
i=0 (

n+m
bi

)Pi(n), where
n = jV j, andPi(n) is defined in Theorem 4.

Proof: Consider any nodex, x 2 W . Let J be the num-
ber of JN sent byx when it joins with other nodes con-
currently. SupposeV Notify

x = V! . Let Y = j!j and
Pi(n) be the probability thatY equalsi, i 2 [d], given
jV j = n. No matter how many nodes join concurrently
with x, x:noti level � Y . Moreover,x only sendsJN to
a subset of nodes whose IDs have suffixx[k � 1]:::x[0],
k = x:noti level. These nodes are a subset of nodes with
suffix !. Let Z = j(V [W )!j. Hence,J < Z, which is
true for every joining node. Therefore,E(J) < E(Z). To
computeE(Z), we have

E(Z) = E(E(ZjY )) =
d�1X
i=0

(E(ZjY = i))Pj(n)

whereE(ZjY = i) = n+m
bi

andPj(n) is defined in Theo-
rem 4.

Next, we present an upper bound of the expected number
of messages in set 4,SNandSNRly. We say that anSN is
initialized by x, if it is in the form of SN(x; y), wherey
could be any node other thanx. Such a message is initially
sent out byx to inform the receiver about the existence of
y. It may be forwarded a few times before a reply is sent
back tox. For example,x may send aSN(x; y) to u1, u1
forwards the same message tou2, andu2 sends a reply to
x without further forwarding the message. In this example,
there are 2SN(x; y) and oneSNRly(x; y) transmitted in the
network.

Corollary A.6 Suppose a set of nodes,W = fx1,...,xmg,
m � 2, join a consistent networkhV;N (V )i. Then for any
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nodex, x 2 W , an upper bound of the expected number of
messages in the form of SN(x; y) or SNRly(x; y) sent byx,
y 6= x, is

Pd�1
i=0 (

m
bi+1

(d� i� 1))Pi(n), wheren = jV j and
Pi(n) is defined in Theorem 4.

Proof: Consider any nodex, x 2 W . SupposeV Notify
x =

V!, i = j!j, and j = x:noti level, then j � i. Let
X = fy, SN(x; y) is sent out byx during its joing. Then,
for a particulary, y 2 X , SN(x; y) is only sent out byx
once. Anyy, y 2 X , must share suffixx[j]:::x[0] with x.
SinceVx[i]:::x[0] = ; (by definition ofV Notify

x ) andj � i,
Vx[j]:::x[0] = ;. Hence, it could only be thaty 2 Wx[j]:::x[0],
which is a subset of nodes inWx[i]:::x[0].18 The expected
number of nodes inWx[i]:::x[0] is m

bi+1
, thus,E(jX j) can at

most be m
bi+1

. For eachSNsent out byx, it can be forwarded
at mostd � j � 2 times (which includes the first time that
it is sent out byx), thus less thand � i � 2 times. This is
because that the first receiver of the message shares at least
j+2 digits withy (both IDs ofy and the first receiver must
have suffixy[j + 1]:::y[0], y 2 X), the last receiver of the
message shares at mostd�1 digits withy, and each receiver
along the path shares at least one more digit withy than the
previous receiver does. Lastly, for eachSN(x; y sent out by
x, there is one corresponding reply,SNRly(x; y), from the
last receiver of theSN(x; y).

Let Y = j!j, Z = jWx[j]�! j, (i.e.,Z = jWx[j]:::x[0]j),
andPi(n) be the probability thatY equalsi givenjV j = n,
i 2 [d]. Then,

E(Z) = E(E(ZjY )) =

d�1X
i=0

(E(ZjY = i))Pj(n)

whereE(ZjY = i) = m
bi+1

(d � i � 2 + 1) andPj(n) is
defined in Theorem 4.

Figure 22 plots the upper bound ofSNsent by a joining
node, givenn andm. In the simulations we conducted,
however, we did not observe anySNthat was sent out by a
joining node.

To get the expected number of messages in set 5,InSys-
NotiMsg, supposeV Notify

x = V! . Then according to the
join protocol, only a node with suffix! may fill x into its
neighbor table. (If a node’s ID does not share any digits
with !, then clearly it will not choosex as a neighbor; if
a node,y, shares a suffix!0 with x, j!0j < j!j, then by
Corollary A.1,Ny(k

0; x[k0]) = z, z 2 V , k0 = j!0j, thusx
is not stored iny’s table, either.) LetR denote the number
of reverse-neighbors ofx. At the end of its join, to each
reverse-neighbor,x needs to send aInSysNotiMsg. Hence,
the total number of messages in set 5 isR. Since the ID of a
reverse-neighbor ofx has suffix!, the number of nodes in
V [W with suffix! is an upper-bound ofR. As defined in

18There are several extra conditions that constrainx from sending aSN,
however, we ignore those conditions in deriving an upper bound.
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Figure 22. Theoretical upper bound of the expected num-

ber of SpeNotiMsg sent by a joining node

Theorem 5, this upper-bound is
Pd�1

i=0 (
n+m
bi

)Pj(n), where
Pj(n) is defined in Theorem 4.

The number of messages in the last set, set 6, isO(db),
becausex needs to inform each neighbor thatx becomes
a reverse-neighbor of it, by sending aRN. SomeRN may
be replied (when the status of the receiver kept byx is not
consistent with the status of the receiver). Actually, some
RNcan be piggyback’ed with some other messages, such as
JWRlyandJNRly. Hence, the number of messages in set 6
that is sent by a joining node is at most2db.
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